WorldWideScience

Sample records for relativistic heavy-ion collisions

  1. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  2. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  3. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  4. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  5. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  6. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  7. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  8. Particle Interferometry for Relativistic Heavy-Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1999-01-01

    In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.

  9. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a ...

  10. Quarkonia at finite temperature in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Datta, Saumen

    2015-01-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook. (author)

  11. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  12. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  13. Proceedings of the Budapest workshop on relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Levai, P.

    1993-04-01

    This volume is the Proceedings of the Budapest workshop on relativistic heavy ion collisions held in Budapest, 10-13 Aug, 1992. The topics include experimental heavy ion physics, Bose-Einstein correlations, intermittency, relativistic transport theory, Quark-Gluon Plasma rehadronization, astronuclear physics and cosmology. All contributions were indexed and abstracted. (author)

  14. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  15. Towards relativistic heavy ion collisions 'by small steps towards the stars'

    International Nuclear Information System (INIS)

    Scott, D.K.

    1980-01-01

    Current attempts to search for the exotic processes occurring in relativistic heavy ion collisions are reviewed under the headings; peripheral collisions (peripheral collisions as a function of energy, new features at intermediate energies, ground state correlations, microscopic aspects), central collisions (low energy perspective, time scales in heavy ion collisions, spatial, temporal localization and the onset of the nuclear fireball, models of particle emission in central relativistic collisions, the heart of the matter, multiplicity selection, the emission of composite particles), a search for the exotic (the limits of temperature and pressure, temporal and spatial limits, the limits of nuclear matter and nuclei,). 229 references. (U.K.)

  16. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  17. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  18. Photons from the early stages of relativistic heavy-ion collisions

    Science.gov (United States)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  19. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  20. Langevin dynamics of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Alberico, W M; De Pace, A; Molinari, A; Monteno, M; Nardi, M; Prino, F

    2011-01-01

    We study the stochastic dynamics of c and b quarks, produced in hard initial processes, in the hot medium created after the collision of two relativistic heavy ions. This is done through the numerical solution of the relativistic Langevin equation. The latter requires the knowledge of the friction and diffusion coefficients, whose microscopic evaluation is performed treating separately the contribution of soft and hard collisions. The evolution of the background medium is described by ideal/viscous hydrodynamics. Below the critical temperature the heavy quarks are converted into hadrons, whose semileptonic decays provide single-electron spectra to be compared with the current experimental data measured at RHIC. We focus on the nuclear modification factor R_AA and on the elliptic-flow coefficient v_2, getting, for sufficiently large p_T, a reasonable agreement.

  1. Studies of relativistic heavy ion collisions at the AGS (Experiment 814)

    International Nuclear Information System (INIS)

    Cleland, W.E.

    1992-01-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way

  2. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  3. Towards relativistic heavy ion collisions by small steps towards the stars

    International Nuclear Information System (INIS)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references

  4. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  5. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  6. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  7. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  8. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  9. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  10. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  11. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  12. Towards relativistic heavy ion collisions by small steps towards the stars. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references. (JFP)

  13. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  14. Production of spectator hypermatter in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Botvina, A. S.; Gudima, K. K.; Steinheimer, J.; Bleicher, M.; Mishustin, I. N.

    2011-01-01

    Possible formation of large hyperfragments in relativistic heavy-ion collisions is studied within two transport models, the Dubna cascade model and UrQMD model. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semiperipheral collisions. We investigate basic characteristics of the produced hyperspectators and estimate the production probabilities of multistrange systems. Advantages of the proposed mechanisms over an alternative coalescence process are analyzed. We also discuss how such hyperfragments can be detected by taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hypernuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.

  15. Femtoscopic analysis of baryon correlations in ultra-relativistic heavy-ion collisions registered by ALICE

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361630

    Heavy-ion collisions at ultra-relativistic energies give a unique possibility to create and to analyse the Quark-Gluon Plasma predicted by the theory of Quantum Chromodynamics. The research on the properties of such state of matter is crucial for understanding the features of the strongly interacting system. Experimental results reveal the collective behaviour of matter created in the heavy-ion collisions at ultra-relativistic energies. The existence of this effect can be verified by the measurement of the transverse mass dependence of the source size extracted using different particle species. Such characteristics can be determined using the analysis technique called femtoscopy. This method is based on the correlations of particles with small relative momenta which originate from the effects of Quantum Statistics as well as the strong and Coulomb Final State Interactions. A recent analysis of the particle production at the highest available collision energies of heavy-ion collisions reveals the puzzling res...

  16. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  17. Ultra-relativistic heavy ion collisions in a multi-string model

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e + e - or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs

  18. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  19. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  20. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  1. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  2. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  3. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    OpenAIRE

    Uphoff, Jan

    2014-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of...

  4. Expectations and realities in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-06-01

    Interpretations of some recent results from experiments done at the CERN-SPS on relativistic heavy-ion collisions are discussed. A cautionary note is given for the observed J//Psi/ suppression due to the hadronic interaction of J//Psi/ in the final state. The multiplicity dependence of average transverse momentum has many complications, and is unsuitable as an indicator of phase transition. Multiplicity fluctuation may be a better diagnostic tool. No indication of any collective behavior has been seen in the recent experiments. 30 refs., 3 figs

  5. Entropy production in the relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Holme, A.K.; Csernai, L.P.; Levai, P.; Papp, G.

    1989-09-01

    A short overview is given on the most important possibilities of entropy production in the relativistic heavy ion collisions, which is connected to the shock phenomena. The E802 experiment is considered as an example, where one can determine the specific entropy content from measured strange particle ratios. The received large entropy value (S/N B ∼ 14) can be explained by assuming quark-gluon plasma formation. The possibility of overcooling of quark-gluon plasma and its deflagration are also investigated. (author) 22 refs.; 4 figs

  6. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  7. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Luzum, Matthew; Petersen, Hannah

    2014-01-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field. (topical review)

  8. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  9. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  10. Final Report for Project ``Theory of ultra-relativistic heavy-ion collisions''

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich W. Heinz

    2012-11-09

    In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at

  11. Rho0 Photoproduction in Ultra-Peripheral Relativistic Heavy Ion Collisions with STAR

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2007-12-20

    Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR collaboration presents a measurement of {rho}{sup 0} and direct {pi}{sup +}{pi}{sup -} photoproduction in ultra-peripheral relativistic heavy ion collisions at {radical}s{sub NN} = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross-section of {sigma}(AuAu {yields} Au*Au* {rho}{sup 0}) = 530 {+-} 19 (stat.) {+-} 57 (syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The {rho}{sup 0} transverse momentum spectrum (p{sub T}{sup 2}) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find {sigma}{sub inc}/{sigma}{sub coh} = 0.29 {+-} 0.03 (stat.) {+-} 0.08 (syst.). The ratio of direct {pi}{sup +}{pi}{sup -} production is comparable to that observed in {gamma}p collisions at HERA, and appears to be independent of photon energy. Finally, the measured {rho}{sup 0} spin helicity matrix elements agree within errors with the expected s-channel helicity conservation.

  12. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  13. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  14. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Cao, Shanshan; Bass, Steffen A; Huang, Yajing; Qin, Guang-You

    2015-01-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark–gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed. (paper)

  15. Relativistic continuum physics for the description of heavy ion collisions

    International Nuclear Information System (INIS)

    Lukacs, Bela

    1986-01-01

    The application of relativistic continuum physics to the description of the nuclear fireball evolution from the start of expansion to the breaking is discussed. The basic formalism and basic assumptions of relativistic hydrodynamics and thermodynamics are analyzed in detail. The four basic assumptions are not valid in the case of nuclear fireball produced in heavy ion collisions, but thermodynamics can be extended in different ways to incorporate anisotropy, fluctuations, gradients and the lack of the local equilibrium. The extended continuum formalism is applicable to the description of the nuclear fireball dynamics, including the nuclear - quark matter phase transition. (D.Gy.)

  16. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  17. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  18. Jet Quenching in Relativistic Heavy Ion Collisions at the LHC

    CERN Document Server

    Angerami, Aaron

    Jet production in relativistic heavy ion collisions is studied using Pb+Pb collisions at a center of mass energy of 2.76 TeV per nucleon. The measurements reported here utilize data collected with the ATLAS detector at the LHC from the 2010 Pb ion run corresponding to a total integrated luminosity of 7 μb−1. The results are obtained using fully reconstructed jets using the anti-kt algorithm with a per-event background subtraction procedure. A centrality-dependent modification of the dijet asymmetry distribution is observed, which indicates a higher rate of asymmetric dijet pairs in central collisions relative to peripheral and pp collisions. Simultaneously the dijet angular correlations show almost no centrality dependence. These results provide the first direct observation of jet quenching. Measurements of the single inclusive jet spectrum, measured with jet radius parameters R = 0.2,0.3,0.4 and 0.5, are also presented. The spectra are unfolded to correct for the finite energy resolution introduced by bot...

  19. Hadronic degrees of freedom in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    2001-01-01

    The observation of temperature and transverse expansion velocity between BNL-AGS and CERN-SPS suggests the change of property of hadronic matter. In order to study the origin of the fact, it is important to check whether or not pure hadronic scenarios are excluded. We have discussed the temperature and transverse expansion in relativistic heavy-ion collisions using pure hadronic cascade model, HANDEL. We conclude the hadronic matter in AGS energies are understandable in the frame of the hadronic cascade model if we care how much hadronic degrees of freedom are counted. (author)

  20. Phase transition dynamics in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, G.Y.; Zabrodin, E.E.

    1992-11-01

    The authors investigate various problems related to the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. 10 refs., 7 figs

  1. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  2. Hadronic degrees of freedom in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2001-01-01

    Relativistic heavy-ion collisions at AGS energies are studied by using an new developed hadronic cascade model, HANDEL which includes a few hadronic degrees of freedom. The spectra of hadron-hadron, hadron-nucleus and nucleus-nucleus reactions at AGS energies are well reproduced by HANDEL. It is confirmed that the infinite matter described by HANDEL has particle fractions which are expected from grand canonical ensemble. When we compare the thermal evolution of Au+Au collision from HANDEL with the result from JAM which has larger hadronic degree of freedoms, we find both models give similar evolution of temperature, against naive expectation. We argue that this results can be interpretated if the particles in formation time works as the additional effective hadronic degrees of freedom. (author)

  3. Population of multi-quark states in exotic multiplets and thermalization in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Scherer, S.; Bleicher, M.; Haussler, S.; Stoecker, H.

    2008-01-01

    The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision. (author)

  4. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  5. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  6. Theoretical contributions to coherent pion production in subthreshold and relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Deutchman, P.A.; Norbury, J.W.; Townsend, L.W.

    1986-01-01

    The analysis results from a microscopic calculation for pion production in heavy-ion collisions at intermediate to relativistic energies both above and below pion threshold are presented and the most important terms that contribute to the pion spectrum are determined. The energy dependence and the effects on the pion spectrum due to the various parameters in the theory are examined. The model is applied to coherent pion-production in 16 O + 12 C collisions. (orig.)

  7. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  8. Neutron removal in peripheral relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Aumann, T.

    1994-09-01

    We investigate the relativistic Coulomb fragmentation of 197 Au by heavy ions, leading to one-, two- and three-neutron removal. To resolve the ambiguity connected with the choice of a specific minimum impact parameter in a semiclassical calculation, a microscopic approach is developed based on nucleon-nucleon collisions ('soft-spheres' model). This approach is compared with experimental data for 197 Au at 1 GeV/nucleon and with a calculation using the 'sharp-cutoff' approximation. We find that the harmonic-oscillator model predicting a Poisson distribution of the excitation probabilities of multiphonon states gives a good agreement with one-neutron removal cross sections but is unable to reach an equally good agreement with three-neutron removal cross sections. (orig.)

  9. The Diogene detector and relativistic heavy ion collisions. First experiments at Saturne

    International Nuclear Information System (INIS)

    Alard, J.P.; Augerat, J.; Babinet, R.

    1983-01-01

    Relativistic heavy ion collisions are important for a study of nuclear matter properties, at high density temperature. The use of high multiplicity detectors, with a 4π solid angle, permit more exclusive experiments which are essential for an approach of collision mechanisms and for the observation of eventual exotic phenomena. Also, we present some preliminary results, obtained with a 800 MeV/nucl α particle beam and concerning the performances of the Diogene detector actually setted up at the Laboratoire National Saturne at Saclay [fr

  10. Open heavy-flavor measurements in ultra-relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, Ralf

    2016-12-15

    Recent results from open heavy-flavor measurements in proton-proton (pp), proton/deuteron-nucleus (p/d-A), and nucleus-nucleus collisions (A-A) at RHIC and at the LHC are presented. Predictions from theoretical models are compared with the data, and implications for the properties of the hot and dense medium produced in ultra-relativistic heavy-ion collisions are discussed.

  11. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  12. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  13. Origin of transverse momentum in relativistic heavy-ion collisions: Microscopic study

    International Nuclear Information System (INIS)

    Blaettel, B.; Koch, V.; Lang, A.; Weber, K.; Cassing, W.; Mosel, U.

    1991-01-01

    We study the origin of the transverse momentum distribution in heavy-ion collisions within a relativistic transport approach. To achieve a better understanding of the reaction dynamics, we decompose the total p t distribution into a mean-field, N-N collision, and Fermi-momentum part. We find that the origin of the transverse momentum strongly depends on the rapidity region. Our investigation of the impact-parameter and mass dependence suggests that peripheral collisions may be useful to investigate the momentum dependence of the mean-field in the nucleus-nucleus case, whereas the mass dependence could give hints about the N-N-collision part. Only after these two issues are settled it may be possible to extract information about the density dependence in central collisions, which may, however, necessitate reactions at even higher energies than the 800 MeV/nucleon considered in this work

  14. Transverse Momentum Distribution of Vector Mesons Produced in Ultraperipheral Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2006-01-01

    We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei, and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution, which is determined by the transverse momentum of the emitted photon, the production process on the target, and the interference effect, is done. We study the unrestricted cross section and the one with an additional electromagnetic excitation of one or both ions; in the latter case small impact parameters are emphasized

  15. Pion production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Norbury, J.W.

    1983-01-01

    A Lorentz-invariant differential cross section for pion production in peripheral, relativistic, heavy ion collisions is calculated for the collisions of an 16 O projectile onto a 12 C target. The pions are produced via excitations of a Δ(3,3) resonant state in the projectile with simultaneous excitation of an M1 giant resonance in the target. A second order amplitude describing resonance formation and decay is derived within the context of second order, time-dependent perturbation theory and a corresponding transition rate is evaluated. This is then applied to the problem of pion production and a differential cross section is calculated using a simple product-of-states model. The whole theory is then re-formulated within a second quantized particle-hole model which describes the basic process of M1 giant resonance formation as well as the formation and decay of the intermediate Δ(3,3) resonance. Subsequently, a new Lorentz-invariant differential cross section is calculated from the particle-hole amplitude. The theoretical cross section is compared with some experimental data and the agreement is found to be satisfactory given the nature of the data and the assumptions of the theory

  16. Coherent vector-meson photoproduction with nuclear breakup in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Baltz, Anthony J.; Klein, Spencer R.; Nystrand, Joakim

    2002-01-01

    Relativistic heavy ions are copious sources of virtual photons. The large photon flux gives rise to a substantial photonuclear interaction probability at impact parameters where no hadronic interactions can occur. Multiple photonuclear interactions in a single collision are possible. In this Letter, we use mutual Coulomb excitation of both nuclei as a tag for moderate-impact-parameter collisions. We calculate the cross section for coherent vector-meson production accompanied by mutual excitation and show that the median impact parameter is much smaller than for untagged production. The vector-meson rapidity and transverse-momentum distribution are very different from untagged exclusive vector-meson production

  17. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  18. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  19. Photons from Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    Sarkar, S

    2000-01-01

    It is believed that a novel state of matter - Quark Gluon Plasma (QGP) will be transiently produced if normal hadronic matter is subjected to sufficiently high temperature and/or density. We have investigated the possibility of QGP formation in the ultra-relativistic collisions of heavy ions through the electromagnetic probes - photons and dileptons. The formulation of the real and virtual photon production rate from strongly interacting matter is studied in the framework of Thermal Field Theory. Since signals from the QGP will pick up large backgrounds from hadronic matter we have performed a detailed study of the changes in the hadronic properties induced by temperature within the ambit of the Quantum Hadrodynamic model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. The possibility of observing the direct thermal photons and lepton pairs from quark gluon plasma has been contrasted with that from hot hadronic matter with and without medium effects for va...

  20. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  1. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  2. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  3. A study of the collective effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Tai, A.

    1995-11-01

    Motivated by both the collective features observed in relativistic heavy ion reactions and the assumption that QCD vacuum might have properties similar to a type II superconductor we investigate in this thesis a few possible models which may work in an intermediate state corresponding to the vortex line states of the type II superconductor. In these models we assume that several strings from a relativistic heavy ion reaction will form a cluster and then the strings inside such a cluster will interact in a collective way. We argue that with an increasing energy density the hadronic phase may not be directly changed into the QGP phase through a phase transition, but will go through the intermediate state first. Whether the intermediate state can change further into a QGP state in which the strings 'melt' up into an extended flux tube may largely depend on the nature of the collective effects exhibited in this state. The investigations are proved quite successful in describing many experimental data including the high P T enhancement, the low P T enhancement, the production of transverse energy in mid-rapidity, the strangeness production and so on. It also brings up a more fundamental question, can we reach the energy density needed for the formation of a QGP state in the accelerator experiments? The collective effects, like Firecracker, Smokering and color rope which we study in this thesis are of the same character, they will all tend to disperse the energy density obtained in the initial encounter of relativistic heavy ion collisions. This dynamical possibility may actually mean that it will become more difficult to reach the second phase transition, i. e. to 'melt' the vacuum into a quark-gluon plasma. 56 refs

  4. Report on the Oak Ridge workshop on Monte Carlo codes for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Awes, T.C.; Sorensen, S.P.

    1988-01-01

    In order to make detailed predictions for the case of purely hadronic matter, several Monte Carlo codes have been developed to describe relativistic nucleus-nucleus collisions. Although these various models build upon models of hadron-hadron interactions and have been fitted to reproduce hadron-hadron collision data, they have rather different pictures of the underlying hadron collision process and of subsequent particle production. Until now, the different Monte Carlo codes have, in general, been compared to different sets of experimental data, according to which results were readily available to the model builder or which Monte Carlo code was readily available to an experimental group. As a result, it has been difficult to draw firm conclusions about whether the observed deviations between experiments and calculations were due to deficiencies in the particular model, experimental discrepancies, or interesting effects beyond a simple superposition of nucleon-nucleon collisions. For this reason, it was decided that it would be productive to have a structured confrontation between the available experimental data and the many models of high-energy nuclear collisions in a manner in which it could be ensured that the computer codes were run correctly and the experimental acceptances were properly taken into account. With this purpose in mind, a Workshop on Monte Carlo Codes for Relativistic Heavy-Ion Collisions was organized at the Joint Institute for Heavy Ion Research at Oak Ridge National Laboratory from September 12--23, 1988. This paper reviews this workshop. 11 refs., 6 figs

  5. Relativistic hydrodynamic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Amsden, A.A.; Bertsch, G.F.; Harlow, F.H.; Nix, J.R.

    1975-01-01

    By use of finite-difference methods the classical relativistic equations of motion for the head-on collision of two heavy nuclei are solved. For 16 O projectiles incident onto various targets at laboratory bombarding energies per nucleon less than or equal to2.1 GeV, curved shock waves develop. The target and projectile are deformed and compressed into crescents of revolution. This is followed by rarefaction waves and an overall expansion of the matter into a moderately wide distribution of angles

  6. Collective flow in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    A brief introduction is given to the field of collective flow, currently being investigated experimentally at the Relativistic Heavy-Ion Collider, Brookhaven National Laboratory. It is followed by an outline of the work that I have been doing in this field, in collaboration with Nicolas Borghini and Jean-Yves Ollitrault.

  7. Recent progress in nonperturbative electromagnetic lepton-pair production with capture in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wells, J.C.; Oberacker, V.E.; Umar, A.S.

