Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R; Menezes, Débora P
2015-01-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R.; Gulminelli, F.; Menezes, Débora P.
2016-02-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.
Hadron production in heavy relativistic systems
Kuiper, R; Kuiper, Rolf; Wolschin, Georg
2007-01-01
We investigate particle production in heavy-ion collisions at RHIC energies as function of incident energy, and centrality in a three-sources Relativistic Diffusion Model. Pseudorapidity distributions of produced charged hadrons in Au + Au and Cu + Cu collisions at sqrt(s_NN) = 19.6 GeV, 62.4 GeV, 130 GeV and 200 GeV show an almost equilibrated midrapidity source that tends to increase in size towards higher incident energy, and more central collisions. It may indicate quark-gluon plasma formation prior to hadronization.
From hadron gas to quark matter, 1
Hagedorn, Rolf
1981-01-01
An analytical, non-perturbative description of a strongly interacting hadron gas is presented. Its main features are: the formulation is relativistically covariant, hadrons have finite extensions which are treated a la Van der Waals and their strong interactions are simulated by a hadronic mass spectrum generated by a bootstrap equation under the constraints of baryon number conservation. The system exhibits a singularity, which has the typical features of a phase transition gas to liquid, but which the authors interpret here as the transition into a quark-gluon plasma phase, which, however, cannot be described by this model. (16 refs).
Cao, Shanshan; Bass, Steffen A
2015-01-01
We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...
Relativistic Few-Body Hadronic Physics Calculations
Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In
Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei
Contopoulos, John; Kazanas, D.
1995-01-01
We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.
Shusu Shi
2016-01-01
Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, Luis; Koch, Volker
2002-02-20
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, L
2002-01-01
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, Luis; Koch, Volker
2002-02-20
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Hadron thermodynamics in relativistic nuclear collisions
Ammiraju, P.
1985-01-01
Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.
Sudden Hadronization in Relativistic Nuclear Collisions
Rafelski, Johann; Rafelski, Johann; Letessier, Jean
2000-01-01
We formulate and study the mechanical instability criterion of dense matter fireballs without considering a specific equation of state (EoS). We demonstrate the consistency with the chemical freeze-out of a fireball of matter formed in 158AGeV Pb-Pb collisions. Assuming EoS appropriate for quark-gluon matter, we demonstrate the required deep QGP supercooling prior to sudden hadronization. In a model independent approach, but using results of hadron abundance analysis and lattice QCD, we show that the latent heat of the deconfined phase is bounded from below 0.14GeV/fm^3\\le B.
Parton-Hadron-String Dynamics at Relativistic Collider Energies
Bratkovskaya, E L; Konchakovski, V P; Linnyk, O
2011-01-01
The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS collaborations for Au+Au collisions at the top RHIC energy...
Parton-Hadron-String Dynamics at relativistic collider energies
Bratkovskaya, E. L.; Cassing, W.; Konchakovski, V. P.; Linnyk, O.
2011-04-01
The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS Collaborations for Au + Au collisions at the top RHIC energy of √{s}=200 GeV. We find a reasonable reproduction of hadron rapidity distributions and transverse mass spectra and also a fair description of the elliptic flow of charged hadrons as a function of the centrality of the reaction and the transverse momentum p. Furthermore, an approximate quark-number scaling of the elliptic flow v of hadrons is observed in the PHSD results, too.
Parton-Hadron-String Dynamics at relativistic collider energies
Bratkovskaya, E.L., E-mail: Elena.Bratkovskaya@th.physik.uni-frankfurt.d [Institut fuer Theoretische Physik, JWG Universitaet Frankfurt, D-60438 Frankfurt am Main (Germany); Frankfurt Institut for Advanced Studies, Frankfurt University, D-60438 Frankfurt-am-Main (Germany); Cassing, W.; Konchakovski, V.P. [Institut fuer Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Linnyk, O. [Frankfurt Institut for Advanced Studies, Frankfurt University, D-60438 Frankfurt-am-Main (Germany)
2011-04-15
The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS Collaborations for Au + Au collisions at the top RHIC energy of {radical}(s)=200 GeV. We find a reasonable reproduction of hadron rapidity distributions and transverse mass spectra and also a fair description of the elliptic flow of charged hadrons as a function of the centrality of the reaction and the transverse momentum p{sub T}. Furthermore, an approximate quark-number scaling of the elliptic flow v{sub 2} of hadrons is observed in the PHSD results, too.
Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States
Beitel, M.; Gallmeister, K.; Greiner, C.
2017-01-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω‑-baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.
Influence of nucleonic motion in Relativistic Fermi Gas inclusive responses
Alvarez-Ruso, L; Donnelly, T W; Molinari, A
2001-01-01
Impulsive hadronic descriptions of electroweak processes in nuclei involve two distinctly different elements: one stems from the nuclear many-body physics --- the medium --- which is rather similar for the various inclusive response functions, and the other embodies the responses of the hadrons themselves to the electroweak probe and varies with the channel selected. In this letter we investigate within the context of the relativistic Fermi gas in both the quasi-elastic and $N\\to\\Delta$ regimes the interplay between these two elements. Specifically, we focus on expansions in the one small parameter in the problem, namely, the momentum of a nucleon in the initial wave function compared with the hadronic scale, the nucleon mass. Both parity-conserving and -violating inclusive responses are studied and the interplay between longitudinal ($L$) and transverse ($T$ and $T'$) contributions is highlighted.
PACIAE 2.0: An Updated Parton and Hadron Cascade Model (Program) for Relativistic Nuclear Collisions
SA; Ben-hao; ZHOU; Dai-mei; YAN; Yu-liang; LI; Xiao-mei; FENG; Sheng-qing; DONG; Bao-guo; CAI; Xu
2012-01-01
<正>We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7, and referred to as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well.
Subrata Pal
2015-05-01
We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.
Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line
Becattini, F; Stock, R; Bleicher, M
2016-01-01
We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained "true" hadronization pseudo-critical line kappa is found to be 0.0048+-0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing mu_B is found t...
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Relativistic gas in a Schwarzschild metric
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...
Z-Scaling, Fractality and Principle of Relativity in Relativistic Collisions of Hadrons and Nuclei
Zborovský, I; Panebratsev, Yu A; Skoro, G P
2001-01-01
The formation length of particles produced in the relativistic collisions of hadrons and nuclei has relevance to the fundamental principles of physics at small interaction distances. The relation is phenomenologically expressed by a z-scaling observed in the differential cross sections for the inclusive reactions at high energies. The scaling variable reflects the length of the elementary particle trajectories in terms of a fractal measure. Characterizing the fractal approach, we demonstrate the relativity principle in space-time with broken isotropy. We derive relativistic transformations accounting for the asymmetry of space-time induced in the interactions by various parton fractal structures of hadrons and nuclei.
Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions
P K Sahu; N Otuka; M Isse; Y Nara; A Ohnishi
2006-05-01
We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65+65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation.
Investigation on shock waves stability in relativistic gas dynamics
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
Relativistic Harmonic Oscillators and Hadronic Structures in the Quantum-Mechanics Curriculum
Kim, Y. S.; Noz, Marilyn E.
1978-01-01
A relativistic harmonic-oscillator formalism which is mathematically simple as the nonrelativistic harmonic oscillator is given. In view of its effectiveness in describing Lorentz-deformed hadrons, the inclusion of this formalism in a first-year graduate course will make the results of high-energy experiments more understandable. (BB)
Moroz, Oleg N
2011-01-01
The shear and the bulk viscosities of the hadron gas at low temperatures are studied in the model with constant elastic cross sections being relativistic generalization of the hard spheres model. One effective radius ${r=0.4 fm}$ is chosen for all elastic collisions. Only elastic collisions are considered which are supposed to be dominant at temperatures ${T\\leq 120-140 MeV}$. The calculations are done in the framework of the Boltzmann equation with the Boltzmann statistics distribution functions and the ideal gas equation of state. The applicability of these approximations is discussed. It's found that the bulk viscosity of the hadron gas is much larger than the bulk viscosity of the pion gas while the shear viscosity is found to be less sensitive to the mass spectrum of hadrons. The constant cross sections and the Boltzmann statistics approximation allows one not only to conduct precise numerical calculations of transport coefficients in the hadron gas but also to obtain some relatively simple relativistic ...
Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders
Ashwini Kumar
2013-01-01
Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.
Dinesh Kumar Srivastava
2001-08-01
The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. About half of the radiated photons are seen to have a thermal origin. The same treatment and the initial conditions provide a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the conclusion that quark gluon plasma has been formed in these collisions. Predictions for RHIC and LHC energies are also given.
Mott-hadron resonance gas and lattice QCD thermodynamics
Blaschke, D; Turko, L
2016-01-01
We present an effective model for the generic behaviour of hadron masses and phase shifts at finite temperature which shares basic features with recent developments within the PNJL model for correlations in quark matter. On this basis we obtain the transition between a hadron resonance gas phase and the quark gluon plasma in the spirit of the generalized Beth-Uhlenbeck approach where the Mott dissociation of hadrons is encoded in the hadronic phase shifts. We find that the restriction to low-lying hadronic channels is justified by the rather low chiral transition temperature found in recent lattice QCD thermodynamics results. While we work in thermodynamic equilibrium, albeit including the contribution of unstable states, the possible contribution of massive components of the hadron resonance gas may become an aspect of strong nonequilibrium in the evolution of a hadronic fireball.
Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line
Becattini, Francesco; Steinheimer, Jan; Stock, Reinhard; Bleicher, Marcus
2017-01-01
We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained "true" hadronization pseudo-critical line κ is found to be 0.0048 ± 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing μB is found to be 164.3 ± 1.8 MeV.
Chemical freeze-out conditions in hadron resonance gas
Vovchenko, V; Satarov, L M; Stoecker, H
2016-01-01
The hadron resonance gas model with hadron-type dependent eigenvolume corrections is employed to fit the hadron yield data of the NA49 collaboration for central Pb+Pb collisions at the c.m. energy per nucleon pair Ecm=6.3, 7.6, 8.8, 12.3, and 17.3 GeV, the hadron midrapidity yield data of the STAR collaboration for Au+Au collisions at Ecm=200 GeV, and the hadron midrapidity yield data of the ALICE collaboration for Pb+Pb collisions at Ecm=2760 GeV. The influence of the eigenvolume corrections is studied.
Hadronic Matter with Internal Symmetries and its Consequences: An Expanding Hadronic Gas
Turko, Ludwik
1994-01-01
We consider an ideal gas of massive hadrons in thermal and chemical equilibrium. The gas expands longitudinally in accordance with Bjorken law. Strangeness and baryon number conservation is taken into account. This gas has different features as compared to the pion gas.
Test of Relativistic Gravity for Propulsion at the Large Hadron Collider
Felber, Franklin
2010-01-01
A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.
Delta isobars in relativistic mean-field models with $\\sigma$-scaled hadron masses and couplings
Kolomeitsev, E E; Voskresensky, D N
2016-01-01
We extend the relativistic mean-field models with hadron masses and meson-baryon coupling constants dependent on the scalar $\\sigma$ field, studied previously to incorporate $\\Delta(1232)$ baryons. Available empirical information is analyzed to put constraints on the couplings of $\\Delta$s with meson fields. Conditions for the appearance of $\\Delta$s are studied. We demonstrate that with inclusion of the $\\Delta$s our equations of state continue to fulfill majority of known empirical constraints including the pressure-density constraint from heavy-ion collisions, the constraint on the maximum mass of the neutron stars, the direct Urca and the gravitational-baryon mass ratio constraints.
Test of relativistic gravity for propulsion at the Large Hadron Collider
Felber, Franklin
2009-01-01
A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. The first exact time-dependent solutions of Einstein's gravitational field equation confirm that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.
Thermodynamics of the low density excluded volume hadron gas
Zalewski, Kacper
2015-01-01
We discuss the influence of the excluded volume of hadrons on macroscopic variables and thermal parameters of the hadron gas at finite temperature and chemical potential in the low density approximation. Based solely on elementary thermodynamics we show that when the excluded volume grows at constant temperature, pressure, and number of particles, the overall volume increases just as much as the excluded volume, while the entropy and energy remain unchanged. The growth of the chemical potentials is equal to the work needed to create the respective excluded volumes. Consequently, the bulk density functions of a gas with excluded volume are expressed by the corresponding variables in a system of point particles with the shifted chemical potentials. Our results are fully consistent with the previous findings obtained upon applications of more advanced methods of statistical physics. A validity limit for the low density approximation is derived and discussed in the context of the hadron gas created in heavy ion c...
X(3872) production and absorption in a hot hadron gas
Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.
2016-10-01
We calculate the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X (3872). In this evaluation we include diagrams involving the anomalous couplings πD*Dbar* and XDbar*D* and also the couplings of the X (3872) with charged D and D* mesons. With these new terms the X (3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X (3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.
X(3872 production and absorption in a hot hadron gas
L.M. Abreu
2016-10-01
Full Text Available We calculate the time evolution of the X(3872 abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872. In this evaluation we include diagrams involving the anomalous couplings πD⁎D¯⁎ and XD¯⁎D⁎ and also the couplings of the X(3872 with charged D and D⁎ mesons. With these new terms the X(3872 interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.
$X(3872)$ production and absorption in a hot hadron gas
Abreu, L M; Torres, A Martinez; Navarra, F S; Nielsen, M
2016-01-01
We calculate the time evolution of the $X(3872)$ abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of $X(3872)$. In this evaluation we include diagrams involving the anomalous couplings $\\pi D^*\\bar{D}^*$ and $X \\bar{D}^{\\ast} D^{\\ast}$ and also the couplings of the $X(3872)$ with charged $D$ and $D^*$ mesons. With these new terms the $X(3872)$ interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of $X(3872)$, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.
Conserved Charge Susceptibilities in a Chemically Frozen Hadronic Gas
Ang'ong'a, Jackson
2015-01-01
In a hadronic gas with three conserved charges (electric charge, baryon number, and strangeness) we employ the hadron resonance gas model to compute both diagonal and off-diagonal susceptibilities. We model the effect of chemical freeze-out in two ways: one in which all particle numbers are conserved below the chemical freeze-out temperature and one which takes into account resonance decays. We then briefly discuss possible implications these results may have on two active areas of research, hydrodynamic fluctuations and the search for the QCD critical point.
Kadam, Guru Prakash
2015-01-01
We estimate dissipative properties viz: shear and bulk viscosities of hadronic matter using rel- ativistic Boltzmann equation in relaxation time approximation within ambit of excluded volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio ({\\eta}/s) decreases with temperature and reaches very close to Kovtun-Son- Starinets (KSS) bound. At sufficiently large baryon chemical potential this ratio shows same behav- ior as a function of temperature but goes below KSS bound. We further find that along chemical freezout line {\\eta}/s increases monotonically while the bulk viscosity to entropy ratio ({\\zeta}/s) decreases monotonically.
Vovchenko, Volodymyr
2016-01-01
We analyze the sensitivity of thermal fits to heavy-ion hadron yield data of ALICE and NA49 collaborations to the systematic uncertainties in the hadron resonance gas (HRG) model related to the modeling of the eigenvolume interactions. We find a surprisingly large sensitivity in extraction of chemical freeze-out parameters to the assumptions regarding eigenvolumes of different hadrons. We additionally study the effect of including yields of light nuclei into the thermal fits to LHC data and find even larger sensitivity to the modeling of their eigenvolumes. The inclusion of light nuclei yields, thus, may lead to further destabilization of thermal fits. Our results show that modeling of eigenvolume interactions plays a crucial role in thermodynamics of HRG and that conclusions based on a non-interacting HRG are not unique.
Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.
