WorldWideScience

Sample records for relativistic hartree bogoliubov

  1. Relativistic Hartree-Bogoliubov description of the halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Ring, P. [Universitaet Muenchen, Garching (Germany)

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  2. Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei

    CERN Document Server

    Ebran, J -P; Arteaga, D Pena; Vretenar, D

    2010-01-01

    The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is introduced. The model is based on an effective Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel, and the pairing part of the Gogny force is used in the pairing channel. The RHFBz quasiparticle equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Carbon, Neon and Magnesium isotopes. The effect of the explicitly including the pion field is investigated for binding energies, deformation parameters, and charge radii.

  3. Extreme Exotic Calcium Lambda Hypernuclei in the Relativistic Continuum Hartree-Bogoliubov Theory

    Institute of Scientific and Technical Information of China (English)

    L(U) Hong-Feng

    2008-01-01

    Exotic calcium lambda hypernuclei properties with the neutron number of 20-400 by a step of 20 are discussed by employing the relativistic continuum Hartree-Bogoliubov theory with a zero range pairing interaction. The Bethe-Weizs(a)cker mass formula of a multi-strange system and the Woods-Saxon-type potential of larnbda need to be modified for exotic calcium hypernuclei with unusual number of neutrons and lambdas. The possible neutron and lambda limits of exotic Ca larnbda hypernuclei are also investigated.

  4. Evolution of $N = 28$ shell closure in relativistic continuum Hartree-Bogoliubov theory

    CERN Document Server

    Xia, Xuewei

    2015-01-01

    The $N = 28$ shell gap in sulfur, argon, calcium and titanium isotopes is investigated in the framework of relativistic continuum Hartree-Bogoliubov (RCHB) theory. The evolutions of neutron shell gap, separation energy, single particle energy and pairing energy are analyzed, and it is found that $N = 28$ shell gap is quenched in sulfur isotopes but persists in argon, calcium and titanium isotopes. The evolution of $N = 28$ shell gap in $N = 28$ isotonic chain is discussed, and the erosion of $N = 28$ shell gap is understood with the evolution of potential with proton number.

  5. The neutron halo structure of 17B studied with the relativistic Hartree-Bogoliubov theory

    Institute of Scientific and Technical Information of China (English)

    JI Juan-Xia; LI Jia-Xing; HAN Rui; WANG Jian-Song; HU Qiang

    2012-01-01

    The properties of neutron-rich boron isotopes are studied in the relativistic continuum HartreeBogoliubov theory in coordinate space with NL-SH,PK1 and TM2 effective interactions.Pairing corrections are taken into account by a density dependent force of zero range.The binding energies calculated for these nuclei agree with the experimental data quite well.The neutron-rich nucleus 17B has been predicted to have a two-neutron halo structure in its ground state.The halo structure of 17B is reproduced in a self-consistent way,and this halo is shown to be formed by the valence neutron level 2s1/2.

  6. Pairing phase transition: A Finite-Temperature Relativistic Hartree-Fock-Bogoliubov study

    CERN Document Server

    Li, Jia Jie; Long, Wen Hui; Van Giai, Nguyen

    2015-01-01

    Background: The relativistic Hartree-Fock-Bogoliubov (RHFB) theory has recently been developed and it provides a unified and highly predictive description of both nuclear mean field and pairing correlations. Ground state properties of finite nuclei can accurately be reproduced without neglecting exchange (Fock) contributions. Purpose: Finite-temperature RHFB (FT-RHFB) theory has not yet been developed, leaving yet unknown its predictions for phase transitions and thermal excitations in both stable and weakly bound nuclei. Method: FT-RHFB equations are solved in a Dirac Woods-Saxon (DWS) basis considering two kinds of pairing interactions: finite or zero range. Such a model is appropriate for describing stable as well as loosely bound nuclei since the basis states have correct asymptotic behaviour for large spatial distributions. Results: Systematic FT-RH(F)B calculations are performed for several semi-magic isotopic/isotonic chains comparing the predictions of a large number of Lagrangians, among which are PK...

  7. Multidimensionally-constrained relativistic Hartree-Bogoliubov study of nuclear spontaneous fission

    CERN Document Server

    Zhao, Jie; Niksic, Tamara; Vretenar, Dario

    2015-01-01

    Recent microscopic studies, based on the theoretical framework of nuclear energy density functionals, have analyzed dynamic (least action) and static (minimum energy) fission paths, and it has been shown that in addition to the important role played by nonaxial and/or octupole collective degrees of freedom, fission paths crucially depend on the approximations adopted in calculating the collective inertia. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm is explored. The fission paths, action integrals and the corresponding half-lives predicted by the functionals PC-PK1 and DD-PC1 are compared and, in the case of $^{264}$Fm, discussed in relation with recent results obtained using the HFB model based on the Skyrme functional SkM$^*$ and a density dependent mixed pairing interaction. Deformation energy surfaces, collective potentials, and perturbative and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic Hartree-Bogoliubov (M...

  8. Description of the ground state of axially deformed nuclei within the Relativistic Hartree-Fock-Bogoliubov model

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, J-P [CEA/DAM/DIF, F-91297 Arpajon (France); Khan, E; Arteaga, D Pena [Institut de Physique Nucleaire, University Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Vretenar, D, E-mail: jean-paul.ebran@cea.fr [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)

    2011-09-16

    The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is presented. The model involves a phenomenological Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. The RHFBz equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Neon isotopes.

  9. A relativistic continuum Hartree-Bogoliubov theory description of N=3 isotones

    Institute of Scientific and Technical Information of China (English)

    HAN Rui; JI Juan-Xia; LI Jia-Xing

    2011-01-01

    The ground-state properties of N=3 isotones and mirror nuclei have been investigated in the Rrelativistic Continuum Hartree-Bogoliubov theory with the NLSH effective interaction.Pairing correlations are taken into account by a density-dependent δ-force.The calculations show that the proton density distributions of 8B and 9C have a long tail,the core has an increasing tendency of 9C and the paired off valence protons make the halo distribution shrink.The cross sections for the 8B(9C)+12C reaction which are consistent with the experimental data are calculated using the Glauber model.On the whole,we think that 8B is a one-proton halo nucleus and 9C is a two-proton halo nucleus.

  10. Global α -decay study based on the mass table of the relativistic continuum Hartree-Bogoliubov theory

    Science.gov (United States)

    Zhang, Lin-Feng; Xia, Xue-Wei

    2016-05-01

    The α-decay energies (Q α ) are systematically investigated with the nuclear masses for 10 ⩽ Z ⩽ 120 isotopes obtained by the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the covariant density functional PC-PK1, and compared with available experimental values. It is found that the α-decay energies deduced from the RCHB results present a similar pattern to those from available experiments. Owing to the large predicted Q α values (⩾ 4 MeV), many undiscovered heavy nuclei in the proton-rich side and super-heavy nuclei may have large possibilities for α-decay. The influence of nuclear shell structure on α-decay energies is also analysed. Supported by Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), Research Fund for the Doctoral Program of Higher Education (20110001110087) and National Undergraduate Innovation Training Programs of Peking University.

  11. Tetrahedral shapes of neutron-rich Zr isotopes from multidimensionally-constrained relativistic Hartree-Bogoliubov model

    CERN Document Server

    Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    2016-01-01

    We develop a multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model in which the pairing correlations are taken into account by making the Bogoliubov transformation. In this model, the nuclear shape is assumed to be invariant under the reversion of $x$ and $y$ axes, i.e., the intrinsic symmetry group is $V_4$ and all shape degrees of freedom $\\beta_{\\lambda\\mu}$ with even $\\mu$ are included self-consistently. The RHB equation is solved in an axially deformed harmonic oscillator basis. A separable pairing force of finite range is adopted in the MDC-RHB model. The potential energy curves of neutron-rich even-even Zr isotopes are calculated. The ground state shapes of $^{108-112}$Zr are predicted to be tetrahedral with both functionals DD-PC1 and PC-PK1 and $^{106}$Zr is also predicted to have a tetrahedral ground state with the functional PC-PK1. The tetrahedral ground states are caused by large energy gaps at $Z=40$ and $N=70$ when $\\beta_{32}$ deformation is included. Although the incl...

  12. A Hartree-Fock-Bogoliubov mass formula

    CERN Document Server

    Samyn, M; Heenen, P H; Pearson, J M; Tondeur, F

    2002-01-01

    In order to have more reliable predictions of nuclear masses at the neutron drip line, we here go beyond the recent mass formula HFBCS-1 and present a new mass formula, HFB-1, based on the Hartree-Fock-Bogoliubov method. As with the HFBCS-1 mass formula, we use a 10-parameter Skyrme force along with a 4-parameter delta-function pairing force and a 2-parameter phenomenological Wigner term. However, with the original HFBCS-1 Skyrme force (MSk7), the rms error becomes unacceptably large and a new force fit is required. With the isoscalar and isovector effective masses constrained to be equal, the remaining 15 degrees of freedom are fitted to the masses of all the 1754 measured nuclei with A>=16, |N-Z|>2 given in the 1995 Audi-Wapstra compilation. The rms error with respect to the masses of all the 1888 measured nuclei with Z,N>=8 is 0.764 MeV. A complete mass table, HFB-1 (available on the Web), has been constructed, giving all nuclei lying between the two drip lines over the range Z,N>=8 and Z<=120. A compar...

  13. Ground-State Properties of C, O, and Ne Isotopes in Hartree-Fock-Bogoliubov Calculation with Gogny Interaction

    Institute of Scientific and Technical Information of China (English)

    GUO Lu; ZHAO En-Guang; SAKATA Fumihiko

    2003-01-01

    Ground-state.properties of C, O, and Ne isotopes are described in the framework of Hartree-FockBogoliubov theory with density-dependent finite-range Gogny interaction D1S. We include all the contributions to the Hartree-Fock and pairing field arising from Gogny and Coulomb interaction as well as the center of mass correction in the numerical calculations. These ground-state properties of C, O, and Ne isotopes are compared with available experimental results, Hartree-Fock plus BCS, shell model and relativistic Hartree-Bogoliubov calculations. The agreement between experiments and our theoretical results is pretty well. The predicted drip-line is dependent strongly on the model and effective interaction due to their sensitivity to various theoretical details. The calculations predict no evidence for halo structure predicted for C, O, and Ne isotopes in a previous RHB study.

  14. Ground-State Properties ,of C, O, and Ne Isotopes in Hartree--Fock-Bogoliubov Calculation with Gogny Interaction

    Institute of Scientific and Technical Information of China (English)

    GUOLu; ZHAOEn-Guang; SAKATAFumihiko

    2003-01-01

    Ground-state properties of C, O, and Ne isotopes are described in the framework of Hartree-Fock-Bogoliubov theory with density-dependent finite-range Gogny interaction D1S. We include all the contributions to the Hartree-Fock and pairing feld arising from Gogny and Coulomb interaction as well as the center of mass correction in the numerical calcu/ations. These ground-state properties of C, O, and Ne isotopes are compared with available experimental results, Hartree-Fock plus BCS, shell model and relativistic Hartree--Bogoliubov calculations. The agreement between experiments and our theoretical results is pretty well. The predicted drip-line is dependent strongly on the model and effective interaction due to their sensitivity to various theoretical details. The calculations predict no evidence for halo structure predicted for C,O, and Ne isotopes in a previous RHB study.

  15. The Gogny-Hartree-Fock-Bogoliubov nuclear-mass model

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium); Hilaire, S.; Girod, M.; Peru, S. [CEA, DAM, DIF, Arpajon (France)

    2016-07-15

    We present the Gogny-Hartree-Fock-Bogoliubov model which reproduces nuclear masses with an accuracy comparable with the best mass formulas. In contrast to the Skyrme-HFB nuclear-mass models, an explicit and self-consistent account of all the quadrupole correlation energies is included within the 5D collective Hamiltonian approach. The final rms deviation with respect to the 2353 measured masses is 789 keV in the 2012 atomic mass evaluation. In addition, the D1M Gogny force is shown to predict nuclear and neutron matter properties in agreement with microscopic calculations based on realistic two- and three-body forces. The D1M properties and its predictions of various observables are compared with those of D1S and D1N. (orig.)

  16. Hartree-Fock-Bogoliubov calculation of ground state properties of even-even and odd Mo and Ru isotopes

    CERN Document Server

    Bassem, Y El

    2016-01-01

    In a previous work [Int. J. Mod. Phys. E 24, 1550073 (2015)], hereafter referred as paper I, we have investigated the ground-state properties of Nd, Ce and Sm isotopes within Hartree-Fock-Bogoliubov method with SLy5 skyrme force in which the pairing strength has been generalized with a new proposed formula. However, that formula is more appropriate for the region of Nd. In this work, we have studied the ground-state properties of both even-even and odd Mo and Ru isotopes. For this, we have used Hartree- Fock-Bogoliubov method with SLy4 skyrme force, and a new formula of the pairing strength which is more accurate for this region of nuclei. The results have been compared with available experimental data, the results of Hartree-Fock-Bogoliubov calculations based on the D1S Gogny effective nucleon-nucleon interaction and predictions of some nuclear models such as Finite Range Droplet Model (FRDM) and Relativistic Mean Field (RMF) theory.

  17. On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method

    Energy Technology Data Exchange (ETDEWEB)

    Egido, J.L. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Lessing, J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Martin, V. [Analisis Numerico, Facultad de Informatica, Universidad Politecnica de Madrid, E-28660 Boadilla del Monte, Madrid (Spain); Robledo, L.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1995-11-06

    The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.).

  18. Ground state properties of even-even and odd Nd,Ce and Sm isotopes in Hartree-Fock-Bogoliubov method

    CERN Document Server

    Bassem, Younes El

    2015-01-01

    In this work, we have studied ground-state properties of both even-even and odd Nd isotopes within Hartree-Fock-Bogoliubov method with SLy5 Skyrme force in which the pairing strength has been generalized with a new proposed formula. We calculated bind- ing energies, two-neutron separation energies, quadrupole deformation, charge, neutron and proton radii. Similar calculations have been carried out for Ce and Sm in order to verify the validity of our pairing strength formula. The results have been compared with available experimental data, the results of Hartree-Fock-Bogoliubov calculations based on the D1S Gogny effective nucleon-nucleon interaction and predictions of some nuclear models such as Finite Range Droplet Model (FRDM) and Relativistic Mean Field (RMF) theory.

  19. Superdeformed rotational bands in the mercury region. A cranked Skyrme-Hartree-Fock-Bogoliubov study

    Energy Technology Data Exchange (ETDEWEB)

    Gall, B. (Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, 91 Orsay (France)); Bonche, P. (Service de Physique Theorique, DSM, CE Saclay, 91 Gif-sur-Yvette (France)); Dobaczewski, J. (Inst. of Theoretical Physics, Warsaw Univ., Warsaw (Poland)); Flocard, H. (Div. de Physique Theorique, Inst. de Physique Nucleaire, 91 Orsay (France)); Heenen, P.H. (Physique Nucleaire Theorique, Univ. Libre de Bruxelles (Belgium))

    1994-05-01

    A study of rotational properties of the ground superdeformed bands in [sup 190]Hg, [sup 192]Hg, [sup 194]Hg, and [sup 194]Pb is presented. We use the cranked Hartree-Fock-Bogoliubov method with the SkM* parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of [sup 192]Hg (orig.)

  20. Superdeformed rotational bands in the mercury region; a cranked Skyrme-Hartree-Fock-Bogoliubov study

    OpenAIRE

    Gall, B.; Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P. -H.

    1994-01-01

    URL: http://www-spht.cea.fr/articles/T94/011 http://fr.arxiv.org/abs/nucl-th/9312011; International audience; A study of rotational properties of the ground superdeformed bands in $ ^{190} {\\rm Hg,} $ $ ^{192} {\\rm Hg,} $ $ ^{194} {\\rm Hg,} $ and $ ^{194} {\\rm Pb} $ is presented. We use the cranked Hartree-Fock-Bogoliubov method with the SkM$ ^\\ast $ parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle num...

  1. Superdeformed rotational bands in the mercury region. A cranked Skyrme-Hartree-Fock-Bogoliubov study

    Science.gov (United States)

    Gall, B.; Bonche, P.; Dobaczewski, J.; Flocard, H.; Heenen, P.-H.

    1994-09-01

    A study of rotational properties of the ground superdeformed bands in190Hg,192Hg,194Hg, and194Pb is presented. We use the cranked Hartree-Fock-Bogoliubov method with the SkM* parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle routhians in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of192Hg.

  2. Generalized pseudopotentials as a way to restore the consistency of the Hartree-Fock-Bogoliubov formalism

    Science.gov (United States)

    Olshanii, Maxim; Pricoupenko, Ludovic

    2001-05-01

    We introduce a novel one-parametric family of zero-range pseudopotentials hatV^Λ(r) = g_Λ δ(r) [ partialr + Λ ] (r \\cdot ) with g_Λ = fracg_01-Λ a and g0 = 4πhbar^2 a/m , whose scattering length a does not depend on the free parameter Λ. No exact (after the zero-range approximation has been made) many-body observable depends on it, although approximate treatments differ for different Λ (M. Olshanii and L. Pricoupenko, mat/0101275>). We incorporate these pseudopotentials in the Hartree-Fock-Bogoliubov variational formalism, whose conventional (Λ=0) version is known to exhibit UV-divergencies, inconsistencies with both Hugenholtz-Pines theorem and many-body T-matrix calculations, and inability to develop an energy minimum for the atomic condensate leading to a molecular condensate instead. Using Λ as a new variational parameter we resolve all inconsistencies of the Hartree-Fock-Bogoliubov formalism known so far, with no ad hoc modifications of the theory.

  3. Quasi-particle Continuum and Resonances in the Hartree-Fock-Bogoliubov Theory

    Energy Technology Data Exchange (ETDEWEB)

    Pei, J. C. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Kruppa, Andras Tibor [ORNL; Nazarewicz, Witold [ORNL

    2011-01-01

    The quasi-particle energy spectrum of the Hartree-Fock-Bogoliubov (HFB) equations contains discrete bound states, resonances, and non-resonant continuum states. We study the structure of the unbound quasi-particle spectrum of weakly bound nuclei within several methods that do not rely on imposing scattering or outgoing boundary conditions. Various approximations are examined to estimate resonance widths. It is shown that the stabilization method works well for all HFB resonances except for very narrow ones. The Thomas-Fermi approximation to the non-resonant continuum has been shown to be very effective, especially for coordinate-space HFB calculations in large boxes that involve huge amounts of discretized quasi-particle continuum states.

  4. Quasiparticle continuum and resonances in the Hartree-Fock-Bogoliubov theory

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Junchen [ORNL; Kruppa, A. T. [Joint Institute for Heavy Ion Research, Oak Ridge; Nazarewicz, W. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2011-01-01

    The quasi-particle energy spectrum of the Hartree-Fock-Bogoliubov (HFB) equations contains discrete bound states, resonances, and non-resonant continuum states. We study the structure of the unbound quasi-particle spectrum of weakly bound nuclei within several methods that do not rely on imposing scattering or outgoing boundary conditions. Various approximations are examined to estimate resonance widths. It is shown that the stabilization method works well for all HFB resonances except for very narrow ones. The Thomas-Fermi approximation to the non-resonant continuum has been shown to be very effective, especially for coordinate-space HFB calculations in large boxes that involve huge amounts of discretized quasi-particle continuum states.

  5. Generalized Hartree-Fock-Bogoliubov description of the Fröhlich polaron

    Science.gov (United States)

    Kain, Ben; Ling, Hong Y.

    2016-07-01

    We adapt the generalized Hartree-Fock-Bogoliubov (HFB) method to an interacting many-phonon system free of impurities. The many-phonon system is obtained from applying the Lee-Low-Pine (LLP) transformation to the Fröhlich model which describes a mobile impurity coupled to noninteracting phonons. We specialize our general HFB description of the Fröhlich polaron to Bose polarons in quasi-one-dimensional cold-atom mixtures. The LLP-transformed many-phonon system distinguishes itself with an artificial phonon-phonon interaction which is very different from the usual two-body interaction. We use the quasi-one-dimensional model, which is free of an ultraviolet divergence that exists in higher dimensions, to better understand how this unique interaction affects polaron states and how the density and pair correlations inherent to the HFB method conspire to create a polaron ground state with an energy in good agreement with and far closer to the prediction from Feynman's variational path integral approach than mean-field theory where HFB correlations are absent.

  6. Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, J. C. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Fann, George I [ORNL; Harrison, Robert J [ORNL; Nazarewicz, W. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Hill, Judith C [ORNL; Galindo, Diego A [ORNL; Jia, Jun [ORNL

    2012-01-01

    The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.

  7. Thermal resonating Hartree-Bogoliubov theory based on the projection method

    CERN Document Server

    Nishiyama, Seiya; Ohnishi, Hiromasa

    2013-01-01

    We propose a rigorous thermal resonating mean-field theory (Res-MFT). A state is approximated by superposition of multiple MF wavefunctions (WFs) composed of non-orthogonal Hartree-Bogoliubov (HB) WFs. We adopt a Res-HB subspace spanned by Res-HB ground and excited states. A partition function (PF) in a SO(2N) coherent state representation |g> (N:Number of single-particle states) is expressed as Tr(e^{-\\beta H})=2^{N-1} \\int dg (\\beta=1/k_BT). Introducing a projection operator P to the Res-HB subspace, the PF in the Res-HB subspace is given as Tr(Pe^{-\\beta H}), which is calculated within the Res-HB subspace by using the Laplace transform of e^{-\\beta H} and the projection method. The variation of the Res-HB free energy is made, which leads to a thermal HB density matrix W_{Res}^{thermal} expressed in terms of a thermal Res-FB operator F_{Res}^{thermal} as W_{Res}^{thermal}={1_{2N}+exp(\\beta F_{Res}^{thermal})}^{-1}. A calculation of the PF by an infinite matrix continued fraction is cumbersome and a procedur...

  8. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    Science.gov (United States)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  9. Relativistic Brueckner-Hartree-Fock theory for finite nuclei

    CERN Document Server

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2016-01-01

    Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner-Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for \\emph{ab initio} covariant investigations of heavy nuclei.

  10. Persistent contribution of unbound quasiparticles to the pair correlation in continuum Skyrme-Hartree-Fock-Bogoliubov approach

    CERN Document Server

    Zhang, Ying; Meng, Jie

    2010-01-01

    The neutron pair correlation in nuclei near the neutron drip-line is investigated using the selfconsistent continuum Skyrme-Hartree-Fock-Bogoliubov theory formulated with the coordinate-space Green's function technique. Numerical analysis is performed for even-even N = 86 isotones in the Mo-Sn region, where the 3p3/2 and 3p1/2 orbits lying near the Fermi energy are either weakly bound or unbound. The quasiparticle states originating from the l = 1 orbits form resonances with large widths, which are due to the low barrier height and the strong continuum coupling caused by the pair potential. Analyzing in detail the pairing properties and roles of the quasiparticle resonances, we found that the l = 1 broad quasiparticle resonances persist to feel the pair potential and contribute to the pair correlation even when their widths are comparable with the resonance energy.

  11. Superdeformed rotational bands in the Mercury region. A cranked Skyrme-Hartree-Fock-Bogoliubov study

    Energy Technology Data Exchange (ETDEWEB)

    Gall, B. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Bonche, P. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; Dobaczewski, J. [Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej; Heenen, P.H. [Universite Libre de Bruxelles (Belgium). Physique Nucleaire Theorique; Flocard, H.

    1993-12-17

    A study of rotational properties of the ground superdeformed bands in {sup 190}Hg, {sup 192}Hg, {sup 194}Hg, and {sup 194}Pb is presented. The cranked Hartree-Fock-Bogolyubov method is used with the SkM* parametrization of the Skyrme force in the particle-hole channel and a seniority interaction in the pairing channel. An approximate particle number projection is performed by means of the Lipkin-Nogami prescription. The proton and neutron quasiparticle rhouthians are analyzed in connection with the present information on about thirty presently observed superdeformed bands in nuclei close neighbours of {sup 192}Hg. (authors). 53 refs., 14 figs.

  12. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

    Science.gov (United States)

    Goriely, S.; Chamel, N.; Pearson, J. M.

    2016-03-01

    Extending our earlier work, a new family of three Hartree-Fock-Bogoliubov (HFB) mass models, labeled HFB-30, HFB-31, and HFB-32, is presented, along with their underlying interactions, BSk30, BSk31, and BSk32, respectively. The principle new feature is a purely phenomenological pairing term that depends on the density gradient. This enables us to have a bulk pairing term that is fitted to realistic nuclear-matter calculations in which for the first time the self-energy corrections are included, while the behavior of the nucleon effective masses in asymmetric homogeneous nuclear matter is significantly improved. Furthermore, in the particle-hole channel all the highly realistic constraints of our earlier work are retained. In particular, the unconventional Skyrme forces containing t4 and t5 terms are still constrained to fit realistic equations of state of neutron matter stiff enough to support the massive neutron stars PSR J1614-2230 and PSR J0348+0432. All unphysical long-wavelength spin and spin-isospin instabilities of nuclear matter, including the unphysical transition to a polarized state in neutron-star matter, are eliminated. Our three interactions are characterized by values of the symmetry coefficient J of 30, 31, and 32 MeV, respectively. The best fit to the database of 2353 nuclear masses is found for model HFB-31 (J =31 MeV ) with a model error of 0.561 MeV. This model also fits the charge-radius data with an root-mean-square error of 0.027 fm.

  13. Momentum distribution of relativistic nuclei with Hartree-Fock mesonic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, J.E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain); Barbaro, M.B. [Dipartimento di Fisica Teorica, Universita di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Departamento de Fisica Atomica, Molecular y Nuclear Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla (Spain); Caballero, J.A. [Departamento de Fisica Atomica, Molecular y Nuclear Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla (Spain); Donnelly, T.W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Molinari, A. [Dipartimento di Fisica Teorica, Universita di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy)

    2002-12-01

    The impact of Hartree-Fock correlations on the nuclear momentum distribution is studied in a fully relativistic one-boson-exchange model. Hartree-Fock equations are exactly solved to first order in the coupling constants. The renormalization of the Dirac spinors in the medium is shown to affect the momentum distribution, as opposed to what happens in the non-relativistic case. The unitarity of the model is shown to be preserved by the present renormalization procedure. (orig.)