    1993-01-01

    The prospect of new colliding-beam accelerators capable of producing collisions of highly stripped high-Z ions, at fixed-target energies per nucleon up to 20 TeV or more, has motivated much interest in lepton-pair production from the QED vacuum. The time-dependent and essentially classical electromagnetic fields involved in such collisions contain larger Fourier components which give rise to sizable lepton-pair production in addition to many other exotic particles. The process of electron-positron production with electron capture is a principal beam-loss mechanism for highly charged ions in a storage ring. In this process, the electron is created in a bound state of one of the participant heavy ions (most likely the 1s state), thus changing the ion's charge state and causing it to be deflected out of the beam. There is a long and sometimes controversial history concerning the use of perturbative methods in studying electromagnetic lepton-pair production; however, reliable perturbative calculations have been used as input into design models for the Relativistic Heavy-Ion Collider (RHIC). Applying perturbation theory to these processes at high energies and small impact parameters results in probabilities which violate unitarity, and cross sections which violate the Froissart bound. This evidence, along with the initial nonperturbative studies, suggests that higher-order QED effects will be important for extreme relativistic collisions. Clearly, large nonperturbative effects in electron-pair production with capture would have important implications for RHIC. In this paper, the authors briefly discuss recent progress in nonperturbative studies of the capture problem. In Section 2, they state the Dirac equation for a lepton in the time-dependent external field of a heavy ion which must be solved to compute lepton-capture probabilities. Section 4 surveys results from recent applications of coupled-channel and lattice techniques to the lepton-capture problem

  8. Studies of relativistic heavy ion collisions. Final report, July 16, 1987-December 31, 1997

    International Nuclear Information System (INIS)

    Madansky, L.

    1997-01-01

    As a member of the DLS collaboration, the Hopkins group participated in all aspects of the experiment and the analysis of the results. The recent work involved measurements of dielectrons from p-p, p-d collisions as well as heavy ion Ca-Ca collisions at high densities. These results show the expected effects of bremsstrahlung vector meson decay and Dalitz decay but still show that some varieties of the low mass cross-sections disagree with various theoretical estimates, which could indicate other effects of high nuclear density. The Hopkins group has also been an initial member of the STAR collaboration and helped initiate the proposal for jet searches in the heavy ion experiments at RHIC. The group was instrumental in initiating the first stage of an electro-magnetic calorimeter for these experiments. The group also joined (E896) the Ho experiment. This work was primarily devoted to finding the existence of an elementary system containing strange quarks. An initial experiment was done recently at which Hopkins provided various beam counters. The final work is expected to commence in the fall of '98. Finally, the group has contributed to a number of experiments involving polarization effects in nuclear collisions, searching for production of antimatter, and other aspects of relativistic collisions of heavy ions using the facilities at Brookhaven National Laboratory (BNL)

  9. Riemann problems and their application to ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Plohr, B.J.; Sharp, D.H.

    1986-07-01

    Heavy ion collisions at sufficiently high energies to form quark-gluon plasma are considered. The phase transformation from a quark-gluon phase to hadrons as the nuclear matter cools is modeled as a hydrodynamical flow. Nonlinear waves are the predominant feature of this type of flow and the Riemann problem of a relativistic gas undergoing a phase transformation is explored as a method to numerically model this phase transition process in nuclear matter. The solution of the Riemann problem is outlined and results of preliminary numerical computations of the flow are presented. 10 refs., 2 figs

  10. Differential cross section study of fragment production, at small angle, in relativistic heavy ion collisions. Application at a calculation of heavy ion beam transport in the matter

    International Nuclear Information System (INIS)

    Morel, P.

    1992-02-01

    Relativistic heavy ion collisions present the opportunity of creating in laboratory small volumes of hot, dense nuclear matter. On the experimental point of view, the collision events are characterized by a great number of fragments, especially in the direction of the projectile. The first part is devoted to a survey of relativistic heavy ion physics. Then, we present two experimental set-ups which permit, in particular, the analyse of light fragment production at small angles. We present experimental results concerning light projectiles on Ca, Nb, Pb targets, with energies from 200 A.MeV up to 600 A.MeV. Different aspects of the collision are put in evidence. Momentum and charge differential cross section are extrapolated to other projectile/target systems; that is used in a transport calculation of Ne ions in a target of biological interest (water), with a collimator. We show that nuclear fragmentation produces a dispersion in the spatial and energy distributions, and that one light fragments have a range greater than the projectile range. That last point causes a distortion of the Bragg curve, and that distortion must be taken into account for the application of heavy ions to radiotherapy problems. 95 figs., 8 tabs

  11. Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    CERN Document Server

    Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E

    2015-01-01

    The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.

  12. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  13. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2010-01-01

    We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p T -spectra and pseudorapidity distributions for Au+Au collisions at √(s)=200 GeV and present results for the anisotropic flow coefficients v 2 and v 4 as a function of both p T and pseudorapidity η. We were able to determine v 4 with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.

  14. Mechanisms for pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pfeiffer, M.

    1991-01-01

    In the following contribution some aspects concerning pion production in heavy ion collisions will be discussed. After a general introduction the properties of pions and the Δ-resonance will be briefly mentioned. In the following section some points refering to the pion production in a relativistic heavy ion collision will be discussed. In addition, the basic ideas of the applied models will be shown. In the last part results from existing experiments and possible interpretations will be presented. (orig.)

  15. Non-standard γγ →l sup(+)l sup(-) processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Almeida, L.D.; Natale, A.A.; Novaes, S.F.; Eboli, O.J.P.

    1991-02-01

    We study lepton pair production in heavy ion collisions with emphasis in nonstandard contributions of the QRD subprocess γ γ → l sup(+)l sup(-). The existence of compositeness of fermions and/or bosons can be tested in this reaction up to the TeV mass scale. We show that for some processes the capabilities of relativistic heavy ion colliders to disclose new physics supplant the possibilities of e sup(+)e sup(-) or pp-bar machines. In particular, the spin zero composite particles which couples predominantly to two-photons, predicted in composite models, can be studied in a broad range of masses. (author)

  16. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  17. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  18. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  19. Studies of relativistic heavy ion collisions at the AGS (E814/E877)

    International Nuclear Information System (INIS)

    Cleland, W.E.

    1993-01-01

    Efforts have continued in the area of peripheral and central collisions of relativistic heavy ions. In the area of peripheral collisions, the analysis of the 1n and 2p decay channels has been completed. In the area of central collisions, the first measurement of the E T distributions in Au + Au collisions, through the use of the participant calorimeter, was completed, and the results were compared with those obtained in collisions with Si projectiles. In addition, a thorough study of two-particle correlation functions was carried out by use of the data from the silicon pad multiplicity detector. Differential cross sections for 14.6-GeV/c 28 Si on Al, Cu, and Pb, and 11.4-GeV/c 197 Au on Al, Cu, Au, and Pb are given. 32 figs., 4 tabs., 24 refs

  20. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  1. HBT measurements in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1990-01-01

    The correlations in relative momentum between identical bosons are determined, in part, by the geometrical properties of the boson source. This fact was first exploited in hadron physics by Goldhaber, Goldhaber, Lee and Pais (GGLP) in 1960. In the intervening three decades, this approach has been applied to lepton-lepton, lepton-hadron, hadron-hadron, and heavy-ion collisions. A word about nomenclature: The correlations in relative momentum between identical mesons arise from Bose statistics. Even previous to GGLP, this fact was applied by Hanbury-Brown and Twiss to measure stellar radii via two-photon interferometry. Thus an alternative name for the GGLP effect is the HBT effect. An informal introduction to Hanbury-Brown-Twiss measurements in heavy ion collisions is presented. The systematic effects in interpreting such data are emphasized, rather than the implications of any single experiment

  2. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. Following the Run 1 period, LHC also successfully delivered Pb–Pb collisions at the collision energy sNN= 5.02 TeV at the end of 2015. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. This review presents selected experimental results from heavy-ion collisions delivered during the first three years of the LHC operation focusing on the bulk matter properties and the dynamical evolution of the created system. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large hadron collider, Heavy-ion collisions, High energy physics

  3. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan

    2013-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/ψ mesons, which is also investigated in this thesis.

  4. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  5. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  6. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  7. Isospin and isospin / strangeness correlations in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, A. [Rutgers Univ., Dept. of Physics and Astronomy, NJ (United States); California Institute of Technology, Kellogg Radiation Lab 106-38 - Pasadena, CA (United States)

    2007-10-15

    A fundamental symmetry of nuclear and particle physics is isospin whose third component is the Gell-Mann/Nishijima expression I{sub Z} = Q-(B+S)/2. The role of isospin symmetry in relativistic heavy-ion collisions is studied. An isospin I{sub Z}, strangeness S correlation is shown to be a direct and simple measure of flavor correlations, vanishing in a Q{sub g} phase of uncorrelated flavors in both symmetric N = Z and asymmetric N {ne} Z systems. By contrast, in a hadron phase, a I{sub Z}/S correlation exists as long as the electrostatic charge chemical potential {mu}{sub q} {ne} 0 as in N {ne} Z asymmetric systems. A parallel is drawn with a Zeeman effect which breaks a spin degeneracy. (authors)

  8. The discovery of nuclear compression phenomena in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schmidt, H.R.

    1991-01-01

    This article has attempted to review more than 15 years of research on shock compression phenomena, which is closely related to the goal of determining the nuclear EOS. Exciting progress has been made in this field over the last years and the fundamental physics of relativistic heavy ion-collisions has been well established. Overwhelming experimental evidence for the existence of shock compression has been extracted from the data. While early, inclusive measurements had been rather inconclusive, the advent of 4π-detectors like the GSI-LBL Plastic Ball had enabled the outstanding discovery of collective flow effects, as they were predicted by fluid-dynamical calculations. The particular case of conical Mach shock waves, anticipated for asymmetric collisions, has not been observed. What are the reasons? Surprisingly, the maximum energy of 2.1 GeV/nucleon for heavy ions at the BEVALAC had been found to be too low for Mach shock waves to occur. The small 20 Ne-nucleus is stopped in the heavy Au target. A Mach cone, however, if it had developed in the early stage of the collision will be wiped out by thermal motion in the process of slowing the projectile down to rest. A comparison of the data with models hints towards a rather hard EOS, although a soft one cannot be excluded definitively. A quantitative extraction is aggravated by a number in-medium and final-state effects which influence the calculated observables in a similar fashion as different choices of an EOS. Thus, as of now, the precise knowledge of the EOS of hot and dense matter is still an open question and needs further investigation. (orig.)

  9. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  10. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  11. Theoretical perspective on RHIC [relativistic heavy ion collider] physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1990-10-01

    We discuss the status of the relativistic heavy ion collider (RHIC) project at Brookhaven, and assess some key experiments which propose to detect the signatures of a transient quark-gluon plasma (QGP) phase in such collisions. 24 refs

  12. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  13. Direct photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Baeuchle, Bjoern

    2010-01-01

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E lab =35 AGeV and 158 AGeV, (s NN ) 1/2 =62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  14. Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel S. [Physics Department, Brookhaven National Lab, Building 510A, Upton, NY, 11973 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2016-12-15

    I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program.

  15. Universal pion freeze-out in heavy-ion collisions.

    Science.gov (United States)

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  16. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  17. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  18. Thermal, chemical and spectral equilibration in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Wolf, György, E-mail: wolf.gyorgy@wigner.mta.hu [Wigner RCP, Budapest (Hungary)

    2015-11-15

    We have considered the equilibration in relativistic heavy ion collisions at energies 1–7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20–40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff–Baym equations employed via the (local) gradient expansion.

  19. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  20. INFN what next ultra-relativistic heavy-ion collisions

    CERN Document Server

    Dainese, A.; Usai, G.; Antonioli, P.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Bruno, G.E.; Bufalino, S.; Di Nezza, P.; Lombardo, M.P.; Nania, R.; Noferini, F.; Oppedisano, C.; Piano, S.; Prino, F.; Rossi, A.; Agnello, M.; Alberico, W.M.; Alessandro, B.; Alici, A.; Andronico, G.; Antinori, F.; Arcelli, S.; Badala, A.; Barbano, A.M.; Barbera, R.; Barile, F.; Basile, M.; Becattini, F.; Bedda, C.; Bellini, F.; Beole, S.; Bianchi, L.; Bianchin, C.; Bonati, C.; Bossu, F.; Botta, E.; Caffarri, D.; Camerini, P.; Carnesecchi, F.; Casula, E.; Cerello, P.; Cicalo, C.; Cifarelli, M.L.; Cindolo, F.; Colamaria, F.; Colella, D.; Colocci, M.; Corrales Morales, Y.; Cortese, P.; De Caro, A.; De Cataldo, G.; De Falco, A.; De Gruttola, D.; D'Elia, M.; De Marco, N.; De Pasquale, S.; Di Bari, D.; Elia, D.; Fantoni, A.; Feliciello, A.; Ferretti, A.; Festanti, A.; Fionda, F.; Fiorenza, G.; Fragiacomo, E.; Fronze, G.G.; Girard, M. Fusco; Gagliardi, M.; Gallio, M.; Garg, K.; Giubellino, P.; Greco, V.; Grossi, E.; Guerzoni, B.; Hatzifotiadou, D.; Incani, E.; Innocenti, G.M.; Jacazio, N.; Das, S. Kumar; La Rocca, P.; Lea, R.; Leardini, L.; Leoncino, M.; Lunardon, M.; Luparello, G.; Mantovani Sarti, V.; Manzari, V.; Marchisone, M.; Margagliotti, G.V.; Masera, M.; Masoni, A.; Mastroserio, A.; Mazzilli, M.; Mazzoni, M.A.; Meninno, E.; Mesiti, M.; Milano, L.; Moretto, S.; Muccifora, V.; Nappi, E.; Nardi, M.; Nicassio, M.; Pagano, P.; Pappalardo, G.S.; Pastore, C.; Paul, B.; Petta, C.; Pinazza, O.; Plumari, S.; Preghenella, R.; Puccio, M.; Puddu, G.; Ramello, L.; Ratti, C.; Ravasenga, I.; Riggi, F.; Ronchetti, F.; Rucci, A.; Ruggieri, M.; Rui, R.; Sakai, S.; Scapparone, E.; Scardina, F.; Scarlassara, F.; Scioli, G.; Siddhanta, S.; Sitta, M.; Soramel, F.; Suljic, M.; Terrevoli, C.; Trogolo, S.; Trombetta, G.; Turrisi, R.; Vercellin, E.; Vino, G.; Virgili, T.; Volpe, G.; Williams, M.C.S.; Zampolli, C.

    2016-01-01

    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target p...

  1. Constituent quarks and multi-strange baryon production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Sahoo, Raghunath; Behera, Nirbhay K.; Nandi, Basanta K.; Varma, Raghava

    2009-01-01

    Relativistic heavy-ion collisions aim at creating matter at extreme conditions of energy density and temperature which is governed by the partonic degrees of freedom called Quark-Gluon Plasma (QGP). In the early phase of ultra-relativistic heavy ion collisions, when a hot and dense region is formed in the core of the reaction zone, different quark flavors are produced copiously. The produced matter then undergoes transverse expansion and the produced particles suffer multiple scattering among themselves. The formation of the hadrons from the partonic phase is accomplished through further expansion and cooling of the system

  2. Enhancement of strangeness in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Heiselberg, H.

    1990-01-01

    The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)

  3. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  4. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  5. Nonperturbative electromagnetic muon-pair production with capture in peripheral relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wells, J.C.

    1991-01-01

    We discuss preliminary calculations of impact-parameter-dependent probabilities and cross sections for muon-pair production with capture of the negative muon into the K-shell of the target caused by the time-dependent electromagnetic fields generated in peripheral relativistic heavy-ion collisions. Our approach is nonperturbative in that we calculate probabilities by solving the time-dependent Dirac equation on a three-dimensional Cartesian lattice using the basis-spline collocation method. Use of the axial gauge for the electromagnetic potentials produces an interaction easier to implement on the lattice than the Lorentz gauge. 19 refs., 5 figs

  6. Radiative electron capture studied in relativistic heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1994-08-01

    The process of Radiative Electron Capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed X-ray spectra are analysed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well-reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a non-relativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the non-relativistic approach for practical purposes. (orig.)

  7. Ultra-relativistic heavy ions and cosmic rays

    International Nuclear Information System (INIS)

    McLerran, L.

    1983-05-01

    The collisions of ultra-relativistic heavy ions, E/sub /N/ greater than or equal to 1 TeV/nucleon are most interesting, since, at these energies, matter is produced at sufficiently high energy density that a quark-gluon plasma has a good chance to form. Very heavy ions are also most interesting since the matter forms in a larger volume than for light ions, and the matter is at a somewhat higher energy density. At very high energies with very heavy ions there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. The fragmentation region and central region provide different environments where a plasma might form. The former is baryon rich while the central region is high temperature with low baryon number density and is not accessible except at very high energies

  8. Relativistic heavy ion experiments at BNL-AGS

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1992-01-01

    Relativistic heavy ion program at BNL started in 1986. Already a few experiments have achieved their first goals. Several interesting features reported among which are: The black nuclear transparency, the enhanced K + /π + ratio and the larger t > for K + and proton in central Si+Au collisions. Comparisons of m t and dn/dy distributions between pp, pA and AA are discussed together with various model calculations. (orig.)

  9. Impact parameter dependence of the specific entropy and the light particle yield in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1986-01-01

    The connection between the fragment yield and the associated specific entropy of particles produced in the course of a relativistic heavy ion collision is studied within the cascade approach. The essential impact parameter dependence of the fragment yield indicates that the specific entropy increases with impact parameter and that the critical density of the system decay is the larger the more central the collision process is. The results show that the thermodynamical equilibrium limit for the entropy production is not reached for such heavy systems as Nb+Nb at 400 MeV/nucleon and that the finite size effects and the dynamical freeze-out process are dominant factors in determining the cluster yield

  10. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  11. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  12. Impact-parameter dependence of the total probability for electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hencken, K.; Trautmann, D.; Baur, G.

    1995-01-01

    We calculate the impact-parameter-dependent total probability P total (b) for the electromagnetic production of electron-positron pairs in relativistic heavy-ion collisions in lowest order. We study expecially impact parameters smaller than the Compton wavelength of the electron, where the equivalent-photon approximation cannot be used. Calculations with and without a form factor for the heavy ions are done; the influence is found to be small. The lowest-order results are found to violate unitarity and are used for the calculation of multiple-pair production probabilities with the help of the approximate Poisson distribution already found in earlier publications

  13. A Review on ϕ Meson Production in Heavy-Ion Collision

    Directory of Open Access Journals (Sweden)

    Md. Nasim

    2015-01-01

    Full Text Available The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS and the CERN Super Proton Synchrotron (SPS followed by Relativistic Heavy Ion Collider (RHIC at Brookhaven and recently at Large Hadron Collider (LHC at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN 4.75 GeV to 2.76 TeV. The ϕ meson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements of ϕ meson production in heavy-ion experiments. Mainly, we discuss the energy dependence of ϕ meson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2 of proton is also discussed relative to corresponding effect on ϕ meson v2.

  14. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  15. Cluster approach to intranuclear cascade for relativistic heavy ion colisions

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Nazareth, R.A.M.S.

    1982-01-01

    A new approach to the intranuclear cascade model for relativistic heavy ion reaction is presented. The effect of nucleon conventration on the collision process is explicitly included. It is found that the contributions from the non-binary processes are far from being negligible. Such processes are shown to broaden the angular distribution of inclusive proton spectra for 20 Ne + 238 U head-on collisions. (Author) [pt

  16. From 0 to 5000 in 2 x 10-24 seconds: Entropy production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Fries, R.J.; Kunihiro, T.; Mueller, B.; Ohnishi, A.; Schaefer, A.

    2009-01-01

    We review what is known about the contributions to the final entropy from the different stages of a relativistic nuclear collision, including recent results on the decoherence entropy and the entropy produced during the hydrodynamic phase by viscous effects. We then present a general framework, based on the Husimi distribution function, for the calculation of entropy growth in quantum field theories, which is applicable to the earliest ('glasma') phase of the collision during which most of the entropy is generated. The entropy calculated from the Husimi distribution exhibits linear growth when the quantum field contains unstable modes and is asymptotically equal to the Kolmogorov-Sinai (KS) entropy. We outline how the approach can be used to investigate the problem of entropy production in a relativistic heavy-ion reaction from first principles.

  17. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Science.gov (United States)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  18. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    Science.gov (United States)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  19. Multifragmentation induced by light relativistic projectiles and heavy ions: similarities and differences

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1998-01-01

    The experimental data on fragment multiplicities, their energy and charge distributions, the emission times are considered for the nuclear multifragmentation process induced by relativistic light projectiles (protons, helium) and heavy ions. With light projectiles, the multifragmentation is a pure 'thermal' process, well described by the statistical models. Heavy-ion-induced multifragmentation is influenced by dynamic effects related first of all to the compression of the system in the collision. But statistical models can also be applied to rendering the partition of the system if the excitation energy is less than 10 MeV/nucleon and compression is modest. For the central collision of heavy ions the statistical approach fails to describe the data

  20. Momentum transfer in relativistic heavy ion charge-exchange reactions

    Science.gov (United States)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  1. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  2. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  3. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  4. Radiative electron capture studied in relativistic heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Ichihara, A.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1995-01-01

    The process of radiative electron capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed x-ray spectra are analyzed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a nonrelativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the nonrelativistic approach for practical purposes

  5. Probing the specific entropy produced in ultra-relativistic heavy-ion collisions with a silicon pixel multiplicity detector: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Balada, A.; Barbera, R.; Staroba, Pavel; Závada, Petr

    2000-01-01

    Roč. 452, - (2000), s. 323-337 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z1010920 Keywords : ultra-relativistic * heavy-ion collisions * nuclear matter * phase diagram * hadron gas * Quark Gluon Plasma * particle multiplicity * transverse momentum spectra Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.964, year: 2000

  6. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4π tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/ψ detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R ampersand D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector

  7. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Moskowitz, B. (eds.)