Namgung, Wuk
Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton
Heavy flavor dynamics in QGP and hadron gas
Cao, Shanshan [Department of Physics, Duke University, Durham, NC 27708 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)
2014-11-15
We study heavy flavor evolution in the quark–gluon plasma matter and the subsequent hadron gas created in ultrarelativistic heavy-ion collisions. The motion of heavy quarks inside the QGP is described using our modified Langevin framework that incorporates both collisional and radiative energy loss mechanisms; and the scatterings between heavy mesons and the hadron gas are simulated with the UrQMD model. We find that the hadronic interaction further suppresses the D meson R{sub AA} at high p{sub T} and enhances its v{sub 2}. And our calculations provide good descriptions of experimental data from both RHIC and LHC. In addition, we explore the heavy-flavor-tagged angular correlation functions and find them to be a potential candidate for distinguishing different energy loss mechanisms of heavy quarks inside the QGP.
Gao, Y.-Q.; Liu, F.-H.
2016-03-01
The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.
In-medium viscous coefficients of a hot hadronic gas mixture
Gangopadhyaya, Utsab; Ghosh, Snigdha; Sarkar, Sourav; Mitra, Sukanya
2016-10-01
We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture made of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions (π π ,π N , and N N ). Instead of the vacuum cross sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross sections for π π and π N scattering are obtained using one-loop modified thermal propagators for ρ ,σ , and Δ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the T and μN dependence of the viscosities of the system.
Hadron resonance gas and mean-field nuclear matter for baryon number fluctuations
Fukushima, Kenji
2014-01-01
We give an estimate for the skewness and the kurtosis of the baryon number distribution in two representative models; i.e., models for a hadron resonance gas and relativistic mean-field nuclear matter. We emphasize formal similarity between these two descriptions. The hadron resonance gas leads to a deviation from the Skellam distribution if quantum statistical correlation is taken into account at high baryon density, but this effect is not strong enough to explain fluctuation data seen in the beam-energy scan at RHIC/STAR. In the calculation of mean-field nuclear matter the density correlation with the vector \\omega-field rather than the effective mass with the scalar \\sigma-field renders the kurtosis suppressed at higher baryon density so as to account for the observed behavior of the kurtosis. We finally discuss the difference between the baryon number and the proton number fluctuations from correlation effects in isospin space. Our numerical results suggest that such effects are only minor even in the cas...
Relativistic rotating Boltzmann gas using the tetrad formalism
Ambrus, Victor E
2015-01-01
We consider an application of the tetrad formalism introduced by Cardall et al. [Phys. Rev. D 88 (2013) 023011] to the problem of a rigidly rotating relativistic gas in thermal equilibrium and discuss the possible applications of this formalism to relativistic lattice Boltzmann simulations. We present in detail the transformation to the comoving frame, the choice of tetrad, as well as the explicit calculation and analysis of the components of the equilibrium particle flow four-vector and of the equilibrium stress-energy tensor.
Chemical relaxation times in a hadron gas at finite temperature
Goity, J L
1993-01-01
The relaxation times of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations. Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of $10^{3}$ fm at temperatures around 100 MeV. As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.
Andronic, A; Braun-Munzinger, P; Cleymans, J; Fukushima, K; McLerran, L D; Oeschler, H; Pisarski, R D; Redlich, K; Sasaki, C; Satz, H; Stachel, J
2009-01-01
We argue that features of hadron production in relativistic nuclear collisions, mainly at CERN-SPS energies, may be explained by the existence of three forms of matter: Hadronic Matter, Quarkyonic Matter, and a Quark-Gluon Plasma. We suggest that these meet at a triple point in the QCD phase diagram. Some of the features explained, both qualitatively and semi-quantitatively, include the curve for the decoupling of chemical equilibrium, along with the non-monotonic behavior of strange particle multiplicity ratios at center of mass energies near 10 GeV. If the transition(s) between the three phases are merely crossover(s), the triple point is only approximate.
Maslov, K A; Voskresensky, D N
2016-01-01
Knowledge of the equation of state of the baryon matter plays a decisive role in the description of neutron stars. With an increase of the baryon density the filling of Fermi seas of hyperons and $\\Delta$ isobars becomes possible. Their inclusion into standard relativistic mean-field models results in a strong softening of the equation of state and a lowering of the maximum neutron star mass below the measured values. We extend a relativistic mean-field model with scaled hadron masses and coupling constants developed in our previous works and take into account now not only hyperons but also the $\\Delta$ isobars. We analyze available empirical information to put constraints on coupling constants of $\\Delta$s to mesonic mean fields. We show that the resulting equation of state satisfies majority of presently known experimental constraints.
Alba, P; Gorenstein, M I; Stoecker, H
2016-01-01
We study the eigenvolume effects in the hadron resonance gas (HRG) model on hadron yields at zero chemical potential. Using different mass-volume relations for strange and nonstrange hadrons we observe a remarkable improvement in the quality of the fit of the mean hadron multiplicities measured by the ALICE Collaboration in the central Pb+Pb collisions at the collision energy $\\sqrt{s_{\\rm NN}} = 2.76$~TeV. The fit within the point-particle HRG yields $\\chi^2 / N_{\\rm dof} \\simeq 27.1 / 8$ while the corresponding calculation within the eigevolume HRG with smaller radii for heavier strange hadrons yields a remarkably small $\\chi^2 / N_{\\rm dof} \\simeq 0.42 / 6$. This effect appears to be rather insensitive to the details in the implementation of the HRG model, including the variations in the hadron list, as well the variations in the excluded-volume mechanism. Our result shows that there are no anomalies in the description of the heavy-ion hadron yield data at LHC within the HRG model, as long as physical exte...
Bose-Einstein condensation in the relativistic ideal Bose gas.
Grether, M; de Llano, M; Baker, George A
2007-11-16
The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.
Charmonium Production with QGP and Hadron Gas Effects at SPS and FAIR
Chen, Baoyi
2015-01-01
The production of charmonium in heavy-ion collisions is investigated based on Boltzmann-type transport model for charmonium evolution and langevin equation for charm quark evolution. Charmonium suppression and regeneration in both quark-gluon plasma (QGP) and hadron phase are considered. Charm quarks are far from thermalization, and regeneration of charmonium in QGP and hadron gas is neglectable at SPS and FAIR. At peripheral collisions, charmonium suppression with hadron gas explains the exp...
Dissipation process of binary mixture gas in thermally relativistic flow
Yano, Ryosuke
2016-01-01
In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...
Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons
Stockem, A; Fonseca, R A; Silva, L O
2012-01-01
We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magneto-hydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard-MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration and 1D simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency \\omega_{ci} as the dominant frequency that determines the shock physics in mixed component plasmas. The m...
Thermodynamics of the relativistic Fermi gas in D dimensions
Sevilla, Francisco J.; Piña, Omar
2017-09-01
The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a ;phase transition;, qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a ;normal; phase, to a phase where the gas compressibility grows as a power law of the temperature.
Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin
2016-08-01
It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)
Chen, Lin; Wei, Shu-Yi; Xiao, Bo-Wen; Zhang, Han-Zhong
2016-01-01
Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in $pp$ and peripheral $AA$ collisions where the medium effect is negligible. We demonstrate that the medium effects, especially the so-called jet quenching parameter $\\hat q$, can be extracted from the angular de-correlations observed in $AA$ collisions. A global $\\chi^2$ analysis of dihadron and hadron-jet angular correlation data renders the best fit $\\langle \\hat q L\\rangle_{\\textrm{tot}} \\si...
Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons
Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.
2012-08-01
We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.
Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations
Tannenbaum, M. J.