  14. $\\frac{{\\rm SO}(2N)}{U(N)}$ Riccati-Hartree-Bogoliubov equation based on the SO(2N) Lie algebra of the fermion operators

    Science.gov (United States)

    Nishiyama, Seiya; da Providência, João

    2015-02-01

    In this paper we present the induced representation of SO(2N) canonical transformation group and introduce (SO(2N))/(U(N)) coset variables. We give a derivation of the time-dependent Hartree-Bogoliubov (TDHB) equation on the Kähler coset space (G)/(H) = (SO(2N))/(U(N)) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of time-dependent Riccati-Hartree-Bogoliubov equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Möbius transformation together with the geodesic flow on the manifold.

  15. Systematic investigation of low-lying dipole modes using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory

    CERN Document Server

    Ebata, Shuichiro; Inakura, Tsunenori

    2014-01-01

    Systematic investigations of the electric dipole (E1) modes of excitation are performed using the canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB) theory. The Cb-TDHFB is able to describe dynamical pairing correlations in excited states of nuclear systems. We apply the method to the real-time calculation of linear response in even-even nuclei with Skyrme functionals. Effects of shell structure, neutron skin, deformation, and neutron chemical potential (separation energy) are studied in a systematic way. This reveals a number of characteristic features of the low-energy E1 modes. We also find a universal behavior in the low-energy E1 modes for heavy neutron-rich isotopes, which suggests the emergence of decoupled E1 peaks beyond N = 82.

  16. Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory

    DEFF Research Database (Denmark)

    Dall'Acqua, Anna; Solovej, Jan Philip

    2010-01-01

    We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....

  17. Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory

    DEFF Research Database (Denmark)

    Dall'Acqua, Anna; Solovej, Jan Philip

    2010-01-01

    We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....

  18. Isospin-dependent relativistic microscopic optical potential in the Dirac Brueckner-Hartree-Fock method

    Institute of Scientific and Technical Information of China (English)

    RONG; Jian; MA; Zhongyu

    2004-01-01

    The relativistic microscopic optical potential in the asymmetric nuclear matter is studied in the framework of the Dirac Brueckner-Hartree-Fock method. A new decomposition of the Dirac structure of the nuclear self-energy in nuclear matter is adopted. The self-energy of a nucleon with E> 0 in nuclear matter is calculated with the G matrix in the Hartree-Fock approach. The optical potential of a nucleon in the nuclear medium is identified with the nucleon self-energy. The energy and asymmetric parameter dependence of the relativistic optical potentials for proton and neutron are discussed. The resulting Schroedinger equivalent potentials have reasonable behaviors of the energy dependence. The asymmetric parameter dependence of relativistic optical potentials and Schroedinger potentials are emphasized.

  19. SO(2N)/U(N) Riccati-Hartree-Bogoliubov Equation Based on the SO(2N) Lie Algebra of the Fermion Operators

    CERN Document Server

    Nishiyama, Seiya

    2014-01-01

    In this paper we present the induced representation of SO(2N) canonical transformation group and introduce SO(2N)/U(N) coset variables. We give a derivation of the time dependent Hartree-Bogoliubov (TDHB) equation on the Kaehler coset space G/H=SO(2N)/U(N) from the Euler-Lagrange equation of motion for the coset variables. The TDHB wave function represents the TD behavior of Bose condensate of fermion pairs. It is a good approximation for the ground state of the fermion system with a pairing interaction, producing the spontaneous Bose condensation. To describe the classical motion on the coset manifold, we start from the local equation of motion. This equation becomes a Riccati-type equation. After giving a simple two-level model and a solution for a coset variable, we can get successfully a general solution of TDRHB equation for the coset variables. We obtain the Harish-Chandra decomposition for the SO(2N) matrix based on the nonlinear Moebius transformation together with the geodesic flow on the manifold.

  20. The properties of nuclear matter with lattice $NN$ potential in relativistic Brueckner-Hartree-Fock theory

    CERN Document Server

    Hu, Jinniu; Shen, Hong

    2016-01-01

    We study the properties of nuclear matter with lattice nucleon-nucleon ($NN$) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice $NN$ potential. Three mesons, pion, $\\sigma$ meson, and $\\omega$ meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around $-3$ and $-5$ MeV at saturation densities, while it becomes $-8$ and $-12$ MeV in relativistic framework with $^1S_0,~^3S_1,$ and $^3D_1$ channels using our two paramet...

  1. Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)

    2012-10-20

    The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.

  2. Pion tensor force and nuclear binding energy in the relativistic Hartree-Fock formalism

    Science.gov (United States)

    Marcos, S.; López-Quelle, M.; Niembro, R.; Savushkin, L. N.

    2014-03-01

    The binding energies of several isotopic families are studied within the relativistic Hartree-Fock approximation with the pseudovector coupling for the πN vertex, to find out a suitable strength for the effective pion tensor force (EPTF). An approximation for determining separately the contributions of the central and tensor forces generated by pion is considered. The results for heavy nuclei indicate that a realistic strength for the EPTF is smaller than a half of that appearing in the OPEP. This conclusion also applies to the results for the single-particle energies. Besides, it has been found that there is a genuine relativistic contribution of the EPTF in nuclear matter which is small but significant.

  3. Pseudospin symmetry in finite nuclei within the relativistic Hartree-Fock framework

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Quelle, M [Departamento de Fisica Aplicada, Universidad de Cantabria, E-39005 Santander (Spain); Savushkin, L N [Department of Physics, St Petersburg University for Telecommunications, 191186 St Petersburg (Russian Federation); Marcos, S [Departamento de Fisica Moderna, Universidad de Cantabria, E-39005 Santander (Spain); Niembro, R [Departamento de Fisica Moderna, Universidad de Cantabria, E-39005 Santander (Spain)

    2005-10-01

    In the present work, we analyse the behaviour of the pseudospin symmetry (PSS) in heavy nuclei ({sup 208}Pb) in the framework of the relativistic Hartree-Fock approximation (RHFA). The quasidegeneracy of the pseudospin partners and the similarity of the small F components of their respective Dirac spinors have a somewhat lower degree of accuracy than in the relativistic mean field approximation (RMFA). Both properties improve when the number of nodes of the small component increases, as happens in the RMFA. The behaviour of the single-particle potentials appearing in the Dirac equation of the pseudospin partners is analysed. There is no dominance of the pseudocentrifugal barrier (PCB) compared to the pseudospin-orbit potential (PSOP). In the RHFA, the PSS is an approximately satisfied symmetry in nuclei and its dynamical character is reinforced with respect to the RMFA.

  4. Δ (1232 ) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    Science.gov (United States)

    Zhu, Zhen-Yu; Li, Ang; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-10-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include Δ isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the Δ isobars' self-energies are evaluated in detail. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of Δ isobars is recognized at ρB˜0.28 fm-3, comparable with that of hyperons. Also, we find that the Δ isobars' softening of the equation of state is mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are negligibly small. We finally conclude that with typical parameter sets, neutron stars with Δ isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly smaller radii than normal neutron stars.

  5. $\\Delta$ (1232) effects in density-dependent relativistic Hartree-Fock theory and neutron stars

    CERN Document Server

    Zhu, Zhen-Yu; Hu, Jin-Niu; Sagawa, Hiroyuki

    2016-01-01

    The density-dependent relativistic Hartree-Fock (DDRHF) theory is extended to include $\\Delta$-isobars for the study of dense nuclear matter and neutron stars. To this end, we solve the Rarita-Schwinger equation for spin-3/2 particle. Both the direct and exchange terms of the $\\Delta$-isobars' self-energies are evaluated in details. In comparison with the relativistic mean field theory (Hartree approximation), a weaker parameter dependence is found for DDRHF. An early appearance of $\\Delta$-isobars is recognized at $\\rho_B\\sim0.27$fm$^{-3}$, comparable with that of hyperons. Also, we find that the $\\Delta$-isobars' softening of the equation of state is found to be mainly due to the reduced Fock contributions from the coupling of the isoscalar mesons, while the pion contributions are found negligibly small. We finally conclude that with typical parameter sets, neutron stars with $\\Delta$-isobars in their interiors could be as heavy as the two massive pulsars whose masses are precisely measured, with slightly s...

  6. Complete equation of state for neutron stars using the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Miyatsu, Tsuyoshi; Cheoun, Myung-Ki [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Yamamuro, Sachiko; Nakazato, Ken' ichiro [Department of Physics, Faculty of Science and Technology, Tokyo University of Science (TUS), Noda 278-8510 (Japan)

    2014-05-02

    We construct the equation of state in a wide-density range for neutron stars within relativistic Hartree-Fock approximation. The properties of uniform and nonuniform nuclear matter are studied consistently. The tensor couplings of vector mesons to baryons due to exchange contributions (Fock terms) are included, and the change of baryon internal structure in matter is also taken into account using the quark-meson coupling model. The Thomas-Fermi calculation is adopted to describe nonuniform matter, where the lattice of nuclei and the neutron drip out of nuclei are considered. Even if hyperons exist in the core of a neutron star, we obtain the maximum neutron-star mass of 1.95M{sub ⊙}, which is consistent with the recently observed massive pulsar, PSR J1614-2230. In addition, the strange vector (φ) meson also plays a important role in supporting a massive neutron star.

  7. Deformed Relativistic Hartree Theory in Coordinate Space and in Harmonic Oscillator Basis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shan-Gui; MENG Jie; Shuhei YAMAJI; YANG Si-Chun

    2000-01-01

    The deformed relativistic Hartree theory (DRH) is solved both in coordinate space (DRH-c) and in harmonic oscillator basis (DRH-o). Results obtained from these two methods are compared in details. The DRH-c and DRH-o calculations give similar total binding energies, deformation, level structures and radii for nitrogen iso topes, while their descriptions on the density distributions for drip-line nuclei are very different. The large spatiai istributions of nucleon densities, which is crucial to understand a weakly bound system, can only be obtained by DRH-c calculations. This implies that the DRH theory should be solved in coordinate space in order to describe uclei close to the drip line.

  8. Application of an effective gauge-invariant model to nuclear matter in the relativistic Hartree-Fock approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)

    2001-02-01

    An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)

  9. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    We describe the new version 2.00d of the code HFBTHO that solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogoliubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the modified Broyden method for non-linear problems, (ii) optional breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temperature formalism for the HFB method, (v) linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) blocking of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized energy density with arbitrary density-dependences, and (viii) shared memory parallelism via OpenMP pragmas. Program summaryProgram title: HFBTHO v2.00d Catalog identifier: ADUI_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUI_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 167228 No. of bytes in distributed program, including test data, etc.: 2672156 Distribution format: tar.gz Programming language: FORTRAN-95. Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT5, Cray XE6. Operating system: UNIX, LINUX, WindowsXP. RAM: 200 Mwords Word size: 8 bits Classification: 17.22. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADUI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 167 (2005) 43 Nature of problem: The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a correct description of the asymptotic properties of nuclear quasi-particle wave functions. In the present implementation, this is achieved by using the single-particle wave functions

  10. Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.

  11. Description of nuclear systems within the relativistic Hartree-Fock method with zero-range self-interactions of the scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S [Departamento de FIsica Moderna, Universidad de Cantabria, E-39005 Santander (Spain); Savushkin, L N [Department of Physics, St Petersburg University for Telecommunications, 191065 St Petersburg (Russian Federation); Fomenko, V N [Department of Mathematics, St Petersburg University for Railway Engineering, 190031 St Petersburg (Russian Federation); Lopez-Quelle, M [Departamento de FIsica Aplicada, Universidad de Cantabria, E-39005 Santander (Spain); Niembro, R [Departamento de FIsica Moderna, Universidad de Cantabria, E-39005 Santander (Spain)

    2004-06-01

    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities including products of six and eight fermion fields. This type of NLSI corresponds to the zero-range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies with a strong isovector dependence. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.

  12. Thermal Bogoliubov transformation in nuclear structure theory

    CERN Document Server

    Vdovin, A I

    2010-01-01

    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.

  13. A new relativistic Hartree-Fock calculation scheme and its application to the evaluation of fine-structure intervals for nd (n = 3-40) series of sodium

    Science.gov (United States)

    He, Liming; Zhu, Yunxia; Zhang, Meng; Tu, Yaoquan

    2011-11-01

    We present a new second-order representation of the relativistic Hartree-Fock equation, which can be solved by the standard Hartree-Fock technique. An alternative reduction for the magnetic part of the Breit interaction is presented in an explicit expression. A corresponding program has been developed, which improves significantly the scaled linear mesh introduced by Herman and Skillman. The structures for a number of atoms and ions are calculated and the agreement of our results with those published is excellent. We evaluate the fine-structure intervals of nd(n = 3-40) Rydberg series for sodium. The inverted fine-structure splitting values are obtained directly as the differences of eigenvalues obtained from a self-consistent field procedure. Taking into account the Gaunt effect enables the accuracy of the calculation to be substantially improved. The complete treatments reproduce very well the inverted fine structures along the Rydberg series and the relative difference between the present results and the experiments does not exceed 4.4%.

  14. Semi-empirical calculations of radiative decay rates in Mo II. A comparison between oscillator strength parametrization and core-polarization-corrected relativistic Hartree-Fock approaches

    Science.gov (United States)

    Bouazza, Safa; Palmeri, Patrick; Quinet, Pascal

    2017-09-01

    We present a semi-empirical determination of Mo II radiative parameters in a wide wavelength range 1716-8789 Å. Our fitting procedure to experimental oscillator strengths available in the literature permits us to provide reliable values for a large number of Mo II lines, predicting previously unmeasured oscillator strengths of lines involving 4d45p and 4d35s5p odd-parity configurations. The extracted transition radial integral values are compared with ab-initio calculations: on average they are 0.88 times the values obtained with the basic pseudo-relativistic Hartree Fock method and they agree well when core polarization effects are included. When making a survey of our present and previous studies and including also those given in the literature we observe as general trends a decreasing of transition radial integral values with filling nd shells of the same principal quantum numbers for ndk(n + 1)s → ndk(n + 1)p transitions.

  15. Integrable Bogoliubov Transform and Integrable Model

    Institute of Scientific and Technical Information of China (English)

    王宁

    2003-01-01

    By defining Bogoliubov transform as a function of parameters, the integrability of the Bogoliubov transform in parameter space is investigated. It is shown that integrable Bogoliubov transform is closely related to the known integrable model. The relation between the integrable Bogoliubov transform and geometric phase of vacuum induced by the Bogoliubov transform is also discussed.

  16. On Blowup for time-dependent generalized Hartree-Fock equations

    CERN Document Server

    Hainzl, Christian; Lewin, Mathieu; Schlein, Benjamin

    2009-01-01

    We prove finite-time blowup for spherically symmetric and negative energy solutions of Hartree-Fock and Hartree-Fock-Bogoliubov type equations, which describe the evolution of attractive fermionic systems (e. g. white dwarfs). Our main results are twofold: First, we extend the recent blowup result of [Hainzl and Schlein, Comm. Math. Phys. \\textbf{287} (2009), 705--714] to Hartree-Fock equations with infinite rank solutions and a general class of Newtonian type interactions. Second, we show the existence of finite-time blowup for spherically symmetric solutions of a Hartree-Fock-Bogoliubov model, where an angular momentum cutoff is introduced. We also explain the key difficulties encountered in the full Hartree-Fock-Bogoliubov theory.

  17. 2-D Hartee-Fock-Bogoliubov Calculations For Exotic Deformed Nuclei

    Science.gov (United States)

    Blazkiewicz, Artur; Oberacker, Volker E.; Umar, Sait A.; Teran, Edgar

    2003-10-01

    We solve the Hartree-Fock-Bogoliubov (HFB) equations in coordinate space; the computational method has been specifically designed to study ground state properties of nuclei near the neutron and proton drip lines teref1. The unique feature of our code is that it takes into account the strong coupling to high-energy continuum states, up to an equivalent single-particle energy of 60 MeV or higher. We solve the HFB equations for deformed, axially symmetric even-even nuclei in coordinate space on a 2-D lattice with Basis-Spline methods. For the p-h channel, the Skyrme (SLy4) effective N-N interaction is utilized, and for the p-p and h-h channel we use a delta interaction. Results teref2,ref3 are presented for binding energies, deformations, normal densities and pairing densities, Fermi levels, and pairing gaps. In particular, we calculate the properties of two light isotope chains up to the two-neutron dripline: oxygen (^22-28O) and sulfur (^40-52S). For some of the sulfur isotopes we found the "shape coexistence" what was also confirmed by RMF calculations of P. Ring and G.A. Lalazissis teref4. Furthermore, we study the strongly deformed heavy systems zirconium (^102,104Zr), cerium (^152Ce), and samarium (^158Sm).We are also planning to study other isotopes by running our new parallel MPI version of HFB code. Comparison with relativistic mean field theory and with experimental data is given whenever available. This work has been supported by the U.S. Department of Energy under grant No. DE-FG02-96ER40963 with Vanderbilt University. The numerical calculations were carried out on the IBM-RS/6000 SP supercomputer at NERSC in Berkeley and on our local "Beowulf" Vampire computer at Vanderbilt University. 99 ref1 Axially Symmetric Hartee-Fock-Bogoliubov calculations for nuclei near the drip lines,E. Teran, V.E. Oberacker and A.S. Umar, Phys. Rev. C 67, (June 2003) ref2 Half lives of isomeric states from SF of ^252Cf and large deformations in ^104Zr and ^158Sm, J.K. Hwang, A

  18. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...

  19. Implementation of Analytical Energy Gradient of Spin-Dependent General Hartree-Fock Method Based on the Infinite-Order Douglas-Kroll-Hess Relativistic Hamiltonian with Local Unitary Transformation.

    Science.gov (United States)

    Nakajima, Yuya; Seino, Junji; Nakai, Hiromi

    2016-05-10

    An analytical energy gradient for the spin-dependent general Hartree-Fock method based on the infinite-order Douglas-Kroll-Hess (IODKH) method was developed. To treat realistic systems, the local unitary transformation (LUT) scheme was employed both in energy and energy gradient calculations. The present energy gradient method was numerically assessed to investigate the accuracy in several diatomic molecules containing fifth- and sixth-period elements and to examine the efficiency in one-, two-, and three-dimensional silver clusters. To arrive at a practical calculation, we also determined the geometrical parameters of fac-tris(2-phenylpyridine)iridium and investigated the efficiency. The numerical results confirmed that the present method describes a highly accurate relativistic effect with high efficiency. The present method can be a powerful scheme for determining geometries of large molecules, including heavy-element atoms.

  20. Comment on `Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry', by C. Argaez & M. Melgaard

    CERN Document Server

    Lewin, Mathieu

    2011-01-01

    In a recent paper published in Nonlinear Analysis: Theory, Methods & Applications, C. Argaez and M. Melgaard studied excited states for pseudo-relativistic multi-configuration methods. Their paper follows a previous work of mine in the non-relativistic case (Arch. Rat. Mech. Anal., 171, 2004). The main results of the paper of C. Argaez and M. Melgaard are correct, but the proofs are both wrong and incomplete.

  1. Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory

    CERN Document Server

    Geng, L S; Meng, J

    2003-01-01

    The Relativistic Mean Field theory is applied to the analysis of ground-state properties of deformed proton-rich odd-Z nuclei in the region $55\\le Z \\le 73$ >. The model uses the TMA and NL3 effective interactions in the mean-field Lagrangian, and describes pairing correlations by the density-independent delta-function interaction. The model predicts the location of the proton drip line, the ground-state quadrupole deformation, one-proton separation energy at and beyond the proton drip line, the deformed single-particle orbital occupied by the odd valence proton and the corresponding spectroscopic factor. The results are in good agreement with the available experimental data except for some odd-odd nuclei in which the proton-neutron pairing may become important and are close to those of Relativistic Hartree-Bogoliubov model.

  2. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth;

    2002-01-01

    A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained ...

  3. Analysis of the Bogoliubov free energy functional

    DEFF Research Database (Denmark)

    Reuvers, Robin

    In this thesis, we analyse a variational reformulation of the Bogoliubov approximation that is used to describe weakly-interacting translationally-invariant Bose gases. For the resulting model, the `Bogoliubov free energy functional', we demonstrate existence of minimizers as well as the presence...

  4. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    Science.gov (United States)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  5. Analysis of the Bogoliubov free energy functional

    DEFF Research Database (Denmark)

    Reuvers, Robin

    In this thesis, we analyse a variational reformulation of the Bogoliubov approximation that is used to describe weakly-interacting translationally-invariant Bose gases. For the resulting model, the `Bogoliubov free energy functional', we demonstrate existence of minimizers as well as the presence...... of a phase transition to Bose{Einstein condensation, and establish the phase diagram. We also give a calculation of the critical temperature assuming the gas is dilute, and nd that it agrees with earlier numerical studies. The thesis contains an introduction, a physical review paper outlining the main...

  6. Bogoliubov Excited States and the Lyth Bound

    CERN Document Server

    Aravind, Aditya; Paban, Sonia

    2014-01-01

    We show that Bogoliubov excited scalar and tensor modes do not alleviate Planckian evolution during inflation if one assumes that $r$ and the Bogoliubov coefficients are approximately scale invariant. We constrain the excitation parameter for the scalar fluctuations, $\\beta$, and tensor perturbations, $\\tilde{\\beta}$, by requiring that there be at least three decades of scale invariance in the scalar and tensor power spectrum. For the scalar fluctuations this is motivated by the observed nearly scale invariant scalar power spectrum. For the tensor fluctuations this assumption may be shown to be valid or invalid by future experiments.

  7. Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force

    Institute of Scientific and Technical Information of China (English)

    TIAN Yuan; MA Zhong-Yu; Ring Peter

    2009-01-01

    In our previous work [Phys. Lett. (to be published), Chin. Phys. Lett. 23 (2006) 3226], we introduced a separable pairing force for relativistic Hartree-Bogoliubov calculations. This force was adjusted to reproduce the pairing properties of the Gogny force in nuclear matter. By using the well known techniques of Talmi and Moshinsky it can be expanded in a series of separable terms and converges quickly after a few terms. It was found that the pairing properties can be depicted on almost the same footing as the original pairing interaction, not only in nuclear matter, but also in finite nuclei. In this study, we construct a relativistic quasiparticle random phase approximation (RQRPA ) with this separable pairing interaction and calculate the excitation energies of the first excited 2+ .states and reduced B(E2; 0+ → 2+) transition rates for a chain of Sn isotopes in RQRPA. Compared with the results of the full Gogny force, we find that this simple separable pairing interaction can describe the pairing properties of the excited vibrational states as well as the original pairing interaction.

  8. The $q$-deformed Bogoliubov transformations

    CERN Document Server

    Arraut, Ivan

    2016-01-01

    An algebraic generalization of the Bogoliubov transformation is introduced in the context of $q$-commutativity. The set of coefficients are promoted to operators where we work with a $q$-deformed action over the Bosonic algebra together with some generalized trigonometric hyperbolic identities. We make the analogous extension for the fermionic algebra.

  9. Thermal effects in gravitational Hartree systems

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Gonca L. [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Dolbeault, Jean [Paris-Dauphine Univ. (FR). Ceremade (UMR CNRS 7534); Sparber, Christof [Illinois Univ., Chicago, IL (United States). Dept. of Mathematics, Statistics, and Computer Science

    2010-07-01

    We consider the non-relativistic Hartree model in the gravitational case, i.e. with attractive Coulomb-Newton interaction. For a given mass M>0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T*>0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature T{sub c} element of (0,T*) above which mixed states appear. (orig.)

  10. Thermal Effects in Gravitational Hartree Systems

    KAUST Repository

    Aki, Gonca L.

    2011-04-06

    We consider the non-relativistic Hartree model in the gravitational case, i. e. with attractive Coulomb-Newton interaction. For a given mass M > 0, we construct stationary states with non-zero temperature T by minimizing the corresponding free energy functional. It is proved that minimizers exist if and only if the temperature of the system is below a certain threshold T* > 0 (possibly infinite), which itself depends on the specific choice of the entropy functional. We also investigate whether the corresponding minimizers are mixed or pure quantum states and characterize a critical temperature Tc ∈ (0,T*) above which mixed states appear. © 2011 Springer Basel AG.

  11. Classical limit for semirelativistic Hartree systems

    KAUST Repository

    Aki, Gonca L.

    2008-01-01

    We consider the three-dimensional semirelativistic Hartree model for fast quantum mechanical particles moving in a self-consistent field. Under appropriate assumptions on the initial density matrix as a (fully) mixed quantum state we prove by using Wigner transformation techniques that its classical limit yields the well known relativistic Vlasov-Poisson system. The result holds for the case of attractive and repulsive mean-field interactions, with an additional size constraint in the attractive case. © 2008 American Institute of Physics.

  12. Ab initio Bogoliubov coupled cluster theory

    Science.gov (United States)

    Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas

    2014-09-01

    Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.

  13. Adaptive Multi-resolution 3D Hartree-Fock-Bogoliubov Solver for Nuclear Structure

    CERN Document Server

    Pei, Junchen; Harrison, Robert; Nazarewicz, Witold; Shi, Yue; Thornton, Scott

    2014-01-01

    Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly-bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, they are all characterized by large sizes and complex topologies, in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. To describe complex superfluid many-fermion systems, we introduce an adaptive pseudo-spectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. The new adaptive mult...

  14. Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    CERN Document Server

    Yadav, H L; Toki, H

    2004-01-01

    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are pres...

  15. Critical Analysis of the Bogoliubov Theory of Superfluidity

    CERN Document Server

    Adams, S

    2003-01-01

    The microscopic theory of superfluidity [1-3] was proposed by Bogoliubov in 1947 to explain the Landau-type excitation spectrum of helium 4. An analysis of the Bogoliubov theory has already been performed in the recent review [4]. Here we add some new critical analyses of this theory. This leads us to consider the superstable Bogoliubov model [5]. It gives rise to an improvement of the previous theory which will be explained with more details in a next paper [6]: coexistence in the superfluid liquid of particles inside and outside the Bose condensate (even at zero temperature), Bose/Bogoliubov statistics, ``Cooper pairs'' in the Bose condensate, Landau-type excitation spectrum...

  16. Optimized $\\delta$ expansion for relativistic nuclear models

    CERN Document Server

    Krein, G I; Peres-Menezes, D; Nielsen, M; Pinto, M B

    1998-01-01

    The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.

  17. Generalized Bogoliubov Transformation for Confined Fields Applications in Casimir Effect

    CERN Document Server

    Silva, J C; Neto, A M; Santana, A E

    2002-01-01

    The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature quantum-field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and non-zero temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field. This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in the studies of confined fields, including the interacting fields.