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  8. From 0 to 5000 in 2 × 10−24 seconds: Entropy production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; Kunihiro, T.; Muller, B.; Ohnishi, A.; Schafer, A.

    2009-11-01

    We review what is known about the contributions to the final entropy from the different stages of a relativistic nuclear collision, including recent results on the decoherence entropy and the entropy produced during the hydrodynamic phase by viscous effects. We then present a general framework, based on the Husimi distribution function, for the calculation of entropy growth in quantum field theories, which is applicable to the earliest ('glasma') phase of the collision during which most of the entropy is generated. The entropy calculated from the Husimi distribution exhibits linear growth when the quantum field contains unstable modes and is asymptotically equal to the Kolmogorov-Sinai (KS) entropy. We outline how the approach can be used to investigate the problem of entropy production in a relativistic heavy-ion reaction from first principles.

  9. Three-pion Hanbury Brown-Twiss correlations in relativistic heavy-ion collisions from the STAR experiment.

    Science.gov (United States)

    Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Mora Corral, M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Guedon, M; Guertin, S M; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Molnar, L; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Vznuzdaev, M; Wang, F; Wang, Y; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[s(NN)]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.

  10. Ultrarelativistic heavy-ion collisions. Proceedings of the International Workshop XXX on Gross Properties of Nuclei and Nuclear Excitations

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2002-01-01

    The following topics were dealt with: Experimental results on ultrarelativistic heavy ion collisions, QCD thermodynamics, equilibration in relativistic heavy ion collisions, lattice QCD, space- time evolution and Hanbury-Brown-Twiss correlations, vector meson production, high-p T and small-x physics. (HSI)

  11. The study of hadron dynamics in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Venema, L.B.

    1994-01-01

    In this thesis, pion emission patterns were studied in two reaction systems Ar + Ca and Au + Au at 1 GeV/u, with the aim to improve the understanding of the pion production in relativistic heavy ion collisions. The study of the high energy tail of the π 0 -momentum spectrum was regarded as promising because of its sensitivity to compression since it did not appear in small reaction systems. Experiments were performed with TAPS together with the Forward Wall of the FoPi-collaboration at GSI. The combined measurement of charged particle multiplicities in the Forward Wall and the particles entering TAPS enabled an exclusive study of the pion production. TAPS was tested in separate experiments and its capabilities were demonstrated by measuring different reaction products, like photons, charged particles and neutrons. The data analysis involved new methods to treat the background contamination below the invariant mass peak of the π 0 -meson due to the geometry of the detector and to perform particle identification in a high particle multiplicity environment. (orig.)

  12. Summary of the relativistic heavy ion sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-01-01

    The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions

  13. The Mesozoic Era of relativistic heavy ion physics and beyond

    International Nuclear Information System (INIS)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 x 10 12 degrees K evolved to become today's Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles

  14. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  15. Baryon production and the centrality dependence of limiting fragmentation in heavy ion collision

    International Nuclear Information System (INIS)

    Mondal, M.M.; Chattopadhyay, S.

    2006-01-01

    In experiments with the relativistic heavy ion collisions the primary goals is to study the particle distribution in pseudorapidity variable. From the study of the distribution information of the collision mechanism such as the study of hypothesis of limiting fragmentation can be made

  16. The Alice experiment for the study of ultra relativistic heavy ion collisions; Experience ALICE pour l'etude des collisions d'ions lourds ultra-relativistes au CERN-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Forestier, B

    2003-12-01

    Alice is the detector dedicated to the study of heavy ions at the LHC (large hadron collider). It will allow scientists to investigate all the signatures of quark-gluon plasma (QGP). The spectrometer of the dimuon arm of Alice has been designed to study the production of high mass resonances through their dimuon decay. The first chapter is dedicated to some aspects of the physics of ultra-relativistic heavy ion: confinement and de-confinement of quarks, the absence of heavy resonances as a signature for the presence of QGP. The second chapter presents Alice and its ancillary detectors. The third chapter deals with the trigger system of the dimuon spectrometer, a detailed algorithm of this system is given. A method for the optimization of the trigger response is presented in the fourth chapter. The fifth chapter describes the testing of a prototype of the trigger system, this testing with muons has shown that the efficiency of the track reconstruction of the trigger system and the efficiency of the resistive plate chamber reach 98%.In the sixth chapter the author comments the simulations of the production of heavy resonances from Pb-Pb collisions as a function of centrality. (A.C.)

  17. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, T., E-mail: ogawa.tatsuhiko@jaea.go.jp [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Sato, T.; Hashimoto, S. [Research Group for Radiation Protection, Division of Environment and Radiation Sciences, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane, Tokai, Ibaraki 319-1195 (Japan); Niita, K. [Research Organization for Information Science and Technology, Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan)

    2013-09-21

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  18. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    International Nuclear Information System (INIS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-01-01

    The fragmentation cross-sections of relativistic energy nucleus–nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus–nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections

  19. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  20. Physics with relativistic heavy ions: QGP and other delicacies

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    Conditions favorable to formation and observation of a deconfined state of quarks and gluons (often called the quark-gluon plasma) are thought to exist following the collision of very heavy nuclei at center-of-mass energies exceeding several tens of GeV/nucleon. The Relativistic Heavy Ion Collider under construction at BNL since 1991 is designed to provide such collisions at energies up to √s/A = 200 GeV. Two large dedicated experiments are being built to operate there; these two experiments take rather different approaches to the problem of classifying such collisions and probing for signals of QGP formation. Two smaller experiments are proposed to focus on specific aspects of these collisions. Recent developments in the understanding of the initial state formed in such collisions include, particularly, the possible rapid equilibration of the gluon density, leading in an equilibrium picture to such high temperatures that sizable thermal excitation of charm becomes probable. Recent theoretical conjectures have focussed on the possible formation of a disordered chiral condensate following chiral symmetry restoration in heavy-nucleus collisions, which might be a consequence of nonequilibrium deexcitation of a dense partonic state

  1. Impact of early stage non-equilibrium dynamics on photon production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Oliva, L; Plumari, S; Scardina, F; Greco, V; Ruggieri, M

    2017-01-01

    In this study we discuss our results on the spectrum of photons emitted from the quark-gluon plasma produced in heavy ion collisions at RHIC energies. Simulating the space-time evolution of the fireball by solving the relativistic Boltzmann transport equation and including two-particle scattering processes with photon emission allows us to make a first step in the description of thermal photons from the QGP as well as of those produced in the pre-equilibrium stage. Indeed, we consider not only a standard Glauber initial condition but also a model in which quarks and gluons are produced in the very early stage through the Schwinger mechanism by the decay of an initial color-electric field. In the latter approach relativistic kinetic equations are coupled in a self-consistent way to field equations. We aim at spotting the impact of early stage non-equilibrium dynamics on the photon production. (paper)

  2. Emission of medium-heavy fragments in asymetric heavy ion collisions at intermediate and relativistic incident energies

    International Nuclear Information System (INIS)

    Milkau, T.U.E.

    1991-11-01

    For the study of the emission of medium-heavy fragments in asymmetric heavy ion collisions a series of experiments was performed and thereby following systems at intermediate and relativistic incident energies studied: 84 Kr+ 197 Au at E/A=35 MeV, 40 Ar+ 197 Au at E/A=30 MeV, respectively 220 MeV, and 12 C+ 197 Au at E/A=99 MeV, 301 MeV, 601 MeV, respectively 1105 MeV. In the experiments highly resolving detector telescopes with low thresholds were applied to the measurement of the energy and angular distributions of the medium-heavy fragments. The spectra were analyzed in the picture of longitudinally moving sources. Thereby beyond the production cross sections the angular distributions, the decreasement parameters in the high-energetic region of the energy spectra, and the position of the maxima were determined as characteristic parameters. The following picture resulted: The production cross sections for medium-heavy fragments showed a steep increasement and then a saturation, but with a strong projectile dependence. The charge distributions could be described by a power law, the parameter of which showed a universal dependence on the total incident energy. In the angular distributions the transition from an anisotropic emission at low energies to an isotropic emission from a nearly resting source at relativistic energies was distinctly to be recognized. The decreasement parameters of the energy distribution increased - for different projectiles differently strongly - logarithmically with growing incident energy. And the maxima of the energy distribution travelled with growing incident energy to smaller and smaller fragment energies. From this systematics a schematic model of the fragmentation can be obtained. (orig./HSI) [de

  3. Study of the energetic proton production in relativistic heavy ions Ne + nuclei collisions, using Diogene detector. Hadronic matter temperature

    International Nuclear Information System (INIS)

    Rahmani, A.

    1988-12-01

    The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr

  4. μ- and tau-pair production from relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1986-01-01

    The question is addressed of μ- and tau-pair production from the motional Coulomb fields available at the new relativistic heavy-ion accelerators. A semiclassical field theory is developed which is appropriate for families of leptons which are coupled electromagnetically. The field equations are mapped on to a lattice of collocation points using basis spline methods, and techniques for solving the resulting lattice equations are outlined. The properties of the transverse electromagnetic field near the heavy-ion beam are examined and physical arguments are given as to the feasibility of pair creation under a variety of circumstances. Using the Dirac-Hartree equations developed in part one, we shall dynamically evolve the vacuum, using the appropriate fields, and compute μ-pair and tau-pair production cross sections. 16 refs., 10 figs

  5. Constituent quarks and enhancement of multi-strange baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Behera, Nirbhay Kumar; Nandi, Basanta Kumar; Sahoo, Raghunath

    2011-01-01

    Heavy-ion collisions at relativistic energies aim to produce a state of matter which is governed by partonic degrees of freedom, known as Quark-Gluon Plasma (QGP). In the central rapidity region, strangeness enhancement has been proposed as a potential signature of QGP. It has been observed that a quark participant scaling of the multi-strange baryon production and also a strangeness scaling of the enhancement. This confirms that the partonic degrees of freedom is playing a major role in the particle production mechanism and may therefore significantly determine the formation of QGP in heavy ion collisions

  6. Relativistic ion collisions as the source of hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Botvina, A.S. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Russian Academy of Sciences, Institute for Nuclear Research, Moscow (Russian Federation); Bleicher, M.; Steinheimer, J. [J.W. Goethe University, Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Pochodzalla, J. [J. Gutenberg-Universitaet, Helmholtz-Institut Mainz, Mainz (Germany); J. Gutenberg-Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2016-08-15

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM rate at N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures. (orig.)

  7. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yi, E-mail: yyin@bnl.gov [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng, E-mail: liaoji@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-10

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction — a phenomenon known as the Chiral Magnetic Effect (CME). The quark–gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  8. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  9. Collective phenomena in relativistic heavy-ion collisions

    Science.gov (United States)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  10. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  11. Thermal freeze-out and longitudinally non-uniform collective expansion flow in relativistic heavy ion collisions

    CERN Document Server

    Feng Sheng Qin; LianShouLiu

    2002-01-01

    The non-uniform longitudinal flow model (NUFM) proposed recently is extended to include also the transverse flow. The resulting longitudinally non-uniform collective expansion model (NUCEM) is applied to the calculation of rapidity distribution of kaons, lambdas and protons in relativistic heavy ion collisions at CERN-SPS energies. The model results are compared with the 200 A GeV/c S-S and 158 A GeV/c Pb-Pb collision data. The central dips observed in experiments are reproduced in a natural way. It is found that the depth of the central dip depends on the magnitude of the parameter e and the mass of produced particles, i.e. the non-uniformity of the longitudinal flow which is described by the parameter e determines the depth of the central dip for produced particles. Comparing with one-dimensional non-uniform longitudinal flow model, the rapidity distribution of lighter strange particle kaon also shows a dip due to the effect of transverse flow

  12. Memory effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Greiner, C.; Wagner, K.; Reinhard, P.

    1994-01-01

    We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green's-functions approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear collisions turns out to be ∼2--3 fm/c, which interferes substantially with the time scale of the relaxation process. The memory kernels of the collision process will be presented. Because of their more involved structure, depending sensitively on the kinematical regime, both less and more stopping power is observed in the reaction compared to the Markovian description

  13. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  14. Jets and Jet-like Correlations in Heavy Ion and p+p Collisions at PHENIX

    International Nuclear Information System (INIS)

    2010-01-01

    Jets from heavy ion collisions provide a measurement of the medium-induced parton energy loss and the in-medium fragmentation properties. The medium modification effects are determined by comparing to a p+p baseline measurement, but the high multiplicity background in a heavy ion collision inhibits the direct application of traditional jet reconstruction techniques and novel approaches are needed to deal with this environment. Alternatively, angular correlations between the hadronic fragments of energetic partons can be used to understand the hot dense matter produced in relativistic heavy ion collisions. The yield and shape modifications of the away side peaks as function of transverse momentum compared to p+p has been interpreted as a medium response to parton energy loss. Direct photon-hadron correlations are another excellent channel to study jets from heavy ion collisions. Photons do not interact strongly with the medium and thus the photon approximately balances the momentum of the opposing jet, allowing the measurement of the effective modification to the fragmentation function through jet energy loss in the medium.

  15. Detector issues for relativistic heavy ion experimentation

    International Nuclear Information System (INIS)

    Gordon, H.

    1986-04-01

    Several aspects of experiments using relativistic heavy ion beams are discussed. The problems that the current generation of light ion experiments would face in using gold beams are noted. A brief review of colliding beam experiments for heavy ion beams is contrasted with requirements for SSC detectors. 11 refs., 13 figs

  16. Doubly charmed baryon production in heavy ion collisions

    Science.gov (United States)

    Yao, Xiaojun; Müller, Berndt

    2018-04-01

    We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.

  17. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-01-01

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated φφ pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  18. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    2012-10-12

    Oct 12, 2012 ... Experiments using ultrarelativistic heavy-ion collisions study nuclear matter under ... sN N = 10 GeV for Pb+Pb collisions, corresponding to an initial .... quenching through systematic comparisons of data to models, and .... the RdAu and RCP = (0−20%)/(60−80%) factors for the J/ψ production in d+Au col-.

  19. Collective azimuthal alignment and transverse momentum conservation in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Siemiarczuk, T.

    1987-08-01

    It is shown that transverse momentum conservation in the three-source Fai and Randrup statistical model does not explain the collective azimuthal alignment as observed in heavy-ion collisions at Bevelac energies. (orig.)

  20. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, allowing to perform the same processing as with experimental data, such as multi-particle correlation analyses and full jet reconstruction. (author)

  1. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  2. Formation time of hadrons and density of matter produced in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Pisut, J.; Zavada, P.

    1994-06-01

    Densities of interacting hadronic matter produced in Oxygen-Lead and Sulphur-Lead collisions at 200 GeV/nucleon are estimated as a function of the formation time of hadrons. Uncertainties in our knowledge of the critical temperature T c and of the formation time of hadrons τ 0 permit at present three scenarios: an optimistic one (QGP has already been produced in collisions of Oxygen and Sulphur with heavy ions and will be copiously in Lead collisions), a pessimistic one (QGP cannot be produced at 200 GeV/nucleon) and an intermediate one (QGP has not been produced in Oxygen and Sulphur Interactions with heavy ions and will be at best produced only marginally in Pb-collisions). The last option is found to be the most probable. (author)

  3. Study of jet quenching in heavy ion collisions at LHC using ATLAS detector

    CERN Document Server

    Štefko, Pavol

    2015-01-01

    Quark-Gluon Plasma (QGP) is one of the most extreme states of matter which exists only in extraordinary conditions of heavy-ion collisions that can be achieved at particle accelerators. Interactions between the partons and the hot, dense QGP are expected to cause the loss of the jet energy, which is phenomenon called jet quenching. In this talk we provide an introduction to the problematics of ultra-relativistic heavy ion collisions and we show how the jet quenching can be used to analyze the properties of QGP. We also present some “work in progress” results of the jet analysis done on the data taken by the ATLAS detector during the 2011 heavy-ion run at the LHC. Jets are studied as a function of collision centrality and dijet energy imbalance. Dijets are observed to be increasingly asymmetric with increasing centrality. The study of charged particles indicates an increase of yields of low- p T tracks in events with strongly quenched jets

  4. Considerations concerning the physics of nuclear matter under extreme conditions and an accelerator for relativistic heavy ions

    International Nuclear Information System (INIS)

    Blasche, K.; Bock, R.; Franzke, B.; Greiner, W.; Gutbrod, H.H.; Povh, B.; Schmelzer, C.; Stock, R.

    1977-01-01

    The future problems of heavy-ion physics in the 10 GeV/U range are dealt with: the dynamics of relativistic nuclear collisions, phase transitions, nuclear matter, quantum electrodynamics of extremely strong fields, and astrophysical aspects. In the second part, the project of a heavy-ion accelerator in the 10 GeV/U range to be coupled to the present GSI UNILAC accelerator is discussed. (WL) [de

  5. Production of hypernuclei in peripheral collisions of relativistic ions

    Energy Technology Data Exchange (ETDEWEB)

    Botvina, A.S., E-mail: a.botvina@gsi.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Gudima, K.K. [Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Kishinev (Moldova, Republic of); Steinheimer, J. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Mishustin, I.N. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Kurchatov Institute, Russian Research Center, 123182 Moscow (Russian Federation); Pochodzalla, J.; Sanchez Lorente, A. [The Helmholtz Institute Mainz (HIM), Johann-Joachim-Becher-Weg 36, 55099 Mainz (Germany); Bleicher, M. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Stoecker, H. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, 62491 Darmstadt (Germany)

    2012-05-01

    Formation of hypernuclei in peripheral collisions of relativistic light and heavy ions is studied theoretically within the transport and statistical approaches. New mechanisms for the formation of strange nuclear systems via capture of hyperons by slightly excited spectator matter and their subsequent disintegration are investigated. These processes lead to production of specific and exotic hypernuclei, which may not be accessible in other reactions. Similar mechanisms processing via absorption of strange particles by nuclei can take place in reactions initiated by electrons, antiprotons and other hadrons. It is demonstrated that our approach is consistent with experimental data.

  6. Production of hypernuclei in peripheral collisions of relativistic ions

    International Nuclear Information System (INIS)

    Botvina, A.S.; Gudima, K.K.; Steinheimer, J.; Mishustin, I.N.; Pochodzalla, J.; Sanchez Lorente, A.; Bleicher, M.; Stoecker, H.

    2012-01-01

    Formation of hypernuclei in peripheral collisions of relativistic light and heavy ions is studied theoretically within the transport and statistical approaches. New mechanisms for the formation of strange nuclear systems via capture of hyperons by slightly excited spectator matter and their subsequent disintegration are investigated. These processes lead to production of specific and exotic hypernuclei, which may not be accessible in other reactions. Similar mechanisms processing via absorption of strange particles by nuclei can take place in reactions initiated by electrons, antiprotons and other hadrons. It is demonstrated that our approach is consistent with experimental data.

  7. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  8. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    Already over thirty years ago [ 174] it was suggested that it would be interesting to explore new phenomena 'by distributing high energy or high nucleon density over a relatively large volume:' It was soon realized that colliding heavy ions at high energies would provide such conditions. The conditions at RHIC and LHC correspond to the early universe 1 μ after the Big Bang. But does the mini Big Bang created in the laboratory really resemble the cosmological 'bigger brother'? Are the timescales long enough for the particles to 'dissolve' into their smaller constituents? What are the intermediate stages, before the 'dissolving' and also after, when particles are formed? At which energy (or energy density) does this 'melting' happen? More fundamentally, what is the difference between proton-proton and nucleus-nucleus collisions at very high energies? At the LHC one expects that the plasma phase will live much longer than at RHIC. What will be the signatures of this super-QGP? One should be able to answer all of this questions, but, unfortunately, at the present moment we are not. It is therefore very important to understand what the relevant degrees of freedom are in theses extreme situations. Investigation of deep inelastic scattering at very high energies and, in particular, low-x shadowing effects on nuclei can give important information on properties of dense quark-gluon systems. By comparing data at different energies on both proton-nucleus and nucleus-nucleus collisions and interpret them in a comprehensive framework, we hope to learn more about the dynamics leading to the features we see in the data. The thesis consists of two parts. In the first part we will give a short introduction to topics relevant to high-energy collisions while the second part contains the papers written during the thesis work. In Chapter 2 we give a brief account of the main experimental results from heavy-ion experiments. The choice of topics and interpretation of the results is

  9. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  10. The magnet system of the Relativistic Heavy Ion Collider (RHIC)

    International Nuclear Information System (INIS)

    Greene, A.; Anerella, M.; Cozzolino, J.