2017-08-01
The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficient q ˆ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum pT, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle pTt and associated pTa transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, jT, is dominated by kT, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger kT in A+A than in p+p collisions. The present work introduces the observation that the kT measured in p+p collisions for di-hadrons with pTt and pTa must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the kT measured with the same di-hadron pTt and pTa in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result = 2.1 ± 0.6 GeV2. This is more precise but in agreement with a theoretical calculation of =14-14+42 GeV2 using the same data. Assuming a length ≈ 7 fm for central Au+Au collisions the present result gives q ˆ ≈ 0.30 ± 0.09 GeV2/fm, in fair agreement with the JET collaboration result from single hadron suppression of q ˆ ≈ 1.2 ± 0.3 GeV2/fm at an initial time τ0 = 0.6 fm/c in Au+Au collisions at √{sNN} = 200 GeV.
Abdelsalam, A; Hafiz, M E
2012-01-01
The behavior of the relativistic hadron (shower particle) multiplicity for (32)S-nucleus interactions is investigated. The experiment is carried out at 3.7A GeV (Dubna energy) and 200A GeV (SPS energy) to search for the incident energy effect on the interactions inside the different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are separated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into these groups, is executed based on predictions of Glauber's multiple scattering theory. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like tha...
Fast equilibration of hadrons in an expanding fireball.
Noronha-Hostler, J; Greiner, C; Shovkovy, I A
2008-06-27
Because of long chemical equilibration times for standard hadronic reactions in a hadron gas in relativistic heavy ion collisions, it was suggested that hadrons are born into equilibrium after the quark gluon plasma is formed. We develop a dynamical scheme, using master equations, in which Hagedorn states contribute to fast chemical equilibration times of baryons and kaons, just below the critical temperature, estimates of which are derived analytically. The hadrons quickly equilibrate for an initial over- or underpopulation of Hagedorn states. Our particle ratios compared to BNL Relativistic Heavy Ion Collider show a close match.
Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X
2009-02-06
Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.
Equation of state of the relativistic free electron gas at arbitrary degeneracy
Faussurier, Gérald
2016-12-01
We study the problem of the relativistic free electron gas at arbitrary degeneracy. The specific heat at constant volume and particle number CV and the specific heat at constant pressure and particle number CP are calculated. The question of equation of state is also studied. Non degenerate and degenerate limits are considered. We generalize the formulas obtained in the non-relativistic and ultra-relativistic regimes.
Hot and Dense Hadron Gas (HG): A New Excluded-volume approach
Tiwari, S K
2013-01-01
We formulate a thermodynamically consistent equation of state (EOS), based on excluded-volume approach, for a hot, dense hadron gas (HG). We calculate various thermodynamical quantities of HG and various hadron ratios and compare our model results with the results of other excluded-volume models and experimental data. We also calculate various transport coefficients such as $\\eta/s$ etc. and compare them with other HG model results. Furthermore, we test the validity of our model in getting the rapidity spectra of various hadrons and the effect of flow on them is investigated by matching our predictions with the experimental data.
The triple GEM detector as beam monitor for relativistic hadron beams
Aza, E; Murtas, F; Puddu, S; Silari, M
2014-01-01
triple GEM detector was tested at the CERF facility at CERN as an on-line beam imaging monitor and as a counting reference device. It was exposed to a 120 GeV/c positively charged hadron beam (approximately 2/3 pions and 1/3 protons), which hits a copper target gen- erating a wide spectrum of different kinds of particles used for various experiments. The flux of beam particles ranged over three orders of magnitude, from 8 10 4 s 1 to 8 10 7 s 1 . The profile of the beam acquired with the GEM was compared to the one measured with a MWPC and no satu- ration was observed. In addition, the count rate measured with the GEM was compared to the one measured with an Ionization Chamber, which is routinely used for monitoring the beam intensity. Another way of monitoring the intensity of the beam was also explored, which is based on the total current driven from the GEM foils. The digital readout allows making a 2D online image of the beam for the alignment with the copper target in the CERF facility. A low residual ac...
Identifying Charged Hadrons on the Relativistic Rise Using the ALICE TPC at LHC
Gros, Philippe
2011-01-01
The chain from hadron collisions to the physics results requires several important links. First the outcome of the collision is measured by the detectors. Then, the signal from the detector is processed and transformed into information relevant for the study of the physics processes. The data is made available to physicists to be analysed and used to improve theories. This thesis presents work done on no most of these steps for the ALICE experiment at LHC. First a study of the main processes in the TPC detector for ALICE was done using simulation and test beam data. The results are shown in paper I. The study was deepened with the analysis of test beam data from a TPC prototype for the ILC, as shown in paper III. Concurrently, a study on the Grid – computing framework for distributed computing and storage resources – was performed. This involved the development of an interface module between the ALICE software AliEn and the ARC software developped in the Nordic countries. This work is presented in paper I...
Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma
Tannenbaum, M.J.
1989-12-01
The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.
Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.
Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C
2008-02-01
The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.
Determining Transport Coefficients for a Microscopic Simulation of a Hadron Gas
Pratt, Scott; Kim, Jane
2016-01-01
Quark-Gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, $T\\sim 155$ MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity, and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results agree with expectations based on Kubo relations.
New Hadron Monitor By Using A Gas-Filled RF Resonator
Yonehara, Katsuya [Fermilab; Fasce, Giorgio [ECONA, Rome; Flanagan, Gene [MUONS Inc., Batavia; Johnson, Rolland [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab
2015-05-01
It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.
Charmonium Production with QGP and Hadron Gas at SPS and FAIR
Chen, Baoyi; Xu, Zhe
2015-01-01
The production of charmonium in heavy-ion collisions is investigated based on Boltzmann-type transport model for charmonium evolution and langevin equation for charm quark evolution. Charmonium suppression and regeneration in both quark-gluon plasma (QGP) and hadron phase are considered. Charm quarks are far from thermalization, and regeneration of charmonium in QGP and hadron gas is neglectable at SPS and FAIR. At peripheral collisions, charmonium suppression with hadron gas explains the experimental data well. But at central collisions, additional suppression from deconfined matter (QGP) is necessary for the data. This means there should be QGP produced at central collisions, and no QGP produced at peripheral collisions at SPS energy. We also give the predictions of charmonium nuclear modification factor and average transverse momentum square at FAIR energy.
From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E Ruiz; Salcedo, L L
2012-01-01
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Santilli, R M
1997-01-01
We present a new realization of relativistic hadronic me- chanics and its underlying iso-Poincar'e symmetry specifically constructed for nuclear physics which: 1) permits the representation of nucleons as ex- tended, nonspherical and deformable charge distributions with alterable mag- netic moments yet conventional angular momentum and spin; 2) results to be a nonunitary ``completion'' of relativistic quantum mechanics much along the EPR argument; yet 3) is axiom-preserving, thus preserves conventional quantum laws and the axioms of the special relativity. We show that the proposed new formalism permits the apparently first exact representation of the total magnetic moments of new-body nuclei under conventional physical laws. We then point out that, if experimentally confirmed the alterability of the intrinsic characteristics of nucleons would imply new forms of recycling nuclear waste by the nuclear power plants in their own site, thus avoiding its transportation and storage in a (yet unidentified) dumping a...
Search for a Lorentz invariant velocity distribution of a relativistic gas
Curado, Evaldo M F; Soares, Ivano Damiao
2016-01-01
We examine numerically and analytically the problem of the relativistic velocity distribution in a 1-dim relativistic gas in thermal equilibrium. Our derivation is based on the special theory of relativity, the central limit theorem and the Lobachevsky structure of the velocity space of the theory, where the rapidity variable plays a crucial role. For v^2/c^2 << 1 and 1/\\beta = k_B T/ m_0 c^2 << 1 the distribution tends to the Maxwell-Boltzmann distribution.
Song, Jun; Liang, Zuo-tang
2014-01-01
We propose a new kind of two-particle correlation of identified hadrons in longitudinal rapidity space, called $G_{\\alpha\\beta}(y_{\\alpha},y_{\\beta})$, which can reflect clearly the charge correlations of hot quark system produced in AA collisions at LHC energies. It is derived from the basic scenario of quark combination mechanism of hadron production. Like the elliptic flow of identified hadrons at intermediate transverse momentum, this correlation is independent of the absolute hadronic yields but dependent only on the flavor compositions of hadrons, and thus exhibits interesting properties for different kinds of hadron species. We suggest the measurement of this observable in AA collisions at LHC to gain more insights into the charge correlation properties of produced hot quark matter.