  18. Relativistic pn-QRPA to the double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Claudio de [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental de Itapeva; Krmpotic, F. [Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Astronomicas y Geofisicas; Carlson, Brett Vern [Centro Tecnico Aeroespacial (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Fisica

    2010-07-01

    Full text: In nature there are about 50 nuclear systems where the single beta-decay is energetically forbidden, and double- beta decay turns out to be only possible mode of disintegration. It is the nuclear pairing force which causes such an 'anomaly', by making the mass of the odd-odd isobar, (N - 1;Z + 1), to be greater than the masses of its even-even neighbors, (N;Z) and (N - 2;Z +2). The modes by which the double-beta decay can take place are connected with the neutrino and antineutrino distinction. In case the lepton number is strictly conserved the neutrino is a Dirac fermion and the two-neutrino mode is the only possible mode of disintegration. On the other hand, if this conservation is violated, the neutrino is a Majorana particle and neutrinoless double-beta decay also can occur. Both two-neutrino and neutrinoless double-beta decay processes have attracted much attention, because a comparison between experiment and theory for the first, provides a measure of confidence one may have in the nuclear wave function employed for extracting the unknown parameters from neutrinoless lifetime measurements. The proton-neutron (pn) quasiparticle random phase approximation (QRPA) has turned out be the most simple model for calculating the nuclear wave function involved in the double-beta decay transitions. In this work the transition matrix elements for 0{sup +} -> 0{sup +} double-beta decay are calculated for {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 128}Te and {sup 130}Te nuclei, using a relativistic pn-QRPA based on Hartree-Bogoliubov approximation to the single-particle motion. (author)

  19. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  20. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip

    2016-01-01

    We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...

  1. Hartree potential dependent exchange functional

    CERN Document Server

    Constantin, L A; Della Sala, F

    2016-01-01

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e. the electron density, its gradient and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for {the exchange of} any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredie...

  2. On relativistic particle creation in Bose-Einstein condensates

    CERN Document Server

    Sabín, Carlos

    2014-01-01

    We show that particle creation of Bogoliubov modes in a Bose-Einstein condensate due to the accelerated motion of the trap is a genuinely relativistic effect. To this end we show that Bogoliubov modes can be described by a time rescaling of the Minkowski metric. A consequence of this is that Rindler transformations are perceived by the phonons as generalised Rindler transformations where the speed of light is replaced by the speed of sound, enhancing particle creation at small velocities. Since the non-relativistic limit of a Rindler transformation is just a Galilean transformation entailing no length contraction or time dilation, we show that the effect vanishes in the non-relativistic limit.

  3. Existence and mass concentration of pseudo-relativistic Hartree equation

    Science.gov (United States)

    Yang, Jianfu; Yang, Jinge

    2017-08-01

    In this paper, we investigate the constrained minimization problem e (a ) :=inf{u ∈H ,∥u ∥22=1 }Ea(u ) , where the energy functional Ea(u ) =∫R3(u √{-Δ +m2 } u + V u2 ) d x - a/2 ∫R3(|x |-1 * u2 ) u2 d x with m ∈R , a >0 , is defined on a Sobolev space H . We show that there exists a threshold a*>0 so that e(a) is achieved if 0

  4. Naturalness in see-saw mechanism and Bogoliubov transformation

    Science.gov (United States)

    Fujikawa, Kazuo; Tureanu, Anca

    2017-04-01

    We present an alternative perspective on the see-saw mechanism for the neutrino mass, according to which the small neutrino mass is given as a difference of two large masses. This view emerges when an analogue of the Bogoliubov transformation is used to describe Majorana neutrinos in the Lagrangian of the see-saw mechanism, which is analogous to the BCS theory. The Bogoliubov transformation clarifies the natural appearance of Majorana fermions when C is strongly violated by the right-handed neutrino mass term with good CP in the single flavor model. Analyzing typical models with mR =104 to 1015 GeV, it is shown that a hitherto unrecognized fine tuning of the order mν /mR =10-15 to 10-26 is required to make the commonly perceived see-saw mechanism work in a natural setting, namely, when none of the dimensionless coupling constants are very small.

  5. Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    CERN Document Server

    De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio

    2001-01-01

    We introduce a linear, canonical transformation of the fundamental single--mode field operators $a$ and $a^{\\dagger}$ that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators $X_{1}$ and $X_{2}$, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the $c$--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator $b$. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that bes...

  6. Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market

    Science.gov (United States)

    Thuy Anh, Chu; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-06-01

    A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied.

  7. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    Science.gov (United States)

    Signoracci, A.; Duguet, T.; Hagen, G.; Jansen, G. R.

    2015-06-01

    constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations. Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.

  8. Microscopic picture of non-relativistic classicalons

    Energy Technology Data Exchange (ETDEWEB)

    Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert, E-mail: felix.berkhahn@physik.lmu.de, E-mail: sophia.x.mueller@physik.uni-muenchen.de, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich (Germany)

    2013-08-01

    A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.

  9. Noncommutative spectral geometry, Bogoliubov transformations and neutrino oscillations

    Science.gov (United States)

    Vittoria Gargiulo, Maria; Sakellariadou, Mairi; Vitiello, Giuseppe

    2015-07-01

    In this report we show that neutrino mixing is intrinsically contained in Connes’ noncommutatives pectral geometry construction, thanks to the introduction of the doubling of algebra, which is connected to the Bogoliubov transformation. It is known indeed that these transformations are responsible for the mixing, turning the mass vacuum state into the flavor vacuum state, in such a way that mass and flavor vacuum states are not unitary equivalent. There is thus a red thread that binds the doubling of algebra of Connes’ model to the neutrino mixing.

  10. Bose Fermi Supersymmetry with Bogoliubov transforms in Cosmology

    CERN Document Server

    Patwardhan, A

    2006-01-01

    Field theory including Supersymmetry and Bose Fermi Symmetry is an active subject of particle physics and cosmology. Recent and expected observational evidence gives indicators for the creation and destruction of normal and supersymmetric dark matter in the universe. This paper uses Bogoliubov transforms in supersymmetric and Bose Fermi form for obtaining the vaccuum expectation values at any two times in cosmological and black hole geometries. The isotropic Robertson Walker and slightly anisotropic Bianchi I geometry mode functions have a differential equation form analogous to the supersymmetric Hamiltonian. The condition for mixed and distinct representations for bosonic and fermionic fields of normal and supersymmetric partner particles are found.

  11. Annihilation of colliding Bogoliubov quasiparticles reveals their Majorana nature.

    Science.gov (United States)

    Beenakker, C W J

    2014-02-21

    The single-particle excitations of a superconductor are coherent superpositions of electrons and holes near the Fermi level, called Bogoliubov quasiparticles. They are Majorana fermions, meaning that pairs of quasiparticles can annihilate. We calculate the annihilation probability at a beam splitter for chiral quantum Hall edge states, obtaining a 1±cosϕ dependence on the phase difference ϕ of the superconductors from which the excitations originated (with the ± sign distinguishing singlet and triplet pairing). This provides for a nonlocal measurement of the superconducting phase in the absence of any supercurrent.

  12. Nonuniqueness of solution of Hartree equations

    Energy Technology Data Exchange (ETDEWEB)

    Amus' ya, M.Ya.; Kuchiev, M.Yu. (AN SSSR, Leningrad. Fiziko-Tekhnicheskij Inst.)

    1981-12-01

    The problem of uniqueness of Hartree equations solution is studied. Two simple models for multielectron ''atoms'' are considered. The possibility of existence in nature of states corresponding to such solutions is discussed. It is shown that besides normal solution in both models considered at a certain interpartial interaction special solutions appear. The emergence of special solutions is related to nonlinearity of Hartree equations.

  13. Bogoliubov-de Gennes method and its applications

    CERN Document Server

    Zhu, Jian-Xin

    2016-01-01

    The purpose of this book is to provide an elementary yet systematic description of the Bogoliubov-de Gennes (BdG) equations, their unique symmetry properties and their relation to Green’s function theory. Specifically, it introduces readers to the supercell technique for the solutions of the BdG equations, as well as other related techniques for more rapidly solving the equations in practical applications. The BdG equations are derived from a microscopic model Hamiltonian with an effective pairing interaction and fully capture the local electronic structure through self-consistent solutions via exact diagonalization. This approach has been successfully generalized to study many aspects of conventional and unconventional superconductors with inhomogeneities – including defects, disorder or the presence of a magnetic field – and becomes an even more attractive choice when the first-principles information of a typical superconductor is incorporated via the construction of a low-energy tight-binding model. ...

  14. Naturalness in see-saw mechanism and Bogoliubov transformation

    CERN Document Server

    Fujikawa, Kazuo

    2016-01-01

    The see-saw mechanism is customarily regarded as the ratio of two masses leading to the tiny neutrino mass. We propose an alternative perspective on the see-saw, according to which the small neutrino mass is given as a difference of two large fermion masses of the order of the grand unification scale, and thus hitherto unrecognized fine tuning. This alternative view is motivated by the use of an analogue of Bogoliubov transformation to describe Majorana neutrinos in the Lagrangian defining the see-saw mechanism, which is analogous to the Lagrangian of the BCS theory. The naturalness issue of the neutrino mass thus becomes related to that of the Higgs mass in the Standard Model.

  15. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...

  16. COMPRESSIBILITY OF NUCLEI IN RELATIVISTIC MEAN FIELD-THEORY

    NARCIS (Netherlands)

    BOERSMA, HF; MALFLIET, R; SCHOLTEN, O

    1991-01-01

    Using the relativistic Hartree approximation in the sigma-omega model we study the isoscalar giant monopole resonance. It is shown that the ISGMR of lighter nuclei has non-negligible anharmonic terms. The compressibility of nuclear matter is determined using a leptodermous expansion.

  17. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  18. Bogoliubov-de Gennes soliton dynamics in unconventional Fermi superfluids

    Science.gov (United States)

    Takahashi, Daisuke A.

    2016-01-01

    Exact self-consistent soliton dynamics based on the Bogoliubov-de Gennes (BdG) formalism in unconventional Fermi superfluids/superconductors possessing an SU(d ) -symmetric two-body interaction is presented. The derivation is based on the ansatz having the similar form as the Gelfand-Levitan-Marchenko equation in the inverse scattering theory. Our solutions can be regarded as a multicomponent generalization of the solutions recently derived by Dunne and Thies [Phys. Rev. Lett. 111, 121602 (2013), 10.1103/PhysRevLett.111.121602]. We also propose superpositions of occupation states, which make it possible to realize various filling rates even in one-flavor systems, and include Dirac and Majorana fermions. The soliton solutions in the d =2 systems, which describe the mixture of singlet s -wave and triplet p -wave superfluids, exhibit a variety of phenomena such as rotating polar phases by soliton spins, SU(2)-DHN breathers, Majorana triplet states, s -p mixed dynamics, and so on. These solutions are illustrated by animations, where order parameters are visualized by spherical harmonic functions. The full formulation of the BdG theory is also supported, and the double-counting problem of BdG eigenstates and N -flavor generalization are discussed.

  19. Staying Thermal with Hartree Ensemble Approximations

    CERN Document Server

    Salle, M; Vink, Jeroen C

    2000-01-01

    Using Hartree ensemble approximations to compute the real time dynamics of scalar fields in 1+1 dimension, we find that with suitable initial conditions, approximate thermalization is achieved much faster than found in our previous work. At large times, depending on the interaction strength and temperature, the particle distribution slowly changes: the Bose-Einstein distribution of the particle densities develops classical features. We also discuss variations of our method which are numerically more efficient.

  20. Linear and Nonlinear Bullets of the Bogoliubov-de Gennes Excitations

    Science.gov (United States)

    Kumar, S.; Perego, A. M.; Staliunas, K.

    2017-01-01

    We report on the focalization of Bogoliubov-de Gennes excitations of the nonlinear Schrödinger equation in the defocusing regime (Gross-Pitaevskii equation for repulsive Bose-Einstein condensates) with a spatially modulated periodic potential. Exploiting the modification of the dispersion relation induced by the modulation, we demonstrate the existence of localized structures of the Bogoliubov-de Gennes excitations, in both the linear and nonlinear regimes (linear and nonlinear "bullets"). These traveling Bogoliubov-de Gennes bullets, localized both spatially and temporally in the comoving reference frame, are robust and propagate remaining stable, without spreading or filamentation. The phenomena reported in this Letter could be observed in atomic Bose-Einstein condensates in the presence of a spatially periodic potential induced by an optical lattice.

  1. Misfits in Skyrme-Hartree-Fock

    CERN Document Server

    Erler, J; Reinhard, P -G

    2010-01-01

    We address very briefly five critical points in the context of the Skyrme-Hartree-Fock (SHF) scheme: 1) the impossibility to consider it as an interaction, 2) a possible inconsistency of correlation corrections as, e.g., the center-of-mass correction, 3) problems to describe the giant dipole resonance (GDR) simultaneously in light and heavy nuclei, 4) deficiencies in the extrapolation of binding energies to super-heavy elements (SHE), and 5) a yet inappropriate trend in fission life-times when going to the heaviest SHE. While the first two points have more a formal bias, the other three points have practical implications and wait for solution.

  2. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  3. Bogoliubov q-transformation and Clebsch-Gordan coefficients for a q-oscillator

    Science.gov (United States)

    Zhedanov, A. S.

    1992-05-01

    The q-analog of the Bogoliubov transformation is found, yielding the third q-Bose operator from the two independent ones. In contrast to the ordinary case, this transformation is non-linear. Considered as a co-multiplication for the q-oscillator algebra, this transformation generates the Clebsch-Gordan series with coefficients expressed via the Kravchuk q-polynomials.

  4. A relativistic model for neutrino pion production from nuclei in the resonance region

    CERN Document Server

    Praet, C; Jachowicz, N; Ryckebusch, J

    2007-01-01

    We present a relativistic model for electroweak pion production from nuclei, focusing on the $\\Delta$ and the second resonance region. Bound states are derived in the Hartree approximation to the $\\sigma-\\omega$ Walecka model. Final-state interactions of the outgoing pion and nucleon are described in a factorized way by means of a relativistic extension of the Glauber model. Our formalism allows a detailed study of neutrino pion production through $Q^2$, $W$, energy, angle and out-of-plane distributions.

  5. Radiationless transitions to atomic M 1,2,3 shells - Results of relativistic theory

    Science.gov (United States)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1983-01-01

    Radiationless transitions filling vacancies in atomic M1, M2, and M3 subshells have been calculated relativistically with Dirac-Hartree-Slater wave functions for ten elements with atomic numbers 67-95. Results are compared with those of nonrelativistic calculations and experiment. Relativistic effects are found to be significant. Limitations of an independent-particle model for the calculation of Coster-Kronig rates are noted.

  6. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  7. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  8. Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.

    Science.gov (United States)

    1982-12-01

    Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or

  9. A Nonlinear Model for Relativistic Electrons at Positive Temperature

    OpenAIRE

    Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert

    2008-01-01

    We study the relativistic electron-positron field at positive temperature in the Hartree-Fock-approximation. We consider both the case with and without exchange term, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, S\\'er\\'e, and Solovej where the case of zero temperature was considered.

  10. Staying thermal with Hartree ensemble approximations

    Energy Technology Data Exchange (ETDEWEB)

    Salle, Mischa E-mail: msalle@science.uva.nl; Smit, Jan E-mail: jsmit@science.uva.nl; Vink, Jeroen C. E-mail: jcvink@science.uva.nl

    2002-03-25

    We study thermal behavior of a recently introduced Hartree ensemble approximation, which allows for non-perturbative inhomogeneous field configurations as well as for approximate thermalization, in the phi (cursive,open) Greek{sup 4} model in 1+1 dimensions. Using ensembles with a free field thermal distribution as out-of-equilibrium initial conditions we determine thermalization time scales. The time scale for which the system stays in approximate quantum thermal equilibrium is an indication of the time scales for which the approximation method stays reasonable. This time scale turns out to be two orders of magnitude larger than the time scale for thermalization, in the range of couplings and temperatures studied. We also discuss simplifications of our method which are numerically more efficient and make a comparison with classical dynamics.

  11. 60 years of Broken Symmetries in Quantum Physics (From the Bogoliubov Theory of Superfluidity to the Standard Model)

    CERN Document Server

    Shirkov, D V

    2009-01-01

    A retrospective historical overview of the phenomenon of spontaneous symmetry breaking (SSB) in quantum theory, the issue that has been implemented in particle physics in the form of the Higgs mechanism. The main items are: -- The Bogoliubov's microscopical theory of superfluidity (1946); -- The BCS-Bogoliubov theory of superconductivity (1957); -- Superconductivity as a superfluidity of Cooper pairs (Bogoliubov - 1958); -- Transfer of the SSB into the QFT models (early 60s); -- The Higgs model triumph in the electro-weak theory (early 80s). The role of the Higgs mechanism and its status in the current Standard Model is also touched upon.

  12. A systematic sequence of relativistic approximations.

    Science.gov (United States)

    Dyall, Kenneth G

    2002-06-01

    An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.

  13. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  14. A New Decomposition Approach of Dirac Brueckner Hartree-Fock G Matrix for Asymmetric Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    刘玲; 马中玉

    2002-01-01

    Asymmetric nuclear matter is investigated by the Dirac Brueckner Hartree-Fock (DBHF) approach with a new decomposition of the Dirac structure of nucleon self-energy from the G matrix. It is found that the isospin dependence of the scalar and vector potentials is relatively weak, although both potentials for neutron (proton)become deep (shallow) in the neutron-rich nuclear matter. The results in asymmetric nuclear matter are rather different from those obtained by a simple method, where the nucleon self-energy is deduced from the single-particle energy. The nuclear binding energy as a function of the asymmetry parameter fulfils the empirical parabolic law up to very extreme isospin asymmetric nuclear matter in the DBHF approach. The behaviour of the density dependence of the asymmetry energy is different from that obtained by non-relativistic approaches, although both give similar asymmetry energy at the nuclear saturation density.

  15. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  16. On the rôle of rotations and Bogoliubov transformations in neutrino mixing

    Science.gov (United States)

    Blasone, M.; Gargiulo, M. V.; Vitiello, G.

    2016-10-01

    We show that mixing transformations for Dirac fields arise as a consequence of the non-trivial interplay between rotations and Bogoliubov transformations at level of ladder operators. Indeed the non-commutativity between the algebraic generators of such transformations turns out to be responsible of the unitary inequivalence of the flavor and mass representations and of the associated vacuum structure. A possible thermodynamic interpretation is also investigated.

  17. Koopmans' theorem in statistical Hartree-Fock theory

    CERN Document Server

    Pain, Jean-Christophe

    2011-01-01

    In this short paper, the validity of Koopmans' theorem in the Hartree-Fock theory at non-zero temperature (Hartree-Fock statistical theory) is investigated. It is shown that Koopmans' theorem does not apply in the grand-canonical ensemble, due to a missing contribution to the energy proportional to the interaction between two electrons belonging to the same orbital. Hartree-Fock statistical theory has also been applied in the canonical ensemble [Blenski et al., Phys. Rev. E 55, R4889 (1997)] for the purpose of photo-absorption calculations. In that case, the Hartree-Fock self-consistent-field equations are derived in the super-configuration approximation. It is shown that Koopmans' theorem does not hold in the canonical ensemble, but that a restricted version of the theorem can be obtained, by assuming that a particular quantity multiplying the interaction matrix element in the expression of the energy does not change during the removal of an electron.

  18. Generalized quantum similarity in atomic systems: A quantifier of relativistic effects

    Science.gov (United States)

    Martín, A. L.; Angulo, J. C.; Antolín, J.; López-Rosa, S.

    2017-02-01

    Quantum similarity between Hartree-Fock and Dirac-Fock electron densities reveals the depth of relativistic effects on the core and valence regions in atomic systems. The results emphasize the relevance of differences in the outermost subshells, as pointed out in recent studies by means of Shannon-like functionals. In this work, a generalized similarity functional allows us to go far beyond the Shannon-based analyses. The numerical results for systems throughout the Periodic Table show that discrepancies between the relativistic and non-relativistic descriptions are patently governed by shell-filling patterns.

  19. Relativistic and non-relativistic geodesic equations

    Energy Technology Data Exchange (ETDEWEB)

    Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica

    1999-07-01

    It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.

  20. Some Aspects of Nuclear Structure in Relativistic Approach

    Institute of Scientific and Technical Information of China (English)

    MAZhong-Yu; RONGJian; CAOLi-Gang; CHENBao-Qiu; LIULing

    2004-01-01

    The nucleon effective interaction in the nuclear medium is investigated in the framework of the DiracBrueckner-Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nucleon self-energy in the DBHF is adopted for asymmetric nuclear matter. The properties of finite nuclei are investigated with the nucleon effective interaction. The agreement with the experimental data is satisfactory. The relativistic microscopic optical potential in asymmetric nuclear matter is investigated in the DBHF approach. The proton scattering from nuclei is calculated and compared with the experimental data. A proper treatment of the resonant continuum for exotic nuclei is studied. The width effect of the resonant continuum on the pairing correlation is discussed. The quasiparticle relativistic random phase approximation based on the relativistic mean-field ground state in the response function formalism is also addressed.

  1. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  2. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  3. Gamow-Teller Resonance of 90Zr in a Relativistic Approach

    Institute of Scientific and Technical Information of China (English)

    马中玉; 陈宝秋

    2003-01-01

    We establish the formalism of nuclear spin-isospin excitations, especially the Gamow-Teller resonance in a fully consistent relativistic random-phase approximation. A relativistic form of the Landau-Migdal parameter g′ is adopted as a residual spin-isospin correlation force. In the non-relativistic limit it reproduces the excitation energy of the giant Gamow-Teller resonance state obtained in the non-relativistic model. The Gamow-Teller resonance for finite nuclei is investigated in a relativistic approach for the first time. It is found that the Ikeda sum rule of90Zr is quenched about 8% in the Hartree as well as the correlated strengths due to the poles of the negative Dirac states at energies above 1 GeV.

  4. Numerical Validation of the Delaunay Normalization and the Krylov-Bogoliubov-Mitropolsky Method

    Directory of Open Access Journals (Sweden)

    David Ortigosa

    2014-01-01

    Full Text Available A scalable second-order analytical orbit propagator programme based on modern and classical perturbation methods is being developed. As a first step in the validation and verification of part of our orbit propagator programme, we only consider the perturbation produced by zonal harmonic coefficients in the Earth’s gravity potential, so that it is possible to analyze the behaviour of the mathematical expressions involved in Delaunay normalization and the Krylov-Bogoliubov-Mitropolsky method in depth and determine their limits.

  5. Exponential Renormalization II: Bogoliubov's R-operation and momentum subtraction schemes

    CERN Document Server

    Ebrahimi-Fard, Kurusch

    2011-01-01

    We develop further the recently introduced exponential method for renormalisation in perturbative quantum field theory. It turns out that exponential renormalisation provides a meaningful recursive method in the context of renormalisation using momentum subtraction schemes. We explore in detail its link to Bogoliubov's R-operation. Our results shed new light on classical ideas, such as the role of oversubtractions in the BPHZ method. They also suggest that the ambiguities of the renormalisation process carry, besides a physical structure (encoded, e.g. in the RG equations and the choice of subtraction points in momentum subtraction schemes), an interesting, though purely algebraic structure.

  6. QMC approach based on the Bogoliubov independent quark model of the nucleon

    CERN Document Server

    Bohr, Henrik; Panda, Prafulla K; Providencia, Constanca; da Providencia, Joao

    2015-01-01

    The quark-meson coupling model due to Guichon is formulated on the basis of the independent quark model of the nucleon proposed by Bogoliubov and is applied to the phenomenological descriptions of symmetric and asymmetric nuclear matter. For symmetric matter, the model predicts, at saturation density, the incompressibility $K=335.17$ MeV, the quark effective mass $m_q^*=238.5$ MeV, and the effective nucleon mass $M^*= 0.76 M,$ where $M$ is the nucleon mass in vacuum. Neutron star massesabove two solar masses are obtained.

  7. Incompatibility of Time-Dependent Bogoliubov-de-Gennes and Ginzburg-Landau Equations

    Science.gov (United States)

    Frank, Rupert L.; Hainzl, Christian; Schlein, Benjamin; Seiringer, Robert

    2016-07-01

    We study the time-dependent Bogoliubov-de-Gennes equations for generic translation-invariant fermionic many-body systems. For initial states that are close to thermal equilibrium states at temperatures near the critical temperature, we show that the magnitude of the order parameter stays approximately constant in time and, in particular, does not follow a time-dependent Ginzburg-Landau equation, which is often employed as a phenomenological description and predicts a decay of the order parameter in time. The full non-linear structure of the equations is necessary to understand this behavior.

  8. Exponential renormalisation. II. Bogoliubov's R-operation and momentum subtraction schemes

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi-Fard, Kurusch [Instituto de Ciencias Matematicas, C/ Nicolas Cabrera, no. 13-15, 28049 Madrid (Spain); Patras, Frederic [Laboratoire J.-A. Dieudonne UMR 6621, CNRS, Parc Valrose, 06108 Nice Cedex 02 (France)

    2012-08-15

    This article aims at advancing the recently introduced exponential method for renormalisation in perturbative quantum field theory. It is shown that this new procedure provides a meaningful recursive scheme in the context of the algebraic and group theoretical approach to renormalisation. In particular, we describe in detail a Hopf algebraic formulation of Bogoliubov's classical R-operation and counterterm recursion in the context of momentum subtraction schemes. This approach allows us to propose an algebraic classification of different subtraction schemes. Our results shed light on the peculiar algebraic role played by the degrees of Taylor jet expansions, especially the notion of minimal subtraction and oversubtractions.

  9. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    CERN Document Server

    Signoracci, Angelo; Hagen, Gaute; Jansen, Gustav

    2014-01-01

    Ab initio many-body methods address closed-shell nuclei up to mass A ~ 130 on the basis of realistic two- and three-nucleon interactions. Several routes to address open-shell nuclei are currently under investigation, including ideas which exploit spontaneous symmetry breaking. Singly open-shell nuclei can be efficiently described via the sole breaking of $U(1)$ gauge symmetry associated with particle number conservation, to account for their superfluid character. The present work formulates and applies Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wavefunction of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in $m$-scheme, wh...

  10. Relativistic calculation of the SeH{sub 2} and TeH{sub 2} photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pernpointner, Markus [Theoretische Chemie, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)], E-mail: Markus.Pernpointner@pci.uni-heidelberg.de

    2006-10-26

    Photoelectron (PE) spectra provide detailed insight into the electronic structure of atoms, molecules and solids. Hereby electron correlation and relativistic effects influence the structure of the PE spectrum in a complicated way necessitating a consistent theoretical treatment. By embedding the one-particle propagator technique in a four-component framework the interplay between relativistic and correlation effects can be described correctly. In this article the Dirac-Hartree-Fock algebraic diagrammatic construction scheme (DHF-ADC) together with recent applications is reviewed and fully relativistic PE spectra of SeH{sub 2} and TeH{sub 2} in combination with basis set studies are presented.