    1995-01-01

    The Relativistic Heavy Ion Collider now under construction at Brookhaven National Laboratory (BNL) is a colliding ring accelerator to be completed in 1999. Through collisions of heavy ions it is hoped to observe the creation of matter at extremely high temperatures and densities, similar to what may have occurred in the original ''Big Bang.'' The collider rings will consist of 1740 superconducting magnet elements. Some of elements are being manufactured by industrial partners (Northrop Grumman and Everson Electric). Others are being constructed or assembled at BNL. A description is given of the magnet designs, the plan for manufacturing and test results. In the manufacturing of the magnets, emphasis has been placed on uniformity of their performance and on quality. Results so far indicate that this emphasis has been very successful

  11. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  12. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  13. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  14. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Zabrodin, E.E.; Moscow State Univ.

    1993-01-01

    We investigate various problems related to the dynamics of a first-order phase transition from quarkgluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (orig.)

  15. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, Gy.; Hungarian Academy of Sciences, Budapest; Zabrodin, E.E.; Moskovskij Gosudarstvennyj Univ., Moscow

    1992-12-01

    Various problems were investigated concerning the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (author) 10 refs.; 7 figs

  16. Slowing down of relativistic heavy ions and new applications

    International Nuclear Information System (INIS)

    Geissel, H.; Scheidenberger, C.

    1997-10-01

    New precision experiments using powerful accelerator facilities and high-resolution spectrometers have contributed to a better understanding of the atomic and nuclear interactions of relativistic heavy ions with matter. Experimental results on stopping power and energy-loss straggling of bare heavy projectiles demonstrate large systematic deviations from theories based on first order perturbation. The energy-loss straggling is more than a factor of two enhanced for the heaviest projectiles compared to the relativistic Bohr formula. The interaction of cooled relativistic heavy ions with crystals opens up new fields for basic research and applications, i. e., for the first time resonant coherent excitations of both atomic and nuclear levels can be measured at the first harmonic. The spatial monoisotopic separation of exotic nuclei with in-flight separators and the tumor therapy with heavy ions are new applications based on a precise knowledge of slowing down. (orig.)

  17. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  18. Effect of phase transition on QGP fluid in ultra-relativistic heavy ion collision

    International Nuclear Information System (INIS)

    Nonaka, Chiho; Miyamura, Osamu; Muroya, Shin

    2001-01-01

    A full (3+1)-dimensional calculation using the Lagrangian hydrodynamics is proposed for relativistic nuclear collisions. The calculation enables us to evaluate anisotropic flow of hot and dense matter which appears in non-central and/or asymmetrical relativistic nuclear collisions. The relativistic hydrodynamical model is related to the equation of the state and the useful for the verification of quark-gluon plasma state. By virtue of the Lagrangian hydrodynamics we can easily trace the trajectory which corresponds to the adiabatic paths in the T-μ plane. We evaluate the directly of the influence of the phase transition to physical phenomena in the ultra-relativistic nuclear collisions. Using our relativistic hydrodynamical model, we discuss the effect of the phase transition on the collective flow. (author)

  19. On the resonant coherent excitation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Pivovarov, Y.L.; Geissel, H.; Filimonov, Yu.M.; Krivosheev, O.E.; Scheidenberger, C.

    1995-07-01

    New accelerator facilities open up an interesting new field of experiments on basic channeling as well as on atomic and nuclear resonant coherent exitation (RCE) of heavy ions penetrating through aligned crystals at relativistic energies. Results of computer simulations are presented to characterize the resonant coherent excitation of atomic levels of relativistic hydrogen-like heavy ions. Nuclear resonant coherent excitation reveals interesting different characteristics compared to the corresponding atomic excitation inside crystals. An important result of our model calculations is that poorly-channeled ions have a higher nuclear excitation probability than well-channeled ions. (orig.)

  20. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  1. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications

    International Nuclear Information System (INIS)

    Ibnouzahir, M.

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E≥ 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author)

  2. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1990-01-01

    At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5 degree LAB < 55 degree, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report

  3. Interference in Exclusive Vector Meson Production in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim

    2000-01-01

    Vector mesons are produced copiously in peripheral relativistic heavy-ion collisions. Virtual photons from one ion can fluctuate into quark-antiquark pairs and scatter from the second ion, emerging as vector mesons. The emitter and target are indistinguishable, so emission from the two ions will interfere. Vector mesons have negative parity so the interference is destructive, reducing the production of mesons with small transverse momentum. The mesons are short lived, and decay before emission from the two ions can overlap. However, the decay-product wave functions overlap and interfere since they are produced in an entangled state, providing an example of the Einstein-Podolsky-Rosen paradox. (c) 2000 The American Physical Society

  4. Relativistic hydrodynamics, heavy ion reactions and antiproton annihilation

    International Nuclear Information System (INIS)

    Strottman, D.

    1985-01-01

    The application of relativistic hydrodynamics to relativistic heavy ions and antiproton annihilation is summarized. Conditions for validity of hydrodynamics are presented. Theoretical results for inclusive particle spectra, pion production and flow analysis are given for medium energy heavy ions. The two-fluid model is introduced and results presented for reactions from 800 MeV per nucleon to 15 GeV on 15 GeV per nucleon. Temperatures and densities attained in antiproton annihilation are given. Finally, signals which might indicate the presence of a quark-gluon plasma are briefly surveyed

  5. Status of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Karl, F.

    1999-01-01

    At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)

  6. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  7. Open Heavy Flavor Production in Relativistic Heavy Ion Collisions at LHC

    CERN Document Server

    Tian, Yun

    ATLAS measurements of the production of muons from heavy flavor decays in √sNN = 2.76 TeV Pb+Pb collisions and √s = 2.76 TeV pp collisions at the LHC are presented. Integrated luminosities of 0.14 nb−1 and 570 nb−1 are used for the Pb+Pb and pp measure- ments, respectively. The measurements are performed over the transverse momentum range 4 < pT < 14 GeV and for five Pb+Pb centrality intervals. Backgrounds arising from in-flight pion and kaon decays, hadronic showers, and mis-reconstructed muons are statistically re- moved using a template fitting procedure. The heavy flavor muon differential cross-sections and per-event yields are measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor, RAA, obtained from these is observed to be independent of pT, within uncertainties, and to be less than unity, which indicates suppressed production of heavy flavor muons in Pb+Pb collisions. For the 0–10% most central Pb+Pb events, the measured RAA is ∼ 0.35. The azimuthal modulat...

  8. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  9. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  10. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  11. Identifying Multiquark Hadrons from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-01-01

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  12. New results on Coulomb effects in meson production in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Rybicki Andrzej

    2014-01-01

    Full Text Available We propose a new method of investigating the space-time evolution of meson production in heavy ion collisions, by making use of spectator-induced electromagnetic (“Coulomb” effects. The presence of two nuclear remnants (“spectator systems” in the non-central collision generates a strong Coulomb field, which modifies the trajectories of charged final state hadrons. This results in charge-dependent azimuthal anisotropies in final state meson emission. In our approach, this effect can be computed numerically by means of a high-statistics Monte Carlo simulation, using the distance between the meson formation zone and the spectator system as free parameter. Our simulation correctly describes the electromagnetic effect on azimuthal anisotropies observed for π+ and π−mesons in Au+Au collisions at lower RHIC energy, known from data recently reported by the STAR Collaboration. Similarly to our earlier studies of spectator-induced electromagnetic effects, also in the present study we find that these effects offer sensitivity to the position of the meson formation zone with respect to the spectator system. Therefore, we conclude that they can serve as a new tool to investigate the space-time evolution of meson production, and the dynamics of the heavy ion collision.

  13. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  14. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  15. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  16. Study of Heavy Flavours from Muons Measured with the ALICE Detector in Proton-Proton and Heavy-Ion Collisions at the CERN-LHC

    CERN Document Server

    Zhang, X; Zhou, D; Crochet, P

    Ultra-relativistic heavy-ion collisions aim at investigating the properties ofstrongly-interacting matter at extreme conditions of temperature and energy density. According to quantum chromodynamics (QCD) calculations, under such conditions, the formation of a deconfined medium, the Quark-Gluon Plasma (QGP), is expected. Amongst the most important probes of the properties of the QGP, heavy quarks are of particular interest since they are expected to be produced in hard scattering processes during the early stage of the collision and subsequently interact with the hot and dense medium. Therefore, the measurement of quarkonium states and open heavy flavours should provide essential information on the properties of the system formed at the early stage of heavy-ion collisions. Indeed, open heavy flavours are expected to be sensitive to the energy density through the mechanism of in-medium energy loss of heavy quarks, while quarkonium production should be sensitive to the initial temperature of the system through ...

  17. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  18. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  19. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  20. New insights from 3D simulations of heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Monnai, Akihiko [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ryu, Sangwook [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics.

  1. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  2. Relativisitic heavy ion collisions

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1987-01-01

    Some of the objectives and observables of Relativistic Heavy Ion Physics are presented. The first experimental results from oxygen interactions at CERN, 200 GeV/c per nucleon, and BNL, 14.5 GeV/c per nucleon are shown. The data indicate more energy emission than was originally predicted. 25 refs., 19 figs

  3. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  4. Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bleicher, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutt-mazumder, A. K. [McGill Univ., Montreal, QC (Canada); Gale, C. [McGill Univ., Montreal, QC (Canada); Ko, C. M. [Texas A & M Univ., College Station, TX (United States); Koch, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.

  5. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  6. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)

    2017-06-15

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions. (orig.)

  7. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    Science.gov (United States)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  8. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  9. Production of strange clusters in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, 3 HE, 3 H, 4 He) production at these energies. If a doubly strange, weakly bound ΛΛ dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy ∼0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus ΛΛ 6 He should have dN/dy ∼5 x 10 -6 for Au+Au central collisions. It should be possible to measure the successive Λ → pπ- weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ''doorway states'' for the production of stable configurations of strange quark matter, if such states exist

  10. Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly

    Science.gov (United States)

    Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg

    2018-04-01

    We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.

  11. Monte-Carlo Simulation of Hard Probes in Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, taking into account thermal QCD and QED effects as well as effects of the evolving medium.

  12. Heavy ion collision evolution modeling with ECHO-QGP

    Science.gov (United States)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  13. Next generation of relativistic heavy ion accelerators

    International Nuclear Information System (INIS)

    Grunder, H.; Leemann, C.; Selph, F.

    1978-06-01

    Results are presented of exploratory and preliminary studies of a next generation of heavy ion accelerators. The conclusion is reached that useful luminosities are feasible in a colliding beam facility for relativistic heavy ions. Such an accelerator complex may be laid out in such a way as to provide extractebeams for fixed target operation, therefore allowing experimentation in an energy region overlapping with that presently available. These dual goals seem achievable without undue complications, or penalties with respect to cost and/or performance

  14. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  15. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  16. Pion multiplicity as a probe of the deconfinement transition in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gorenstejn, M.I.; Shin Nan Yang; Che Ming Ko.

    1991-01-01

    The hydrochemical model is used to calculate the pion multiplicity in relativistic heavy-ion collisions. Chemical reactions are explicitly taken into account in the expansion stage of the hadronic phase. It leads to the absence of chemical equilibrium among hadronic particles and a nonzero value of the pion chemical potential at thermal freeze out. We find a specific structure in the incident energy dependence of the pion multiplicity as a result of the formation of the quark-hadron mixed phase in the initial stage of the collision. 13 refs.; 3 figs

  17. Beam energy dependence of elliptic flow in heavy-ion collision

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi

    2002-01-01

    We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)

  18. Heavy ion collisions in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. Heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

  19. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  20. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  1. Diogene: A 4π detector, based on a time projection chamber, for studying central collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Gosset, J.

    1981-01-01

    'Diogene' is the name we have chosen for a 4π solid angle detector, based on a Time Projection Chamber, designed to perform exclusive measurements of charged particles emitted in central collisions or relativistic heavy ions. This detector is being developed by a collaboration between physicists from Saclay, Strasbourg and Clermont Ferrand, to be installed at the Saturne Synchrotron in Saclay. I first give the motivations for our choice of a TPC rather than any other kind of detector, then I recall the principle of such a detector, before describing it with more detail and describing its present status and forsean capabilities, including some discussion about the possible extension of such a detector towards higher energies and/or heavier beams. (orig.)

  2. Diogene: a 4π detector, based on a time projection chamber, for studying central collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Gosset, J.

    1980-10-01

    'Diogene' is the name we have chosen for a 4π solid angle detector, based on a Time Projection Chamber (TPC), designed to perform exclusive measurements of charged particles emitted in central collisions or relativistic heavy ions This detector is being developed by a collaboration between physicists from Saclay, Strasbourg and Clermont-Ferrand, to be installed at the Saturne Synchrotron in Saclay. I shall first give the motivations for our choice of a TPC rather than any other kind of detector, than recall the principle of such a detector, before describing it with more detail and describing its present status and forsean capabilities, including some discussion about the possible extension of such a detector towards higher energies and/or heavier beams

  3. Dynamical initial-state model for relativistic heavy-ion collisions

    Science.gov (United States)

    Shen, Chun; Schenke, Björn

    2018-02-01

    We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.

  4. Interaction mean free path measurements for relativistic heavy ion fragments using CR39 plastic track detectors

    International Nuclear Information System (INIS)

    Drechsel, H.; Brechtmann, C.; Dreute, J.; Sonntag, S.; Trakowski, W.; Beer, J.; Heinrich, W.

    1984-01-01

    This paper describes an experiment measuring the interaction mean free paths for charge changing nuclear collisions of relativistic heavy ion fragments. We use a stack of CR39 plastic nuclear track detectors that was irradiated with 1.8 GeV/nucleon 40 Ar ions at the Berkeley Bevalac. About 1.5 x 10 7 etch cones were measured in this experiment using an automatic measuring system. By tracing the etch cones over successive plastic foils the particle trajectories in the stack were reconstructed. For 14185 trajectories with 6444 nuclear collisions of fragments with charge 9-15 the interaction mean free path in the plastic was determined. (orig.)

  5. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  6. Properties of hot and dense matter created in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Arsene, Ionut Cristian

    2009-07-01

    In this thesis we tried to characterize a few aspects of the rich field of relativistic heavy ion collisions at intermediate and high energies. In chapter 2 we used two different microscopic string models, UrQMD and QGSM, to study the formation and evolution of the locally equilibrated matter in the central zone of heavy ion collisions at energies spanning from sq root sNN approx 4 GeV up to 17.3 GeV. The calculations were performed both in the cubic central cell of fixed volume V = 5 centre dot 5 centre dot 5 fm3 and for the instantly expanding volume of homogeneous energy density. To decide whether or not equilibrium is reached we used a traditional approach based on the fulfillment of the conditions of kinetic, thermal and chemical equilibrium. Both models favor the formation of equilibrated matter for a period of about 10 fm/c in which the matter expands isentropically with constant entropy per baryon. The square of the speed of sound c{sub s}2 has been found to vary in UrQMD from 0.13 at AGS to 0.15 at SPS energies and in QGSM from 0.11 at AGS to 0.15 at SPS. In both models the rise in c{sub s}2 slows down at sq rootsNN approx 9 GeV. Chapter 3 describes the HYDJET++ model as a superposition of the soft, hydrotype state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. The hard part is an NN collision generator called PYQUEN which modifies the 'standard' jet event obtained with the PYTHIA generator and includes radiative and collisional energy loss for partons. Initial state effects like shadowing are included also. The soft part is the thermal hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics. We found that this model gives a good description of soft observables at top RHIC energy, like the p{sub T} spectrum, elliptic flow and HBT correlations. The hard part of the model describes well the high-p{sub T

  7. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  8. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  9. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  10. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  11. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  12. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2009-01-01

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v 2 values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E lab =2-160 A GeV. The HBT correlation of the negatively charged pion source created in

  13. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  14. Electromagnetic pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1988-01-01

    We survey the production of electron, muon and tauon pairs in collisions between nuclei at ultra-relativistic energies. Such studies enhance our understanding of the role of the vacuum in field theory, and provide essential input for several experimental programs. A variety of models for the nuclear and nucleon form factors have been considered, revealing some degree of sensitivity to assumptions about sub-nuclear structure. We predict that the cross sections, even at high invariant masses and transverse momenta, are large on hadronic scales, and should act as useful probes of nuclear and nucleon form factors. 21 refs., 5 figs

  15. Anti-baryon puzzle in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Rapp, R.; Shuryak, E.V.

    2002-01-01

    The evolution of (non-strange) antibaryon abundances in the hadronic phase of central heavy-ion collisions is studied within a thermal equilibrium framework, based on the well-established picture of subsequent chemical and thermal freezeout. Due to large annihilation cross sections, antiprotons are, a priori, not expected to comply with this scheme. However, we show that a significant regeneration of their abundance occurs upon inclusion of the inverse reaction of multipion fusion, n π π → p anti p (with n π =5-6), necessary to ensure detailed balance. Especially at SPS energies, the build-up of large pion-chemical potentials between chemical and thermal freezeout reinforces this mechanism, rendering the p/p ratio in reasonable agreement with the observed one (reflecting chemical freezeout). Explicit solutions of the pertinent rate equation, which account for chemical off-equilibrium effects, corroborate this explanation. (orig.)

  16. Elliptic Flow Study of Charmed Mesons in 200 GeV Au+Au Collisions at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    Hamad, Ayman

    Quantum Chromodynamics (QCD), the theory of the strong interaction between quarks and gluons, predicts that at extreme conditions of high temperature and/or density, quarks and gluons are no longer confined within individual hadrons. This new deconfined state of quarks and gluons is called Quark-Gluon Plasma (QGP). The Universe was in this QGP state a few microseconds after the Big Bang. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) on Long Island, NY was built to create and study the properties of QGP. Due to their heavy masses, quarks with heavy flavor (charm and bottom) are mainly created during the early, energetic stages of the collisions. Heavy flavor is considered to be a unique probe for QGP studies, since it propagates through all phases of a collision, and is affected by the hot and dense medium throughout its evolution. Initial studies, via indirect reconstruction of heavy flavor using their decay electrons, indicated a much higher energy loss by these quarks compared to model predictions, with a magnitude comparable to that of light quarks. Mesons such as D0 could provide information about the interaction of heavy quarks with the surrounding medium through measurements such as elliptic flow. Such data help constrain the transport parameters of the QGP medium and reveal its degree of thermalization. Because heavy hadrons have a low production yield and short lifetime (e.g. ct = 120mum for D0), it is very challenging to obtain accurate measurements of open heavy flavor in heavy-ion collisions, especially since the collisions also produce large quantities of light-flavor particles. Also due to their short lifetime, it is difficult to distinguish heavy-flavor decay vertices from the primary collision vertex; one needs a very high precision vertex detector in order to separate and reconstruct the decay of the heavy flavor particles in the presence of thousands of other particles produced in each collision. The STAR

  17. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  18. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  19. Jet measurements in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Havener, Laura Brittany; The ATLAS collaboration

    2017-01-01

    In relativistic heavy-ion collisions, a hot medium with a high density of unscreened colour charges is produced. Jets are produced by parton-parton scatterings in the early stages of the collision, and are observed to be attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of energy loss is the modification of both dijet transverse energy balance, and a similar modification of photon-jet correlations. Finally, the internal structure of jets is also observed to be modified, from a careful study of fragmentation functions. In this talk, the latest ATLAS results on single jet suppression, dijet suppression, photon-jet correlations, and modification of the jet internal structure in both p+Pb and Pb+Pb collisions, compared to pp, will be presented.

  20. Detectors for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Cleland, W.; Young, G.R.

    1989-04-01

    We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC

  1. Centrality dependence of midrapidity density from GeV to TeV heavy-ion collisions in the effective-energy universality picture of hadroproduction

    CERN Document Server

    Sarkisyan, Edward K.G.; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-07-05

    The dependence on centrality, or on the number of nucleon participants, of the midrapidity density of charged particles measured in heavy-ion collisions at the collision energy of about 20 GeV at RHIC to the highest LHC energy of 5 TeV is investigated within the recently proposed effective-energy approach. This approach relates multihadron production in different types of collisions by combining, under the proper scaling of the collision energy, the constituent quark picture with Landau relativistic hydrodynamics. The measurements are shown to be well described based on the similarity of multihadron production process in (anti)proton-proton interactions and heavy-ion collisions driven by the centrality-dependent effective energy of participants.