  11. Electron correlation within the relativistic no-pair approximation

    Science.gov (United States)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.; Dyall, Kenneth G.; Saue, Trond

    2016-08-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying

  12. From the Hartree dynamics to the Vlasov equation

    DEFF Research Database (Denmark)

    Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara;

    2016-01-01

    We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...... bounds on the 0rate of convergence....

  13. Constrained Hartree-Fock and quasi-spin projection

    Science.gov (United States)

    Cambiaggio, M. C.; Plastino, A.; Szybisz, L.

    1980-08-01

    The constrained Hartree-Fock approach of Elliott and Evans is studied in detail with reference to two quasi-spin models, and their predictions compared with those arising from a projection method. It is found that the new approach works fairly well, although limitations to its applicability are encountered.

  14. Linear response at the 4-component relativistic level

    DEFF Research Database (Denmark)

    Saue, T.; Jensen, Hans Jørgen Aagaard

    2003-01-01

    The theory, implementation, and application of linear response at the 4-component relativistic closed-shell Hartree-Fock level based on the concept of quasienergy and time averaging are reported. As such, an efficient AO-driven algorithm is obtained by assigning specific Hermiticity and time...... reversal symmetry to the trial vectors used in the solution of the reduced response equations. The given implementation has a quite general structure and thereby allows the calculation of a wide range of second-order properties such as polarizabilities, magnetizabilities, as well as NMR parameters....

  15. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  16. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  17. Equation of state for neutron star matter with NJL model and Dirac-Brueckner-Hartree-Fock approximation

    CERN Document Server

    Kambe, Takahide; Saito, Koichi

    2016-01-01

    As the interior density of a neutron star can become very high, it has been expected and discussed that quark matter may exist inside it. To describe the transition from hadron to quark phases (and vice versa), there are mainly two methods; one is the first-order phase transition, and the other is the crossover phenomenon. In the present study, using the flavor-SU (3) NJL model with the vector coupling interaction, we have calculated the equation of state for the quark phase at high density. Furthermore, for the hadron phase at low density, we have used two kinds of the equations of state; one is a relatively soft one by the QHD model, and the other is a stiff one calculated with relativistic Brueckner-Hartree-Fock approximation. Using those equations of state for the two phases, we have investigated the influence of various choices of parameters concerning the crossover region on the mass and radius of a neutron star.

  18. One-Proton Halo in 31Cl with Relativistic Mean-Field Theory

    Institute of Scientific and Technical Information of China (English)

    蔡翔舟; 沈文庆; 任中洲; 蒋维洲; 方德清; 张虎勇; 钟晨; 魏义彬; 郭威; 马余刚; 朱志远

    2002-01-01

    We investigate proton-rich isotopes s1,32Cl using the nonlinear relativistic mean-field model. It is shown that this model can reproduce the properties of these nuclei well. A long tail appears in the calculated proton density distribution of 31 Cl. The results of relativistic density-dependent Hartree theory show a similar trend of tail density distribution. It is strongly suggested that there is a proton halo in 31Cl and it is indicated that there may be a proton skin in 32 Cl. The relation between the proton halo in 31Cl and the new proton magic number is discussed.

  19. Planck Scale Physics and Bogoliubov Spaces in a Bose--Einstein Condensate

    CERN Document Server

    Castellanos, E

    2013-01-01

    We analyze the consequences caused by a deformed relation, suggested in several quantum gravity models, upon a bosonic gas. Concerning the ground state of the Bogoliubov space of this system, we deduce the corrections in the pressure, the speed of sound, and the corresponding healing length. Indeed, we prove that the corrections in the relevant thermodynamic properties associated to the ground state, defines a non trivial function of the density of particles and the deformation parameters, allowing us to constrain, in principle, the form of the energy--momentum dispersion relation. In addition, we calculate the condensation temperature associated to the non-interacting system, and show that this fact could be used also, to infer representative bounds for the deformation parameters, under typical laboratory conditions.

  20. Polymer quantization in the Bogoliubov's regime for a homogeneous one-dimensional Bose-Einstein condensate

    CERN Document Server

    Castellanos, Elías; Hernández-Hernández, Héctor H; Santos, Elí

    2016-01-01

    In the present report we analyze the eventual modifications caused by the polymer quantization upon the ground state of a homogeneous one-dimensional Bose-Einstein condensate. We obtain the ground state energy of the corresponding N-body system and, consequently, the corresponding speed of sound, allowing us to explore the sensitivity of the system to corrections caused by the polymer quantization. The corrections arising from the polymer quantization can be improved for dense systems together with small values of the corresponding one-dimensional scattering length. However, these corrections remain constrained due to finite size effects of the system. The contributions of the polymer length scale to the properties of the ground state energy of the system allow us to explore, as a first approximation and when the Bogoliubov's formalism is valid, the sensitivity of this many-body system to traces caused by the discreteness of space suggested by the polymer quantization.

  1. A new class of quantum states generated by m-fold application of Bogoliubov's transformation

    Institute of Scientific and Technical Information of China (English)

    Wu Wei; Wu Ling-An; Xin Zong-Zheng

    2004-01-01

    By applying higher powers of the Bogoliubov transformation operator b = γ*a +μ* a to the two-photon coherent states (or minimum uncertainty squeezed states) we construct a new type of quantum state which we call the generalized excited two-photon coherent states. Analytic expressions for the quantum statistical properties are derived, and through numerical computation the phase space quasi-probability distributions are found. These states can exhibit highly nonclassical behaviour depending on the degree of excitation m and other parameters. For particular values of twc parameters λ and ρ, these generalized states reduce to other classes of coherent states formerly reported. Our theory thus presents a much broader approach to these types of quantum states.

  2. A method of studying the Bogoliubov-de Gennes equations for the superconducting vortex lattice state.

    Science.gov (United States)

    Han, Qiang

    2010-01-27

    In this paper, we present a method to construct the eigenspace of the tight-binding electrons moving on a 2D square lattice with nearest-neighbor hopping in the presence of a perpendicular uniform magnetic field which imposes (quasi-)periodic boundary conditions for the wavefunctions in the magnetic unit cell. Exact unitary transformations are put forward to correlate the discrete eigenvectors of the 2D electrons with those of the Harper equation. The cyclic tridiagonal matrix associated with the Harper equation is then tridiagonalized by another unitary transformation. The obtained truncated eigenbasis is utilized to expand the Bogoliubov-de Gennes equations for the superconducting vortex lattice state, which shows the merit of our method in studying large-sized systems. To test our method, we have applied our results to study the vortex lattice state of an s-wave superconductor.

  3. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    DEFF Research Database (Denmark)

    Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.;

    2013-01-01

    better convergence of magnetisabilities with respect to the basis set size is observed compared to calculations employing a common gauge origin. In fact, it is mandatory to use London atomic orbitals unless you want to use ridiculously large basis sets. Relativistic effects on magnetisabilities are found......The use of magnetic-field dependent London atomic orbitals, also called gauge including atomic orbitals, is known to be an efficient choice for accurate non-relativistic calculations of magnetisabilities. In this work, the appropriate formulas were extended and implemented in the framework...... of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...

  4. Relativistic radiative transfer in relativistic spherical flows

    Science.gov (United States)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  5. Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets

    Science.gov (United States)

    Paier, Joachim; Diaconu, Cristian V.; Scuseria, Gustavo E.; Guidon, Manuel; Vandevondele, Joost; Hutter, Jürg

    2009-11-01

    Calculating highly accurate thermochemical properties of condensed matter via wave-function-based approaches (such as, e.g., Hartree-Fock or hybrid functionals) has recently attracted much interest. We here present two strategies providing accurate Hartree-Fock energies for solid LiH in a large Gaussian basis set and applying periodic boundary conditions. The total energies were obtained using two different approaches, namely, a supercell evaluation of Hartree-Fock exchange using a truncated Coulomb operator and an extrapolation toward the full-range Hartree-Fock limit of a Padé fit to a series of short-range screened Hartree-Fock calculations. These two techniques agreed to significant precision. We also present the Hartree-Fock cohesive energy of LiH (converged to within sub-millielectron volt) at the experimental equilibrium volume as well as the Hartree-Fock equilibrium lattice constant and bulk modulus.

  6. Efficient two-component relativistic method for large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

  7. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy....... In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding......-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets...

  8. Qualitative breakdown of the unrestricted Hartree-Fock energy

    Energy Technology Data Exchange (ETDEWEB)

    Mori-Sánchez, Paula, E-mail: paula.mori@uam.es [Departamento de Química and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Cohen, Aron J., E-mail: ajc54@cam.ac.uk [Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW (United Kingdom)

    2014-10-28

    The stretching of closed-shell molecules is a qualitative problem for restricted Hartree-Fock that is usually circumvented by the use of unrestricted Hartree-Fock (UHF). UHF is well known to break the spin symmetry at the Coulson-Fischer point, leading to a discontinuous derivative in the potential energy surface and incorrect spin density. However, this is generally not considered as a major drawback. In this work, we present a set of two electron molecules which magnify the problem of symmetry breaking and lead to drastically incorrect potential energy surfaces with UHF. These molecules also fail with unrestricted density-functional calculations where a functional such as B3LYP gives both symmetry breaking and an unphysically low energy due to the delocalization error. The implications for density functional theory are also discussed.

  9. Particle unstable nuclei in the Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A.T. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Heenen, P.H. [Brussels Univ. (Belgium). Service de Physique Nucleaire Theorique; Flocard, H. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Liotta, R.J. [Manne Siegbahn Inst. of Physics, Stockholm (Sweden)

    1997-12-31

    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant state become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: {sup 10}He, {sup 12}O, {sup 26}O and {sup 28}O. (author). 24 refs.

  10. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Sixty years of broken symmetries in quantum physics (from the Bogoliubov theory of superfluidity to the Standard Model)

    Science.gov (United States)

    Shirkov, Dmitrii V.

    2009-06-01

    This is a retrospective historical review of the ideas that led to the concept of the spontaneous symmetry breaking (SSB), the issue that has been implemented in quantum field theory in the form of the Higgs mechanism. The key stages covered include: the Bogoliubov microscopic theory of superfluidity (1946); the Bardeen-Cooper-Schrieffer-Bogoliubov microscopic theory of superconductivity (1957); superconductivity as superfluidity of Cooper pairs (Bogoliubov, 1958); the extension of the SSB concept to simple quantum field models (early 1960s); triumph of the Higgs model in electroweak theory (early 1980s). The role and status of the Higgs mechanism in the current Standard Model are discussed.

  11. Relativistic Remnants of Non-Relativistic Electrons

    CERN Document Server

    Kashiwa, Taro

    2015-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  12. Electric dipole response of neutron-rich Calcium isotopes in relativistic quasiparticle time blocking approximation

    CERN Document Server

    Egorova, Irina A

    2016-01-01

    New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...

  13. Relativistic quantum mechanics

    CERN Document Server

    Wachter, Armin

    2010-01-01

    Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...

  14. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  15. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  16. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  17. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  18. Effective Field Theory for Rotational Bands in Deformed and Superdeformed Nuclei

    Science.gov (United States)

    Ring, P.; Afanasjev, A. V.

    2001-09-01

    An overview is given on the description of rotational bands in normally deformed and superdeformed nuclei in the framework of effective field theories such as the Relativistic Mean Field (RMF) theory and the Relativistic Hartree--Bogoliubov (RHB) theory. In particular we discuss recent investigations for the description of superdeformed bands in the A˜ 60, 140--150 and 190 mass regions and compare them briefly with the results obtained in non-relativistic mean field theories.

  19. Applications of squeezed states: Bogoliubov transformations and wavelets to the statistical mechanics of water and its bubbles

    Science.gov (United States)

    Defacio, Brian; Kim, S.-H.; Vannevel, A.

    1994-01-01

    The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.

  20. Solutions of the Bogoliubov-de Gennes equation with position dependent Fermi-velocity and gap profiles

    Science.gov (United States)

    Presilla, M.; Panella, O.; Roy, P.

    2017-02-01

    It is shown that bound state solutions of the one dimensional Bogoliubov-de Gennes (BdG) equation may exist when the Fermi velocity becomes dependent on the space coordinate. The existence of bound states in continuum (BIC) like solutions has also been confirmed both in the normal phase as well as in the super-conducting phase. We also show that a combination of Fermi velocity and gap parameter step-like profiles provides scattering solutions with normal reflection and transmission.

  1. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.

  2. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  3. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  4. A perturbation technique to compute initial amplitude and phase for the Krylov-Bogoliubov-Mitropolskii method

    Directory of Open Access Journals (Sweden)

    M. Saifur Rahman

    2012-12-01

    Full Text Available Recently, a unified Krylov-Bogoliubov-Mitropolskii method has been presented (by Shamsul \\cite{1} for solving an $n$-th, $n=2$ or $n>2$, order nonlinear differential equation. Instead of amplitude(s and phase(s, a set of variables is used in \\cite{1} to obtain a general formula in which the nonlinear differential equations can be solved. By a simple variables transformation the usual form solutions (i.e., in terms of amplitude(s and phase(s have been found. In this paper a perturbation technique is developed to calculate the initial values of the variables used in \\cite{1}. By the noted transformation the initial amplitude(s and phase(s can be calculated quickly. Usually the conditional equations are nonlinear algebraic or transcendental equations; so that a numerical method is used to solve them. Rink \\cite{7} earlier employed an asymptotic method for solving the conditional equations of a second-order differential equation; but his derived results were not so good. The new results agree with their exact values (or numerical results nicely. The method can be applied whether the eigen-values of the unperturbed equation are purely imaginary, complex conjugate or real. Thus the derived solution is a general one and covers the three cases, i.e., un-damped, under-damped and over-damped.

  5. Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry

    Science.gov (United States)

    Agterberg, D. F.; Brydon, P. M. R.; Timm, C.

    2017-03-01

    It is commonly believed that, in the absence of disorder or an external magnetic field, there are three possible types of superconducting excitation gaps: The gap is nodeless, it has point nodes, or it has line nodes. Here, we show that, for an even-parity nodal superconducting state which spontaneously breaks time-reversal symmetry, the low-energy excitation spectrum generally does not belong to any of these categories; instead, it has extended Bogoliubov Fermi surfaces. These Fermi surfaces can be visualized as two-dimensional surfaces generated by "inflating" point or line nodes into spheroids or tori, respectively. These inflated nodes are topologically protected from being gapped by a Z2 invariant, which we give in terms of a Pfaffian. We also show that superconducting states possessing these Fermi surfaces can be energetically stable. A crucial ingredient in our theory is that more than one band is involved in the pairing; since all candidate materials for even-parity superconductivity with broken time-reversal symmetry are multiband systems, we expect these Z2-protected Fermi surfaces to be ubiquitous.

  6. Bogoliubov coefficients for the twist operator in the D1D5 CFT

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Zaq, E-mail: carson.231@osu.edu; Mathur, Samir D., E-mail: mathur.16@osu.edu; Turton, David, E-mail: turton.7@osu.edu

    2014-12-15

    The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the ‘continuum limit’. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process in the D1D5 CFT, which gives a holographic description of black hole formation.

  7. Bogoliubov coefficients for the twist operator in the D1D5 CFT

    CERN Document Server

    Carson, Zaq; Turton, David

    2014-01-01

    The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the 'continuum limit'. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process...

  8. Potential Energy Surface in Hartree-Fock Theory:Adiabatic or Configuration-Constrained?

    Institute of Scientific and Technical Information of China (English)

    GUO Lu; Sakata Fumihiko; ZHAO En-Guang

    2004-01-01

    Validity of adiabatic assumption is discussed within the constrained Hartree-Fock theory for self-conjugate nucleus 72Kr. It is shown that the adiabatic assumption does not provide a correct description for the nature of nucleus when a configuration change is involved. The excited Hartree-Fock states and the continuously-connected constrained Hartree-Fock states are given for the first time by applying the configuration dictated constrained Hartree-Fock theory with Gogny force. The importance of self-consistency between the mean-field and the single particle wave functions is emphasized even when a small number of nucleons are involved in the configuration change.

  9. Properties of the periodic Hartree-Fock minimizer

    CERN Document Server

    Ghimenti, Marco

    2008-01-01

    We study the periodic Hartree-Fock model used for the description of electrons in a crystal. The existence of a minimizer was previously shown by Catto, Le Bris and Lions (Ann. Inst. H. Poincare Anal. Non Lineaire} 18 (2001), no.6, 687--760). We prove in this paper that any minimizer is necessarily a projector and that it solves a certain nonlinear equation, similarly to the atomic case. In particular we show that the Fermi level is either empty or totally filled.

  10. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  11. Relativistic and Non-relativistic Equations of Motion

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.

  12. Relativistic and non-relativistic LDA, benchmark results and investigation on the dimers Cu{sub 2}, Ag{sub 2}, Au{sub 2}, Rg{sub 2}.

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama [University of Kassel, Department of Natural Science, Institute of Physics (Germany)

    2008-07-01

    Using two spinor minimax method combined with finite element methods accompanied with extrapolation and counterpoise techniques enable us to obtain relativistic highly accurate results for two atomic molecules. Like in our previous work for the (Hartree-) Dirac-Fock-Slater (DFS) functional approximation, we investigate in this work the density functional approximations of the relativistic and nonrelativistic local-density functional, presenting highly accurate benchmark results of chemical properties on the dimers of the group 11(Ib) of the periodic table of elements. The comparison with DFS, with experimental and literature's results shows that DFS is better behaved than the other two local functionals.

  13. Coupled Cluster Calculations of the Ground and Excited Electronic States Using Two- and Four-Component Relativistic Spinors

    Directory of Open Access Journals (Sweden)

    Rajat K. Chaudhuri

    2003-12-01

    Full Text Available Abstract: The coupled cluster based linear response theory which is applicable to the direct calculation of atomic and molecular properties are presented and applied to compute the ionization potentials and excitation energies of light and moderately heavy atoms. The e®ect of electron correlation on the ground and excited states is studied using Hartree-Fock, Dirac-Fock and approximate two-component relativistic spinors.

  14. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...

  15. Role reversal in first and second sound in a relativistic superfluid

    CERN Document Server

    Alford, Mark G; Schmitt, Andreas; Stetina, Stephan

    2013-01-01

    Relativistic superfluidity at arbitrary temperature, chemical potential and (uniform) superflow is discussed within a self-consistent field-theoretical approach. Our starting point is a complex scalar field with a $\\varphi^4$ interaction, for which we calculate the 2-particle-irreducible effective action in the Hartree approximation. With this underlying microscopic theory, we can obtain the two-fluid picture of a superfluid, and compute properties such as the superfluid density and the entrainment coefficient for all temperatures below the critical temperature for superfluidity. We compute the critical velocity, taking into account the full self-consistent effect of the temperature and superflow on the quasiparticle dispersion. We also discuss first and second sound modes and how first (second) sound evolves from a density (temperature) wave at low temperatures to a temperature (density) wave at high temperatures. This role reversal is investigated for ultra-relativistic and near-non-relativistic systems for...

  16. Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation

    Directory of Open Access Journals (Sweden)

    Walter H. Aschbacher

    2009-01-01

    Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.

  17. Accelerating Hartree--Fock exchange calculation using the TURBOMOLE program system: different techniques for different purposes

    CERN Document Server

    Hellweg, Arnim

    2016-01-01

    Hartree--Fock theory is one of the most ancient methods of computational chemistry, but up to the present day quantum chemical calculations on Hartree--Fock level or with hybrid density functional theory can be excessively time consuming. We compare three currently available techniques to reduce the computational demands of such calculations in terms of timing and accuracy.

  18. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  19. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  20. Relativistic Hall Effect

    CERN Document Server

    Bliokh, Konstantin Y

    2011-01-01

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.

  1. Exact Relativistic 'Antigravity' Propulsion

    CERN Document Server

    Felber, F S

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  2. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  3. Relativistic quantum revivals.

    Science.gov (United States)

    Strange, P

    2010-03-26

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Error estimates for the Skyrme-Hartree-Fock model

    CERN Document Server

    Erler, J

    2014-01-01

    There are many complementing strategies to estimate the extrapolation errors of a model which was calibrated in least-squares fits. We consider the Skyrme-Hartree-Fock model for nuclear structure and dynamics and exemplify the following five strategies: uncertainties from statistical analysis, covariances between observables, trends of residuals, variation of fit data, dedicated variation of model parameters. This gives useful insight into the impact of the key fit data as they are: binding energies, charge r.m.s. radii, and charge formfactor. Amongst others, we check in particular the predictive value for observables in the stable nucleus $^{208}$Pb, the super-heavy element $^{266}$Hs, $r$-process nuclei, and neutron stars.

  6. Computational Nuclear Physics and Post Hartree-Fock Methods

    CERN Document Server

    Lietz, Justin; Jansen, Gustav R; Hagen, Gaute; Hjorth-Jensen, Morten

    2016-01-01

    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.

  7. Semiempirical Hartree-Fock calculations for $KNbO_{3}$

    CERN Document Server

    Eglitis, R I; Borstel, G

    1996-01-01

    In applying the semiempirical intermediate neglect of differential overlap (INDO) method based on the Hartree-Fock formalism to a cubic perovskite-based ferroelectric material KNbO3, it was demonstrated that the accuracy of the method is sufficient for adequately describing the small energy differences related to the ferroelectric instability. The choice of INDO parameters has been done for a system containing Nb. Based on the parametrization proposed, the electronic structure, equilibrium ground state structure of the orthorhombic and rhombohedral phases, and Gamma-TO phonon frequencies in cubic and rhombohedral phases of KNbO3 were calculated and found to be in good agreement with the experimental data and with the first-principles calculations available.

  8. Using Hartree-Fock pseudopotentials in GW calculations

    Science.gov (United States)

    Hamann, D. R.; Vanderbilt, David

    2010-03-01

    The issue of including shallow ``semi-core'' states as valence has recently resurfaced in the context of self-consistent GW calculations.footnotetextF. Bruneval et al., Phys. Rev. Lett. 97, 267601 (2006). Supposing that semi-core-valence exchange is the dominant process necessitating the inclusion of semi-cores, we have investigated whether the use Hartree-Fock pseudopotentialsfootnotetextW. A. Al-Saidi, E. J. Walter, and A. M. Rappe, Phys. Rev. B 77, 075122 (2008). instead of density-functional psp's might obviate the need for semi-cores. The answers to this question appear to be ``yes'' for the case of CuCl (filled d shell), and ``semi-cores don't matter anyway'' for ScN (empty d shell). Opportunity permitting, additional examples will be discussed.

  9. Strong semiclassical approximation of Wigner functions for the Hartree dynamics

    KAUST Repository

    Athanassoulis, Agissilaos

    2011-01-01

    We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.

  10. Correlated Electron Calculations with Hartree-Fock Scaling

    CERN Document Server

    Gebauer, Ralph; Car, Roberto

    2013-01-01

    We introduce an energy functional for ground-state electronic structure calculations with fundamental variables the natural spin orbitals and their joint occupation probabilities in an implied many-body trial wave function. We use a controlled approximation for the two-particle density matrix that greatly extends the accuracy compared to current functionals of the one-particle density matrix only. Algebraic scaling of computational cost with electron number is achieved in general, and Hartree-Fock scaling in the seniority-zero version of the theory. We present results obtained with the latter version for saturated small molecular systems for which highly accurate quantum chemical computations are available for comparison. The results are variational, capturing most of the correlation energy from equilibrium to dissociation.

  11. Shape evolution in 76,78Kr nuclei at high spins in tilted axis cranking Hartree–Fock–Bogoliubov approach

    Indian Academy of Sciences (India)

    A Ansari; P Sharma; U R Jakhar; H L Yadav

    2007-01-01

    A two-dimensional tilted axis cranking Hartree–Fock–Bogoliubov (CHFB) calculation is performed for 76Kr and 78Kr nuclei up to high spins = 30 employing a pairing-plus-quadrupole (PPQ) model interaction Hamiltonian. Intricate details of the evolution of single particle structures and shapes as a function of spin have been investigated. The results show the existence of energy levels with high quantum numbers lying close to the yrast line in both the nuclei. Such high states should exhibit isomeric characteristics due to the -selection rules for the -decays. Moreover, in 78Kr a new band with = 20–30 lying below the observed ground band is predicted.

  12. The O(N) linear sigma model at finite temperature beyond the Hartree approximation

    CERN Document Server

    Baacke, J

    2003-01-01

    We study the O(N) linear sigma model with spontaneous symmetry breaking, using a Hartree-like ansatz with a classical field and variational masses. We go beyond the Hartree approximation by including the two-loop contribution, the sunset diagram, using the 2PPI expansion. We have computed numerically the effective potential at finite temperature. We find a phase transition of second order, while it is first order in the one-loop Hartree approximation. We also discuss some implications of the fact that in this order, the decay of the sigma into two pions affects the thermal diagrams.

  13. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  14. Relativistic Quantum Communication

    CERN Document Server

    Hosler, Dominic

    2013-01-01

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...

  15. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  16. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  17. Relativistic electronic dressing

    CERN Document Server

    Attaourti, Y

    2002-01-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.

  18. Relativistic Disc lines

    CERN Document Server

    Fabian, A C; Parker, M L

    2014-01-01

    Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.

  19. Relativistic Rotating Vector Model

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.

  20. The special relativistic shock tube

    Science.gov (United States)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  1. Shell evolution at N=20 in the constrained relativistic mean field approach

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed.

  2. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  3. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  4. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  5. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  6. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  7. Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations.

    Science.gov (United States)

    Guidon, Manuel; Hutter, Jürg; VandeVondele, Joost

    2010-08-10

    The calculation of Hartree-Fock exchange (HFX) is computationally demanding for large systems described with high-quality basis sets. In this work, we show that excellent performance and good accuracy can nevertheless be obtained if an auxiliary density matrix is employed for the HFX calculation. Several schemes to derive an auxiliary density matrix from a high-quality density matrix are discussed. Key to the accuracy of the auxiliary density matrix methods (ADMM) is the use of a correction based on standard generalized gradient approximations for HFX. ADMM integrates seamlessly in existing HFX codes and, in particular, can be employed in linear scaling implementations. Demonstrating the performance of the method, the effect of HFX on the structure of liquid water is investigated in detail using Born-Oppenheimer molecular dynamics simulations (300 ps) of a system of 64 molecules. Representative for large systems are calculations on a solvated protein (Rubredoxin), for which ADMM outperforms the corresponding standard HFX implementation by approximately a factor 20.

  8. A collisional extension of time-dependent Hartree-Fock

    Science.gov (United States)

    Lacombe, L.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2016-12-01

    We propose a collisional extension of time-dependent mean-field theories on the basis of a recently proposed stochastic extension of mean-field dynamics (stochastic time-dependent Hartree-Fock, STDHF). The latter theory is unfortunately too involved to envision practical applications in realistic systems in the near future and is thus bound to model systems. It is also hard to explore moderate to low energies with STDHF, because of vanishing transition probabilities that are impossible to sample properly. For such moderately excited situations covering small fluctuations, we compactify sampling by employing the same average mean field for all STDHF trajectories. The new approach, coined average STDHF (ASTDHF), ignores the fluctuations of the mean field but still accounts correctly for the collisional correlations responsible for dissipative features on top of mean-field dynamics. We detail the main features of the new approach in relation to existing equations, in particular quantum kinetic theories. The new theory is directly connected to STDHF, both formally and practically. We thus discuss in detail how the two approaches are related to each other. We apply the new scheme to illustrative examples taking as benchmark STDHF dynamics in 1D. ASTDHF provides results that are in remarkable agreement with the more elaborate STDHF. It makes it a promising approach to deal with dissipative dynamics in finite quantum systems, because of its moderate cost allowing applications in realistic systems and the possibility of exploring any excitation energy range where collisional correlations are expected to play a role.

  9. High-frequency averaging in semi-classical Hartree-type equations

    CERN Document Server

    Giannoulis, Johannes; Sparber, Christof

    2009-01-01

    We investigate the asymptotic behavior of solutions to semi-classical Schroedinger equations with nonlinearities of Hartree type. For a weakly nonlinear scaling, we show the validity of an asymptotic superposition principle for slowly modulated highly oscillatory pulses. The result is based on a high-frequency averaging effect due to the nonlocal nature of the Hartree potential, which inhibits the creation of new resonant waves. In the proof we make use of the framework of Wiener algebras.

  10. Self-consistent relativistic QRPA studies of soft modes and spin-isospin resonances in unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Paar, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); University of Zagreb, Physics Department, Faculty of Science (Croatia); University of Washington, Institute for Nuclear Theory, Seattle (United States); Niksic, T. [University of Zagreb, Physics Department, Faculty of Science (Croatia); University of Washington, Institute for Nuclear Theory, Seattle (United States); Marketin, T.; Vretenar, D. [University of Zagreb, Physics Department, Faculty of Science (Croatia); Ring, P. [Physik-Department der Technischen Universitaet Muenchen, Garching (Germany)

    2005-09-01

    The excitation phenomena in unstable nuclei are investigated in the framework of the relativistic quasiparticle random-phase approximation (RQRPA) in the relativistic Hartree-Bogolyubov model (RHB) which is extended to include effective interactions with explicit density-dependent meson-nucleon couplings. The properties of the pygmy dipole resonance (PDR) are examined in {sup 132}Sn and within isotopic chains, showing that already at moderate proton-neutron asymmetry the PDR peak energy is located above the neutron emission threshold. A method is suggested for determining the size of the neutron skin within an isotopic chain, based on the measurement of the excitation energies of the Gamow-Teller resonance relative to the isobaric analog state. In addition, for the first time the relativistic RHB+RQRPA model, with tensor {omega} meson-nucleon couplings, is employed in calculations of {beta}-decay half-lives of nuclei of the relevance for the r-process. (orig.)

  11. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  12. Beta decay and muon capture rates in a self-consistent relativistic framework

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav; Paar, Nils; Niksic, Tamara; Vretenar, Dario [Physics Department, Faculty of Science, University of Zagreb (Croatia); Ring, Peter [Physik-Department, Technische Universitaet Muenchen, D-85748 Muenchen (Germany)

    2009-07-01

    A fully consistent calculation of muon capture and beta decay rates is presented, based on a microscopic theoretical framework describing the semileptonic weak interaction processes. Nuclear ground state is determined using the Relativistic Hartree-Bogolyubov (RHB) model with density dependent meson-nucleon coupling constants, and transition rates are calculated via proton-neutron relativistic quasiparticle RPA using the same interaction as in the RHB equations. Muon capture rates are calculated for a wide range of nuclei along the valley of stability, from {sup 12}C to {sup 244}Pu, with accuracy of approximately 30%, using the interaction DD-ME2. Previous studies of beta decay rates have only taken into account Gamow-Teller transitions. We extend this approach by including forbidden transitions and systematically study their contribution to decay rates of exotic nuclei along the r-process path, which are important for constraining the conditions in which nucleosynthesis takes place.

  13. {beta}-decay rates of r-process nuclei in the relativistic quasiparticle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Niksic, T.; Marketin, T.; Vretenar, D. [Zagreb Univ. (Croatia). Faculty of Science, Physics Dept.; Paar, N. [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Ring, P. [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2004-12-08

    The fully consistent relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is employed in the calculation of {beta}-decay half-lives of neutron-rich nuclei in the N{approx}50 and N{approx}82 regions. A new density-dependent effective interaction, with an enhanced value of the nucleon effective mass, is used in relativistic Hartree-Bogolyubov calculation of nuclear ground states and in the particle-hole channel of the PN-RQRPA. The finite range Gogny D1S interaction is employed in the T=1 pairing channel, and the model also includes a proton-neutron particle-particle interaction. The theoretical half-lives reproduce the experimental data for the Fe, Zn, Cd, and Te isotopic chains, but overestimate the lifetimes of Ni isotopes and predict a stable {sup 132}Sn. (orig.)

  14. Relativistic L -shell Auger and Coster-Kronig rates and fluorescence yields

    Science.gov (United States)

    Chen, M. H.; Laiman, E.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1979-01-01

    Relativistic calculations of radiationless transition rates to L -subshell vacancy states in selected atoms with Z in the 70-96 range have been performed. The Auger and Coster-Kronig transition probabilities are calculated from perturbation theory, assuming frozen orbitals, in the Dirac-Hartree-Slater approach. Transition rates, fluorescence yields, and Coster-Kronig yields are compared with nonrelativistic theoretical results and with experiment. Relativity is found to affect the L -subshell Auger widths by (10-25)% and individual transition rates to certain j-j configurations by as much as 40% at Z = 80. The widths of L sub i vacancy states and the L sub 2 Coster-Kronig yields f33 from these relativistic calculations agree much better with experiment than earlier nonrelativistic theoretical values.

  15. Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    CERN Document Server

    Van Giai, Nguyen; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie

    2014-01-01

    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this note, we show that the Coulomb exchange effects can be easily included with a good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation.

  16. Exhaustive derivation of static self-consistent multi-soliton solutions in the matrix Bogoliubov-de Gennes systems

    CERN Document Server

    Takahashi, Daisuke A

    2015-01-01

    The matrix-generalized Bogoliubov-de Gennes systems are recently considered by the present author [arXiv:1509.04242], and the time-dependent and self-consistent multi-soliton solutions are constructed based on the ansatz method. In this paper, restricting the problem to the static case, we exhaustively determine the self-consistent solutions using the inverse scattering theory. Solving the gap equation, we rigorously prove that the self-consistent potential must be reflectionless. As a supplementary topic, we elucidate the relation between the stationary self-consistent potentials and the soliton solutions in the matrix nonlinear Schr\\"odinger equation. The asymptotic formulae of multi-soliton solutions for sufficiently isolated solitons are also presented.

  17. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  18. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  19. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  20. Relativistic Quantum Noninvasive Measurements

    CERN Document Server

    Bednorz, Adam

    2014-01-01

    Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.

  1. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  2. Relativistic gravity gradiometry

    Science.gov (United States)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  3. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  4. Relativistic Radiation Mediated Shocks

    CERN Document Server

    Budnik, Ran; Sagiv, Amir; Waxman, Eli

    2010-01-01

    The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...

  5. A relativistic gravity train

    Science.gov (United States)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  6. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  7. Towards relativistic quantum chemistry. On the AB INITO calculation of relativistic electron wave functions for molecules in the hartree-fock-dirac approximation.

    NARCIS (Netherlands)

    Aerts, Patrick Johan Coenraad

    1986-01-01

    Computational Theoretical Chemnistry is a research area which, as far as electronic structure problems are concerned, encompasses essentially the development of theoretically sound, yet computionally feasable quantum mechanical models for atoms melecules and the solid state. ... Zie: Introduction

  8. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  9. Adapted Gaussian basis sets for atoms from Li through Xe generated with the generator coordinate Hartree-Fock method

    Directory of Open Access Journals (Sweden)

    CASTRO EUSTÁQUIO V. R. DE

    2001-01-01

    Full Text Available The generator coordinate Hartree-Fock method is used to generate adapted Gaussian basis sets for the atoms from Li (Z=3 through Xe (Z=54. In this method the Griffin-Hill-Wheeler-Hartree-Fock equations are integrated through the integral discretization technique. The wave functions generated in this work are compared with the widely used Roothaan-Hartree-Fock wave functions of Clementi and Roetti (1974, and with other basis sets reported in the literature. For all atoms studied, the errors in our total energy values relatively to the numerical Hartree-Fock limits are always less than 7.426 mhartree.

  10. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bast, Radovan; Juselius, Jonas [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Saue, Trond [Institut de Chimie de Strasbourg, CNRS et Universite Louis Pasteur, Laboratoire de Chimie Quantique, 4, rue Blaise Pascal, BP 1032, F-67070 Strasbourg (France)], E-mail: tsaue@chimie.u-strasbg.fr

    2009-02-17

    We present a 4-component relativistic implementation for calculating the magnetically induced current density within Hartree-Fock and Kohn-Sham linear response theory using a common gauge origin. We demonstrate how the current density can be decomposed into paramagnetic and diamagnetic contributions by calculating separately the contributions from rotations between positive-energy orbitals and contributions from rotations between the occupied positive-energy orbitals and the virtual negative-energy orbitals, respectively. This methodology is applied to the study of the magnetically induced current density in benzene and the group 15 heteroaromatic compounds C{sub 5}H{sub 5}E (E = N, P, As, Sb, Bi). Quantitative values for the magnetically induced ring currents are obtained by numerical integration over the current flow. We have found that the diatropic ring current is sustained for the entire series of the group 15 heteroaromatic compounds-the induced ring current susceptibility of bismabenzene being 76% of the benzene result. Having employed two hybrid and two nonhybrid generalized gradient approximation functionals, the results are found to be rather insensitive to the choice of the density functional approximation. The relativistic effect is relatively small, reaching its maximum of 8% for bismabenzene. The presented 4-component relativistic methodology opens up the possibility to visualize magnetically induced current densities of aromatic heavy-element systems with both scalar relativistic and spin-orbit effects included.

  11. Recurrence relation for relativistic atomic matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2000-01-01

    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.

  12. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  13. Numerical Relativistic Quantum Optics

    Science.gov (United States)

    2013-11-08

    µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A

  14. Relativistic quantum information

    Science.gov (United States)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  15. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  16. The relativist stance.

    Science.gov (United States)

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  17. Projected Hartree Fock Theory as a Polynomial Similarity Transformation Theory of Single Excitations

    CERN Document Server

    Qiu, Yiheng; Scuseria, Gustavo E

    2016-01-01

    Spin-projected Hartree-Fock is introduced as a particle-hole excitation ansatz over a symmetry-adapted reference determinant. Remarkably, this expansion has an analytic expression that we were able to decipher. While the form of the polynomial expansion is universal, the excitation amplitudes need to be optimized. This is equivalent to the optimization of orbitals in the conventional projected Hartree-Fock framework of non-orthogonal determinants. Using the inverse of the particle-hole expansion, we similarity transform the Hamiltonian in a coupled-cluster style theory. The left eigenvector of the non-hermitian Hamiltonian is constructed in a similar particle-hole expansion fashion, and we show that to numerically reproduce variational projected Hartree-Fock results, one needs as many pair excitations in the bra as the number of strongly correlated entangled pairs in the system. This single-excitation polynomial similarity transformation theory is an alternative to our recently presented double excitation the...

  18. The trajectory-coherent approximation and the system of moments for the Hartree type equation

    Directory of Open Access Journals (Sweden)

    V. V. Belov

    2002-01-01

    Full Text Available The general construction of semiclassically concentrated solutions to the Hartree type equation, based on the complex WKB-Maslov method, is presented. The formal solutions of the Cauchy problem for this equation, asymptotic in small parameter ℏ (ℏ→0, are constructed with a power accuracy of O(ℏ N/2, where N is any natural number. In constructing the semiclassically concentrated solutions, a set of Hamilton-Ehrenfest equations (equations for centered moments is essentially used. The nonlinear superposition principle has been formulated for the class of semiclassically concentrated solutions of Hartree type equations. The results obtained are exemplified by a one-dimensional Hartree type equation with a Gaussian potential.

  19. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    Science.gov (United States)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  20. Exotic Non-relativistic String

    CERN Document Server

    Casalbuoni, Roberto; Longhi, Giorgio

    2007-01-01

    We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.

  1. 'Antigravity' Propulsion and Relativistic Hyperdrive

    CERN Document Server

    Felber, F S

    2006-01-01

    Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.

  2. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  3. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  4. O(N) linear sigma model beyond the Hartree approximation at finite temperature

    CERN Document Server

    Baacke, J; Michalski, Stefan

    2003-01-01

    We study the O(N) linear sigma model with spontaneous symmetry breaking at finite temperature in the framework of the two-particle point-irreducible (2PPI) effective action. We go beyond the Hartree approximation by including the two-loop contribution, i.e., the sunset diagram. A phase transition of second order is found, whereas it is of first order in the one-loop Hartree approximation. Furthermore, we show the temperature-dependence of the variational mass parameters and comment on their relation to the physical sigma and pion masses.

  5. Application of Fourth Order Vibrational Perturbation Theory with Analytic Hartree-Fock Force Fields

    Science.gov (United States)

    Gong, Justin Z.; Matthews, Devin A.; Stanton, John F.

    2014-06-01

    Fourth-Order Rayleigh-Schrodinger Perturbation Theory (VPT4) is applied to a series of small molecules. The quality of results have been shown to be heavily dependent on the quality of the quintic and sextic force constants used and that numerical sextic force constants converge poorly and are unreliable for VPT4. Using analytic Hartree-Fock force constants, it is shown that these analytic higher-order force constants are comparable to corresponding force constants from numerical calculations at a higher level of theory. Calculations show that analytic Hartree-Fock sextic force constants are reliable and can provide good results with Fourth-Order Rayleigh-Schrodinger Perturbation Theory.

  6. ON THE DECAY AND SCATTERING FOR THE KLEIN-GORDON-HARTREE EQUATION WITH RADIAL DATA

    Institute of Scientific and Technical Information of China (English)

    Wu Haigen; Zhang Junyong

    2012-01-01

    In this paper,we study the decay estimate and scattering theory for the Klein-Gordon-Hartree equation with radial data in space dimension d ≥ 3.By means of a compactness strategy and two Morawetz-type estimates which come from the linear and nonlinear parts of the equation,respectively,we obtain the corresponding theory for energy subcritical and critical cases.The exponent range of the decay estimates is extended to 0 < γ ≤ 4 and γ< d with Hartree potential V(x) =|x|-γ.

  7. Stationary Relativistic Jets

    CERN Document Server

    Komissarov, S S; Lyutikov, M

    2015-01-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...

  8. Robust relativistic bit commitment

    Science.gov (United States)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  9. A relativistic trolley paradox

    Science.gov (United States)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  10. Fractional Dynamics of Relativistic Particle

    CERN Document Server

    Tarasov, Vasily E

    2011-01-01

    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

  11. The effects of gap parameter and spin polarization on electronic Hartree and correlation energies of doped graphene nanoribbon

    Science.gov (United States)

    Rezania, Hamed; Abdi, Ameneh

    2017-04-01

    We study the behaviors of both Hartree and correlation energies of undoped gapped armchair graphene nanoribbon using random phase approximation in the context of Hubbard model Hamiltonian. Specially, the effects of spin polarization and gap parameter on electron density dependence of Hartree and correlation energies of armchair graphene nanoribbon has been addressed. Our results show the variation of gap parameter leads to considerable effect on correlation and Hartree energy behavior of spin unpolarized gapped graphene in the middle electron density region. However local Hubbard interaction parameter affects the behaviors of Hartree and correlation energy on the whole range of electron density in zero magnetization case. We also show that a considerable reduction has been observed for density dependence of Hartree and correlation energies of spin polarized gapped graphene nanoribbon.

  12. Magnetic Dissipation in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Yosuke Mizuno

    2016-10-01

    Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.

  13. Relativistic Fractal Cosmologies

    CERN Document Server

    Ribeiro, Marcelo B

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...

  14. Relativistic Gravothermal Instabilities

    CERN Document Server

    Roupas, Zacharias

    2014-01-01

    The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...

  15. Relativistic quantum clocks

    CERN Document Server

    Lock, Maximilian P E

    2016-01-01

    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

  16. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  17. Hartree-Fock Cluster Study of Interstitial Transition Metals in Silicon

    NARCIS (Netherlands)

    Broer, R.; Aissing, G.; Nieuwpoort, W.C.; Feiner, L.F.

    1986-01-01

    Results are presented of a Hartree-Fock cluster study of interstitial Ti, V, Cr, and Mn impurities in silicon. A Si10 cluster models the nearest Si atoms around a tetrahedral interstitial site in crystalline Si. The dangling bonds of the Si atoms are saturated by hydrogens. The effect of the Si core

  18. GEOMETRIC OPTICS FOR 3D-HARTREE-TYPE EQUATION WITH COULOMB POTENTIAL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integrals, a uniform description of the solution outside the caustic, and near the caustic are obtained.

  19. Method of renormalization potential for one model of Hartree-Fock-Slater type

    CERN Document Server

    Zasorin, Y V

    2002-01-01

    A new method of the potential renormalization for the quasiclassical model of the Hartree-Fock-Slater real potential is proposed. The method makes it possible to easily construct the wave functions and contrary to the majority od similar methods it does not require the knowledge of the real-type potential

  20. Robust Periodic Hartree-Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets.

    Science.gov (United States)

    Guidon, Manuel; Hutter, Jürg; VandeVondele, Joost

    2009-11-10

    Hartree-Fock exchange with a truncated Coulomb operator has recently been discussed in the context of periodic plane-waves calculations [Spencer, J.; Alavi, A. Phys. Rev. B: Solid State, 2008, 77, 193110]. In this work, this approach is extended to Gaussian basis sets, leading to a stable and accurate procedure for evaluating Hartree-Fock exchange at the Γ-point. Furthermore, it has been found that standard hybrid functionals can be transformed into short-range functionals without loss of accuracy. The well-defined short-range nature of the truncated exchange operator can naturally be exploited in integral screening procedures and makes this approach interesting for both condensed phase and gas phase systems. The presented Hartree-Fock implementation is massively parallel and scales up to ten thousands of cores. This makes it feasible to perform highly accurate calculations on systems containing thousands of atoms or ten thousands of basis functions. The applicability of this scheme is demonstrated by calculating the cohesive energy of a LiH crystal close to the Hartree-Fock basis set limit and by performing an electronic structure calculation of a complete protein (rubredoxin) in solution with a large and flexible basis set.

  1. Koopmans' theorem in the statistical Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Pain, Jean-Christophe, E-mail: jean-christophe.pain@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France)

    2011-07-28

    In this short paper, the validity of Koopmans' theorem in the Hartree-Fock theory at non-zero temperature (Hartree-Fock statistical theory) is investigated. It is shown that Koopmans' theorem does not apply in the grand-canonical ensemble, due to a missing contribution to the energy proportional to the interaction between two electrons belonging to the same orbital. The Hartree-Fock statistical theory has also been applied in the canonical ensemble (Blenski et al 1997 Phys. Rev. E 55 R4889) for the purpose of photo-absorption calculations. In that case, the Hartree-Fock self-consistent field equations are derived in the super-configuration approximation. It is shown that Koopmans' theorem does not hold in the canonical ensemble, but a restricted version of the theorem can be obtained by assuming that a particular quantity multiplying the interaction matrix element in the expression of the energy does not change during the removal of an electron.

  2. Communication: Projected Hartree Fock theory as a polynomial similarity transformation theory of single excitations

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-09-01

    Spin-projected Hartree-Fock is written as a particle-hole excitation ansatz over a symmetry-adapted reference determinant. Remarkably, this expansion has an analytic expression that we were able to decipher. While the form of the polynomial expansion is universal, the excitation amplitudes need to be optimized. This is equivalent to the optimization of orbitals in the conventional projected Hartree-Fock framework of non-orthogonal determinants. Using the inverse of the particle-hole expansion, we similarity transform the Hamiltonian in a coupled-cluster style theory. The left eigenvector of the non-Hermitian Hamiltonian is constructed in a similar particle-hole expansion fashion, and we show that to numerically reproduce variational projected Hartree-Fock results, one needs as many pair excitations in the bra as the number of strongly correlated entangled pairs in the system. This single-excitation polynomial similarity transformation theory is an alternative to our recently presented double excitation theory, but supports projected Hartree-Fock and coupled cluster simultaneously rather than interpolating between them.

  3. Bose-Einstein Condensation in Linear Sigma Model at Hartree Approximation

    Institute of Scientific and Technical Information of China (English)

    M. Agop; SHU Song; Camelia Popa; LI Jia-Rong; Anca Harabagiu

    2008-01-01

    The BEC of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall Jackiw Tomboulis formalism, we have derived the gap equations for the effective masses of the mesons at finite tempera-ture and finite isospin density. The critical temperature and phase diagram of BEC are discussed in the non-chiral limit at Hartree approximation.

  4. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica

    Science.gov (United States)

    Acosta, César R.; Tapia, J. Alejandro; Cab, César

    2014-01-01

    Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…

  5. Hartree-Fock Cluster Study of Interstitial Transition Metals in Silicon

    NARCIS (Netherlands)

    Broer, R.; Aissing, G.; Nieuwpoort, W.C.; Feiner, L.F.

    Results are presented of a Hartree-Fock cluster study of interstitial Ti, V, Cr, and Mn impurities in silicon. A Si10 cluster models the nearest Si atoms around a tetrahedral interstitial site in crystalline Si. The dangling bonds of the Si atoms are saturated by hydrogens. The effect of the Si core

  6. Perturbative calculation of the Sternheimer anti-shielding factor with Hartree-Fock atomic orbitals

    OpenAIRE

    2012-01-01

    We report a calculation of the Sternheimer anti-shielding factor, \\gamma, by means of first order perturbation theory. In quality of basis functions, we use Hartree-Fock electronic orbitals, expanded on hydrogenic atomic states. The computed \\gamma(r) for Fe^{3+} and Cu^{1+} inner electronic cores are reported and compared with literature values, obtained from alternative methodologies.

  7. Relativistic Runaway Electrons

    Science.gov (United States)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  8. What is "Relativistic Canonical Quantization"?

    OpenAIRE

    Arbatsky, D. A.

    2005-01-01

    The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.

  9. Simulating relativistic binaries with Whisky

    Science.gov (United States)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  10. Relativistic effects in atom gravimeters

    Science.gov (United States)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  11. Scattering in Relativistic Particle Mechanics.

    Science.gov (United States)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  12. Soliton propagation in relativistic hydrodynamics

    CERN Document Server

    Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104

    2013-01-01

    We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).

  13. Relativistic formulation and reference frame

    OpenAIRE

    Klioner, Sergei A.

    2004-01-01

    After a short review of experimental foundations of metric theories of gravity, the choice of general relativity as a theory to be used for the routine modeling of Gaia observations is justified. General principles of relativistic modeling of astronomical observations are then sketched and compared to the corresponding Newtonian principles. The fundamental reference system -- Barycentric Celestial Reference System, which has been chosen to be the relativistic reference system underlying the f...

  14. Bogoliubov-Born-Green-Kirkwood-Yvon chain and kinetic equations for the level dynamics in an externally perturbed quantum system

    Science.gov (United States)

    Qureshi, Mumnuna A.; Zhong, Johnny; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2017-03-01

    Theoretical description and simulation of large quantum coherent systems out of equilibrium remains a daunting task. Here we are developing an approach to it based on the Pechukas-Yukawa formalism, which is especially convenient in the case of an adiabatically slow external perturbation, though it is not restricted to adiabatic systems. In this formalism the dynamics of energy levels in an externally perturbed quantum system as a function of the perturbation parameter is mapped on that of a fictitious one-dimensional classical gas of particles with cubic repulsion. Equilibrium statistical mechanics of this Pechukas gas allows us to reproduce the random matrix theory of energy levels. In the present work, we develop the nonequilibrium statistical mechanics of the Pechukas gas, starting with the derivation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of equations for the appropriate generalized distribution functions. Sets of approximate kinetic equations can be consistently obtained by breaking this chain at a particular point (i.e., approximating all higher-order distribution functions by the products of the lower-order ones). When complemented by the equations for the level occupation numbers and interlevel transition amplitudes, they allow us to describe the nonequilibrium evolution of the quantum state of the system, which can describe better a large quantum coherent system than the currently used approaches. In particular, we find that corrections to the factorized approximation of the distribution function scale as 1 /N , where N is the number of the "Pechukas gas particles" (i.e., energy levels in the system).

  15. Limits of Nuclear Stability

    CERN Document Server

    Nerlo-Pomorska, B; Kleban, M

    2003-01-01

    The modern version of the liquid-drop model (LSD) is compared with the macroscopic part of the binding energy evaluated within the Hartree-Fock- Bogoliubov procedure with the Gogny force and the relativistic mean field theory. The parameters of a liquid-drop like mass formula which approximate on the average the self-consistent results are compared with other models. The limits of nuclear stability predicted by these models are discussed.

  16. Relativity and the chemistry of UF6 : A molecular Dirac-Hartree-Fock-CI study

    NARCIS (Netherlands)

    de Jong, W.A.; Nieuwpoort, W.C

    1996-01-01

    The electronic structure and bonding of UF6 and UF6- are studied within a relativistic framework using the MOLFDIR program package. A stronger bonding but more ionic molecule is found if one compares the relativistic with the nonrelativistic results. The first peak in the photoelectron spectrum of

  17. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    Science.gov (United States)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  18. The one-particle Green's function method in the Dirac-Hartree-Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN

    Science.gov (United States)

    Pernpointner, M.