  2. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at √{sN N}=7.7 -62.4 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-01-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

  3. Simulation of a relativistic heavy ions beam transport in the matter: contribution of the fragmentation process and biological implications; Simulation du transport d`un faisceau d`ions lourds relativistes dans la matiere: contribution du processus de fragmentation et implication sur le plan biologique

    Energy Technology Data Exchange (ETDEWEB)

    Ibnouzahir, M

    1995-03-01

    The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).

  4. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    1983-01-01

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  5. Study of resonance production as a probe of heavy-ion collisions with the ALICE detector

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Hadronic resonances provide a rich set of measurements that can be used to study the properties of ultra-relativistic heavy-ion collisions. Measurements of resonances and long-lived particles provide information about the properties of the late hadronic phase due to the presence of scattering effects that can modify resonance yields. Resonances can also be used along with long-lived hadrons to study the various mechanisms that shape particle pT spectra, including in-medium energy loss, radial flow, and recombination. Measurements of resonances in pp and p-Pb collisions serve as baselines for measurements in heavy-ion collisions, provide input for tuning QCD-inspired event generators, and aid searches for collective behavior in small systems. I will present measurements of a wide variety of hadronic resonances, including some of the most recent results presented at the Quark Matter conference. By comparing measurements of resonances with different masses, lifetimes, and quark contents in pp, p-Pb, and Pb-Pb co...

  6. Low mass dilepton production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pisutova, N.; Pisut, J.

    1988-01-01

    The total transverse energy dependence of low mass dilepton (and single low p T photon) production was demonstrated to be a signature of the onset of the evidence of plasma formation in heavy ion collisions. Cross-sections are presented for low mass dilepton production in proton-nucleus and heavy ion collisions which represent lower bounds for the ''collectivization'' and the thermalization of matter produced in the collision. Higher cross-section are a signature of the onset of the formation of thermalized matter. (author). 4 figs., 11 refs

  7. The BNL Relativistic Heavy Ion Collider (A new frontier in nuclear physics)

    International Nuclear Information System (INIS)

    Makdisi, Y.I.

    1992-01-01

    The Relativistic Heavy Ion Collider at Brookhaven is in its second year of construction with a target date for completion in late 1997. In this report, I will describe the status of the project, the designated milestones and the capabilities of this collider that set it apart as the premier facility to probe the new frontier of nuclear matter under extreme temperatures and densities. Two large detectors and a pair of smaller detectors, which are in various stages of approval, form the experimental program at this point. They provide a complementary set of probes to study quark gluon plasma formation through different signatures. The two ring design of this collider allows for collisions between different ion species ranging from protons to gold

  8. Ultra-relativistic heavy ions and the CBA

    International Nuclear Information System (INIS)

    McLerran, L.D.

    1982-01-01

    The study of ultra-relativistic heavy ions at an accelerator such as the CBA provides a unique glimpse of matter as it may have appeared in the early universe. This hot dense matter very probably appears as a quark-gluon plasma which expands and cools into hadronic matter. The CBA would provide data at the very highest energies, and produce matter at the highest energy densities. The possibility of using a cyclotron to inject very heavy ions into the AGS and then into the CBA would also allow the production of quark-gluon matter at higher energy densities than would light ions, and would make the matter in a larger volume where surface effects are minimized. At the highest energies with very heavy ions, there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. Some of the possibilities are discussed

  9. Reverse engineering of heavy-ion collisions: Unraveling initial conditions from anisotropic flow data

    International Nuclear Information System (INIS)

    Retinskaya, Ekaterina

    2014-01-01

    Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of

  10. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems

    International Nuclear Information System (INIS)

    Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.

    2005-01-01

    Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems

  11. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  12. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

    CERN Document Server

    Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

    2013-01-01

    We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

  13. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  14. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  15. Probing the direct step of relativistic heavy ion fragmentation: (12C, 11B+p) at 2.1 GeV/nucleon with C and CH2 targets

    International Nuclear Information System (INIS)

    Webb, M.L.

    1987-06-01

    Relativistic heavy ion collisions may be classified as central (and near central), peripheral, and grazing with each collision type producing different proton and other charged projectile fragment scattering mechanisms and characteristics. This report focuses on peripheral and grazing collisions in the fragmentation of Carbon-12 into Boron-11 and a proton, testing models of the kinetics involved in this reaction. The data were measured at the Heavy Ion Superconducting Spectrometer (HISS) at Lawrence Berkeley Laboratory and include excitation energy for the p/Boron-11 pair, and rapidity versus transverse momentum for protons and Boron-11. 58 refs., 35 figs., 8 tabs

  16. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    Science.gov (United States)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  17. The problem of phase transition and the heavy ion collisions at very high energies

    International Nuclear Information System (INIS)

    Waheed, A.

    1993-09-01

    This paper presents a review of our current understanding of deconfined phases of strongly interacting matter at high energy densities - quark matter, or the quark-gluon plasma, likely to be produced in ultra-relativistic heavy ion collisions. Properties of the deconfined quark matter and speculations concerning the ways in which this phase transition can be explored in laboratory are discussed. Some suggestions have been put forward for the future experiments. (author). 91 refs

  18. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  19. Radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Kast, J.R.; Lee, Y.K.

    1975-01-01

    A study of x rays produced in heavy ion collisions has led to a search for molecular orbital x rays, concentrating on 35 Cl ions on Al, NaCl, and C targets. Preliminary analysis of the angular dependence of continuum x rays has tentatively identified quasi-molecular K x rays. Other work completed and in progress is discussed. (3 figures) (U.S.)

  20. Heavy ion collisions and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Liu Lian-sou; Pan Ji-cai; Peng Hung-an

    1986-01-01

    Heavy-ion collisions are studied by means of two-component Fokker--Planck equations on the assumption that there exist multiquark states in nuclei. Inclusive cross sections for the production of protons are calculated in heavy-ion collisions of C+C, Ne+NaF, and Ar+KCl at 800 MeV/A; Ne+Na at 400 MeV/A, 800 MeV/A, and 2100 MeV/A. Satisfactory agreement with the experimental data near 90 degrees c.m. is obtained. The production of deuterons in the collision of C+C at 800 MeV/A is also discussed

  1. The Relativistic Heavy Ion Collider at Brookhaven

    International Nuclear Information System (INIS)

    Hahn, H.

    1989-01-01

    The conceptual design of a collider capable of accelerating and colliding heavy ions and to be constructed in the existing 3.8 km tunnel at Brookhaven has been developed. The collider has been designed to provide collisions of gold ions at six intersection points with a luminosity of about 2 x 10 26 cm -2 sec -1 at an energy per nucleon of 100 GeV in each beam. Collisions with different ion species, including protons, will be possible. The salient design features and the reasons for major design choices of the proposed machine are discussed in this paper. 28 refs., 2 figs., 1 tab

  2. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  3. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  4. Λ flow in heavy-ion collisions: The role of final-state interactions

    International Nuclear Information System (INIS)

    Li, G.Q.; Ko, C.M.

    1996-01-01

    Lambda flow in Ni+Ni collisions at SIS energies is studied in the relativistic transport model (RVUU 1.0). It is found that for primordial lambdas the flow is considerably weaker than proton flow. The inclusion of final-state interactions, especially the propagation of lambdas in the mean-field potential, brings the lambda flow close to that of protons. An accurate determination of the lambda flow in heavy-ion experiments is shown to be very useful for studying lambda properties in dense matter. copyright 1996 The American Physical Society

  5. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  6. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  7. Elliptic flow of Eta and ă.sup.o./sup. mesons in heavy-ion collisions at 2 A GeV

    Czech Academy of Sciences Publication Activity Database

    Taranenko, Arkadij; Kugler, Andrej

    2000-01-01

    Roč. 50, č. 54 (2000), s. 139-140 ISSN 0011-4626 R&D Projects: GA ČR GA202/00/1668 Keywords : relativistic heavy ion collisions * Eta and Pion mesons * elliptic flow Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.298, year: 2000

  8. Proceedings of the Workshop on relativistic heavy ion physics at present and future accelerators

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Lukacs, B.; Zimanyi, J.

    1991-09-01

    This volume contains the Proceedings of the Budapest Workshop on relativistic heavy ion physics at present and future accelerators. The topics includes experimental heavy ion physics, particle phenomenology, Bose-Einstein correlations, relativistic transport theory, quark-gluon plasma rehadronization, astronuclear physics, leptonpair production and intermittency. All contributions were indexed separately for the INIS database. (G.P.)

  9. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    International Nuclear Information System (INIS)

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan

  10. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  11. Acceleration of heavy ions to relativistic energies and their use in physics and biomedicine

    International Nuclear Information System (INIS)

    White, M.G.

    1977-01-01

    The uses of accelerated heavy ions in physics and biomedicine are listed. The special properties of high energy heavy ions and their fields of applications, the desirable ions and energies, requirements for a relativistic heavy ion accelerator, and AGS and Bevalac parameters are discussed. 26 references

  12. Dissipation and thermal fluctuations in heavy-ion collisions

    International Nuclear Information System (INIS)

    Froebrich, P.

    1992-01-01

    The concept of friction has turned out to be a useful one not only in solid state physics but also in the description of heavy-ion collisions and fisson. In the following I concentrate on applications to low energy (E << 10 MeV/nucleon) heavy-ion collisions. I put emphasis on the phenomenological side in showing that by using frictional forces (and the associated fluctuating forces) in a semi-phenomenological model one is able to put some order into a large variety of experimental data. These concern above- and below-barrier fusion, spin distributions, deep-inelastic scattering and the emission of δ electrons in deep-ineleastic collisions. (orig.)

  13. Summary of the Relativistic Heavy Ion Sessions

    International Nuclear Information System (INIS)

    Harris, J.W.

    1988-07-01

    This paper briefly discusses the topics covered in the relativistic heavy ion in sessions. The prime motivation for these investigations is the possibility of forming quark matter, therefore the formation of a quark-gluon plasma. Topics on suppression of J//psi/ production, th equation of state of nuclear matter, transverse energy distributions and two pion interferometry techniques are discussed. 38 refs

  14. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  15. Study of heavy ions collision at SIS energies with the detector FOPI; Etude des collisions d'ions lourds aux energies de SIS avec le detecteur FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Bastid, N

    1999-09-23

    The present work has been carried out in the framework of experiments performed with the FOPI detector at the SIS/ESR accelerator facility of GSI-Darmstadt. It is devoted to the study of central and semi-central heavy ion collisions at beam energies ranging from 100 MeV to 2 GeV per nucleon. We present first generalities on relativistic heavy ion collisions then the FOPI detector with a special attention to the FOPI Inner Wall constructed by the Clermont-Ferrand group. The main results of the FOPI collaboration obtained with light and intermediate mass fragments and kaons are presented. A systematic study of the different forms of collection motion of nuclear matter, radial flow in very central reactions, sideward flow and squeeze-out in semi-central collisions, is performed. Further exciting possibilities concerning production and propagation of strangeness at SIS energies will be offered soon with the upgrade of the FOPI detector. The FOPI data have introduced constraints on parameters of theoretical models. Important progress concerning the knowledge of the properties of nuclear matter, the dynamics of the collisions and in-medium effects have been achieved. (author)

  16. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    Science.gov (United States)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  17. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  18. Chemical equilibration in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Brown, Gerald E.; Lee, Chang-Hwan; Rho, Mannque

    2005-01-01

    In the hadronic sector of relativistic heavy ion physics, the ρ<-2π reaction is the strongest one, strong enough to equilibrate the ρ with the pions throughout the region from chemical freezeout to thermal freezeout when free-particle interactions (with no medium-dependent effects) are employed. Above the chiral restoration temperature, only ρ's and π's are present, in that the chirally restored A1 is equivalent to the ρ and the mesons have an SU(4) symmetry, with no dependence on isospin and negligible dependence on spin. In the same sense the σ and π are 'equivalent' scalars. Thus the chirally restored ρ<-2π exhaust the interspecies transitions. We evaluate this reaction at Tc and find it to be much larger than below Tc, certainly strong enough to equilibrate the chirally restored mesons just above Tc. When emitted just below Tc the mesons remain in the Tc+ε freezeout distribution, at least in the chiral limit because of the Harada-Yamawaki 'vector manifestation' that requires that mesonic coupling constants go to zero (in the chiral limit) as T goes to Tc from below. Our estimates in the chiral limit give deviations in some particle ratios from the standard scenario (of equilibrium in the hadronic sector just below Tc) of about double those indicated experimentally. This may be due to the neglect of explicit chiral symmetry breaking in our estimates. We also show that the instanton molecules present above Tc are the giant multipole vibrations found by Asakawa, Hatsuda and Nakahara and of Wetzorke et al. in lattice gauge calculations. Thus, the matter formed by RHIC can equivalently be called: chirally restored mesons, instanton molecules, or giant collective vibrations. It is a strongly interacting liquid

  19. Production study of light fragments emitted at low angle in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bastid, N.

    1987-03-01

    The Diogene plastic wall was built in order to study fragment production in a 0 O -6 O angular range. After generalities on heavy ion collisions and a description of the Diogene detector, methods used for data analysis allowing identification of charged particles and measurement of their energy and emission angle are presented. From correlation studies between the Diogene events and the plastic wall events, we can have an information on the centrality of collisions. On the other hand, the study of differential cross sections shows two existing sources: one formed by the projectile remnant, at a velocity close to beam velocity and a source of intermediary rapidity formed by the participants. We have shown that even for very central collisions and heavy targets, the target nucleus remains partially transparent. In order to explain projectile fragmentation mechanism, we have used two models: a coalescence model and a thermal model. The first model gives the value of the coalescence radius. It seems that this model does not apply to angles nearing 0 O . With the thermal model, we have been able to sort out apparent temperature values which confirm the weak excitation energy of the projectile remnant [fr

  20. Summary of heavy ion theory

    International Nuclear Information System (INIS)

    Gavin, S.

    1994-09-01

    Can we study hot QCD using nuclear collisions? Can we learn about metallic hydrogen from the impact of comet Shoemaker-Levy 9 on Jupiter? The answer to both questions may surprise you exclamation point I summarize progress in relativistic heavy ion theory reported at DPF '94 in the parallel sessions

  1. Measurement of charmonium production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00511724; The ATLAS collaboration

    2017-01-01

    The suppression of heavy charmonia states in heavy-ion collisions is a phenomenon understood as a consequence of quark gluon plasma formation in the hot, dense system formed in heavy ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect heavy charmonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi$(2S) productions via the dimuon decay final states. The production and excited-to-ground state ratios of heavy charmonia measured in both p+Pb and Pb+Pb collision data with respect to that measured in pp collision data will be presented in intervals of transverse momentum, rapidity and centrality.

  2. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  3. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  4. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  5. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  6. The Tevalac: A national facility for relativistic heavy-ion research to 10 GeV per nucleon with uranium

    International Nuclear Information System (INIS)

    1982-12-01

    This preliminary proposal addresses forefront physics research through the end of this century. It presents the implications of recent theoretical insights gained from relativistic heavy-ion studies that have led physicists to believe that the densities and temperatures needed to deconfine quarks from hadrons can be reached with only a ten-fold increase in beam energy beyond that available in today's highest-energy heavy-ion accelerators. In addition, the proposal describes a variety of other new and enhanced experimental opportunities that will be opened up by such an increase in projectile energy. Also presented are an accelerator concept, called the Tevalac, that provides the requisite 10-GeV/nucleon uranium beams and a program for research and development necessary to ensure that the facility to be proposed at a later date is ready for construction and will fit within the national program. Relativistic heavy-ion experiments using 1--2-GeV/nucleon beams have already demonstrated that high temperatures (of the order of 100 MeV) and high densities (up to four times normal nuclear density) are reached in head-on projectile-target collisions. Theoretical predictions now indicate a high probability that, when large amounts of nuclear matter are raised to the extreme temperatures and densities obtainable in head-on heavy-ion collisions at Tevalac beam energies, the quarks that constitute the individual nucleons will be deconfined: they will no longer be bound within individual nucleons, and a state of matter never before observed on earth--the quark-gluon plasma--will be created briefly. The investigation of the quark-gluon plasma will lead to unprecedented scientific opportunities and will serve as a bridge between conventional nuclear physics, which studies complex systems of particles, and high-energy physics, which studies the most fundamental constituents of matter

  7. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  8. Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-13

    We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.

  9. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  10. Current experimental situation in heavy-ion reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references

  11. Review of BNL heavy ion physics

    International Nuclear Information System (INIS)

    Miake, Yasuo.

    1990-01-01

    With an intent to search for a new state of matter, a relativistic heavy ion program was started in 1986 at BNL. Several interesting features have been reported from BNL-AGS heavy ion experiments, among which are: the enhanced K + /π + ratio and the larger left-angle m t right-angle for K + and proton. Comparisons between ∼pp, pA and SiA collisions are discussed for m t and dn/dy distributions. 33 refs., 9 figs., 1 tab

  12. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  13. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  14. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  15. Modular TPCs for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Krishna, N.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.

    1989-01-01

    A description is given of a TPC system that operates in a relativistic heavy-ion beam and yields good track reconstruction efficiency in very-high-multiplicity events. The mechanical construction of the chamber is discussed. A set of custom hybrid circuits are used to build a very compact, cost-effective electronics system mounted directly on the chamber. Results from running in test beams and from preliminary experimental runs are given. (orig.)

  16. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  17. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  18. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  19. Directed flow of baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Nikonov, E.G.; Toneev, V.D.; Noerenberg, W.; Shanenko, A.A.

    2000-11-01

    The collective motion of nucleons from high-energy heavy-ion collisions is analyzed within a relativistic two-fluid model for different equations of state (EoS). As function of beam energy the theoretical slope parameter F y of the differential directed flow is in good agreement with experimental data, when calculated for the QCD-consistent EoS described by the statistical mixed-phase model. Within this model, which takes the deconfinement phase transition into account, the excitation function of the directed flow left angle P x right angle turns out to be a smooth function in the whole range from SIS till SPS energies. This function is close to that for pure hadronic EoS and exhibits no minimum predicted earlier for a two-phase bag-model EoS. Attention is also called to a possible formation of nucleon antiflow (F y or∼100 A.GeV. (orig.)

  20. Multiple-collision model for pion production in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    A simple model for pion production in relativistic heavy-ion collisions is developed based on nucleon-nucleon data, nuclear density distribution, and the assumption of straight-line trajectories. Multiplicity distributions for total pion production and for negative-pion production are predicted for 40 Ar incident on a Pb 3 O 4 target at 1.8 GeV/nucleon. Production through intermediate baryon resonances reduces the high-multiplicity region but insufficiently to yield agreement with data. This implies the need for a coherent production mechanism

  1. Jet Tomography in Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    2003-01-01

    We review recent calculations of the probability that a hard parton radiates an additional energy fraction due to scattering in spatially extended matter, and we discuss their application to the suppression of leading hadron spectra in heavy ion collisions at collider energies.

  2. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect quarkonia production . Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results are of the various measurements are discussed.

  3. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results of the various measurements are discussed

  4. Measurement of the H3Λ lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Alford, J.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2018-05-01

    An improved measurement of the H3Λ lifetime is presented. In this paper, the mesonic decay modes H3Λ→3He + π- and H3Λ→d +p +π- are used to reconstruct the H3Λ from Au+Au collision data collected by the STAR collaboration at Relativistic Heavy Ion Collider (RHIC). A minimum χ2 estimation is used to determine the lifetime of τ = 142-21+24(stat .) ±29 (syst .) ps. This lifetime is about 50% shorter than the lifetime τ =263 ±2 ps of a free Λ , indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R . (3He+π-)/(B.R . (3He+π-)+B.R . (d +p +π-)) = 0.32 ±0.05 (stat .) ±0.08 (syst .) . Our ratio result favors the assignment J (H3Λ) =1/2 over J (H3Λ) =3/2 . These measurements will help to constrain models of hyperon-baryon interactions.

  5. Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental work is reported on the following topics: transverse energy production in 10.7-GeV/c/u Au on Au collisions; first results on delta ray production and charged particle multiplicities with the Au beam at 10.7 GeV/c/A; preliminary studies on the feasibility of flow measurement with the E814 participant calorimeter; preliminary results from the E877 telescope; and low-p t baryon distribution in Si+Al, Pb collisions at the AGS. Then the status of the Hadronic Calorimeter project of AGS Experiment E864 (ECOS--Exotic Composite Object Spectrometer) is reviewed. Next, the same is done for work of the STAR RHIC collaboration (Silicon Vertex Tracker (SVT) project evolution and development in FY92, SVT software results from 1992, SVT instrumentation, FY93 SVT pion test beam). The instrumentation section deals with the design and installation of a target rapidity telescope for BNL experiment 814/877 and a repair scheme for the E814/E877 participant calorimeter. Finally, the theory part addresses bosonic kinetics: thermalization of mesons and the pion p perpendicular spectrum in ultrarelativistic heavy-ion collisions and non-equilibrium properties of hadronic mixtures

  6. Heavy-ion interactions in relativistic mean-field models

    International Nuclear Information System (INIS)

    Rashdan, M.