    2004-11-01

    In this paper we present the third-order extension of the four-component one-particle propagator method in the non-Dyson version of the algebraic diagrammatic construction (ADC) for the calculation of valence ionization energies. Relativistic and electron correlation effects are incorporated consistently by starting from the Dirac-Hamiltonian. The ADC equations derived from the Feynman diagrams can hereby be used in their spin-orbital form and need not be transformed to the spin-free version as required for a nonrelativistic treatment. For the calculation of the constant self-energy contribution the Dyson expansion method was implemented being superior to a perturbational treatment of Σ(∞). The Dirac-Hartree-Fock- (DHF-) ADC(3) was applied to the calculation of valence photoionization spectra of the noble gas atoms, carbon monoxide and ICN now also reproducing spin-orbit features in the spectrum. Comparison with DHF-ADC(2), nonrelativistic ADC(3), and experimental data was made in order to demonstrate the characteristics and performance of the method.

  19. Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lan, E-mail: chenglanster@gmail.com [Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Stopkowicz, Stella, E-mail: stella.stopkowicz@kjemi.uio.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, N-0315 Oslo (Norway); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-12-07

    A perturbative approach to compute second-order spin-orbit (SO) corrections to a spin-free Dirac-Coulomb Hartree-Fock (SFDC-HF) calculation is suggested. The proposed scheme treats the difference between the DC and SFDC Hamiltonian as perturbation and exploits analytic second-derivative techniques. In addition, a cost-effective scheme for incorporating relativistic effects in high-accuracy calculations is suggested consisting of a SFDC coupled-cluster treatment augmented by perturbative SO corrections obtained at the HF level. Benchmark calculations for the hydrogen halides HX, X = F-At as well as the coinage-metal fluorides CuF, AgF, and AuF demonstrate the accuracy of the proposed perturbative treatment of SO effects on energies and electrical properties in comparison with the more rigorous full DC treatment. Furthermore, we present, as an application of our scheme, results for the electrical properties of AuF and XeAuF.

  20. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  1. Multiconfiguration hartree-fock theory for pseudorelativistic systems: The time-dependent case

    KAUST Repository

    Hajaiej, Hichem

    2014-03-01

    In [Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal. 198 (2010) 273-330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree-Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number N cr. © 2014 World Scientific Publishing Company.

  2. Brueckner-Hartree-Fock and its renormalized calculations for finite nuclei

    CERN Document Server

    Hu, B S; Ma, Y Z; Wu, Q; Sun, Z H

    2016-01-01

    We have performed self-consistent Brueckner-Hartree-Fock (BHF) and its renormalized theory to the structure calculations of finite nuclei. The $G$-matrix is calculated within the BHF basis, and the exact Pauli exclusion operator is determined by the BHF spectrum. Self-consistent occupation probabilities are included in the renormalized Brueckner-Hartree-Fock (RBHF). Various systematics and convergences are studies. Good results are obtained for the ground-state energy and radius. RBHF can give a more reasonable single-particle spectrum and radius. We present a first benchmark calculation with other {\\it ab initio} methods using the same effective Hamiltonian. We find that the BHF and RBHF results are in good agreement with other $\\it{ab}$ $\\it{initio}$ methods.

  3. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  4. Hartree-Fock and Random Phase Approximation theories in a many-fermion solvable model

    CERN Document Server

    Co', Giampaolo

    2016-01-01

    We present an ideal system of interacting fermions where the solutions of the many-body Schroedinger equation can be obtained without making approximations. These exact solutions are used to test the validity of two many-body effective approaches, the Hartree-Fock and the Random Phase Approximation theories. The description of the ground state done by the effective theories improves with increasing number of particles.

  5. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  6. Studies on tautomerism in tetrazole: comparison of Hartree Fock and density functional theory quantum chemical methods

    Science.gov (United States)

    Mazurek, A. P.; Sadlej-Sosnowska, N.

    2000-11-01

    A comparison of the ab initio quantum chemical methods: Hartree-Fock (HF) and hybrid density functional theory (DFT)/B3LYP for the treatment of tautomeric equilibria both in the gas phase and in the solution is made. The solvent effects were investigated in terms of the self-consistent reaction field (SCRF). Ionization potentials (IP), calculated by DFT/B3LYP, are also compared with those calculated previously within the HF frame.

  7. Fractional Electron Loss in Approximate DFT and Hartree-Fock Theory.

    Science.gov (United States)

    Peach, Michael J G; Teale, Andrew M; Helgaker, Trygve; Tozer, David J

    2015-11-10

    Plots of electronic energy vs electron number, determined using approximate density functional theory (DFT) and Hartree-Fock theory, are typically piecewise convex and piecewise concave, respectively. The curves also commonly exhibit a minimum and maximum, respectively, in the neutral → anion segment, which lead to positive DFT anion HOMO energies and positive Hartree-Fock neutral LUMO energies. These minima/maxima are a consequence of using basis sets that are local to the system, preventing fractional electron loss. Ground-state curves are presented that illustrate the idealized behavior that would occur if the basis set were to be modified to enable fractional electron loss without changing the description in the vicinity of the system. The key feature is that the energy cannot increase when the electron number increases, so the slope cannot be anywhere positive, meaning frontier orbital energies cannot be positive. For the convex (DFT) case, the idealized curve is flat beyond a critical electron number such that any additional fraction of an electron added to the system is unbound. The anion HOMO energy is zero. For the concave (Hartree-Fock) case, the idealized curve is flat up to some critical electron number, beyond which it curves down to the anion energy. A minimum fraction of an electron is required before any binding occurs, but beyond that, the full fraction abruptly binds. The neutral LUMO energy is zero. Approximate DFT and Hartree-Fock results are presented for the F → F(-) segment, and results approaching the idealized behavior are recovered for highly diffuse basis sets. It is noted that if a DFT calculation using a highly diffuse basis set yields a negative LUMO energy then a fraction of an electron must bind and the electron affinity must be positive, irrespective of whether an electron binds experimentally. This is illustrated by calculations on Ne → Ne(-).

  8. Generalization of Cramer's rule and its application to the projection of Hartree-Fock wave function

    CERN Document Server

    Hage-Hassan, Mehdi

    2009-01-01

    We generalize the Cramer's rule of linear algebra. We apply it to calculate the spectra of nucleus by applying Hill-Wheeler projection operator to Hartree-Fock wave function, and to derive L\\"owdin formula and Thouless theorem. We derive by an elementary method the infinitesimal or L\\"owdin projection operators and its integral representation to be useful for the projection of Slater determinant.

  9. The Dielectric Permittivity of Crystals in the reduced Hartree-Fock approximation

    CERN Document Server

    Cancès, Eric

    2009-01-01

    In a recent article (Canc\\`es, Deleurence and Lewin, Commun. Math. Phys., 281 (2008), pp. 129-177), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree-Fock model, the ground state electronic density matrix is decomposed as $\\gamma = \\gamma^0_{\\rm per} + Q_{\

  10. Can X-ray constrained Hartree-Fock wavefunctions retrieve electron correlation?

    Science.gov (United States)

    Genoni, Alessandro; Dos Santos, Leonardo H R; Meyer, Benjamin; Macchi, Piero

    2017-03-01

    The X-ray constrained wavefunction (XC-WF) method proposed by Jayatilaka [Jayatilaka & Grimwood (2001) ▸, Acta Cryst. A57, 76-86] has attracted much attention because it represents a possible third way of theoretically studying the electronic structure of atoms and molecules, combining features of the more popular wavefunction- and DFT-based approaches. In its original formulation, the XC-WF technique extracts statistically plausible wavefunctions from experimental X-ray diffraction data of molecular crystals. A weight is used to constrain the pure Hartree-Fock solution to the observed X-ray structure factors. Despite the wavefunction being a single Slater determinant, it is generally assumed that its flexibility could guarantee the capture, better than any other experimental model, of electron correlation effects, absent in the Hartree-Fock Hamiltonian but present in the structure factors measured experimentally. However, although the approach has been known for long time, careful testing of this fundamental hypothesis is still missing. Since a formal demonstration is impossible, the validation can only be done heuristically and, to accomplish this task, X-ray constrained Hartree-Fock calculations have been performed using structure factor amplitudes computed at a very high correlation level (coupled cluster) for selected molecules in isolation, in order to avoid the perturbations due to intermolecular interactions. The results show that a single-determinant XC-WF is able to capture the electron correlation effects only partially. The largest amount of electron correlation is extracted when: (i) a large external weight is used (much larger than what has normally been used in XC-WF calculations using experimental data); and (ii) the high-order reflections, which carry less information on the electron correlation, are down-weighted (or even excluded), otherwise they would bias the fitting towards the unconstrained Hartree-Fock wavefunction.

  11. Empirical Foundations of Relativistic Gravity

    CERN Document Server

    Ni, W T

    2005-01-01

    In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...

  12. Relativistic heavy ion collisions with realistic non-equilibrium mean fields

    CERN Document Server

    Fuchs, C; Wolter, H H

    1996-01-01

    We study the influence of non-equilibrium phase space effects on the dynamics of heavy ion reactions within the relativistic BUU approach. We use realistic Dirac-Brueckner-Hartree-Fock (DBHF) mean fields determined for two-Fermi-ellipsoid configurations, i.e. for colliding nuclear matter, in a local phase space configuration approximation (LCA). We compare to DBHF mean fields in the local density approximation (LDA) and to the non-linear Walecka model. The results are further compared to flow data of the reaction Au on Au at 400 MeV per nucleon measured by the FOPI collaboration. We find that the DBHF fields reproduce the experiment if the configuration dependence is taken into account. This has also implications on the determination of the equation of state from heavy ion collisions.

  13. Relativistic Effects and Three-Nucleon Forces in Nuclear Matter and Nuclei

    CERN Document Server

    Müther, Herbert; Ma, Zhongyu

    2016-01-01

    We review a large body of predictions obtained within the framework of relativistic meson theory together with the Dirac-Brueckner-Hartree-Fock approach to nuclear matter and finite nuclei. The success of this method has been largely related to its ability to take into account important three-body effects. Therefore, the overarching theme of this article is the interpretation of the so-called "Dirac effects" as an effective three-nucleon force. We address the equation of state of isospin symmetric and asymmetric nucleonic matter and related issues, ranging from proton and neutron density distributions to momentum distributions and short-range correlations. A central part of the discussion is devoted to the optical model potential for nucleon-nucleus scattering. We also take the opportunity to explore similarities and differences with predictions based on the increasingly popular chiral effective field theory.

  14. On the NP-completeness of the Hartree-Fock method for translationally invariant systems

    CERN Document Server

    Whitfield, James D

    2014-01-01

    The self-consistent field method utilized for solving the Hartree-Fock (HF) problem and the closely related Kohn-Sham problem, is typically thought of as one of the cheapest methods available to quantum chemists. This intuition has been developed from the numerous applications of the self-consistent field method to a large variety of molecular systems. However, in terms of its worst-case computational complexity, the HF problem is NP-complete. In this work, we investigate how far one can push the boundaries of the NP-completeness by investigating restricted instances of HF. We have constructed two new NP-complete variants of the problem. The first is a set of Hamiltonians whose translationally invariant Hartree-Fock solutions are trivial, but whose broken symmetry solutions are NP-complete. Second, we demonstrate how to embed instances of spin glasses into translationally invariant Hartree-Fock instances and provide a numerical example. These findings are the first steps towards understanding in which cases t...

  15. Relativistic causality and clockless circuits

    CERN Document Server

    Matherat, Philippe; 10.1145/2043643.2043650

    2011-01-01

    Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...

  16. Relativistic RPA in axial symmetry

    CERN Document Server

    Arteaga, D Pena; 10.1103/PhysRevC.77.034317

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.

  17. Multifragmentation calculated with relativistic forces

    CERN Document Server

    Feldmeier, H; Papp, G

    1995-01-01

    A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density depe ndence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 -- 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. PACS: 25.70Mn, 25.75.+r

  18. Relativistic Stern-Gerlach Deflection

    CERN Document Server

    Talman, Richard

    2016-01-01

    Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.

  19. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  20. Special relativistic hydrodynamics with gravitation

    CERN Document Server

    Hwang, Jai-chan

    2016-01-01

    The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.

  1. Vector Theory in Relativistic Thermodynamics

    Institute of Scientific and Technical Information of China (English)

    刘泽文

    1994-01-01

    It is pointed out that five defects occur in Planck-Einstein’s relativistic thermodynamics (P-E theory). A vector theory in relativistic thermodynamics (VTRT) is established. Defining the internal energy as a 4-vector, and supposing the entropy and the number of. particles to be invariants we have derived the transformations of all quantities, and subsequently got the Lagrangian and 4-D forms of thermodynamic laws. In order to test the new theory, several exact solutions with classical limits are given. The VTRT is free from the defects of the P-E theory.

  2. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  3. Properties of Z=120 nuclei and the \\alpha-decay chains of the (292,304)120 isotopes using relativistic and non-relativistic formalisms

    CERN Document Server

    Ahamad, Shakeb; Patra, S K

    2012-01-01

    The ground state and first intrinsic excited state of superheavy nuclei with Z=120 and N=160-204 are investigated using both non-relativistic Skyrme-Hartree-Fock and the axially deformed Relativistic Mean Field formalisms. We employ a simple BCS pairing approach for calculating the energy contribution from pairing interaction. The results for isotopic chain of binding energy, quadrupole deformation parameter, two neutron separation energies and some other observables are compared with the FRDM and some recent macroscopic-microscopic calculations. We predict superdeformed ground state solutions for almost all the isotopes. Considering the possibility of magic neutron number, two different mode of \\alpha-decay chains (292)120 and (304)120 are also studied within these frameworks. The Q_{\\alpha}-values and the half-life T^{\\alpha}_{1/2} for these two different mode of decay chains are compared with FRDM and recent macroscopic-microscopic calculations. The calculation is extended for the \\alpha-decay chains of 29...

  4. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  5. Self-coherent Hartree-Fock theory and the microscopic symmetries of the nucleus; Theorie autocoherente de Hartree-Fock et les symetries microscopiques du noyau

    Energy Technology Data Exchange (ETDEWEB)

    Bouguettoucha, A.

    1996-06-14

    A possible effects of the C{sub 4}-symmetry in the superdeformed nuclei of the A {approx}150 mass range has been studied microscopically using cranking Strutinsky method with the deformed Woods-Saxon potential and the Hartree-Fock approach with the Skyrme interaction. If the existence of such a symmetry is judged by the moments Q{sub 44}, the results of the calculation indicate a very weak effect of this kind. Four new superdeformed bands in the {sup 148}Gd nucleus have been studied in reaction to the recent experimental observations (Eurogam Phase 2): a backbending has been tentatively observed at very high rotational frequency in the third excited band. One of the other bands exhibits a J{sup (2)} moment very similar to that of the yrast band in {sup 152}Dy, and this is the first example of identical bands which differ by four mass units. Calculations with the methods mentioned above have been used to analyse the band structure in terms of the nucleonic configurations. Calculation have been performed for some nuclear configurations predicted to involve the exotic octupole deformations (Y{sub 30-}`pear shapes`; Y{sub 31-}`banana mode`; Y{sub 32-}`T{sub d}-symmetry` and Y{sub 33-}`C{sub 3}-symmetry`). While the previous calculations based on the Strutinsky method could not treat the coupling between those modes, the Hartree-Fock approach allows to see for the first time in which propositions the various modes couple. (author). 116 refs.

  6. Microscopic Processes in Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. The Highest Redshift Relativistic Jets

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.

    2007-12-18

    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.

  8. Circular polarization in relativistic jets

    NARCIS (Netherlands)

    Macquart, JP

    2003-01-01

    Circular polarization is observed in some relativistic jet sources at radio wavelengths. It is largely associated with activity in the cores of the radio sources, is highly variable, and is strongest during ejection episodes. VLBI imaging and interstellar scintillation arguments show that the degree

  9. Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

    CERN Document Server

    Gravejat, Philippe; Sere, Eric

    2007-01-01

    We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, re...

  10. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  11. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  12. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    Science.gov (United States)

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  13. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Srikant; Mazziotti, David A., E-mail: damazz@uchicago.edu [Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502–R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C{sub 2}, CN, Cr {sub 2}, and NO {sub 2}.

  14. A importância do método de Hartree no ensino de química quântica

    Directory of Open Access Journals (Sweden)

    Silmar A. do Monte

    2011-01-01

    Full Text Available Hartree's original ideas are described. Its connection with electrostatics can be explored in order to decrease the gap between teaching of Physics and Chemistry. As a consequence of its simplicity and connection with electrostatics, it is suggested that Hartree's method should be presented before the Hartree-Fock method. Besides, since the fundamental concepts of indistinguishibility of electrons along with the antissimetry of the wave function are missing in the Hartree's product, the method itself can be used to introduce these concepts. Despite the fact that these features are not included in the trial wavefunction, important qualitatively correct results can be obtained.

  15. Time-dependent Hartree-Fock studies of the dynamical fusion threshold

    Directory of Open Access Journals (Sweden)

    Nakatsukasa Takashi

    2012-12-01

    Full Text Available A microscopic description of dynamical fusion threshold in heavy ion collisions is performed in the framework of time-dependent Hartree-Fock (TDHF theory using Skyrme energy density functional (EDF. TDHF fusion threshold is in a better agreement with experimental fusion barrier. We find that the onset of extra push lies at the effective fissility 33, which is consistent with the prediction of Swiatecki’s macroscopic model. The extra push energy in our TDHF simulation is systematically smaller than the prediction in macroscopic model. The important dynamical effects and the way to fit the parameter might be responsible for the different results.

  16. Employing an interaction picture to remove artificial correlations in multilayer multiconfiguration time-dependent Hartree simulations

    Science.gov (United States)

    Wang, Haobin; Thoss, Michael

    2016-10-01

    The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is implemented in the interaction picture to allow a more effective description of correlation effects. It is shown that the artificial correlation present in the original Schrödinger picture can be removed with an appropriate choice of the zeroth-order Hamiltonian. Thereby, operators in the interaction picture are obtained through time-dependent unitary transformations, which have negligible computational cost compared with other parts of the ML-MCTDH algorithm. The efficiency of the method is demonstrated by application to a model of vibrationally coupled charge transport in molecular junctions.

  17. Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations

    Science.gov (United States)

    Cancès, Eric; Pernal, Katarzyna

    2008-04-01

    We present projected gradient algorithms designed for optimizing various functionals defined on the set of N-representable one-electron reduced density matrices. We show that projected gradient algorithms are efficient in minimizing the Hartree-Fock or the Müller-Buijse-Baerends functional. On the other hand, they converge very slowly when applied to the recently proposed BBk (k =1,2,3) functionals [O. Gritsenko et al., J. Chem. Phys. 122, 204102 (2005)]. This is due to the fact that the BBk functionals are not proper functionals of the density matrix.

  18. New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock.

    Science.gov (United States)

    Asadchev, Andrey; Gordon, Mark S

    2012-11-13

    In this article, a new multithreaded Hartree-Fock CPU/GPU method is presented which utilizes automatically generated code and modern C++ techniques to achieve a significant improvement in memory usage and computer time. In particular, the newly implemented Rys Quadrature and Fock Matrix algorithms, implemented as a stand-alone C++ library, with C and Fortran bindings, provides up to 40% improvement over the traditional Fortran Rys Quadrature. The C++ GPU HF code provides approximately a factor of 17.5 improvement over the corresponding C++ CPU code.

  19. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  20. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  1. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-05-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  2. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  3. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  4. Relativistic stars in bigravity theory

    CERN Document Server

    Aoki, Katsuki; Tanabe, Makoto

    2016-01-01

    Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in GR. On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.

  5. Relativistic Hydrodynamics on Graphic Cards

    CERN Document Server

    Gerhard, Jochen; Bleicher, Marcus

    2012-01-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  6. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  7. Fluctuations in Relativistic Causal Hydrodynamics

    CERN Document Server

    Kumar, Avdhesh; Mishra, Ananta P

    2013-01-01

    The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.

  8. Self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a two-dimensional strongly type-II superconductor at high magnetic fields

    Science.gov (United States)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-01-01

    A self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc 2, characterized by a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor, with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong coupling superconductor limit.

  9. Thermodynamic and relativistic uncertainty relations

    Science.gov (United States)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  10. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  11. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  12. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  13. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  14. Relativistic Tennis Using Flying Mirror

    Science.gov (United States)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  15. Magnetohydrodynamics of Chiral Relativistic Fluids

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2015-01-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  16. A divide and conquer real space finite-element Hartree-Fock method

    Science.gov (United States)

    Alizadegan, R.; Hsia, K. J.; Martinez, T. J.

    2010-01-01

    Since the seminal contribution of Roothaan, quantum chemistry methods are traditionally expressed using finite basis sets comprised of smooth and continuous functions (atom-centered Gaussians) to describe the electronic degrees of freedom. Although this approach proved quite powerful, it is not well suited for large basis sets because of linear dependence problems and ill conditioning of the required matrices. The finite element method (FEM), on the other hand, is a powerful numerical method whose convergence is also guaranteed by variational principles and can be achieved systematically by increasing the number of degrees of freedom and/or the polynomial order of the shape functions. Here we apply the real-space FEM to Hartree-Fock calculations in three dimensions. The method produces sparse, banded Hermitian matrices while allowing for variable spatial resolution. This local-basis approach to electronic structure theory allows for systematic convergence and promises to provide an accurate and efficient way toward the full ab initio analysis of materials at larger scales. We introduce a new acceleration technique for evaluating the exchange contribution within FEM and explore the accuracy and robustness of the method for some selected test atoms and molecules. Furthermore, we applied a divide-and-conquer (DC) method to the finite-element Hartree-Fock ab initio electronic-structure calculations in three dimensions. This DC approach leads to facile parallelization and should enable reduced scaling for large systems.

  17. Heisenberg scaling in relativistic quantum metrology

    CERN Document Server

    Friis, Nicolai; Fuentes, Ivette; Dür, Wolfgang

    2015-01-01

    We address the issue of precisely estimating small parameters encoded in a general linear transformation of the modes of a bosonic quantum field. Such Bogoliubov transformations frequently appear in the context of quantum optics. We provide a recipe for computing the quantum Fisher information for arbitrary pure initial states. We show that the maximally achievable precision of estimation is inversely proportional to the squared average particle number, and that such Heisenberg scaling requires non-classical, but not necessarily entangled states. Our method further allows to quantify losses in precision arising from being able to monitor only finitely many modes, for which we identify a lower bound.

  18. Relativistic effects in Lyman-alpha forest

    CERN Document Server

    Iršič, Vid; Viel, Matteo

    2015-01-01

    We present the calculation of the Lyman-alpha (Lyman-$\\alpha$) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range ($z = 2 - 5$). Furthermore, we show a comprehensive application of our calculations to the Quasar- Lyman-$\\alpha$ cross-correlation function. Our results indicate that the signal of relativistic effects can be as large as 30% at Baryonic Acoustic Oscillation (BAO) scale, which is much larger than anticipated and mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross- correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considerin...

  19. Transverse relativistic effects in paraxial wave interference

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2013-01-01

    We consider relativistic deformations of interfering paraxial waves moving in the transverse direction. Owing to superluminal transverse phase velocities, noticeable deformations of the interference patterns arise when the waves move with respect to each other with non-relativistic velocities. Similar distortions also appear on a mutual tilt of the interfering waves, which causes a phase delay analogous to the relativistic time delay. We illustrate these observations by the interference between a vortex wave beam and a plane wave, which exhibits a pronounced deformation of the radial fringes into a fork-like pattern (relativistic Hall effect). Furthermore, we describe an additional relativistic motion of the interference fringes (a counter-rotation in the vortex case), which become noticeable at the same non-relativistic velocities.

  20. Entropy current for non-relativistic fluid

    CERN Document Server

    Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar

    2014-01-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...

  1. Non-Relativistic Spacetimes with Cosmological Constant

    OpenAIRE

    Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.

    1998-01-01

    Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...

  2. Relativistic non-equilibrium thermodynamics revisited

    CERN Document Server

    García-Colin, L S

    2006-01-01

    Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.

  3. Analogy betwen dislocation creep and relativistic cosmology

    OpenAIRE

    J.A. Montemayor-Aldrete; J.D. Muñoz-Andrade; Mendoza-Allende, A.; Montemayor-Varela, A.

    2005-01-01

    A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have been obtained for Relativistic Cosmology. From these four new equations, one may determine...

  4. A relativistic correction to semiclassical charmonium

    Science.gov (United States)

    Weiss, J.

    1995-09-01

    It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.

  5. Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics

    CERN Document Server

    Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu

    1999-01-01

    We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.

  6. Relativistic Cyclotron Instability in Anisotropic Plasmas

    Science.gov (United States)

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  7. Do non-relativistic neutrinos oscillate?

    Science.gov (United States)

    Akhmedov, Evgeny

    2017-07-01

    We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.

  8. Geometric Models of the Relativistic Harmonic Oscillator

    CERN Document Server

    Cotaescu, I I

    1997-01-01

    A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.

  9. Relativistic and non-relativistic solitons in plasmas

    Science.gov (United States)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  10. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    Science.gov (United States)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  11. Relativistic Corrections to the Bohr Model of the Atom

    Science.gov (United States)

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  12. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S.; Wolter, H.H. [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  13. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  14. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    Science.gov (United States)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  15. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  16. Simple waves in relativistic fluids.

    Science.gov (United States)

    Lyutikov, Maxim

    2010-11-01

    We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.

  17. Observation of relativistic antihydrogen atoms

    Science.gov (United States)

    Blanford, Glenn Delfosse, Jr.

    1997-09-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  18. Einstein Toolkit for Relativistic Astrophysics

    Science.gov (United States)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  19. Density perturbations with relativistic thermodynamics

    CERN Document Server

    Maartens, R

    1997-01-01

    We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.

  20. Thermodynamics of polarized relativistic matter

    Science.gov (United States)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  1. Thermodynamics of polarized relativistic matter

    CERN Document Server

    Kovtun, Pavel

    2016-01-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  2. Relativistic solitons and superluminal signals

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it

    2005-02-01

    Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.