    1996-01-01

    The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)

  7. Intriguing aspects in baryon production at relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    The commencement of the relativistic heavy ion collider (RHIC) operation at Brookhaven ... that an unprecedented high-energy density has been achieved in ... for charged particles and measurement of ionization energy loss (dE/dx) for limited ...

  8. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  9. Multifragmentation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Trautmann, W.

    1996-11-01

    Multifragmentation is the dominant decay mode of heavy nuclear systems with excitation energies in the vicinity of their binding energies. It explores the partition space associated with the number of nucleonic constituents and it is characterized by a multiple production of nuclear fragments with intermediate mass. Reactions at relativistic bombarding energies, exceeding several hundreds of MeV per nucleon, have been found very efficient in creating such highly excited systems. Peripheral collisions of heavy symmetric systems or more central collisions of mass asymmetric systems produce spectator nuclei with properties indicating a high degree of equilibration. The observed decay patterns are well described by statistical multifragmentation models. The present experimental and theoretical studies are particularly motivated by the fact that multifragmentation is being considered a possible manifestation of the liquid-gas phase transition in finite nuclear systems. From the simultaneous measurement of the temperature and of the energy content of excited spectator systems a caloric curve of nuclei has been obtained. The characteristic S-shaped behavior resembles that of ordinary liquids. Signatures of critical phenomena in finite nuclear systems are searched for in multifragmentation data. These studies, supported by the success of percolation in reproducing the experimental mass or charge correlations, concentrate on the fluctuations observed in these observables. Attempts have been made to deduce critical-point exponents associated with multifragmentation. (orig.)

  10. From e+e- to Heavy Ion Collisions - Proceedings of the XXX International Symposium on Multiparticle Dynamics

    Science.gov (United States)

    Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram

    * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant

  11. Jet production in heavy ion collisions

    CERN Document Server

    Calucci, G

    2000-01-01

    We discuss the production of jets in heavy ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of the geometry is a powerful tool for a detailed analysis of the process, making it possible to test the various different elements which, in accordance with present theoretical ideas, take part to the production mechanism. (8 refs).

  12. Initial state with shear in peripheral heavy ion collisions

    Science.gov (United States)

    Magas, V. K.; Gordillo, J.; Strottman, D.; Xie, Y. L.; Csernai, L. P.

    2018-06-01

    In the present work we propose a new way of constructing the initial state for further hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted Λ and Λ ¯ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws, including conservation of a strong initial angular momentum, which is present in noncentral collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and [τ ,x ,y ,η ] coordinates and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.

  13. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1993-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL's Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development

  14. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  15. Response of the GLAST LAT calorimeter to relativistic heavy ions

    International Nuclear Information System (INIS)

    Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; D'Avezac, P.; Dumora, D.; Giovinazzo, J.; Grove, J.E.; Hellstroem, M.; Jacholkowska, A.; Johnson, W.N.; Nuss, E.; Reposeur, Th.; Smith, D.A.; Suemmerer, K.

    2006-01-01

    The CsI calorimeter of the Gamma-Ray Large-Area Space Telescope (GLAST) will be calibrated in flight with cosmic-ray heavy ions. In order to determine the response of the calorimeter to relativistic heavy ions lighter than Fe, an experiment was carried out at the GSI heavy ion facility using the Fragment Separator (FRS). The measured response exhibits an unexpected feature for light ions, opposite to that observed at low incident energy: for a given deposited energy, the observed signal is greater for these ions than for protons (or more generally Z=1 minimum ionizing particles). Pulse shapes are found to be almost identical for carbon ions and Z=1 particles, with a significant slow scintillation component, which constitutes another departure from the low-energy behavior. Data on the energy resolution for the individual CsI crystals and on the loss of ions due to nuclear reactions in the calorimeter are also presented

  16. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  17. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  18. Two-pion correlations in heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl→2π/sup +-/+X and Ne+NaF→2π - +X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions

  19. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  20. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    Science.gov (United States)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  1. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    60, No. 4. — journal of. April 2003 physics pp. 765–786. What have we learned from relativistic heavy-ion collider? ... What do we hope and expect to learn in .... experimental results and difficult numerical, presumably lattice Monte–Carlo simulation, ... For technical reasons, lattice Monte–Carlo methods are very difficult to.

  2. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  3. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  4. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  5. Bose-Einstein correlations between hard photons produced in heavy ions collisions

    International Nuclear Information System (INIS)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: 86 KR + nat Ni at 60.0 A.MeV, and 181 Ta + 197 Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi 0 , e +- and γγ correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs

  6. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  7. Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems

    International Nuclear Information System (INIS)

    Boguslavski, Kirill

    2016-01-01

    Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.

  8. Universality classes far from equilibrium. From heavy-ion collisions to superfluid Bose systems

    Energy Technology Data Exchange (ETDEWEB)

    Boguslavski, Kirill

    2016-07-27

    Quantum many-body systems far from equilibrium can approach a nonthermal fixed point during their real-time evolution. One example is scalar field theory, which occurs in models of cosmological inflation, and similar examples are found for non-Abelian plasmas relevant for heavy-ion collisions and for ultracold Bose gases. Investigating nonthermal fixed points of different microscopic theories, we present two novel universality classes that provide links between these systems. One of them involves nonrelativistic, N-component relativistic and expanding scalar systems. It occurs in the deep infrared regime of very high occupancies and is governed by a self-similar evolution. Its nonequilibrium dynamics leads to the formation of a Bose-Einstein condensate. The scaling properties of this region can be described by a vertex-resummed kinetic theory that is based on a systematic large-N expansion at next-to-leading order. The other novel universality class encompasses scalar field theories and non-Abelian plasmas in a longitudinally expanding background and corresponds to an early dynamical stage of heavy-ion collisions in the high-energy limit. We show that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Both universality classes are found in separate momentum regions in a longitudinally expanding N-component scalar field theory. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks. Moreover, the observed universality connects different physics disciplines from heavy-ion collisions to ultracold atoms, making a remarkable link between the world's hottest and coldest matter.

  9. Effect of pion mean-field on properties of pions and kaons from heavy-ion collisions

    International Nuclear Information System (INIS)

    Zheng Yuming; Chu Zili; Wang Hui; Sa Benhao

    1996-01-01

    The Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) model is used to study the properties of pions and kaons produced in heavy ion collisions. We include the nuclear medium effect on kaon and pion in the model, and simulate pion production and subthreshold kaon production in Kr + Zr reactions at 1 GeV/u. The calculated results show that the attractive pion optical potential changes the final-state pion momentum spectrum, enhancing the yield of pions with low transverse momenta. At the same time it also increases the kaon abundance and modifies the kaon momentum distribution

  10. The chromatic correction in RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum

  11. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  12. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  13. Dynamical evolution of hadronic matter in relativistic collisions

    International Nuclear Information System (INIS)

    Dean, D.J.; Umar, A.S.; Strayer, M.R.

    1993-01-01

    We use the (3+1)-dimensional string-parton model to study relativistic collisions of heavy ions at CERN energies. Various inclusive hadronic observables, such as transverse energy, dE T /dη, and rapidity distributions, are calculated and compared with WA80 and NA35 data. We study secondary interactions that occur during the dynamical evolution, and show that these interactions tend to fill the midrapidity region. The dynamical evolution of the energy density of produced mesons and their thermodynamic properties are also studied

  14. Origins of the di-jet asymmetry in heavy ion collisions

    CERN Document Server

    Milhano, José Guilherme

    2016-01-01

    The di-jet asymmetry --- the measure of the momentum imbalance in a di-jet system --- is a key jet quenching observable. Using the event generator \\jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy ion collisions two additional sources contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable.

  15. Origins of the di-jet asymmetry in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Milhano, Jose Guilherme; Zapp, Korinna Christine [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisbon (Portugal); CERN, Physics Department, Theory Unit, Geneva 23 (Switzerland)

    2016-05-15

    The di-jet asymmetry - the measure of the momentum imbalance in a di-jet system - is a key jet quenching observable. Using the event generator Jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy-ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy-ion collisions two additional sources can contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable. (orig.)

  16. On Pseudorapidity Distribution and Speed of Sound in High Energy Heavy Ion Collisions Based on a New Revised Landau Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.

  17. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  18. Working group report: heavy ion physics

    International Nuclear Information System (INIS)

    Alam, Jan-E; Chattopadhyay, S.; Assamagan, K.; Gavai, R.; Gupta, Sourendra; Mukherjee, S.; Ray, R.; Layek, B.; Srivastava, A.; Roy, Pradip K.

    2004-01-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5-16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop. The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-Abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions. (author)

  19. Anisotropic flow studies with identified particles with ALICE: a tool to probe different stages of a heavy-ion collision

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Anisotropic flow studies play a crucial role in the characterization of the nature of the quark gluon plasma (QGP) created in collisions of heavy ions at ultra-relativistic energies. These studies rely on measuring the coefficients vn of the Fourier expansion of the azimuthal particle distribution. They have been essential in establishing that the QGP is a strongly coupled, almost perfect fluid. In this seminar, I review the latest results from measurements of elliptic (v2), triangular (v3), quadrangular (v4) and pentagonal (v5) flow of identified particles at the LHC measured with ALICE. I will discuss how these results allow us to gain insight into the transport properties of the QGP and the initial conditions of a heavy-ion collision. In addition, they reveal the role of different hadronisation mechanisms as well as the highly dissipative hadronic rescattering phase to the development of vn.

  20. UCLA intermediate energy nuclear physics and relativistic heavy ion physics. Annual report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In this contract year the UCLA Intermediate Energy Group has continued to pursue a general set of problems in intermediate energy physics using new research tools and theoretical insights. Our program to study N-N scattering and proton-light nucleus scattering has been enhanced by a new polarized target facility (both hydrogen and deuterium) at the High Resolution Spectrometer (HRS) of the Los Alamos Meson Physics Facility (LAMPF). This facility has been constructed by our group in collaboration with physicists from KEK, LAMPF and the University of Minnesota; and the first set of experiments studying polarized beam-polarized target scattering at the HRS were completed this summer and early fall. The HRS mode of operation has led to some unique design features which are described. At the Bevalac, a new beam line spectrometer will be constructed for us during this year and next to significantly enhance our capability to study subthreshold k + , k - and anti p production in relativistic heavy ion collisions and to search for fractionally charged particles. During this period a proposal is being prepared for a very large acceptance spectrometer and its associated beam line which will be used to detect dilepton pairs produced in relativistic heavy ion collisions. In concert with these experimental projects, theoretical advances in the understanding of new data from the HRS, particularly spin transfer data, have been made by the UCLA group and are described

  1. Various models for pion probability distributions from heavy-ion collisions

    International Nuclear Information System (INIS)

    Mekjian, A.Z.; Mekjian, A.Z.; Schlei, B.R.; Strottman, D.; Schlei, B.R.

    1998-01-01

    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η of a Poisson emitter and a critical density η c are connected in a thermal model by η/n c =e -m/T <1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model. copyright 1998 The American Physical Society

  2. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  3. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  4. Baseline measures for net-proton distributions in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Netrakanti, P.K.; Mishra, D.K.; Mohanty, A.K.; Mohanty, B.

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider facility has reported results for the cumulants and their ratios from the net-proton distributions upto the fourth order cumulants at various collision energies. These measurements were carried to look for the signatures of the possible critical point (CP) in the phase diagram for a system undertaking strong interactions. The results show an intriguing dependence of the cumulant ratios C 3 /C 2 and C 4 /C 2 as a function of beam energy. The beam energy dependence appears to be non-monotonic in nature. However the experiment also reports that the energy dependence is observed to be consistent with expectation from an approach based on the independent production of proton and anti-protons in the collisions. In this paper we emphasize the need to have a proper baseline for appropriate interpretation of the cumulant measurements and argue that the comparison to independent production approach needs to be done with extreme caution

  5. Effects of finite coverage on global polarization observables in heavy ion collisions

    Science.gov (United States)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  6. Relativistic theory of stopping for heavy ions

    International Nuclear Information System (INIS)

    Lindhard, J.; So/rensen, A.H.

    1996-01-01

    We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method. Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this deviation can be expressed in terms of the transport cross section, σ tr , for scattering of a free electron by the ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe close-quote s formula; we look into the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in Rutherford scattering. The corresponding relativistic correction is obtained from σ tr for scattering of a Dirac electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the scattering distribution, but merely a single quantity, σ tr , determined by differences of successive phase shifts. For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values of γ=(1-v 2 /c 2 ) -1/2 . An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger than that of the perturbation formula, by a factor of ∼2 endash 3 for heavy ions. But the finite nuclear radius leads to a strong reduction at high energies and the elimination of the factor γ 2 belonging to point nuclei. copyright 1996 The American Physical Society

  7. Kinetic evolution of the glasma and thermalization in heavy-ion collisions

    International Nuclear Information System (INIS)

    Huang, Xuguang; Liao, Jinfeng

    2014-01-01

    In relativistic heavy-ion collisions, a highly occupied gluonic matter is created shortly after initial impact, which is in a nonthermal state and often referred to as the Glasma. Successful phenomenology suggests that the glasma evolves rather quickly toward the thermal quark–gluon plasma (QGP) and a hydrodynamic behavior emerges at a very early time ~ô(1) fm/c. Exactly how such 'apparent thermalization' occurs and connects the initial conditions to the hydrodynamic onset, remains a significant challenge for theory as well as phenomenology. We briefly review various ideas and recent progress in understanding the approach of the glasma to the thermalized QGP, with an emphasis on the kinetic theory description for the evolution of such far-from-equilibrium and highly overpopulated, thus weakly-coupled yet strongly interacting glasma. (author)

  8. Is the anomalous effect an experimental evidence for the excitation of new exotic states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, R.; Topor Pop, V.

    1984-10-01

    Lower bound on the mean free path of the projectile fragments from the relativistic heavy ion collisions are drived using generalized Rarita-Schwed's theorems. These bounds are compared with the experimental data on the anomalous mean free path observed in recent experiments. The near saturation of these bounds provide a specific interpretation of the anomalous effects as an experimental evidence for the excitation of those extreme nuclear states which saturate the limits of the convetional nuclear physics. (authors)

  9. FONLL calculations for heavy quark production in nuclear collisions

    CERN Document Server

    Niel, Elisabeth Maria

    2017-01-01

    The ALICE detector at the LHC has been designed to study the collisions of heavy nuclei at energies much higher then the previous dedicated experiments at the Relativistic Heavy-Ion Collider (RHIC) of the Brookhaven National Laboratory. Colliding heavy nuclei allows to reproduce the hot and dense plasma of quarks and gluons (QGP) existing right after the Big Bang and hence study the very first instants of universe’s existence. In heavy ions collisions, heavy flavours, such as beauty and charm quark, are fundamental probes for the quark gluon plasma properties. That is because they experience the entire evolution of the system since they are produced at the very beginning. They are indeed a very powerful tool to test field theories such as Quantum Chromodynamics (QCD). Theoretical models predict that a fast parton(quark or gluon) looses energy while traversing a medium composed of colour charges. This phenomenon is called "jet quenching", it can be used to describe the QGP. It was first observed at RHIC by m...

  10. Summary talk at the symposium on relativistic heavy ion research G.S.I., Darmstadt, Germany

    International Nuclear Information System (INIS)

    Grunder, H.A.

    1978-03-01

    Ideas expressed at the symposium and the general state of relativistic heavy-ion research are reviewed. The relationship with biology and medicine and with fusion is addressed. What has been learned about heavy ions and suggested possible next research steps are tabulated. 3 figures, 4 tables

  11. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  12. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  13. High energy nuclear collisions

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  14. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with π 0 → γ γ as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The ''Cronin Effect'' and the ''Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs

  15. Heavy Ion Physics Prospects with the ATLAS Detector at the LHC

    CERN Document Server

    Grau, N

    2008-01-01

    The next great energy frontier in Relativistic Heavy Ion Collisions is quickly approaching with the completion of the Large Hadron Collider and the ATLAS experiment is poised to make important contributions in understanding QCD matter at extreme conditions. While designed for high-pT measurements in high-energy p+p collisions, the detector is well suited to study many aspects of heavy ion collisions from bulk phenomena to high-pT and heavy flavor physics. With its large and finely segmented electromagnetic and hadronic calorimeters, the ATLAS detector excels in measurements of photons and jets, observables of great interest at the LHC. In this talk, we highlight the performance of the ATLAS detector for Pb+Pb collisions at the LHC with special emphasis on a key feature of the ATLAS physics program: jet and direct photon measurements.

  16. Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl

    International Nuclear Information System (INIS)

    Bass, S.A.; Hartnack, C.; Nantes Univ., 44; Stoecker, H.; Greiner, W.

    1995-01-01

    Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of Δ resonance and pion production we focus an azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high p t pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential. (orig.)

  17. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    Science.gov (United States)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  18. Collective flow of pions in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1995-02-01

    The transverse-momentum distributions of pions in the Au(1 GeV/nucleon)+Au collisions are analyzed. The calculations are carried out within relativistic meanfield one- and two-fluid models. The rapidity distributions of the mean transverse momentum of pions are found to be fairly sensitive to the nuclear equation of state and, especially, to the stopping power. It is shown that the collective flow of pions in the reaction plane always correlates with the 'hot' flow of nucleons (i.e. those emitted from hot regions of nuclear system), while not always, with the total nucleon flow. This 'hot' nucleon flow can be experimentally singled out by selecting nucleons with sufficiently high transverse momenta. We predict that the 'hot' nucleon flow selected in this way will always correlate with the pion flow. Available experimental data on transverse-momentum spectra of pions are compared with calculations employing various equations of state and stopping power. (orig.)

  19. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  20. Hard photons beyond proton-neutron Bremsstrahlung in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.; Ploszajczak, M.

    1998-01-01

    The study of extremely high energy photons, pions and etas, produced in intermediate energy heavy-ion collisions is presented. Possibility of imaging the final-state phase space in these collisions by the Bose-Einstein correlations for photons is critically examined. (author)

  1. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  2. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  3. QMD simulation of multifragment production in heavy ion collisions at E/A=600 MeV

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Mueller, W.F.J.; Aichelin, J.; Hubele, J.; Imme, G.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Schuettauf, A.; Stuttge, L.; Tucholski, A.

    1993-04-01

    With the ALADIN forward spectrometer the fragmentation of gold nuclei at 600 MeV per nucleon after interaction with carbon, aluminum, copper and lead targets has been investigated. The results are compared to quantum-molecular-dynamics calculations using soft and hard equations of state as well as soft equation of state with momentum dependent forces. Whereas the QMD has been successfully applied to heavy ion collisions at lower energies, it is not possible to reproduce the fragment distributions and the light particle multiplicities observed in this experiment at relativistic energies. To study the reasons for the discrepancy between the experimental data and the simulations, we investigated the time evolution of the nuclear system after a collision and the disintegration pattern of excited nuclei in the QMD approach. (orig.). 9 figs

  4. Modeling and Analysis of Ultra-Relativistic Heavy-Ion Collisions. Final Report

    International Nuclear Information System (INIS)

    Bass, Steffen A.

    2008-01-01

    Hadronic, i.e. strongly interacting, matter is described by the theory of quantum chromodynamics (QCD). The basic constituents of QCD, quarks and gluons, are normally confined to hadrons, but it is believed that under extreme conditions, such as shortly after the creation of the universe, quarks and gluons can exist as independent particles in a new state of matter, called a quark-gluon plasma (QGP). Due to the rapid expansion of the universe, this plasma went through a phase transition to form hadrons - most importantly nucleons - which constitute the building blocks of matter as we know it today. The investigation of the QGP under laboratory conditions will yield important novel insights into the development of the early universe and the behavior of matter under extreme conditions. This study is presently the subject of the physics program of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. First data from the √s NN = 130 GeV and √s NN = 200 GeV Au+Au runs at RHIC have yielded many interesting and sometimes surprising results. While many theoretical predictions have been confirmed, some of the experimental results have brought surprises and indicate that RHIC is, indeed, probing a new physics regime of QCD matter.

  5. Ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Studies with ultrarelativistic heavy ions combine aspects of cosmic ray physics, particle physics, nuclear physics, astrophysics and cosmogenesis. The leading theoretical concerns are the behavior of matter at very high-energy density and flux, the general behavior of space time in collisions, relativistic nuclear theory, and quantum chromodynamics. The field has developed over a period of more than thirty years, since the first observation of heavy nuclei in cosmic rays and the major developments of understanding of high-energy collisions made by Fermi and Landau in the early fifties. In the late sixties the discovery of the parton content of nucleons was rapidly followed by a great extension of high-energy collision phenomenology at the CERN ISR and subsequent confirmation of the QCD theory. In parallel the study of p-nucleus and nucleus-nucleus collisions at very high energies, especially at the CERN PS, Fermilab and the Bevalac, and in cosmic rays demonstrated that studies involving the nucleus opened up a new dimension in studies of the hadronic interaction. It is now at a high level of interest on an international scale, with major new accelerators being proposed to dedicate to this kind of study

  6. Hard photons and mesons as probes of heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Metag, V.

    1991-01-01

    Hard photon production in heavy ion collisions has been studied by a large number of groups at various laboratory and a large body of data has been collected. Recent results reviewed are summarized here in a systematics for photon emission. A brief discussion of π 0 -production in heavy ion collisions will be given including first results with the Two Arm Photon spectrometer TAPS obtained at SIS. Furthermore, the new perspectives for the study of compressed nuclear matter by meson emission will be outlined. (orig.)

  7. Matter Formed at the BNL Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Brown, G.E.; Gelman, B.A.; Rho, Mannque

    2006-01-01

    We suggest that the 'new form of matter' found just above T c by the Relativistic Heavy Ion Collider is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π, σ, ρ, and a 1 . Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at T c just as they do from below T c as predicted by the vector manifestation of hidden local symmetry. This could explain the rapid rise in entropy up to T c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue

  8. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    International Nuclear Information System (INIS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-01-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution

  9. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  10. Nonrelativistic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Bertsch, G.

    1984-01-01

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures

  11. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Kapitán, Jan; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Tlustý, David

    2013-01-01

    Roč. 110, č. 14 (2013), s. 142301 ISSN 0031-9007 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR * elliptic flow * heavy ion collisions * particles and antiparticles comparations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.728, year: 2013 http://prl. aps .org/pdf/PRL/v110/i14/e142301

  12. Pion correlations in heavy ion collision

    International Nuclear Information System (INIS)

    Venema, L.

    1991-01-01

    Charged π-correlations are a well established experimental technique to obtain information about π-source sizes. This is, however, not the case for π 0 's, as they decay into photons, resulting in measurements of 4 photon correlations. Here is described what these correlations are, what the problems are to detect and interpret them. These correlations are an additional way to get more information out of the heavy ion collisions. (orig.)

  13. Strangeness production in heavy ion collisions

    International Nuclear Information System (INIS)

    Redlich, K.

    2001-05-01

    Strangeness production in heavy ion collisions is discussed in a broad energy range from SIS to RHIC. In the whole energy range particle yields are showing high level of chemical equilibration which can be described by the unified freezeout conditions of fixed energy/particle ≅ 1GeV. The statistical model within the canonical formulation of strangeness conservation provides a framework to describe the observed enhancement of (multi)strange particles from p+A to A+A collisions measured at the SPS energy and predicts that this enhancement should be larger for decreasing collision energy. However, only at the SPS and RHIC chemical freezeout temperature is consistent within error with the critical value required for deconfinement and simultaneously strangeness is uncorrelated and distributed in the whole volume of the fireball. (orig.)

  14. Future of the ATLAS heavy ion program

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The primary goal of the heavy ion program at the LHC is to study the properties of deconfined strongly interacting matter, often referred to as ``quark-gluon plasma'' (QGP), created in ultra-relativistic nuclear collisions. That matter is found to be strongly coupled with a viscosity to entropy ratio near a conjectured quantum lower bound. ATLAS foresees a rich program of studies using jets, Upsilons, measurements of global event properties and measurements in proton-nucleus collisions that will measure fundamental transport properties of the QGP, probe the nature of the interactions between constituents of the QGP, elucidate the origin of the strong coupling, and provide insight on the initial state of nuclear collisions. The heavy ion program through the third long shutdown should provide one inverse nb of 5.5~TeV Pb+Pb data. That data will provide more than an order of magnitude increase in statistics over currently available data for high-pT observables such as gamma-jet and Z-jet pairs. However, potentia...

  15. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  16. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  17. Cern academic training programme 2011: Selected Topics in the Physics of Heavy Ion Collisions

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 14, 15 & 16 March 2011 Selected Topics in the Physics of Heavy Ion Collisions 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions. Organiser: Maureen Prola-Tessaur/PH-EDU  

  18. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in nucleus-nucleus collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and $\\textit{p}$+A collisions. Based on $\\textit{p}$+Pb data collected in 2013 and $\\textit{pp}$ and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi\\left(2\\mathrm{S}\\right)$ productions as well as $\\Upsilon\\left(n\\mathrm{S}\\right)$ production via the di-muon decay final states. The results of the various measurements are discussed.

  19. For high energy heavy ion experiments TPC 4π detector 'Diogene'. What possibilities and what physics

    International Nuclear Information System (INIS)

    Babinet, R.; Cassagnou, Y.; Drouet, M.

    1981-05-01

    'Diogene' is the name of a 4π solid angle detector, based on a Time Projection Chamber (TPC), designed to perform exclusive measurements of charged particles emitted in central collisions of relativistic heavy ions. Exclusive measurements of all charged particles emitted in central collisions of relativistic heavy ions are becoming more and more necessary in this field of nuclear physics in order to answer some crucial questions such as: what is the degree of compression achieved in these collisions. What is the behavior of nuclear matter at high degree of excitation as well as compression. The possibility of handling high multiplicities up to 40 or 60; a momentum measurement of all particles, with not too bad a resolution, up to about 1.5 GeV/c; a good particle identification between π +- , p, d, t ..

  20. Microscopic descriptions of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables

  1. Atomic x-ray production by relativistic heavy ions

    International Nuclear Information System (INIS)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z 1 2 for the cross section of the heavy ion with atomic number Z 1 to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z 2 of the target of the form (Z 1 - αZ 2 ) 2 , instead of Z 1 2 , is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology

  2. SYSTEMATIC STUDIES OF HEAVY ION COLLISIONS TO SEARCH FOR QUARK-GLUON PLASMA

    International Nuclear Information System (INIS)

    Wang, Fuqiang

    2007-01-01

    This is the final technical report for DOE Outstanding Junior Investigator (OJI) Award, 'Systematic Studies of Heavy Ion Collisions to Search for Quark-Gluon Plasma', grant DE-FG02-02ER41219, Principal Investigator (PI) Fuqiang Wang. The research under the grant was divided into two phases. The first concentrated on systematic studies of soft hadron production at low transverse momentum (p T ), in particular the production of (anti-)baryon and strangeness in heavy ion collisions at RHIC energies. The second concentrated on measurements of di-hadron and multi-hadron jet-correlations and investigations of medium response to jets. The research was conducted at the Relativistic Heavy-Ion Collider (RHIC) at BNL with the Solenoidal Tracker At RHIC (STAR) experiment. The total grant is $214,000. The grant established a PC farm solely used for this research. The PC farm consists of 8 nodes with a total of 16 CPUs and 3 disk servers of total 2 TB shared storage. The current balance of the grant is $19,985. The positive balance is because an initial purchase of $22,600 for the PC farm came out of the PI's start-up fund due to the lateness of the award. The PC farm is an integral part of the Purdue Physics Department's computer cluster. The grant supported two Ph.D. graduate students. Levente Molnar was supported from July 2002 to December 2003, and worked on soft hadron production. His thesis title is Systematics of Identified Particle Production in pp, d-Au and Au-Au Collisions at RHIC Energies. He graduated in 2006 and now is a Postdoctoral fellow at INFN Sezione di Bari, Italy working on the ALICE experiment at the LHC. Jason Ulery was supported from January 2004 to July 2007. His thesis title is Two- and Three-Particle Jet-Like Correlations. He defended his thesis in October 2007 and is moving to Frankfurt University, Germany to work on the ALICE experiment at the LHC. The research by this grant resulted in 7 journal publications (2 PRL, 1 PLB, 1 PRC, 2 submitted and 1

  3. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  4. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  5. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Santini, Elvira

    2008-01-01

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  6. Little bang at big Accelerators: Heavy ion physics from AGS to LHC

    International Nuclear Information System (INIS)

    Schukraft, J.

    1999-01-01

    Since the start of ultra-relativistic heavy ion experimentation, some 10 years ago at the Brookhaven AGS and the CERN SPS, this field has now entered its most decisive and productive phase ever. The advent of a new generation of detectors, and most important, the availability of really heavy ion beams, has lead in the last three years to exciting new results which are of relevance to the most crucial questions this field has been addressing since 1986: do we see in ultra-relativistic heavy ion collisions signs for deconfinement, signs for chiral symmetry restoration, signs for equilibrated hadronic matter? The tantalizing answer today to each of these questions seems to be: yes! This summary talk will sketch a rough picture of the heavy ion program at current and future machines and concentrate on a few important topics; more detailed discussions and additional data can be found e.g. in the Proceedings of the latest Quark-Matter Conference

  7. Bose-Einstein correlations between hard photons produced in heavy ions collisions; Correlations Bose-Einstein entre photons durs produits dans les collisions d`ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F M

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.

  8. High energy nuclear collisions: Theory overview

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  9. MEGHNAD – A multi element detector array for heavy ion collision ...

    Indian Academy of Sciences (India)

    When heavy ion beam available from such machines fall on a target and undergo collision, very rich and often pristine fields of research open up. In order to carry on such activities, we have taken up a project to build a multi element gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the ...

  10. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  11. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  12. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  13. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Sickles, Anne [BNL Physics Department

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protons and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.

  14. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  15. A tale of tails: Photon rates and flow in ultra-relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    McLerran, Larry [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Dept., China Central Normal University, Wuhan (China); Schenke, Björn, E-mail: bschenke@quark.phy.bnl.gov [Physics Dept., Bdg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    We consider the possibility that quark and gluon distributions in the medium created in high energy heavy ion collisions may be modified by a power law tail at energies much higher than the temperature. We parametrize such a tail by Tsallis distributions with an exponent motivated by phenomenology. These distributions are characterized by an effective temperature scale that we assume to evolve in time like the temperature for thermal distributions. We find that including such a tail increases the rates for photon production and significantly delays the emission times for photons of a fixed energy. We argue that these effects should modify photon yields and flow patterns in a way that will help the agreement of theoretical calculations with data from LHC and RHIC experiments.

  16. Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN

    CERN Document Server

    Schukraft, Jurgen

    2015-01-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.

  17. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  18. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  19. The theory of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    1993-07-01

    This program began in January 1993. Its primary goals are studies of highly excited matter and its production in nuclear collisions at very high energies. After a general orientation on the project, abstracts describing the contents of completed papers and providing some details of current projects are given. Principal topics of interest are the following: the dynamics of nuclear collisions at very high energies (RHIC and LHC), the dynamics of nuclear collisions at AGS energies, high-temperature QCD and the physics of the quark-gluon plasma, and the production of strangelets and other rare objects

  20. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  1. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  2. Medium response to jets in heavy ion collisions

    Science.gov (United States)

    Tachibana, Yasuki

    2018-01-01

    A short overview on recent progress in studies of medium response to jet quenching in heavy ion collisions is presented. We show the typical features of medium response and give comment on their connection to jet observables by introducing the work done by the author and collaborators as an example.

  3. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, A., E-mail: adeline.ebran@cea.fr; Taieb, J., E-mail: julien.taieb@cea.fr; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-11

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  4. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  5. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.

  6. BROOKHAVEN: Looking towards heavy ion physics

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    July 11-22 were busy days at Brookhaven with a two-week Summer Institute on Relativistic Heavy Ion Physics. After an intensive first week designed to introduce young physicists to high energy heavy ion research, the second week was a workshop on detector technology for Brookhaven's proposed Relativistic Heavy Ion Collider (RHIC), attended by some 150 physicists

  7. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  8. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.

    1981-01-01

    With the aim to clarify somewhat the question of equilibration in the following we investigate the approach to equilibrium of particle composition and momentum distribution of the particles within the firecloud formed in the central collision of energetic heavy ions. (orig.)

  9. Scaling of Elliptic Flow, Recombination and Sequential Freeze-Out of Hadrons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; He, M., and Rapp, R.

    2010-09-21

    The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p{sub T} {le} 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are believed to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons ({pi}, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination.

  10. Classical model with pionic degrees of freedom for the description of high energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Kunz, J.

    1982-01-01

    In this thesis the classical model is extended in order to regard the inelastic processes important in the heavy ion collisions of the considered energy range. For this a classical pion field was coupled to the nucleons via the pseudo-scalar #betta# 5 -interactions. Nucleon and pion fields were treated in a completely relativistic way. The equations of motion were analytically studied for the one-nucleon system. From the statical solution the bare mass of the nucleon was determined, and its dependence on both parameters of this modell, the coupling constant and the cut-off momentum of the form factor, was considered. (orig./HSI) [de

  11. Decay of the vacuum in heavy ion collisions

    International Nuclear Information System (INIS)

    Mueller, B.

    1984-10-01

    The neutral electron-positron vacuum state becomes unstable in very strong electric fields of nuclei with Z>173 and decays into a charged vacuum by spontaneous positron emission. Such giant nuclear systems can be formed in collisions of very heavy ions (U+U, U+Cm, etc.) for a period of 10 -20 s or more. Recent experimental results revealing line structures in the positron spectra observed in these collisions are discussed and their implications for quantum electrodynamics and nuclear physics are pointed out. (orig.)

  12. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  13. Chemical Potentials of Quarks Extracted from Particle Transverse Momentum Distributions in Heavy Ion Collisions at RHIC Energies

    International Nuclear Information System (INIS)

    Zhao, Hong; Liu, Fu-Hu

    2014-01-01

    In the framework of a multisource thermal model, the transverse momentum distributions of charged particles produced in nucleus-nucleus (A-A) and deuteron-nucleus (d-A) collisions at relativistic heavy ion collider (RHIC) energies are investigated by a two-component revised Boltzmann distribution. The calculated results are in agreement with the PHENIX experimental data. It is found that the source temperature increases obviously with increase of the particle mass and incident energy, but it does not show an obvious change with the collision centrality. Then, the values of chemical potentials for up, down, and strange quarks can be obtained from the antiparticle to particle yield ratios in a wide transverse momentum range. The relationship between the chemical potentials of quarks and the transverse momentum with different centralities is investigated, too

  14. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  15. The ALICE experiment: $\\rm D^{+}$-meson production in heavy-ion collisions and silicon low noise sensors characterization for the ITS Upgrade.

    CERN Document Server

    AUTHOR|(CDS)2084697; Bruna, Elena

    This thesis collects my work on two aspects of the ALICE experiment at the Large Hadron Collider: the measurement of $\\rm D^{+}$-meson production in Pb-Pb collisions at $\\sqrt{s_{\\rm {NN}}}= 2.76$ TeV and the characterization of silicon low noise sensors for the Inner Tracking System Upgrade. I worked within the INFN group of Torino that it is involved in the ALICE experiment both in the physics program related to the study of heavy-flavour production and in the project of the ITS Upgrade. ALICE is one of the main experiment of the LHC and it is the only one optimized to study ultra-relativistic heavy-ion collisions. The main goal is to study the properties of the Quark Gluon Plasma (QGP), a phase of matter where quarks and gluons are deconned. Heavy quarks are a powerful tool to study such properties because they can be created only in hard scattering processes at the initial stage of the collision and, subsequently, they interact with the QGP. The measurement of charmed meson production in Pb-P...

  16. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  17. Glenn T. Seaborg and heavy ion nuclear science

    International Nuclear Information System (INIS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed

  18. Probing the nuclear matter at high baryon and isospin density with heavy ion collisions

    International Nuclear Information System (INIS)

    Di Toro, M.; Colonna, M.; Ferini, G.

    2010-01-01

    Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. High Energy Collisions are studied in order to access nuclear matter properties at high density. Particular attention is devoted to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of large fundamental interest, even for the astrophysics implications. Using fully consistent covariant transport simulations built on effective field theories we are testing isospin observables ranging from nucleon/cluster emissions, collective flows (in particular the elliptic, squeeze out, part) and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also stressed. The "symmetry" repulsion at high baryon density will also lead to an "earlier" hadron-deconfinement transition in n-rich matter. The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Nonlinear relativistic mean field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Isospin effects appear to be rather significant. The binodal transition line of the (T,ρ B ) diagram is lowered in a region accessible to heavy ion collisions in the energy range of the new planned FAIR/NICA facilities. Some observable effects of the mixed phase are suggested, in particular a neutron distillation mechanism. Theoretically a very important problem appears to be the suitable treatment of the isovector part of the interaction in effective QCD lagrangian approaches. (author)

  19. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  20. Evaluation of electon and nuclear bremsstrahlung in heavy ion collisions

    International Nuclear Information System (INIS)

    Gippner, P.

    1975-01-01

    The detection of quasimolecular X-ray continua provides the possibility of investigating the electron shells of quasimolecules transiently formed during adiabatic heavy ion-atomic collision. The contribution of the electron and nuclear bremsstrahlung to quasimolecular X-ray continua observed in bombarding various targets with 65 and 96 MeV Nb ions were estimated

  1. Recent relativistic heavy ion collider results on photon, dilepton and ...

    Indian Academy of Sciences (India)

    sNN ≈ 200. GeV. Table 1 shows a summary of the first eight years of PHENIX data taking, one of the two larger experiments (PHENIX and STAR) among the four experiments. (PHENIX, STAR, BRAHMS and PHOBOS) running at RHIC. Among the observables used to study heavy ion collisions, electromagnetic probes.

  2. Microscopic approach to subthreshold pion production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tohyama, M.; Kaps, R.; Masak, D.; Mosel, U.

    1985-01-01

    A microscopic approach to subthreshold pion production in heavy-ion collisions is proposed, in which the wave function of the nucleon system is approximated in the time-dependent Hartree-Fock theory and an effective interaction for the pion-production process is taken from (p,π) reaction theories. The model is applied to pion production in 16 O + 16 O collisions. (orig.)

  3. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  4. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  5. RADIATION PROTECTION FOR THE RELATIVISTIC HEAVY ION-COLLIDER AT THE BROOKHAVEN NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Musolino, S.V.; Stevens, A.J.

    1999-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy particle accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon. The rings consist of a circular lattice of superconducting magnets 3.8 km in circumference. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective when the facility goes into operation is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. There are only a few other high energy particle accelerators like RHIC in the world. The rules promulgated in the Code of Federal Regulations under the Atomic Energy Act do not cover prompt radiation from accelerators, nor are there any State regulations that govern the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance for the design of radiation shielding

  6. Ultra-relativistic heavy-ion physics with AFTER@LHC

    DEFF Research Database (Denmark)

    Rakotozafindrabe, A.; Arnaldi, R.; Brodsky, Stanley

    2013-01-01

    We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal.......We outline the opportunities for ultra-relativistic heavy–ion physics which are offered by a next generation and multi-purpose fixed-target experiment exploiting the proton and ion LHC beams extracted by a bent crystal....

  7. High energy heavy ion collisions: Lessons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    select events which respond to the observables correlated to the centrality of the collisions. .... pared to 130 GeV and is independent of centrality. Similar ..... observations, therefore coming out of these exclusive observables at RHIC directs.

  8. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  9. Jet and electromagnetic tomography (JET) of extreme phases of matter in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Ulrich [The Ohio State Univ., Columbus, OH (United States)

    2015-08-31

    The Ohio State University (OSU) group contributed to the deliverables of the JET Collaboration three major products: 1. The code package iEBE-VISHNU for modeling the dynamical evolution of the soft medium created in relativistic heavy-ion collisions, from its creation all the way to final freeze-out using a hybrid approach that interfaces a free-streaming partonic pre-equilbrium stage with a (2+1)-dimensional viscous relativistic fluid dynamical stage for the quark-gluon plasma (QGP) phase and the microscopic hadron cascade UrQMD for the hadronic rescattering and freeze-out stage. Except for UrQMD, all dynamical evolution components and interfaces were developed at OSU and tested and implemented in collaboration with the Duke University group. 2. An electromagnetic radiation module for the calculation of thermal photon emission from the QGP and hadron resonance gas stages of a heavy-ion collision, with emission rates that have been corrected for viscous effects in the expanding medium consistent with the bulk evolution. The electromagnetic radiation module was developed under OSU leadership in collaboration with the McGill group and has been integrated in the iEBE-VISHNU code package. 3. An interface between the Monte Carlo jet shower evolution and hadronization codes developed by the Wayne State University (WSU), McGill and Texas A&M groups and the iEBE-VISHNU bulk evolution code, for performing jet quenching and jet shape modification studies in a realistically modeled evolving medium that was tuned to measured soft hadron data. Building on work performed at OSU for the theoretical framework used to describe the interaction of jets with the medium, initial work on the jet shower Monte Carlo was started at OSU and moved to WSU when OSU Visiting Assistant Professor Abhijit Majumder accepted a tenure track faculty position at WSU in September 2011. The jet-hydro interface was developed at OSU and WSU and tested and implemented in collaboration with the McGill, Texas

  10. New sampling electronics using CCD for DIOGENE: a high multiplicity, 4 π detector for relativistic heavy ions

    International Nuclear Information System (INIS)

    Babinet, R.P.