  3. Study on formalism of Griffin-Wheeler-Hartree-Fock equations and a propose for its variational discretization; Estudo sobre o formalismo das equacoes Griffin-Wheeler-Hartree-Fock e uma proposta para sua discretizacao variacional

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rugles Cesar

    2002-07-01

    The present thesis is divided into two parts. The first part describes the many kind of the formalisms of the Generator Coordinate Hartree-Fock method (GCHFM) and second part describes the computational aspect applied to the GCHFM formalism in its discreet form. The major aim of this work is the development of an alternative method to non-linear parameters optimization (basis set) and later uses these optimized parameters to adjust the weight function into GCHFM method. The study of the weight function when N {yields} {infinity} (or for large N), where N represents the number of mesh, is important since the GCHFM theory in its continuous form depend on understanding of such behavior. In this thesis, a detailed study is carried out about the methodologies of the self-consistent solution of the GCHFM and some methodology aspects of non-linear parameters optimization. This work shows that the Generator Coordinate Hartree-Fock method is general and it has as particular case the Hartree-Fock Roothaan method. Some possible variations or combinations around of the characteristics of the GCHFM and a comparison with conventional SCF procedure are reported in this thesis. The piecewise weight function method developed in this work shows to be very good for collective parameter optimizations of the Generator Coordinate (GC). The GCHFM calculations are necessary restrict (GCM-RHF), especially when the calculated value energies approach of its numerical values or Hartree-Fock limit. In the optimization methods of state functions for atomic electronic systems is very common the application of the gradient method and its efficacy is not contested. However, the method describes above allow us to obtain results as good as the gradient method. The basis set generated using the piecewise weight function method for Gaussian type function were used in the Restrict Hartree-Fock (RHF) calculations to obtain the total energies for some atomic electronic systems, such as neutron atoms and

  4. The semi-classical limit of the time dependent Hartree-Fock equation. II. The Wick symbol of the solution

    CERN Document Server

    Amour, Laurent; Nourrigat, Jean

    2011-01-01

    We study the Wick symbol of a solution of the time dependent Hartree Fock equation, under weaker hypotheses than those needed for the Weyl symbol in the first paper with thesame title. With similar, we prove some kind of Ehrenfest theorem for observables that are not pseudo-differential operators.

  5. Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    CERN Document Server

    Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-01-01

    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C$_2$ dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model $C_{2v}$ insertion pathway for BeH$_2$. The variational excited state methodolo...

  6. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    Science.gov (United States)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  7. Twist-averaged boundary conditions for nuclear pasta Hartree-Fock calculations

    CERN Document Server

    Schuetrumpf, B

    2015-01-01

    Background: Nuclear pasta phases, present in the inner crust of neutron stars, are associated with nucleonic matter at sub-saturation densities arranged in regular shapes. Those complex phases, residing in a layer which is approximately 100 m thick, impact many features of neutron stars. Theoretical quantum-mechanical simulations of nuclear pasta are usually carried out in finite 3D boxes assuming periodic boundary conditions (PBC). The resulting solutions are affected by spurious finite-size effects. Purpose: In order to remove spurious finite-size effects, it is convenient to employ twist-averaged boundary conditions (TABC) used in condensed matter, nuclear matter, and lattice QCD applications. In this work, we study the effectiveness of TABC in the context of pasta phases simulations within nuclear density functional theory. Methods: We perform Skyrme-Hartree-Fock calculations in three dimensions by implementing Bloch boundary conditions. The TABC averages are obtained by means of Gauss-Legendre integratio...

  8. Time-Dependent Hartree-Fock Approach to Nuclear Pasta at Finite Temperature

    CERN Document Server

    Schuetrumpf, Bastian; Iida, Kei; Maruhn, Joachim; Mecke, Klaus; Reinhard, Paul-Gerhard

    2013-01-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of $\\alpha$ particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature.

  9. Hartree-Fock mean-field theory for trapped dirty bosons

    Science.gov (United States)

    Khellil, Tama; Pelster, Axel

    2016-06-01

    Here we work out in detail a non-perturbative approach to the dirty boson problem, which relies on the Hartree-Fock theory and the replica method. For a weakly interacting Bose gas within a trapped confinement and a delta-correlated disorder potential at finite temperature, we determine the underlying free energy. From it we determine via extremization self-consistency equations for the three components of the particle density, namely the condensate density, the thermal density, and the density of fragmented local Bose-Einstein condensates within the respective minima of the random potential landscape. Solving these self-consistency equations in one and three dimensions in two other publications has revealed how these three densities change for increasing disorder strength.

  10. Spiral magnetic phases on the Kondo Lattice Model: A Hartree-Fock approach

    Science.gov (United States)

    Costa, N. C.; Lima, J. P.; dos Santos, Raimundo R.

    2017-02-01

    We study the Kondo Lattice Model (KLM) on a square lattice through a Hartree-Fock approximation in which the local spins are treated semi-classically, in the sense that their average values are modulated by a magnetic wavevector Q while they couple with the conduction electrons through fermion operators. In this way, we obtain a ground state phase diagram in which spiral magnetic phases (in which the wavevector depends on the coupling constants and on the density) interpolate between the low-density ferromagnetic phase and the antiferromagnetic phase at half filling; within small regions of the phase diagram commensurate magnetic phases can coexist with Kondo screening. We have also obtained 'Doniach-like' diagrams, showing the effect of temperature on the ground state phases, and established that for some ranges of the model parameters (the exchange coupling and conduction electron density) the magnetic wavevector changes with temperature, either continuously or abruptly (e.g., from spiral to ferromagnetic).

  11. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2017-07-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  12. Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock

    CERN Document Server

    Boehmer, Christian; Kraus, Sebastian; Thies, Michael

    2008-01-01

    The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition. Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a function of fermion mass, chemical potential and temperature and compared with the one of the discrete chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero temperature for various densities and fermion masses.

  13. Comparative study of metal cluster fission in Hartree-Fock and LDA

    CERN Document Server

    Lyalin, A; Greiner, W; Lyalin, Andrey; Solov'yov, Andrey; Greiner, Walter

    2001-01-01

    Fission of doubly charged metal clusters is studied using the open-shell two-center deformed jellium Hartree-Fock model and Local Density Approximation. Results of calculations of the electronic structure and fission barriers for the symmetric and asymmetric channels associated with the following processes Na_{10}^{2+} --> Na_{7}^{+} + Na_{3}^{+}, Na_{18}^{2+} --> Na_{15}^{+} + Na_{3}^{+} and Na_{18}^{2+} --> 2 Na_{9}^{+} are presented. The role of the exact exchange and many-body correlation effects in metal clusters fission is analysed. It is demonstrated that the influence of many-electron correlation effects on the height of the fission barrier is more profound if the barrier arises nearby or beyond the scission point. The importance of cluster deformation effects in the fission process is elucidated with the use of the overlapping-spheroids shape parametrization allowing one an independent variation of deformations in the parent and daughter clusters.

  14. Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1998-03-01

    Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)

  15. Relativistic suppression of wave packet spreading.

    Science.gov (United States)

    Su, Q; Smetanko, B; Grobe, R

    1998-03-30

    We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.

  16. Magnetism and rotation in relativistic field theory

    Science.gov (United States)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  17. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  18. Physico-mathematical foundations of relativistic cosmology

    CERN Document Server

    Soares, Domingos

    2013-01-01

    I briefly present the foundations of relativistic cosmology, which are, General Relativity Theory and the Cosmological Principle. I discuss some relativistic models, namely, "Einstein static universe" and "Friedmann universes". The classical bibliographic references for the relevant tensorial demonstrations are indicated whenever necessary, although the calculations themselves are not shown.

  19. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  20. General relativistic Boltzmann equation, I: Covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    This series of two articles aims at dissipating the rather dense haze existing in the present literature around the General Relativistic Boltzmann equation. In this first article, the general relativistic one-particle distribution function in phase space is defined as an average of delta functions.

  1. Critique of Conventional Relativistic Quantum Mechanics.

    Science.gov (United States)

    Fanchi, John R.

    1981-01-01

    Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)

  2. Lattice Boltzmann equation for relativistic quantum mechanics.

    Science.gov (United States)

    Succi, Sauro

    2002-03-15

    Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.

  3. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    Using response function methods we report calculations of the dynamic isotropic polarizability of SnH4 and PbH4 and of the relativistic corrections to it in the random phase approximation and at the correlated multiconfigurational linear response level of approximation. All relativistic corrections...

  4. The dirac equation in the algebraic approximation : VIII. Comparison of finite basis set and finite element molecular Dirac-Hartree-Fock calculations for the H-2, LiH, and BH ground states

    NARCIS (Netherlands)

    Quiney, HM; Glushkov, VN; Wilson, S

    2002-01-01

    Using basis sets of distributed s-type Gaussian functions with positions and exponents optimized so as to support Hartree-Fock total energies with an accuracy approaching the sub-muHartree level, Dirac-Hartree-Fock-Coulomb calculations are reported for the ground states of the H-2, LiH, and BH molec

  5. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  6. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  7. Single electron relativistic clock interferometer

    Science.gov (United States)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  8. 24-Hour Relativistic Bit Commitment

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  9. Chaos and Maps in Relativistic Dynamical Systems

    CERN Document Server

    Horwitz, L P

    1999-01-01

    The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...

  10. Relativistic Particles in Clusters of Galaxies

    CERN Document Server

    Ensslin, T A

    2002-01-01

    A brief overview on the theory and observations of relativistic particle populations in clusters of galaxies is given. The following topics are addressed: (i) the diffuse relativistic electron population within the intra-cluster medium (ICM) as seen in the cluster wide radio halos and possibly also seen in the high energy X-ray and extreme ultraviolet excess emissions of some clusters, (ii) the observed confined relativistic electrons within fresh and old radio plasma and their connection to cluster radio relics at cluster merger shock waves, (iii) the relativistic proton population within the ICM, and its observable consequences (if it exists), and (iv) the confined relativistic proton population (if it exists) within radio plasma. The importance of upcoming, sensitive gamma-ray telescopes for this research area is highlighted.

  11. Relativistic gas in a Schwarzschild metric

    CERN Document Server

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...

  12. Relativistic recursion relations for transition matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2004-01-01

    We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.

  13. On the problem of representability and the Bogolyubov-Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Knoerr, Hans Konrad

    2013-11-22

    The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is

  14. Relativistic Electrons in Electric Discharges

    DEFF Research Database (Denmark)

    Cinar, Deniz

    discharges as the source. The “Atmosphere-Space Interactions Monitor” (ASIM) for the International Space Station in 2016, led by DTU Space, and the French microsatellite TARANIS, also with launch in 2016, will identify with certainty the source of TGFs. In preparation for the missions, the Ph.D. project has...... developed a Monte Carlo module of a simulation code to model the formation of avalanches of electrons accelerated to relativistic energies, and the generation of bremsstrahlung through interactions with the neutral atmosphere. The code will be used in the analysis of data from the two space missions. We...... scattering. However, we only explored the properties of the complete number of photons reaching space, not the distribution at speci_c locations as in the case of a satellite. With this reservation we conclude that it is not possible to deduce much information from a satellite measurement of the photons...

  15. Real vs. simulated relativistic jets

    CERN Document Server

    Gómez, J L; Agudo, I; Marscher, A P; Jorstad, S G; Aloy, M A

    2005-01-01

    Intensive VLBI monitoring programs of jets in AGN are showing the existence of intricate emission patterns, such as upstream motions or slow moving and quasi-stationary componentes trailing superluminal features. Relativistic hydrodynamic and emission simulations of jets are in very good agreement with these observations, proving as a powerful tool for the understanding of the physical processes taking place in the jets of AGN, microquasars and GRBs. These simulations show that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or ambient medium. Both observations and simulations suggest that shock-in-jet models may be an overly simplistic idealization when interpreting the emission structure observed in actual jets.

  16. Causal categories: relativistically interacting processes

    CERN Document Server

    Coecke, Bob

    2011-01-01

    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study t...

  17. Relativistic effects and quasipotential equations

    CERN Document Server

    Ramalho, G; Peña, M T

    2002-01-01

    We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering $T$ matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.

  18. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  19. General relativity and relativistic astrophysics

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

  20. In search of relativistic time

    CERN Document Server

    Lachieze-Rey, Marc

    2013-01-01

    This paper explores the status of some notions which are usually associated to time, like datations, chronology, durations, causality, cosmic time and time functions in the Einsteinian relativistic theories. It shows how, even if some of these notions do exist in the theory or for some particular solution of it, they appear usually in mutual conflict: they cannot be synthesized coherently, and this is interpreted as the impossibility to construct a common entity which could be called time. This contrasts with the case in Newtonian physics where such a synthesis precisely constitutes Newtonian time. After an illustration by comparing the status of time in Einsteinian physics with that of the vertical direction in Newtonian physics, I will conclude that there is no pertinent notion of time in Einsteinian theories.

  1. Playing relativistic billiards beyond graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sadurni, E [Institut fuer Quantenphysik, Ulm Universitaet, Albert-Einstein Allee 11, 89081 Ulm (Germany); Seligman, T H [Centro Internacional de Ciencias A.C., Apartado Postal 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico); Mortessagne, F, E-mail: esadurni@uni-ulm.d, E-mail: seligman@fis.unam.m, E-mail: fabrice.mortessagne@unice.f [Laboratoire de Physique de la Matiere Condensee, Universite de Nice-Sophia Antipolis, CNRS, UMR 6622 Parc Valrose, 06108 Nice cedex 2 (France)

    2010-05-15

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  2. Playing relativistic billiards beyond graphene

    Science.gov (United States)

    Sadurní, E.; Seligman, T. H.; Mortessagne, F.

    2010-05-01

    The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.

  3. Playing relativistic billiards beyond graphene

    CERN Document Server

    Sadurni, Emerson; Mortessagne, Fabrice

    2010-01-01

    The possibility of using hexagonal structures in general and graphene in particular to emulate the Dirac equation is the basis of our considerations. We show that Dirac oscillators with or without restmass can be emulated by distorting a tight binding model on a hexagonal structure. In a quest to make a toy model for such relativistic equations we first show that a hexagonal lattice of attractive potential wells would be a good candidate. First we consider the corresponding one-dimensional model giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the deformations needed in the two-dimensional case. Finally we discuss, how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and describe an appropriate experimental setup.

  4. Relativistic Kinetic Theory: An Introduction

    CERN Document Server

    Sarbach, Olivier

    2013-01-01

    We present a brief introduction to the relativistic kinetic theory of gases with emphasis on the underlying geometric and Hamiltonian structure of the theory. Our formalism starts with a discussion on the tangent bundle of a Lorentzian manifold of arbitrary dimension. Next, we introduce the Poincare one-form on this bundle, from which the symplectic form and a volume form are constructed. Then, we define an appropriate Hamiltonian on the bundle which, together with the symplectic form yields the Liouville vector field. The corresponding flow, when projected onto the base manifold, generates geodesic motion. Whenever the flow is restricted to energy surfaces corresponding to a negative value of the Hamiltonian, its projection describes a family of future-directed timelike geodesics. A collisionless gas is described by a distribution function on such an energy surface, satisfying the Liouville equation. Fibre integrals of the distribution function determine the particle current density and the stress-energy ten...

  5. Some Surprises in Relativistic Gravity

    CERN Document Server

    Santos, N O

    2016-01-01

    General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.

  6. Thermodynamic Laws and Equipartition Theorem in Relativistic Brownian Motion

    OpenAIRE

    Koide, T.; Kodama, T.

    2011-01-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  7. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  8. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  9. Relativistic MHD with Adaptive Mesh Refinement

    CERN Document Server

    Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David

    2006-01-01

    We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.

  10. Relativistic Electron Experiment for the Undergraduate Laboratory

    CERN Document Server

    Marvel, Robert E

    2011-01-01

    We have developed an undergraduate laboratory experiment to make independent measurements of the momentum and kinetic energy of relativistic electrons from a \\beta -source. The momentum measurements are made with a magnetic spectrometer and a silicon surface-barrier detector is used to measure the kinetic energy. A plot of the kinetic energy as a function of momentum compared to the classical and relativistic predictions clearly shows the relativistic nature of the electrons. Accurate values for the rest mass of the electron and the speed of light are also extracted from the data.

  11. DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...

  12. Relativistic versus Newtonian orbitography: the Relativistic Motion Integrator (RMI) software. Illustration with the LISA mission

    CERN Document Server

    Pireaux, S

    2008-01-01

    The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, with respect to the appropriate gravitational metric, instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of satellites. Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI ephemeris with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. This mission is an interferometer formed by three spacecraft which aims at the detection of gravitational waves. Precise ephemerides of LISA spacecraft are needed not only for the sake of the orbitography but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbitography n...

  13. Relativistic elastic differential cross sections for equal mass nuclei

    Directory of Open Access Journals (Sweden)

    C.M. Werneth

    2015-10-01

    Full Text Available The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  14. Relativistic elastic differential cross sections for equal mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Maung, K.M.; Ford, W.P. [The University of Southern Mississippi, 118 College Drive, Box 5046, Hattiesburg, MS 39406 (United States)

    2015-10-07

    The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  15. Electromagnetic interaction of relativistic electrons in matter; Interaction electromagnetique d`electrons relativistes dans la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Artru, X. [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Collaboration: IPN-Lyon, IRMM (Gell), LURE (Orsay); Collaboration: IPN-Lyon, LAL and IEF (Orsay), HIP (Helsinki), INFN (Frascati, Milan)

    1998-12-31

    We have studied different effects related to electromagnetic interaction of relativistic electrons in matter and investigated their use in beam profile measurements. (authors) 4 refs. Short communication

  16. Clumps in large scale relativistic jets

    CERN Document Server

    Tavecchio, F; Celotti, A

    2003-01-01

    The relatively intense X-ray emission from large scale (tens to hundreds kpc) jets discovered with Chandra likely implies that jets (at least in powerful quasars) are still relativistic at that distances from the active nucleus. In this case the emission is due to Compton scattering off seed photons provided by the Cosmic Microwave Background, and this on one hand permits to have magnetic fields close to equipartition with the emitting particles, and on the other hand minimizes the requirements about the total power carried by the jet. The emission comes from compact (kpc scale) knots, and we here investigate what we can predict about the possible emission between the bright knots. This is motivated by the fact that bulk relativistic motion makes Compton scattering off the CMB photons efficient even when electrons are cold or mildly relativistic in the comoving frame. This implies relatively long cooling times, dominated by adiabatic losses. Therefore the relativistically moving plasma can emit, by Compton sc...

  17. General relativistic corrections and non-Gaussianity

    CERN Document Server

    Villa, Eleonora; Matarrese, Sabino

    2014-01-01

    General relativistic cosmology cannot be reduced to linear relativistic perturbations superposed on an isotropic and homogeneous (Friedmann-Robertson-Walker) background, even though such a simple scheme has been successfully applied to analyse a large variety of phenomena (such as Cosmic Microwave Background primary anisotropies, matter clustering on large scales, weak gravitational lensing, etc.). The general idea of going beyond this simple paradigm is what characterises most of the efforts made in recent years: the study of second and higher-order cosmological perturbations including all general relativistic contributions -- also in connection with primordial non-Gaussianities -- the idea of defining large-scale structure observables directly from a general relativistic perspective, the various attempts to go beyond the Newtonian approximation in the study of non-linear gravitational dynamics, by using e.g., Post-Newtonian treatments, are all examples of this general trend. Here we summarise some of these ...

  18. Relativistic Thermodynamics: A Modern 4-Vector Approach

    Directory of Open Access Journals (Sweden)

    J. Güémez

    2011-01-01

    Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ  =  Wμ  +  Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.

  19. Relativistic effect of spin and pseudospin symmetries

    CERN Document Server

    Chen, Shou-Wan

    2012-01-01

    Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $\\lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.

  20. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  1. Non-Newtonian Properties of Relativistic Fluids

    CERN Document Server

    Koide, Tomoi

    2010-01-01

    We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.

  2. Energy spectra in relativistic electron precipitation events.

    Science.gov (United States)

    Rosenberg, T. J.; Lanzerotti, L. J.; Bailey, D. K.; Pierson, J. D.

    1972-01-01

    Two events in August 1967, categorized as relativistic electron precipitation (REP) events by their effect on VHF transmissions propagated via the forward-scatter mode, have been examined with regard to the energy spectra of trapped and precipitated electrons. These two substorm-associated events August 11 and August 25 differ with respect to the relativistic, trapped electron population at synchronous altitude; in the August 25 event there was a nonadiabatic enhancement of relativistic (greater than 400 keV) electrons, while in the August 11 event no relativistic electrons were produced. In both events electron spectra deduced from bremsstrahlung measurements (made on a field line close to that of the satellite) had approximately the same e-folding energies as the trapped electron enhancements. However, the spectrum of electrons in the August 25 event was significantly harder than the spectrum in the event of August 11.

  3. Relativistic Effects at the Freshman Level.

    Science.gov (United States)

    Banna, M. Salim

    1985-01-01

    Summarizes the content of a lecture in which relativistic effects in chemistry are introduced through a calculation that illustrates these effects on the s and p electrons and that can be verified by photoelectron spectroscopy data. (JN)

  4. Star Products for Relativistic Quantum Mechanics

    OpenAIRE

    Henselder, P.

    2007-01-01

    The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.

  5. Relabeling symmetry in relativistic fluids and plasmas

    CERN Document Server

    Kawazura, Yohei; Fukumoto, Yasuhide

    2014-01-01

    The conservation of the recently formulated relativistic canonical helicity [Yoshida Z, Kawazura Y, and Yokoyama T 2014 J. Math. Phys. 55 043101] is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the "conventional helicity" is no longer a constant of motion. We have...

  6. Relativistic diffusion equation from stochastic quantization

    CERN Document Server

    Kazinski, P O

    2007-01-01

    The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.

  7. Relativistic Langevin equation for runaway electrons

    Science.gov (United States)

    Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.

    2016-10-01

    The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.

  8. Solutions of relativistic radial quasipotential equations

    Energy Technology Data Exchange (ETDEWEB)

    Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.

    1985-11-01

    A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.

  9. Spin, localization and uncertainty of relativistic fermions

    CERN Document Server

    Céleri, Lucas C; Terno, Daniel R

    2016-01-01

    We describe relations between several relativistic spin observables and derive a Lorentz-invariant characteristic of a reduced spin density matrix. A relativistic position operator that satisfies all the properties of its non-relativistic analogue does not exist. Instead we propose two causality-preserving positive operator-valued measures (POVM) that are based on projections onto one-particle and antiparticle spaces, and on the normalized energy density. They predict identical expectation values for position. The variances differ by less than a quarter of the squared de Broglie wavelength and coincide in the non-relativistic limit. Since the resulting statistical moment operators are not canonical conjugates of momentum, the Heisenberg uncertainty relations need not hold. Indeed, the energy density POVM leads to a lower uncertainty. We reformulate the standard equations of the spin dynamics by explicitly considering the charge-independent acceleration, allowing a consistent treatment of backreaction and incl...

  10. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  11. Some implications of the Hartree product treatment of the quantum nuclei in the ab initio Nuclear-electronic orbital methodology

    CERN Document Server

    Gharabaghi, Masumeh

    2016-01-01

    In this letter the conceptual and computational implications of the Hartree product type nuclear wavefunction introduced recently within context of the ab initio non-Born-Oppenheimer Nuclear-electronic orbital (NEO) methodology are considered. It is demonstrated that this wavefunction may imply a pseudo-adiabatic separation of the nuclei and electrons and each nucleus is conceived as a quantum oscillator while a non-Coulombic effective Hamiltonian is deduced for electrons. Using variational principle this Hamiltonian is used to derive a modified set of single-component Hartree-Fock equations which are equivalent to the multi-component version derived previously within context of the NEO and, easy to be implemented computationally.

  12. Some implications of the Hartree product treatment of the quantum nuclei in the ab initio nuclear-electronic orbital methodology

    Science.gov (United States)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2016-12-01

    In this letter the conceptual and computational implications of the Hartree product type nuclear wavefunction introduced recently within the context of the ab initio non-Born-Oppenheimer Nuclear-electronic orbital (NEO) methodology are considered. It is demonstrated that this wavefunction may imply a pseudo-adiabatic separation of the nuclei and electrons and each nucleus is conceived as a quantum oscillator while a non-Coulombic effective Hamiltonian is deduced for electrons. Using the variational principle this Hamiltonian is employed to derive a modified set of single-component Hartree-Fock equations which are equivalent to the multi-component version derived previously within the context of the NEO and, easy to be implemented computationally.

  13. On Lorentz invariants in relativistic magnetic reconnection

    Science.gov (United States)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  14. On the convexity of Relativistic Hydrodynamics

    CERN Document Server

    Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.

  15. Benedicks effect in a relativistic simple fluid

    CERN Document Server

    Garcia-Perciante, A L; Garcia-Colin, L S

    2013-01-01

    According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.

  16. New Developments in Relativistic Viscous Hydrodynamics

    OpenAIRE

    Romatschke, Paul

    2009-01-01

    Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of appl...

  17. Limits and Signatures of Relativistic Spaceflight

    CERN Document Server

    Yurtsever, Ulvi

    2015-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave phtotons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  18. Chiral quark model with relativistic kinematics

    CERN Document Server

    Garcilazo, H

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  19. Relativistic diffusive motion in random electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)

    2011-08-19

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  20. Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

    KAUST Repository

    Cho, Yonggeun

    2016-05-04

    This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company

  1. The classical limit of the time dependent Hartree-Fock equation. I. The Weyl symbol of the solution

    CERN Document Server

    Amour, Laurent; Nourrigat, Jean

    2011-01-01

    We study the time evolution of the Weyl symbol of a solution of the time dependent Hartree Fock equation, assuming that for t=0, it has a Weyl symbol which is integrable in the phase space, such as all its derivatives. We prove that the solution has the same property for all t, and we give an asymptotic expansion, in L1 sense, of this Weyl symbol.

  2. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  3. General multi-configuration Hartree--Fock program: MCHF77. [In FORTRAN (double precision) for IBM 360 and 370

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, C F

    1977-11-01

    This technical report contains a listing of a general program for multi-configuration Hartree--Fock (MCHF) calculations, including its documentation. Several examples are given showing how the program may be used. Typical output for several cases is also presented. This program has been tested over an extended period of time for a large variety of cases. This program is written for the IBM 360 or 370 in double-precision arithmetic.

  4. General technique for analytical derivatives of post-projected Hartree-Fock

    Science.gov (United States)

    Tsuchimochi, Takashi; Ten-no, Seiichiro

    2017-02-01

    In electronic structure theory, the availability of an analytical derivative is one of the desired features for a method to be useful in practical applications, as it allows for geometry optimization as well as computation of molecular properties. With the recent advances in the development of symmetry-projected Hartree-Fock (PHF) methods, we here aim at further extensions by devising the analytic gradients of post-PHF approaches with a special focus on spin-extended (spin-projected) configuration interaction with single and double substitutions (ECISD). Just like standard single-reference methods, the mean-field PHF part does not require the corresponding coupled-perturbed equation to be solved, while the correlation energy term needs the orbital relaxation effect to be accounted for, unless the underlying molecular orbitals are variationally optimized in the presence of the correlation energy. We present a general strategy for post-PHF analytical gradients, which closely parallels that for single-reference methods, yet addressing the major difference between them. The similarity between ECISD and multi-reference CI not only in the energy but also in the optimized geometry is clearly demonstrated by the numerical examples of ozone and cyclobutadiene.

  5. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  6. The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage

    Science.gov (United States)

    Vessally, E.; Soleimani-Amiri, S.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A.