    1987-01-01

    DIOGENE is a small time projection chamber which has been developed to study central collisions of relativistic heavy ions. The maximum multiplicity (up to 40 charged particles) that can be accepted by this detector is limited by the present electronics. In view of the heavier mass ions that should become readily available at the Saturne national facility (France), a new sampling electronics has been tested. In the first part of this talk they will present a brief description of the actual detector, insisting on the performances that have been effectively obtained with α-particles and Neon beams. The motivation for and characteristics of a renewed electronic set-up should thus appear more clearly. The second part of the talk is devoted to results of the tests that have been performed using charged couple devices. They will finally conclude on the future perspectives that have been opened by these developments

  11. Shannon information entropy in heavy-ion collisions

    Science.gov (United States)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  12. Mass and charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Dworzecka, M.; Feldmeier, H.

    1978-01-01

    A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca [af

  13. From Heavy-Ion Collisions to Compact Stars: Equation of State and Relevance of the System Size

    Directory of Open Access Journals (Sweden)

    Sylvain Mogliacci

    2018-01-01

    Full Text Available In this article, we start by presenting state-of-the-art methods allowing us to compute moments related to the globally conserved baryon number, by means of first principle resummed perturbative frameworks. We focus on such quantities for they convey important properties of the finite temperature and density equation of state, being particularly sensitive to changes in the degrees of freedom across the quark-hadron phase transition. We thus present various number susceptibilities along with the corresponding results as obtained by lattice quantum chromodynamics collaborations, and comment on their comparison. Next, omitting the importance of coupling corrections and considering a zero-density toy model for the sake of argument, we focus on corrections due to the small size of heavy-ion collision systems, by means of spatial compactifications. Briefly motivating the relevance of finite size effects in heavy-ion physics, in opposition to the compact star physics, we present a few preliminary thermodynamic results together with the speed of sound for certain finite size relativistic quantum systems at very high temperature.

  14. RHIC and quark matter: proposal for a relativistic heavy ion collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    1984-08-01

    This document describes the Brookhaven National Laboratory Proposal for the construction of a Relativistic Heavy Ion Collider (RHIC). The construction of this facility represents the natural continuation of the laboratory's role as a center for nuclear and high-energy physics research and extends and uses the existing AGS, Tandem Van de Graaff and CBA facilities at BNL in a very cost effective manner. The Administration and Congress have approved a project which will provide a link between the Tandem Van de Graaf and the AGS. Completion of this project in 1986 will provide fixed target capabilities at the AGS for heavy ions of about 14 GeV/amu with masses up to approx. 30 (sulfur). The addition of an AGS booster would extend the mass range to the heaviest ions (A approx. 200, e.g., gold); its construction could start in 1986 and be completed in three years. These two new AGS experimental facilities can be combined with the proposed Relativistic Heavy Ion Collider to extend the energy range to 100 x 100 GeV/amu for the heaviest ions. BNL proposes to start construction of RHIC in FY 86 with completion in FY 90 at a total cost of 134 M$

  15. Study of the angular correlation between heavy-flavour decay electrons and charged unidentified particles in pp and p-Pb collisions with ALICE

    CERN Document Server

    Pereira De Oliveira Filho, Elienos

    The aim of relativistic heavy-ion collisions is to investigate the properties of the Quark-Gluon Plasma (QGP) phase, that is achieved at high-enough temperatures and/or densities. In this context, light on heavy-ion collisions (e. g. p-Pb) are used to assess Cold Nuclear Matter effects (CNM), while elementary hadronic collisions (e. g. proton-proton) provide tests for QCD (Quantum Chromodynamics) based calculations and baseline for studies with heavy- ions. Heavy quarks, i. e. charm and beauty, are very convenient in the characterization of the QGP. They are produced via initial hard parton-parton scatterings at the early stages of the collision and, therefore, they are a self-generated probe for the system created in the reaction. In this work the angular correlation between electrons from heavy-flavour hadron decays and charged particles was studied in pp (2.76 and 7 TeV) and p-Pb (5.02 TeV) collisions at the CERN Large Hadron Collider, using the ALICE detector. The correlation strengths were evaluated as a...

  16. Effect of position and momentum constraints on charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Rajni; Kumar, Suneel

    2012-01-01

    The rich phenomenology of multifragmentation has been widely explored after two decades of its discovery. It has been experimentally shown that in one single heavy ion collision many intermediate mass fragments (IMFs) are produced, where IMFs are defined as fragments with 5 ≤ A ≤ A tot /6. In the earlier literature, the multifragmentation was studied by Jakobsson et al. who measured the charge particle distribution along with their kinetic energy spectra in 16 O/ 36 Ar induced reaction between 25 and 200 MeV/nucleon representing the various phenomena in heavy ion collisions

  17. Entropy and Multifractality in Relativistic Ion-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shaista Khan

    2018-01-01

    Full Text Available Entropy production in multiparticle systems is investigated by analyzing the experimental data on ion-ion collisions at AGS and SPS energies and comparing the findings with those reported earlier for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It is observed that the entropy produced in limited and full phase space, when normalized to maximum rapidity, exhibits a kind of scaling which is nicely supported by Monte Carlo model HIJING. Using Rényi’s order q information entropy, multifractal characteristics of particle production are examined in terms of generalized dimensions, Dq. Nearly the same values of multifractal specific heat, c, observed in hadronic and ion-ion collisions over a wide range of incident energies suggest that the quantity c might be used as a universal characteristic of multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. The analysis is extended to the study of spectrum of scaling indices. The findings reveal that Rényi’s order q information entropy could be another way to investigate the fluctuations in multiplicity distributions in terms of spectral function f(α, which has been argued to be a convenient function for comparison sake not only among different experiments but also between the data and theoretical models.

  18. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  19. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  20. Relativistic Collisions of Structured Atomic Particles

    CERN Document Server

    Voitkiv, Alexander

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states -- including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5--1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light.

  1. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  2. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  3. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  4. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  5. Experimental developments in relativistic heavy-ion collisions published between Quark Matter 2002 and the beginning of Quark Matter 2004

    International Nuclear Information System (INIS)

    Hemmick, Thomas K

    2004-01-01

    The Quark Matter conference is the 'meeting of record' for the field of relativistic heavy-ion physics. Each such conference is filled with exciting new data frequently presented to the world for the first time. However, the field also makes significant progress during the 18 months between Quark Matter conferences. Such progress is summarized in a single talk near the beginning of the conference and sets the stage for the newest data and discoveries. This paper is the experimental summary of selected results published in journals and presented at conferences between the end of QM2002 and the beginning of QM2004

  6. Ultra-peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Klein, S.; STAR Collaboration

    2001-01-01

    We report the first observation of exclusive ρ production in ultra-peripheral collisions at RHIC. The ρ are produced electromagnetically at large impact parameters where no hadronic interactions occur. The produced ρ have a small perpendicular momentum, consistent with production that is coherent on both the photon emitting and scattering nuclei. We observe both exclusive ρ production, and ρ production accompanied by electromagnetic dissociation of both nuclei. We discuss models of vector meson production and the correlation with nuclear breakup. We also observe e + e - pair production in these ultra-peripheral collisions

  7. Realistic modelling of jets in heavy-ion collisions

    International Nuclear Information System (INIS)

    Young, Clint; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2013-01-01

    The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to q -hat ⊥ , as well as being sensitive to partonic energy loss and radiative processes. We use martini, an event generator, to study how finite-temperature processes at leading order affect dijets

  8. Energy-loss measurements with heavy ions at relativistic energies

    International Nuclear Information System (INIS)

    Blank, B.; Gaimard, J.J.; Geissel, H.; Muenzenberg, G.; Schmidt, K.H.; Stelzer, H.; Suemmerer; Clerc, H.G.; Hanelt, E.; Steiner, M.; Voss, B.

    1990-03-01

    Using the magnetic spectrometer SPES I at SATURNE, energy-loss measurements have been performed for projectiles of 40 Ar (401 MeV/u), 36 P (362 MeV/u), 15 N (149 MeV/u), 11 Li (131 MeV/u) and 8 Li, 9 Li (130 MeV/u) in carbon, aluminum and lead targets. The experimental results are compared to calculations based on a modified relativistic Bethe formula and to a semi-empirical formula using a Z 2 scaling law for the stopping power and an effective charge parametrization for the heavy ions. (orig.)

  9. Application of hydrodynamics to heavy ion collisions

    International Nuclear Information System (INIS)

    Felsberger, Lukas

    2014-01-01

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  10. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  11. Event-By-Event Initial Conditions for Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Rose, S; Fries, R J

    2017-01-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events. (paper)

  12. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  13. Correlations of neutral pions in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Peitzmann, T.; Beckmann, P.; Berger, F.; Glewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Purschke, M.; Santo, R.; Albrecht, R.; Bock, R.; Claesson, G.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Soerensen, S.P.; Young, G.R.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Kristiansson, P.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Poskanzer, A.M.; Ritter, H.G.

    1989-01-01

    Correlations of 4 photons representing neutral pions have been studied in ultrarelativistic heavy ion collisions. Data were taken in the WA80 experiment at the CERN-SPS with a 200 A GeV oxygen beam. The π 0 are detected via their decay photons with a high-granularity lead glass array. Special features of interferometry using neutral pions will be discussed. The extracted preliminary parameters for high p T pions emitted near midrapidity in O+Au collisions lead to rather small effective source sizes. (orig.)

  14. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  15. Simulation of heavy ion collisions at √s = 20--200 GeV

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.; Brookhaven National Lab., Upton, NY

    1996-11-01

    A new hadronic cascade code (LUCIFER) is introduced, for simulation of relativistic heavy ion collisions at CERN energies and up to RHIC. It is based on a simple, experimentally and theoretically motivated picture of hh interactions. Final state hadrons are produced by decay of intermediate state clusters, or lumps of excited hadronic matter. These are similar to resonances, but have a continuous mass distribution. Clusters are the objects that re-interact in the cascade. Single diffractive dissociation is used to fix the cluster properties. The model has just two parameters: τ d , the decay time of the clusters, and τ f the formation time of the clusters. Comparison is made with recent CERN data in the Pb + Pb system. The first consistent cascade simulation, of J/ψ production/suppression is presented. It appears likely that a purely hadronic interpretation can be given to recent CERN data on apparently anomalous J/ψ suppression in Pb + Pb

  16. Decay of hot nuclei produced by relativistic light ions

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1995-01-01

    In collisions of light relativistic projectiles (p, 4 He) with heavy nuclei (Au) very excited target spectators are created, which decay via multiple emission of intermediate mass fragments. It was found that the mean IMF multiplicities are equal (within 15%) to 2.0, 2.6 and 3.0 at proton energies 2.16, 3.6 and 8.1 GeV respectively. These values are comparable with those obtained with heavy ions in the same beam energy range. This is considered to indicate that this observable is not sensitive to the collision dynamics and is determined by the phase space factor. IMF energy spectra are described by the statistical model of multifragmentation neglecting dynamics of the expansion stage before the break up. The expansion velocity is estimated to be ≤ 0.02 c. The mean lifetime of a fragmentating system is found to be ≤ 75 fm/c from IMF-IMF-angular correlations for 4 He (14.6 GeV) +Au collisions. The results support a scenario of true 'thermal' multifragmentation. 26 refs., 10 figs., 1 tab

  17. On the quantum mechanics of deep inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de

    1981-06-01

    An overview of the quantum-mechanical foundations of the dynamical behaviour of deep inelastic collisions between heavy ions is given. The use of time dependent Hartree-Fock method is stressed. (L.C.) [pt

  18. Accelerator-colliders for relativistic heavy ions or in search of luminosity

    International Nuclear Information System (INIS)

    Young, G.R.

    1984-01-01

    Some issues pertinent to the design of collider rings for relativistic heavy ions are presented. Experiments at such facilities are felt to offer the best chance for creating in the laboratory a new phase of subatomic matter, the quark-gluon plasma. It appears possible to design a machine with sufficient luminosity, even for the heaviest nuclei in nature, to allow a thorough exploration of the production conditions and decay characteristics of quark-gluon plasma

  19. Thermal electromagnetic radiation in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R. [Texas A and M University, Cyclotron Institute and Department of Physics and Astronomy, College Station, TX (United States); Hees, H. van [Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute of Advanced Studies (FIAS), Frankfurt (Germany)

    2016-08-15

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator (ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to (a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and (b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes. (orig.)

  20. Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR

    International Nuclear Information System (INIS)

    Kuehl, T; Bagnoud, V; Stoehlker, T; Litvinov, Y; Winters, D F A; Zielbauer, B; Backe, H; Spielmann, Ch; Seres, J; Tünnermann, A; Neumayer, P; Aurand, B; Namba, S; Zhao, H Y

    2014-01-01

    The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

  1. Processes of hypernuclei formation in relativistic ion collisions

    Science.gov (United States)

    Botvina, Alexander; Bleicher, Marcus

    2018-02-01

    The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).

  2. Ultra-peripheral collisions of heavy ions at RHIC and the LHC

    CERN Document Server

    Nystrand, J

    2007-01-01

    This paper deals with so-called Ultra-Peripheral Collisions (UPCs) of heavy ions. These can be defined as collisions in which no hadronic interactions occur because of the large spatial separation between the projectile and target. The interactions are instead mediated by the electromagnetic field. Two types of ultra-peripheral collisions can be distinguished: purely electro-magnetic interactions (two-photon interactions) and photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of the target.

  3. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    While the free-streaming of particles in the kinetic theory drive the system out of equi- ... For collisions at RHIC and LHC, a transport model may involve four main com- ...... Further, there are many important conceptual issues such as imple-.

  4. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system produced in interactions of heavy ions at high energy. In addition to hot matter effects, cold nuclear effects can play an important role in quarkonia production. Therefore, a full assessment of different physics scenarios requires detailed studies on the effects present in Pb+Pb and p+Pb collisions in comparison to the pp collisions. Results of the studies based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC by the ATLAS experiment at the centre of mass energy of 5.02 TeV allowed studying prompt and non-prompt J/ψ and ψ(2S) productions as well as Υ(nS) (n = 1, 2, 3) production via the di-muon decay final states. The results of the measurements presented as a function rapidity and transverse momentum as well as the ratios between different species and systems are presented and discussed in the talk.

  5. $J/\\psi$ Absorption in Heavy Ion Collisions

    CERN Document Server

    Maiani, Luciano; Polosa, Antonio; Riquer, V

    2004-01-01

    We present a new calculation of the pi-J/psi dissociation cross sections within the Constituent Quark-Meson Model recently introduced. To discuss the absorption of J/psi in heavy-ion collisions, we assume the J/psi to be produced inside a thermalized pion gas, as discussed by Bjorken, and introduce the corrections due to absorption by nuclear matter as well. We fit the absorption length of the J/psi to the data obtained at the CERN SPS by the NA50 Collaboration for Pb-Pb collisions. Collisions of lower centrality allow us to determine the temperature and the energy density of the pion gas. For both these quantities we find values close to those indicated by lattice gauge calculations for the transition to a quark-gluon plasma. A simple extrapolation to more central collisions, which takes into account the increase of the energy deposited due to the increased nucleon flux, fails to reproduce the break in J/psi absorption indicated by NA50, thus lending support to the idea that an unconfined quark-gluon phase m...

  6. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  7. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  8. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of {sup 238}U at 1 A GeV as a function of the target mass, and, for the reaction of {sup 238}U at 1 A GeV on a (CH{sub 2}){sub n} target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  9. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J.; Junghans, A.R.

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of 238 U at 1 A GeV as a function of the target mass, and, for the reaction of 238 U at 1 A GeV on a (CH 2 ) n target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  10. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  11. A quantal toy model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Cassing, W.

    1987-01-01

    A one-dimensional toy model of moving finite boxes is analysed with respect to quantal phenomena associated with heavy-ion dynamics at low and intermediate energies. Special attention is payed to the relation between energy and momentum of the nucleons inside and outside the time-dependent mean field. A Wigner transformation of the one-body density matrix in space and time allows for a unique comparison with classical phase-space dynamics. It is found that high momentum components of the nuclear groundstate wave function approximately become on-shell during the heavy-ion reaction. This leads to the emission of energetic nucleons which do not appear classically. It is furthermore shown, that the low lying eigenstates of the dinuclear system for fixed time are only partly occupied throughout the reaction at intermediate energies. This opens up final phase space for nucleons after producing e.g. a pion or energetic photon. Through the present model does not allow for a reliable calculation of double differential nucleon spectra, pion or photon cross sections, it transparently shows the peculiar features of quantum dynamics in heavy-ion collisions. (orig.)

  12. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  13. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  14. Status of the quadrupoles for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.G.; Garber, M.

    1989-01-01

    The proposed Relativistic Heavy Ion Collider (RHIC) will require 408 regular arc quadrupoles. Two full size prototypes have been constructed and tested. The construction uses the single layer, collarless concept which has been successful in the RHIC dipoles. Both the magnets attained short sample current, which is 60% higher than the operating current. This corresponds to a gradient of 113 T/m with clear bore of 80 mm. The preliminary field measurements are in agreement with the calculations, with the exception of an unexpectedly large show sextupole. 2 refs., 5 figs., 1 tab

  15. A flow paradigm in heavy-ion collisions

    Science.gov (United States)

    Yan, Li

    2018-04-01

    The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada

  16. An overview of relativistic hydrodynamics as applied to heavy ion reactions

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1989-01-01

    The application of relativistic hydrodynamics as applied to heavy ions is reviewed. Constraints on the nuclear equation of state, as well as the form of the hydrodynamic equations imposed by causality are discussed. Successes (flow, side-splash, scaling) and shortcomings of one-fluid hydrodynamics are reviewed. Models for pion production within hydrodynamics and reasons for disagreement with experiment are assessed. Finally, the motivations for and the implementations of multi-fluid models are presented. 74 refs., 11 figs

  17. Semiclassical approach to sequential fission in peripheral heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Strazzeri Andrea

    2016-01-01

    Full Text Available A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their “formation-to-fast fission lifetimes” are obtained.

  18. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1992-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL's Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI's Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI's group has recently joined the NA49 experiment at CERN

  19. Hypothetical interaction mechanisms for heavy-ion collisions between 20 and 50 MeV/u

    International Nuclear Information System (INIS)

    Ngo, C.; Dalili, D.; Lucas, R.

    1985-01-01

    A brief survey of some aspects of heavy-ion interaction mechanisms, at bombarding energies between 20 and 50 MeV/u is presented. The maximum energy content of a nuclear system, the most probable linear momentum transfer and the possible existence of a ''calefaction'' phenomenon in heavy-ion collisions have also been investigated

  20. Baryon-antibaryon annihilation and reproduction in relativistic heavy-ion collisions

    Science.gov (United States)

    Seifert, E.; Cassing, W.

    2018-02-01

    The quark rearrangement model for baryon-antibaryon annihilation and reproduction (B B ¯↔3 M )—incorporated in the Parton-Hadron-String Dynamics (PHSD) transport approach—is extended to the strangeness sector. A derivation of the transition probabilities for the three-body processes is presented and a strangeness suppression factor for the invariant matrix element squared is introduced to account for the higher mass of the strange quark compared to the light up and down quarks. In simulations of the baryon-antibaryon annihilation and reformation in a box with periodic boundary conditions, we demonstrate that our numerical implementation fulfills detailed balance on a channel-by-channel basis for more than 2000 individual 2 ↔3 channels. Furthermore, we study central Pb+Pb collisions within PHSD from 11.7 A GeV to 158 A GeV and investigate the impact of the additionally implemented reaction channels in the strangeness sector. We find that the new reaction channels have a visible impact essentially only on the rapidity spectra of antibaryons. The spectra with the additional channels in the strangeness sector are closer to the experimental data than without for all antihyperons. Due to the chemical redistribution between baryons-antibaryons and mesons we find a slightly larger production of antiprotons thus moderately overestimating the available experimental data. We additionally address the question if the antibaryon spectra (with strangeness) from central heavy-ion reactions at these energies provide further information on the issue of chiral symmetry restoration and deconfinement. However, by comparing transport results with and without partonic phase as well as including and excluding effects from chiral symmetry restoration we find no convincing signals in the strange antibaryon sector for either transition due to the strong final-state interactions.