    2017-03-01

    We studied the effect of Hartree-Fock (HF) exchange percentage of a density functional on the adsorption properties and electronic sensitivity of the B12N12 nanocluster to CO molecule. It was found that by an increase in the %HF, the LUMO level is nearly constant while the HOMO level is strongly stabilized, expanding the HOMO-LUMO gap (Eg). Also, the volume of the all structures decreased and the sensitivity of the B12N12 is slightly increased to CO molecule. For the pristine B12N12 cluster, the B66 and B64 bonds are about 1.43 and 1.49 Å at 10% HF, and 1.23 and 1.26 Å at 100% HF, respectively. The HF exchange between 10-20% may predict an accurate Eg for the B12N12 system. We concluded that functionals with a large %HF such as M06-HF, and M06-2X may significantly overestimate the Eg, and bond strength. We obtained a parabolic relationship between the %HF and the adsorption energy of CO molecule on the B12N12 cluster. Also, an increase in the %HF predicts a larger charge transfer from the CO molecule to the cage.

  7. Exact exchange potential evaluated solely from occupied Kohn-Sham and Hartree-Fock solutions

    CERN Document Server

    Cinal, M

    2011-01-01

    The reported new algorithm determines the exact exchange potential v_x in a iterative way using energy and orbital shifts (ES, OS) obtained - with finite-difference formulas - from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to v_x and the latter - for increments of ES and OS due to subsequent changes of v_x. Thus, solution of the differential equations for OS, used by Kummel and Perdew (KP) [Phys. Rev. Lett. 90, 043004 (2003)], is avoided. The iterated exchange potential, expressed in terms of ES and OS, is improved by modifying ES at odd iteration steps and OS at even steps. The modification formulas are related to the OEP equation (satisfied at convergence) written as the condition of vanishing density shift (DS) - they are obtained, respectively, by enforcing its satisfaction through corrections to approximate OS and by determining optimal ES that minimize the DS norm. The proposed met...

  8. Angular-momentum projection for Hartree-Fock and RPA with realistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Bastian; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2012-07-01

    Hartree-Fock (HF) with a Hamiltonian constructed from similarity transformed realistic NN potentials plus 3N contact interactions provides a good starting point for the description of closed shell nuclei. In conjunction with Many-Body-Perturbation-Theory, experimental ground-state energies and radii are well reproduced. To describe collective excitations, the Random-Phase-Approximation (RPA) is the method of choice. Beyond closed shells, e.g. in the sd-shell region, ground-states might exhibit intrinsic deformation, resulting in HF states where angular-momentum ceases to be a good quantum number. Lab-frame observables, like ground-state energies or rotational bands can be recovered from the intrinsic states via angular-momentum projection. We study axially deformed even-even sd-shell nuclei, namely {sup 20}Ne, {sup 28}Si and {sup 32}S. Starting from a HF ground state obtained by exact angular-momentum projection, we use the RPA to study collective excitations. The transition strengths obtained from the RPA are projected to good angular momentum in an exact formalism, without resorting to popular approximations. We investigate the effect of deformed intrinsic states on giant resonances.

  9. Hartree-Fock-Cluster Investigation of Nuclear Quadrupole Interactions in Solid Chalcogens, Selenium and Tellurium.

    Science.gov (United States)

    Aryal, M. M.; Maharjan, N. B.; Paudyal, D. D.; Mishra, D. R.; Byahut, S. R.; Scheicher, R. H.; Badu, S. R.; Jeong, J.; Chow, Lee; Das, T. P.

    2008-03-01

    Using the first-principles Hartree-Fock Cluster Procedure, we have studied the electronic structures of pure chain like Selenium and Tellurium, pure ring structured Selenium, Tellurium impurity in chain and ring-structured Selenium and Selenium impurity in chain-structured Tellurium chain. For our investigations in all the systems we have carried out convergence studies with respect to variational basis set sizes,sizes of clusters and electron correlation effects using many-body perturbation theory. Using our calculated electronic field-gradient parameters q in the pure chain systems and employing the experimental quadrupole coupling constants (e^2qQ), the values Q(^77Se)=(0.50±0.04) 10-28 m^2 and Q(^125Te)=-(0.2±0.02) 10-28m^2. Results will also be presented for the asymmetry parameters η for the pure chain systems and the e^2qQ and η for ^77Se in selenium ring. Our calculated values for e^2qQ and η for the impurity systems will also be presented and compared with available experimental data and earlier theoretical results.

  10. Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States

    CERN Document Server

    Tichai, Alexander; Binder, Sven; Roth, Robert

    2016-01-01

    We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.

  11. Quantum dynamics through conical intersections in macrosystems: Combining effective modes and time-dependent Hartree

    Science.gov (United States)

    Basler, Mathias; Gindensperger, Etienne; Meyer, Hans-Dieter; Cederbaum, Lorenz S.

    2008-05-01

    We address the nonadiabatic quantum dynamics of (macro)systems involving a vast number of nuclear degrees of freedom (modes) in the presence of conical intersections. The macrosystem is first decomposed into a system part carrying a few, strongly coupled modes, and an environment, comprising the remaining modes. By successively transforming the modes of the environment, a hierarchy of effective Hamiltonians for the environment can be constructed. Each effective Hamiltonian depends on a reduced number of effective modes, which carry cumulative effects. The environment is described by a few effective modes augmented by a residual environment. In practice, the effective modes can be added to the system's modes and the quantum dynamics of the entire macrosystem can be accurately calculated on a limited time-interval. For longer times, however, the residual environment plays a role. We investigate the possibility to treat fully quantum mechanically the system plus a few effective environmental modes, augmented by the dynamics of the residual environment treated by the time-dependent Hartree (TDH) approximation. While the TDH approximation is known to fail to correctly reproduce the dynamics in the presence of conical intersections, it is shown that its use on top of the effective-mode formalism leads to much better results. Two numerical examples are presented and discussed; one of them is known to be a critical case for the TDH approximation.

  12. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    Science.gov (United States)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  13. On the problem of representability and the Bogolyubov-Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Knoerr, Hans Konrad

    2013-11-22

    The general topic of this thesis is an approximation of the ground state energy for many-particle quantum systems. In particular the Bogolyubov-Hartree-Fock theory and the representability of one- and two-particle density matrices are studied. After an introductory chapter we specify some basic notation of many-body quantum mechanics in Chapter 2. In Chapter 3 we consider boson, as well as fermion systems. We first tackle the question of representability for bosons, i.e., the question which conditions a one- and a two-particle operator must satisfy to ensure that they are the one- and the two-particle density matrix of a state. For a particle number-conserving system, the representability conditions up to second order for bosons are well-known and called admissibility, P-, and G-conditions. Since, however, most physical systems consisting of bosons are not particle number-conserving, we give an alternative for such systems: Generalizing the two-particle density matrix, we observe that the representability conditions up to second order hold if and only if this generalized two-particle density matrix is positive semi-definite and the one- and the two-particle density matrices fulfill trace class and symmetry conditions. Moreover, we study the Bogolyubov-Hartree-Fock energy of boson and fermion systems. We generalize Lieb's variational principle which in its original formulation holds for purely repulsive particle interactions for fermions only. Our second main result is the following: for bosons, as well as for fermions the infimum of the energy for a variation over pure quasifree states coincides with the one for a variation over all quasifree states under the assumption that the Hamiltonian is bounded below. In the last section of Chapter 3 we specify the relation between centered quasifree states and their corresponding generalized one-particle density matrix, which finds an application in the variational process in the Bogolyubov-Hartree-Fock theory. It is

  14. Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach

    Science.gov (United States)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2016-01-01

    We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.

  15. The Thermal Properties of Asymmetric Nuclear Matter within the Extended Brueckner-Hartree-Fock Approach

    Science.gov (United States)

    Hassaneen, Khaled; Mansour, Hesham

    2017-02-01

    The single-particle potentials and other properties at absolute zero temperature in isospin asymmetric nuclear matter are investigated in the frame of an extended Brueckner theory. Also thermal quantities are calculated in asymmetric nuclear matter using CD-Bonn potential and the Urbana three-body forces (3BF). Also, the effects of the hole-hole contributions are investigated within the self-consistent Greens function approach. The inclusion of 3BF or the hole-hole contributions improves the predicted saturation property of symmetric nuclear matter within the Brueckner-Hartree-Fock approach and it leads to a significant stiffening of the density dependence of symmetry energy at high densities but the exact saturation point is not reproduced. This is of great importance in astrophysical calculation. A phenomenological term simulating the three-body interaction is introduced to assure the empirical saturation property. The hot properties of asymmetric nuclear matter such as the internal energy and the pressure are analyzed using T2-approximation method at low temperatures.

  16. A simple and efficient dispersion correction to the Hartree-Fock theory.

    Science.gov (United States)

    Yoshida, Tatsusada; Mashima, Akira; Sasahara, Katsunori; Chuman, Hiroshi

    2014-02-15

    One of the most challenging problems in computational chemistry and in drug discovery is the accurate prediction of the binding energy between a ligand and a protein receptor. It is well known that the binding energy calculated with the Hartree-Fock molecular orbital theory (HF) lacks the dispersion interaction energy that significantly affects the accuracy of the total binding energy of a large molecular system. We propose a simple and efficient dispersion energy correction to the HF theory (HF-Dtq). The performance of HF-Dtq was compared with those of several recently proposed dispersion corrected density functional theory methods (DFT-Ds) as to the binding energies of 68 small non-covalent complexes. The overall performance of HF-Dtq was found to be nearly equivalent to that of more sophisticated B3LYP-D3. HF-Dtq will thus be a useful and powerful method for accurately predicting the binding energy between a ligand and a protein, albeit it is a simple correction procedure based on HF.

  17. Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting.

    Science.gov (United States)

    Köppl, Christoph; Werner, Hans-Joachim

    2016-07-12

    Calculations using modern linear-scaling electron-correlation methods are often much faster than the necessary reference Hartree-Fock (HF) calculations. We report a newly implemented HF program that speeds up the most time-consuming step, namely, the evaluation of the exchange contributions to the Fock matrix. Using localized orbitals and their sparsity, local density fitting (LDF), and atomic orbital domains, we demonstrate that the calculation of the exchange matrix scales asymptotically linearly with molecular size. The remaining parts of the HF calculation scale cubically but become dominant only for very large molecular sizes or with many processing cores. The method is well parallelized, and the speedup scales well with up to about 100 CPU cores on multiple compute nodes. The effect of the local approximations on the accuracy of computed HF and local second-order Møller-Plesset perturbation theory energies is systematically investigated, and default values are established for the parameters that determine the domain sizes. Using these values, calculations for molecules with hundreds of atoms in combination with triple-ζ basis sets can be carried out in less than 1 h, with just a few compute nodes. The method can also be used to speed up density functional theory calculations with hybrid functionals that contain HF exchange.

  18. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  19. Basis set effects on the Hartree-Fock description of confined many-electron atoms

    Science.gov (United States)

    Garza, Jorge; Hernández-Pérez, Julio M.; Ramírez, José-Zeferino; Vargas, Rubicelia

    2012-01-01

    In this work, the basis sets designed by Clementi, Bunge and Thakkar, for atomic systems, have been used to obtain the electronic structure of confined many-electron atoms by using Roothaan's approach in the Hartree-Fock context with a new code written in C, which uses the message-passing interface library. The confinement was imposed as Ludeña suggested to simulate walls with infinity potential. For closed-shell atoms, the Thakkar basis set functions give the best total energies (TE) as a function of the confinement radius, obtaining the following ordering: TE(Thakkar) Clementi). However, for few open-shell atoms this ordering is not preserved and a trend, for the basis sets, is not observed. Although there are differences between the TE predicted by these basis set functions, the corresponding pressures are similar to each other; it means that changes in the total energy are described almost in the same way by using any of these basis sets. By analysing the total energy as a function of the inverse of the volume we propose an equation of state; for regions of small volumes, this equation predicts that the pressure is inversely proportional to the square of the volume.

  20. Brueckner-Hartree-Fock calculations for finite nuclei with renormalized realistic forces

    Science.gov (United States)

    Hu, B. S.; Xu, F. R.; Wu, Q.; Ma, Y. Z.; Sun, Z. H.

    2017-03-01

    One can adopt two-step G -matrix approximations for the Brueckner-Hartree-Fock (BHF) calculations. The first G matrix is to soften the bare force, and the second one is to include the high-order correlations of the interaction in medium. The first G -matrix calculation for two-nucleon interaction should be done in the center-of-mass coordinate. As another alternative BHF approach, we have adopted the Vlow-k technique to soften the interaction and used the G matrix to include high-order correlations. The Vlow-k renormalization leads to high-momentum and low-momentum components of the interaction decoupled. With the Vlow-k potential, we have performed the BHF calculations for finite nuclei. The G -matrix elements with exact Pauli exclusions are calculated in the self-consistent BHF basis. To see effects from further possible correlations beyond BHF, we have simultaneously performed renormalized BHF (RBHF) calculations with the same potential. In RBHF, the mean field derived from realistic forces is modified by introducing the particle-occupation depletion resulting from many-body correlations. The ground-state energies and radii of the closed-shell nuclei, 4He, 16O, and 40Ca, have been investigated. The convergences of the BHF and RBHF calculations have been discussed and compared with other ab initio calculations with the same potential.

  1. Convexity and symmetrization in relativistic theories

    Science.gov (United States)

    Ruggeri, T.

    1990-09-01

    There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.

  2. The relativistic geoid: redshift and acceleration potential

    Science.gov (United States)

    Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker

    2017-04-01

    We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.

  3. Comments on the Hartree-Fock description of Hooke's atom and suggestion for an accurate closed-form orbital

    Science.gov (United States)

    Ragot, Sébastien

    2008-04-01

    The ground-state Hartree-Fock (HF) wavefunction of Hooke's atom is not known in closed form, contrary to the exact solution. The single HF orbital involved has thus far been studied using expansion techniques only, leading to slightly disparate energies. Therefore, the present letter aims at proposing alternative definitions of the HF wavefunction. First, the HF limit is ascertained using a simple expansion, which makes it possible to formulate explicit expressions of HF properties. The resulting energy, 2.038 438 871 8 Eh, is found stable at the tenth digit. Second and more instructive, an analysis of the Hartree equation makes it possible to infer a remarkably simple and accurate HF orbital, i.e., φHF(r)=nHFe-αr2√r2+β2, leading to an energy exceeding by 5.76×10-7 Eh only the above HF limit. This orbital makes it possible to obtain (near) Hartree-Fock properties in closed form, which in turn enables handy comparisons with exact quantities.

  4. The effective electronic Hartree-Fock equations for the muonic molecules: Toward a muon-specific electronic structure theory

    CERN Document Server

    Rayka, Milad; Shahbazian, Shant

    2016-01-01

    In this communication, an effective set of the Hartree-Fock equations are derived only for electrons of the muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator. In these equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and electrons effectively. The explicit form of the effective potential depends on the nature of muon vibrations and is derived for a combination of Cartesian Gaussian functions that are used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in the case of MuCN molecule, which results from replacing the proton of HCN molecule with a muon. The developed effective Hartree-Fock theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure...

  5. Investigation of relativistic runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.; Lopes Cardozo, N.J.; Schueller, F.C. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Finken, K.H.; Mank, G.; Hoenen, F. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Boedo, J. [California Univ., Los Angeles, CA (United States). Inst. of Plasma and Fusion Research

    1993-12-31

    The runaway generation during disruptions is regarded as a serious problem in future tokamak devices. The number and the high energy of these runaways can lead to considerable damage of wall components. In the TEXTOR tokamak (R{sub 0}=1.75 m, a=0.46 m; I{sub p}=350 kA, B{sub t}=2.25T, flat top time {approx_equal}2 s), low density discharges (n{sub e} < 1x10{sup 19} m{sup -3}) are analyzed to study the creation mechanism and the energy increase of the runaways. This is mainly done by the synchrotron radiation emitted by highly relativistic runaways (> 20 MeV). The general features of this synchrotron radiation will be described in Sect.2. In Sect.3 the creation rate of runaways is derived from this radiation. An intriguing observation made at the end of low density ohmic discharges is a fast increase in the pitch angle (i.e. the ratio of perpendicular to parallel velocity) from the runaways on a time scale of less than 65 {mu}s. This phenomenon is discussed in Sect.4. Finally some conclusions will be drawn on the implications these results have for future tokamak operation. (author) 4 refs., 3 figs.

  6. Causal Categories: Relativistically Interacting Processes

    Science.gov (United States)

    Coecke, Bob; Lal, Raymond

    2013-04-01

    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.

  7. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  8. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  9. BIRKHOFF'S EQUATIONS AND GEOMETRICAL THEORY OF ROTATIONAL RELATIVISTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LUO SHAO-KAI; CHEN XIANG-WEI; FU JING-LI

    2001-01-01

    The Birkhoffian and Birkhoff's functions of a rotational relativistic system are constructed, the Pfaff action of rotational relativistic system is defined, the Pfaff-Birkhoff principle of a rotational relativistic system is given, and the Pfaff-Birkhoff-D'Alembert principles and Birkhoff's equations of rotational relativistic system are constructed. The geometrical description of a rotational relativistic system is studied, and the exact properties of Birkhoff's equations and their forms onR × T*M for a rotational relativistic system are obtained. The global analysis of Birkhoff's equations for a rotational relativistic system is studied, the global properties of autonomous, semi-autonomous and non-autonomous rotational relativistic Birkhoff's equations, and the geometrical properties of energy change for rotational relativistic Birkhoff's equations are given.

  10. Relativistic theory of incoherent scattering of a photon by water, hydrogen cyanide, glucose, protein molecules

    Science.gov (United States)

    Grimm, Shu-Ya Lisa

    We have developed a general method to calculate the incoherent scattering cross section for complex molecules for photon energy ranging from 1 keV to 130 keV. Within this energy range the binding energy of an electron in a biosystem is comparable to the energy of the incident photon, thus we need to take into account the effect of binding energy in calculations of the total scattering cross section. Also the energy acquired by the scattered electron is in the high energy range, and therefore we are required to use relativistic treatment in our calculations. In our Theory we show the derivation of incoherent scattering function. The calculation of the incoherent scattering function involves matrix elements between two molecular wave functions. With Sharma's analytical formula we are able to expand one of the wave functions to the center of the other wave function, enabling us to perform the calculation of incoherent scattering function for molecules which require multi-center integrals. We explain briefly how one obtains the wave function of a molecule in the Hartree-Fock self-consistent field approximation. Since there are no available molecular wave functions for large molecules such as glucose and Gly-Pro-Pro sequence protein (which are important molecules in biosystems) we develop and use the molecular wave functions using the overlap effect only for large molecules. We further apply the calculated incoherent scattering function to calculate the total incoherent scattering cross section for a molecule. We perform the calculations of incoherent scattering function and total incoherent scattering cross sections for H2O,/ HCN, Glucose, and Gly-Pro-Pro protein molecules. For H2O,/ HCN molecules we calculate the incoherent scattering function using both Hartree-Fock (HF) self-consistent field wave functions and overlap- effect-only wave functions. We further apply these two calculated incoherent scattering functions obtained by Hartree-Fock (HF) self-consistent field

  11. Relativistic Hotspots in FR II Radio Sources

    Science.gov (United States)

    Chartrand, Alex M.; Miller, B. P.; Brandt, W. N.; Gawronski, M. P.; Cederbloom, S. E.

    2011-01-01

    We present a list of six FR II radio sources that are candidates to possess hotspots with modestly relativistic (v/c > 0.2) bulk velocities, in contrast to the vast majority of FR II radio sources that possess non-relativistic hotspot bulk velocities (e.g., v/c = 0.03+/- 0.02 from Scheuer 1995). These objects display arm- length and flux-ratio asymmetries between lobes that self-consistently indicate relativistic motion. The candidates are selected from the FIRST 1.4 GHz survey (including but not limited to the catalog of FR II quasars of de Vries et al. 2006) with the requirement that the radio core have a spectroscopic SDSS counterpart. We find no significant difference in the number of neighboring sources within 300 projected kpc of the candidate sources and randomly selected nearby regions. The deprojected and light travel-time corrected lobe distances are not abnormal for FR II sources, and neither are the core-to-lobe flux ratios after correcting for lobe beaming. We briefly consider four possibilities for these type of objects: (i) environmental interactions randomly mimicking relativistic effects, (ii) a restarted jet causing the near hotspot to brighten while the far hotspot still appears faint, (iii) observation during a short interval common to FR II lifetimes during which the hotspot decelerates from relativistic to non-relativistic velocities, and (iv) innately unusual characteristics (e.g., a mass-loaded jet) driving relativistic bulk velocities in the hotspots of a small fraction (< 1%) of FR II objects. We favor the last interpretation but cannot rule out the alternatives. We also comment on the useful external constraints such objects provide to the evaluation of hotspot X-ray emission mechanisms.

  12. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S.; Tajima, N.; Onishi, N. [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  13. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  14. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  15. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  16. General relativistic observables of the GRAIL mission

    CERN Document Server

    Turyshev, Slava G; Sazhin, Mikhail V

    2012-01-01

    We present a realization of astronomical relativistic reference frames in the solar system and its application to the GRAIL mission. We model the necessary spacetime coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into account major relativistic effects contributing to the dual one-way range observable, which is derived from one-way signal travel times between the two GRAIL spacecraft. We develop a general relativistic model for this fundamental observable of GRAIL, accurate to 1 $\\mu$m. We develop and present a relativistic model for another key observable of this experiment, the dual one-way range-rate, accurate to 1 $\\mu$m/s. The presented formulation justifies the basic assumptions behind the design of the GRAIL mission. It may also be ...

  17. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  18. Relativistic many-body calculations of energy levels, hyperfine constants, electric-dipole matrix elements and static polarizabilities for alkali-metal atoms

    CERN Document Server

    Safronova, M S; Derevianko, S A

    1999-01-01

    Removal energies and hyperfine constants of the lowest four $ns, np_{1/2}$ and $np_{3/2}$ states in Na, K, Rb and Cs are calculated; removal energies of the n=7--10 states and hyperfine constants of the n=7 and 8 states in Fr are also calculated. The calculations are based on the relativistic single-double (SD) approximation in which single and double excitations of Dirac-Hartree-Fock (DHF) wave functions are included to all-orders in perturbation theory. Using SD wave functions, accurate values of removal energies, electric-dipole matrix elements and static polarizabilities are obtained, however, SD wave functions give poor values of magnetic-dipole hyperfine constants for heavy atoms. To obtain accurate values of hyperfine constants for heavy atoms, we include triple excitations partially in the wave functions. The present calculations provide the basis for reevaluating PNC amplitudes in Cs and Fr.

  19. Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Song; LONG Gui-Lu

    2004-01-01

    We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.

  20. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  1. On the convexity of Relativistic Ideal Magnetohydrodynamics

    CERN Document Server

    Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio

    2015-01-01

    We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...

  2. Relativistic dynamics, Green function and pseudodifferential operators

    CERN Document Server

    Cirilo-Lombardo, Diego Julio

    2016-01-01

    The central role played by pseudodifferential operators in relativistic dynamics is very well know. In this work, operators as the Schrodinger one (e.g: square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by mean of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability : it is non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as Zitterbewegung and rogue waves, are prese...

  3. General relativistic observables for the ACES experiment

    CERN Document Server

    Turyshev, Slava G; Toth, Viktor T

    2015-01-01

    We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient $J_2$ and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudo-inertial at th...

  4. Relativistic mirrors in laser plasmas (analytical methods)

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  5. Exact quantisation of the relativistic Hopfield model

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)

    2016-11-15

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  6. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    CERN Document Server

    Zenitani, Seiji; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  7. INTRACLUSTER MEDIUM REHEATING BY RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Perucho, Manel; Quilis, Vicent; Marti, Jose-Maria [Departament d' Astronomia i Astrofisica, Universitat de Valencia, c/Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain)

    2011-12-10

    Galactic jets are powerful energy sources reheating the intracluster medium in galaxy clusters. Their crucial role in the cosmic puzzle, motivated by observations, has been established by a great number of numerical simulations excluding the relativistic nature of these jets. We present the first relativistic simulations of the very long-term evolution of realistic galactic jets. Unexpectedly, our results show no buoyant bubbles, but large cocoon regions compatible with the observed X-ray cavities. The reheating is more efficient and faster than in previous scenarios, and it is produced by the shock wave driven by the jet, that survives for several hundreds of Myr. Therefore, the X-ray cavities in clusters produced by powerful relativistic jets would remain confined by weak shocks for extremely long periods and their detection could be an observational challenge.

  8. The relativistic virial theorem and scale invariance

    CERN Document Server

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.

  9. Relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig

    2010-01-01

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...

  10. Exact quantisation of the relativistic Hopfield model

    CERN Document Server

    Belgiorno, F; Piazza, F Dalla; Doronzo, M

    2016-01-01

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  11. Investigation on shock waves stability in relativistic gas dynamics

    Directory of Open Access Journals (Sweden)

    Alexander Blokhin

    1993-05-01

    Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.

  12. Symmetry and Covariance of Non-relativistic Quantum Mechanics

    OpenAIRE

    Omote, Minoru; kamefuchi, Susumu

    2000-01-01

    On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.

  13. Non-relativistic Quantum Mechanics versus Quantum Field Theories

    OpenAIRE

    Pineda, Antonio

    2007-01-01

    We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.

  14. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  15. A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density

    CERN Document Server

    Nicolis, Alberto

    2012-01-01

    We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. These would normally be associated with gapless Goldstone excitations. We find that, in fact, their currents interpolate gapped excitations. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.

  16. Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating.

  17. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  18. Towards universal quantum computation through relativistic motion

    CERN Document Server

    Bruschi, David Edward; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette

    2013-01-01

    We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.

  19. A relativistic and autonomous navigation satellite system

    CERN Document Server

    Delva, Pacôme; Kostić, Uros; Carloni, Sante

    2011-01-01

    A relativistic positioning system has been proposed by Bartolom\\'e Coll in 2002. Since then, several group developed this topic with different approaches. I will present a work done in collaboration with Ljubljana University and the ESA Advanced Concepts Team. We developed a concept, Autonomous Basis of Coordinates, in order to take advantage of the full autonomy of a satellite constellation for navigation and positioning, by means of satellite inter-links. I will present the advantages of this new paradigm and a number of potential application for reference systems, geophysics and relativistic gravitation.

  20. Can Bohmian mechanics be made relativistic?

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Norsen, Travis; Struyve, Ward; Zanghì, Nino

    2014-02-08

    In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation-as extra absolute space-time structure-would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also qualify as fundamentally relativistic.