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model
Ghosh, Sabyasachi; Mohanty, Bedangdas
2016-01-01
We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...
New scenarios for hard-core interactions in a hadron resonance gas
Satarov, L M; Alba, P; Gorenstein, M I; Stoecker, H
2016-01-01
The equation of state of a baryon-symmetric hadronic matter with hard-sphere interactions is studied. It is assumed that mesons are point-like, but baryons and antibaryons have the same hard-core radius rB. Three possibilities are considered: 1) the baryon-baryon and antibaryon-baryon interactions are the same; 2) baryons do not interact with antibaryons; 3) the baryon-antibaryon and meson-(anti)baryon interactions are negligible. By choosing the parameter rB=0.3-0.6 fm, we calculate the nucleon to pion ratio as a function of temperature and perform the fit of hadron yields measured in central Pb+Pb collisions at the bombarding energy Ecm=2.76 TeV per nucleon pair. New nontrivial effects in the interacting hadron resonance gas at temperatures 150-200 MeV are found.
Schade, Henry
2010-09-15
Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)
Equilibration of hadrons in HICs via Hagedorn States
Beitel, M; Greiner, C
2015-01-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature $T_H$ which in our understanding equals the critical temperature $T_c$. A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number $B$, strangeness $S$ and electric charge $Q$. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc.are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution ...
Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu
2009-01-01
This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation,the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures.
Parvan, A.S. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Horia Hulubei National Institute of Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest (Romania); Moldova Academy of Sciences, Institute of Applied Physics, Chisinau (Moldova, Republic of)
2015-09-15
In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q - 1) is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated. (orig.)
A study on thermodynamical properties of hot and dense hadron gas using the event generator
Sasaki, N
2001-01-01
We investigate the equilibration and the equation of state of the hot hadron gas at finite baryon density using an event generator that satisfies detailed balance at temperatures and baryon densities of present interests (80 < T < 170 MeV, 0.157 < n_B < 0.315 fm^-3). Molecular-dynamic-simulations are performed to the system of hadrons in the box with periodic boundary conditions. Starting from an initial condition composed of nucleons with uniform momentum distribution, the evolution takes place through interactions, productions and absorptions. The system approaches to a stationary state of baryons, mesons and their resonances. The system is characterized by an exponent in the energy distribution irrespective of the particle species, i.e., temperature. After the equilibration, thermodynamical quantities such as energy density, particle density, entropy and pressure are calculated. Obtained equation of state shows a remarkable deviation from the mixed free gas of mesons and baryons above T = m_pi....
Correlations of conserved number mixed susceptibilities in a hadron resonance gas model
Mishra, D K; Mohanty, Bedangadas
2016-01-01
The ratios of off-diagonal and diagonal susceptibilities of conserved charges are studied using a hadron resonance gas model with an emphasis towards providing a proper baseline for omparison to the corresponding future experimental measurements. We have studied the effect of kinematic acceptances, transverse momentum ($p_T$) and pseudorapidity ($\\eta$), and different charged states on the ratios of the calculated susceptibilities. We find that the effect of $p_T$ and $\\eta$ acceptance on the ratio of the susceptibilities are small relative to their dependence on the beam energy or the charged states of the used particles. We also present a Hadron Resonance Gas (HRG) based calculation for various combinations of cumulant ratios of protons and pions, recently proposed as robust observables (with no theoretical uncertainties) for critical point search in the experiments. These results which increase as a function of collision energy will provide a better baseline for non-critical point physics compared to Poiss...
Diffusion of relativistic gas mixtures in gravitational fields
Kremer, Gilberto M
2013-01-01
A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick's law without the thermal-diffusion cross-effect. Fick's law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appears in Fourier's law in the presence of gravitational fields and are related with an acceleration and gravitational potential gradient, but unlike Fourier's law these two last terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and they become larger than those in the absence of it.
Transport coefficients for relativistic gas mixtures of hard-sphere particles
Kremer, Gilberto M.; Moratto, Valdemar
2017-04-01
In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model
Megias, E; Salcedo, L L
2013-01-01
Based on first principle QCD arguments, it has been argued in arXiv:1204.2424[hep-ph] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop hep-ph/0412308, hep-ph/0607338. The existence of exotic states in the spectrum is discussed.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model *,**
Megías E.
2014-03-01
Full Text Available Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed.
van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.
Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst
2017-05-05
An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190 MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.
van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD
Vovchenko, Volodymyr; Gorenstein, Mark I.; Stoecker, Horst
2017-05-01
An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T ˜140 - 190 MeV . For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.
Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole
Rioseco, Paola
2016-01-01
We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite ex...
Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws
Fu, Jing-Hua
2016-01-01
Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. The conservation of three charges, baryon number, electric charge, and strangeness, is enforced in the large volume limit. Moments up to the forth order of various particles are calculated at SPS, RHIC and LHC energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distribution can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated and compared to the experimental measurements. The pseudo-rapidity coverage dependence of net-charge fluctuation is discussed.
Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah
2016-04-01
In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.
Back-to-back correlations of high-p(T) hadrons in relativistic heavy-ion collisions.
Hirano, Tetsufumi; Nara, Yasushi
2003-08-22
We investigate the suppression factor and the azimuthal correlation function for high p(T) hadrons in central Au+Au collisions at sqrt[s(NN)]=200 GeV by using a dynamical model in which hydrodynamics is combined with explicitly traveling jets. We study the effects of parton energy loss in a hot medium, intrinsic k(T) of partons in a nucleus, and p (perpendicular) broadening of jets on the back-to-back correlations of high p(T) hadrons. Parton energy loss is found to be a dominant effect on the reduction of the awayside peaks in the correlation function.
Hadron Resonance Gas Model for An Arbitrarily Large Number of Different Hard-Core Radii
Oliinychenko, D R; Sagun, V V; Ivanytskyi, A I; Yakimenko, I P; Nikonov, E G; Taranenko, A V; Zinovjev, G M
2016-01-01
We develop a novel formulation of the hadron-resonance gas model which, besides a hard-core repulsion, explicitly accounts for the surface tension induced by the interaction between the particles. Such an equation of state allows us to go beyond the Van der Waals approximation for any number of different hard-core radii. A comparison with the Carnahan-Starling equation of state shows that the new model is valid for packing fractions 0.2-0.22, while the usual Van der Waals model is inapplicable at packing fractions above 0.11-0.12. Moreover, it is shown that the equation of state with induced surface tension is softer than the one of hard spheres and remains causal at higher particle densities. The great advantage of our model is that there are only two equations to be solved and it does not depend on the various values of the hard-core radii used for different hadronic resonances. Using this novel equation of state we obtain a high-quality fit of the ALICE hadron multiplicities measured at center-of-mass ener...
Van der Waals interactions in hadron resonance gas: From nuclear matter to lattice QCD
Vovchenko, Volodymyr; Stoecker, Horst
2016-01-01
An extension of the ideal non-interacting hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters $a$ and $b$ are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within VDW-HRG model. Compared to the ideal non-interacting HRG, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of 2nd and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region $T \\sim 140 \\div 190$ MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. These results imply that VDW interactions play a crucial role in thermodynamics of hadron gas. Thus, the commonly performed compar...
Thermodynamics of strong interaction matter from lattice QCD and the hadron resonance gas model
Karsch, Frithjof
2013-01-01
We compare recent lattice QCD calculations of higher order cumulants of net-strangeness fluctuations with hadron resonance gas (HRG) model calculations. Up to the QCD transition temperature Tc=( 154 +/- 9) MeV we find good agreement between QCD and HRG model calculations of second and fourth order cumulants, even when subtle aspects of net-baryon number, strangeness and electric charge fluctuations are probed. In particular, the fourth order cumulants indicate that also in the strangeness sector of QCD the failure of HRG model calculations sets in quite abruptly in the vicinity of the QCD transition temperature and is apparent in most observables for T > 160 MeV.
Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas
Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Bluhm, Marcus [North Carolina State University, Department of Physics, Raleigh, NC (United States); Alba, Paolo [Universita degli Studi di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Turin (Italy); Bellwied, Rene; Ratti, Claudia [University of Houston, Department of Physics, Houston, TX (United States)
2015-12-15
We investigate net proton fluctuations as important observables measured in heavy-ion collisions within the hadron resonance gas (HRG) model. Special emphasis is given to effects which are a priori not inherent in a thermally and chemically equilibrated HRG approach. In particular, we point out the importance of taking into account the successive regeneration and decay of resonances after the chemical freeze-out, which lead to a randomization of the isospin of nucleons and thus to additional fluctuations in the net proton number. We find good agreement between our model results and the recent STAR measurements of the higher-order moments of the net proton distribution. (orig.)
Capeans, M; Guida, R; Hahn, F; Haider, S
2009-01-01
The Resistive Plate Chambers (RPCs) installed as part of the large muon detectors at the Large Hadron Collider (LHC) experiments use a gas mixture of 94.7% C2H2F4, 5% iC(4)H(10) and 0.3% SF6. Based on economical grounds, the design philosophy of the gas systems for the ATLAS and CMS RPC's foresees to recirculate the gas mixture in 90-95% closed loop circulation. At the LHC, RPC chambers are operated in a high radiation environment, conditions for which large amount of impurities in the return gas have been observed in earlier studies. They are potentially dangerous for the stable operation of the detectors, the materials in the detector and the gas system. While several purification stages have been foreseen in the present gas systems, chemical reactions between the absorber and the impurities are yet not well understood. Furthermore, the effects on the gas mixture of the foreseen factor 10 increase of luminosity for the LHC upgraded phase should be studied. We present the results of systematic studies of the...
Berdnikov, Yu A; Ivanov, A N; Ivanova, V A; Kosmach, V F; Samsonov, V M; Troitskaya, N I; Berdnikov, Ya. A.
2000-01-01
We describe the quark gluon plasma (QGP) as a thermalized quark-gluon system, the thermalized QGP phase of QCD. The hadronization of the thermalized QGP phase is given in a way resembling a simple coalescence model. The input parameters of the approach are the spatial volumes of the hadronization. We introduce three dimensionless parameters C_M, C_B and C_\\bar{B} related to the spatial volumes of the production of low-lying mesons (M), baryons (B) and antibaryons (\\bar{B}). We show that at the temperature T= 175 MeV our predictions for the ratios of multiplicities agree good with the presently available set of hadron ratios measured for various experiments given by NA44, NA49, NA50 and WA97 Collaborations on Pb+Pb collisions at 158 GeV/nucleon, NA35 Collaboration on S+S collisions and NA38 Collaboration on O+U and S+U collisions at 200 GeV/nucleon.
Relativistic electron gas: A candidate for nature's left-handed materials
de Carvalho, C. A. A.
2016-05-01
The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential, frequency, and wave vector. The polarization and the magnetization depend linearly on both electric and magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature- and chemical-potential-dependent medium part. Analytic calculations lead to generalized expressions that depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the relativistic case, and in the long wavelength limit, we obtain the following: (i) for ω =0 , generalized susceptibilities that reduce to known nonrelativistic limits; (ii) for ω ≠0 , Drude-type responses at zero temperature. The latter implies that both the electric permittivity ɛ and the magnetic permeability μ may be simultaneously negative, a behavior characteristic of metamaterials. This unambiguously indicates that the relativistic electron gas is one of nature's candidates for the realization of a negative index of refraction system. Moreover, Maxwell's equations in the medium yield the dispersion relation and the index of refraction of the electron gas. Present results should be relevant for plasma physics, astrophysical observations, synchrotrons, and other environments with fast-moving electrons.
Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments
Yonehara, Katsuya [Fermilab; Abrams, Robert [MUONS Inc., Batavia; Dinkel, Holly [U. Missouri, Columbia; Freemire, Ben [IIT, Chicago; Johnson, Rolland [MUONS Inc., Batavia; Kazakevich, Grigory [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab
2016-06-01
MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.
Development and characterization of micro-pattern gas detectors for intense beams of hadrons
Vandenbroucke, Maxence
2012-07-02
This thesis work is dedicated to the design, development and characterization of Micro-Pattern Gas Detectors. The performances of a Time Projection Chamber (TPC) equipped with a triple Gas Electron Multiplier (GEM) amplification structure are reported. The intrinsic ion backflow suppression of GEM foils drastically reduces the space charge produced by wire readout in traditional TPC. The GEM solution allows the operation of a TPC at much higher event rate. The second part of this thesis describes the development of a 40 x 40 cm{sup 2} Micromegas detector with a highly segmented central area. A reduction of discharges compared to conventional Micromegas detectors is needed for stable operation in intense beams of hadrons. Spark reduction technologies have been successfully studied and results are presented.
Exotic Hadron Bound State Production at Hadronic Colliders
Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng
2016-01-01
The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.
Bugaev, K A; Sagun, V V; Ivanytskyi, A I; Cleymans, J; Mironchuk, E S; Nikonov, E G; Taranenko, A V; Zinovjev, G M
2016-01-01
We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $\\gamma_{s}$ factor which accounts for the remaining strange particle non-equilibration. Within suggested approach the parameters of two chemical freeze-outs are connected by the conservation laws of entropy, baryonic charge, third isospin projection and strangeness. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with $\\chi^2/dof \\simeq 0.93$. A special attention is paid to a successful description of the Strangeness Horn. The well-known problem of selective suppression of $\\bar \\Lambda $ and $\\bar \\Xi$ hyperons is also discussed. The main result is that for all collision energies the $\\gamma_{s}$ factor is about 1 within the error bars, except for the center of mass collision energy 7.6 GeV at which we find about 20\\% enhancement of strangeness. Als...
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model ***
Megías, E.; Ruiz Arriola, E.; Salcedo, L. L.
2014-03-01
Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed. Presented by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2011-25948), DGI (FIS2011-24149), Junta de Andalucía grant FQM-225, Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Spanish MINECO's Centro de Excelencia Severo Ochoa Program grant SEV-2012-0234, and the Juan de la Cierva Program.
Resonance decay effect on conserved number fluctuations in a hadron resonance gas model
Mishra, D K; Netrakanti, P K; Mohanty, A K
2016-01-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Effect of resonance decay on conserved number fluctuations in a hadron resonance gas model
Mishra, D. K.; Garg, P.; Netrakanti, P. K.; Mohanty, A. K.
2016-07-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge, and net-strangeness fluctuations in high-energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Excluded-volume effects for a hadron gas in Yang-Mills theory
Alba, Paolo; Nada, Alessandro; Panero, Marco; Stöcker, Horst
2016-01-01
When the multiplicities of particles produced in heavy-ion collisions are fitted to the hadron-resonance-gas model, excluded-volume effects play a significant role. In this work, we study the impact of such effects onto the equation of state of pure Yang-Mills theory at low temperatures, comparing the predictions of the statistical model with lattice results. In particular, we present a detailed analysis of the SU(2) and SU(3) Yang-Mills theories: we find that, for both of them, the best fits to the equilibrium thermodynamic quantities are obtained when one assumes that the volume of different glueball states is inversely proportional to their mass. The implications of these findings for QCD are discussed.
Recent results on QCD thermodynamics: lattice QCD versus Hadron Resonance Gas model
Borsanyi, Szabolcs; Hoelbling, Christian; Katz, Sandor D; Krieg, Stefan; Ratti, Claudia; Szabo, Kalman K
2010-01-01
We present our most recent investigations on the QCD cross-over transition temperatures with 2+1 staggered flavours and one-link stout improvement [JHEP 1009:073, 2010]. We extend our previous two studies [Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)] by choosing even finer lattices ($N_t$=16) and we work again with physical quark masses. All these results are confronted with the predictions of the Hadron Resonance Gas model and Chiral Perturbation Theory for temperatures below the transition region. Our results can be reproduced by using the physical spectrum in these analytic calculations. A comparison with the results of the hotQCD collaboration is also discussed.
Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions
Nandy, D. K.
2016-11-01
We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.
Fast Equilibration of Hadrons in an Expanding Fireball
Noronha-Hostler, J; Shovkovy, I A
2007-01-01
Due to long chemical equilibration times within standard hadronic reactions during the hadron gas phase in relativistic heavy ion collisions it has been suggested that the hadrons are "born" into equilibrium after the quark gluon plasma phase. Here we develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of baryon anti-baryon pairs (as well as kaon anti-kaon pairs) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the kaons and baryons as well as the bath of pions and Hagedorn resonances can indeed quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Moreover, a comparison of our results to $(B+\\bar{B})/\\pi^{+}$ and $K/\\pi^{+}$ ratios at RHIC, indeed, shows a close match.
Strangeness in QGP: Hadronization Pressure
Rafelski, Jan; Petran, Michal
2014-01-01
We review strangeness as signature of quark gluon plasma (QGP) and the hadronization process of a QGP fireball formed in relativistic heavy-ion collisions in the entire range of today accessible reaction energies. We discuss energy dependence of the statistical hadronization parameters within the context of fast QGP hadronization. We find that QGP breakup occurs for all energies at the universal hadronization pressure $P = 80\\pm 3\\,\\mathrm{MeV/fm}^3 $.
Cooper, S.
1985-10-01
Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)
Relativistic dynamics compels a thermalized Fermi gas to a unique intrinsic parity eigenstate
Bernardini, Alex E
2014-01-01
Dirac equation describes the dynamics of a relativistic spin-1/2 particle regarding its spatial motion and intrinsic degrees of freedom. Here we adopt the point of view that the spinors describe the state of a massive particle carrying two qubits of information: helicity and intrinsic parity. We show that the density matrix for a gas of free fermions, in thermal equilibrium, correlates helicity and intrinsic parity. Our results introduce the basic elements for discussing the spin-parity correlation for a Fermi gas: (1) at the ultra-relativistic domains, when the temperature is quite high, $T > 10^{10}\\ K$, the fermions have no definite intrinsic parity (50% : 50%), which is maximally correlated with the helicity; (2) at very low temperature, $T \\approx 3 \\ K$, a unique parity dominates (conventionally chosen positive), by $10^{20}$ to $1$, while the helicity goes into a mixed state for spin up and down, and the quantum correlation decoheres. For the anti-fermions we get the opposite behavior. In the framework...
Transport Coefficients of Interacting Hadrons
Wiranata, Anton
A detailed quantitative comparison between the results of shear viscosities from the Chapman-Enskog and Relaxation Time methods is performed for the following test cases with specified elastic differential cross sections between interacting hadrons: (1) The non-relativistic, relativistic and ultra-relativistic hard sphere gas with angle and energy independent differential cross section sigma = a2/4, where a is the hard sphere radius, (2) The Maxwell gas with sigma(g, theta) = mGamma(theta)/2g, where m is the mass of the heat bath particles, Gamma(theta) is an arbitrary function of theta, and g is the relative velocity, (3) Chiral pions for which the t-averaged cross section sigma = s/(64pi2 f4p ) x (1 + 1/3 x cos2 theta), where s and t are the usual Mandelstam variables and fpi is the pion-decay constant, and (4) Massive pions for which the differential elastic cross section is taken from experiments. Quantitative results of the comparative study conducted revealed that • the extent of agreement (or disagreement) depends very sensitively on the energy dependence of the differential cross sections employed, stressing the need to combine all available experimental knowledge concerning differential cross sections for low mass hadrons and to supplement it with theoretical guidance for the as yet unknown cross sections so that the temperature dependent shear viscosity to entropy ratio can be established for use in viscous hydordynamics. • The result found for the ultra-relativistic hard sphere gas for which the shear viscosity etas = 1.2676 k BT c--1/(pia 2) offers the opportunity to validate ultra-relativistic quantum molecular dynamical (URQMD) codes that employ Green-Kubo techniques. • shear viscosity receives only small contributions from number changing inelastic processes. The dependence of the bulk viscosity on the adiabatic speed of sound is studied in depth highlighting why only hadrons in the intermediate relativistic regime contribute the most to the
On Dynamical Net-Charge Fluctuations within a Hadron Resonance Gas Approach
Abdel Nasser Tawfik
2016-01-01
Full Text Available The dynamical net-charge fluctuations (νdyn in different particle ratios K/π, K/p, and p/π are calculated from the hadron resonance gas (HRG model and compared with STAR central Au+Au collisions at sNN=7.7–200 GeV and NA49 central Pb+Pb collisions at sNN=6.3–17.3 GeV. The three charged particle ratios (K/π,K/p, and p/π are determined as total and average of opposite and average of the same charges. We find an excellent agreement between the HRG calculations and the experimental measurements, especially from STAR beam energy scan (BES program, while the strange particles in the NA49 experiment at lower Super Proton Synchrotron (SPS energies are not reproduced by the HRG approach. We conclude that the utilized HRG version seems to take into consideration various types of correlations including strong interactions through the heavy resonances and their decays especially at BES energies.
John R. Fanchi
2017-07-01
Full Text Available Jüttner used the conventional theory of relativistic statistical mechanics to calculate the energy of a relativistic ideal gas in 1911. An alternative derivation of the energy of a relativistic ideal gas was published by Horwitz, Schieve and Piron in 1981 within the context of parametrized relativistic statistical mechanics. The resulting energy in the ultrarelativistic regime differs from Jüttner’s result. We review the derivations of energy and identify physical regimes for testing the validity of the two theories in accelerator physics and cosmology.
Hadronic Transport Coefficients from Effective Field Theories
Torres-Rincon, Juan M
2012-01-01
This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after the chemical freeze-out. This matter can be well approximated by a pion gas out of equilibrium. We describe the theoretical framework to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly. We perform the calculation of the transport properties of the low temperature phase of quantum chromodynamics -the hadronic medium- that can be used in the hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase trans...
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
The theory of hot nuclear fireballs consisting of all possible finite-size hadronic constituents in chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized by maximal temperature and energy density, the quark bag description of the hadronic fireball is considered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high multiplicity relativistic nuclear collisions together with some considerations on the observability of quark matter are offered. (orig.)
Hadron star models. [neutron stars
Cohen, J. M.; Boerner, G.
1974-01-01
The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.
Relativistic hadronic models in LDA
Silva, J.B.; Delfino, A.; Malheiro, M. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
2001-07-01
In the framework of the Walecka model we perform a model approximation ({rho}{sub s} = {rho}), in which some nuclear matter observable are calculated analytically. The results are very close to those obtained by the original Walecka model. (author)
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2016-08-01
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
The response of relativistic outflowing gas to the inner accretion disk of a black hole.
Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen
2017-03-01
The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different
The response of relativistic outflowing gas to the inner accretion disk of a black hole
Parker, Michael L.; Pinto, Ciro; Fabian, Andrew C.; Lohfink, Anne; Buisson, Douglas J. K.; Alston, William N.; Kara, Erin; Cackett, Edward M.; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C.; Garcia, Javier; Harrison, Fiona A.; King, Ashley L.; Middleton, Matthew J.; Miller, Jon M.; Miniutti, Giovanni; Reynolds, Christopher S.; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J.; Wilkins, Daniel R.; Zoghbi, Abderahmen
2017-03-01
The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these—the ultrafast outflows—are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224‑3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very
Equilibration of hadrons in HICs via Hagedorn States
Beitel, M.; Gallmeister, K.; Greiner, C.
2016-08-01
Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc. A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH. Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2... 5fm/c.
Quark-hadron phase transition and strangeness conservation constraints
Saeed-Uddin
1999-01-01
The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.
Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions
GAOChong-Shou
2003-01-01
The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.
Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions
GAO Chong-Shou
2003-01-01
The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.
Search for Tetraquarks in Relativistic Heavy-Ion Collisions
MA Zhong-Biao; GAO Chong-Shou
2006-01-01
Tetraquarks can be produced in relativistic heavy-ion collision. The yield of this kind of tetraquarks can increase significantly soon as the formation of QGP after the collision. If there is no phase transition after collision, the upper bound of the production of this four-quark states can be estimated from the free hadronic gas model for nuclearmatter. The relative yield ratio of tetraquark cs(s)(s) to Ω is less than 0.0164.
Equilibrium and non-equilibrium properties of a relativistic gas at the transition temperature
Chacón-Acosta, Guillermo
2016-11-01
The Jüttner distribution function for equilibrium relativistic fluids has two well-known limits, the non-relativistic limit at low temperatures and ultra-relativistic limit for high temperatures. Recently, the description of this transition in velocity space in the system, from a gaussian to a bimodal distribution was made by Mendoza et al. Physically, it is a transition between a regime where the relativistic energy is dominated by kinetic to another where the rest energy dominates. It has been found that the critical temperature at which the relativistic corrections becomes relevant, depends just on the dimension of the system, this allowed a description in terms of the theory of critical points (Montakhab et al.). In this contribution a review of the thermodynamic quantities that are only dependent on the ratio between temperature and critical temperature, and the dimension is made. We will also analyze the effects of critical temperature on dissipative processes in simple special relativistic fluids. Particularly, purely relativistic terms that are usually proportional to the number density gradient are studied. The transport coefficients can be written in terms of the transition temperature, this will allow us to identify the lower order relativistic effects just in terms of the dimension of the system.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.
Melting hadrons, boiling quarks
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)
Equation of state and sound velocity of hadronic gas with hard-core interaction
Satarov, L M; Mishustin, I N
2014-01-01
Thermodynamic properties of hot and dense hadronic systems with a hard-sphere interaction are calculated in the Boltzmann approximation. Two parametrizations of pressure as a function of density are considered: the first one, used in the excluded volume model and the second one, suggested earlier by Carnahan and Starling. The results are given for one-component systems containing only nucleons or pions, as well as for chemically equilibrated mixtures of pions, nucleons and delta resonances. It is shown that the Carnahan-Starling approach can be used in a much broader range of hadronic densities as compared to the excluded volume model. In this case superluminal sound velocities appear only at very high densities, in the region where the deconfinement effects should be already important.
Relativistic Hydrodynamics for Heavy-Ion Collisions
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Hussain, Nur; Bhattacharjee, Buddhadeb
2017-08-01
Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.
Heavy Quark Entropy shift: From the Hadron Resonance Gas to Power Corrections
Megias, E; Salcedo, L L
2016-01-01
A heavy quark placed in the medium modifies its specific heat. Using a renormalization group argument we show a low energy theorem in terms of the defect in the trace of the energy-momentum tensor which allows the unambiguous determination of the corresponding entropy shift after imposing the third principle of thermodynamics for degenerate states. We show how recent lattice QCD data can be understood in the confined phase in terms of a single-heavy hadronic spectrum and above the phase transition through power corrections which are analyzed by means of a dimension 2 gluon condensate of the dimensionally reduced theory.
Preliminary results of the Gas Electron Multiplier (GEM) as real-time beam monitor in hadron therapy
Aza, E.; Ciocca, M.; Murtas, F.; Puddu, S.; Pullia, M.; Silari, M.
2017-01-01
The use of proton and carbon ion beams in cancer therapy (also known as hadron therapy) is progressively growing worldwide due to their improved dose distributions, sparing of healthy tissues and (for carbon ions) increased radiobiological effectiveness especially for radio-resistant tumours. Strict Quality Assurance (QA) protocols need to be followed for guaranteeing the clinical beam specifications. The aim of this study was to assess the performance of a gaseous detector based on the Gas Electron Multiplier (GEM) technology for measuring the beam spot dimensions and the homogeneity of the scanned irradiation field, which are daily QA tasks commonly performed using radiochromic films. Measurements performed at the National Centre for Oncological Hadron Therapy (CNAO) in Pavia (Italy) showed that the detector is able to monitor the 2D beam image on-line with a pad granularity of 2 mm and a response proportional to the number of delivered particles. The dose homogeneity was measured with low deviation from the results obtained with radiochromic films.
Identifying multiquark hadrons from heavy ion collisions.
Cho, Sungtae; Furumoto, Takenori; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Yasui, Shigehiro; Yazaki, Koichi
2011-05-27
Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.
Arteaga-Velazquez, J C
2013-01-01
The diffuse neutrino flux from FRI and BL Lac type galaxies generated from interactions of their own gamma radiation with the gas and dust at the sources is reported. This neutrino-production channel has not been studied in detail up to now. The calculations are based on individual estimations of the neutrino flux in two nearby AGN's: Centaurus A and M87, assuming the validity of the AGN unification model. The predictions for Centaurus A and M87 involved the parameterization of the measured gamma-ray luminosities and the modeling of the material of the galaxies both based on observations performed by several detectors. No hadronic origin for the TeV photons is assumed. The results show that, although the corresponding neutrino flux ($E^{2} \\Phi_{\
Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.
1982-01-01
The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.
Properties of hadronic matter near the phase transition
Noronha-Hostler, Jacquelyn
2010-12-08
According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states
Month, M.; Weng, W.T.
1983-06-21
The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.
Relativistic drag and emission radiation pressures in an isotropic photonic gas
Lee, Jeffrey S.; Cleaver, Gerald B.
2016-06-01
By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.
Relativistic Drag and Emission Radiation Pressures in an Isotropic Photonic Gas
Lee, Jeff S
2015-01-01
By invoking the relativistic spectral radiance, as derived by Lee and Cleaver [1], the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and rearward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.
Bubble dynamics and the quark-hadron phase transition in nuclear collisions
Fogaça, D A; Fariello, R; Navarra, F S
2016-01-01
We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the right energy density (or baryon density) is reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a cold and strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
2015-01-01
This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...
Validation of Hadronic Models in GEANT4
Koi, Tatsumi; Wright, Dennis H.; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Truscott,; Lei, Fan; /QinetiQ; Wellisch, Hans-Peter
2007-09-26
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.
Validation of hadronic models in GEANT4
Koi, Tatsumi; Folger, Günter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Truscott, Pete; Lei, Fan; Wellisch, Hans-Peter
2007-01-01
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin-target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.
Li, Ming; Kapusta, Joseph I.
2017-01-01
In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
Li, Ming
2016-01-01
In very high energy collisions nuclei are practically tranparent to each other but produce very hot, nearly baryon-free, matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.
The role of hadron resonances in hot hadronic matter
Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)
2017-02-01
Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.
Effective N-particle collisions in a hadronic transport approach
Oliinychenko, Dmytro
2016-01-01
Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we introduce a way to include N-particle collisions effectively in a transport approach. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modelling hot and dense strongly-interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Towards a realistic description of hadron resonances
Schmidt, R. A.; Canton, L.; Schweiger, W.; Plessas, W.
2016-08-01
We report on our attempts of treating excited hadron states as true quantum resonances. Hitherto the spectroscopy of mesons, usually considered as quark-antiquark systems, and of baryons, usually considered as three-quark systems, has been treated through excitation spectra of bound states (namely, confined few-quark systems), corresponding to poles of the quantum-mechanical resolvent at real negative values in the complex energy plane. As a result the wave functions, i.e. the residua of the resolvent, have not exhibited the behaviour as required for hadron resonances with their multiple decay modes. This has led to disturbing shortcomings in the description of hadronic resonance phenomena. We have aimed at a more realistic description of hadron resonances within relativistic constituent-quark models taking into account explicitly meson-decay channels. The corresponding coupled-channels theory is based on a relativistically invariant mass operator capable of producing hadron ground states with real energies and hadron resonances with complex energies, the latter corresponding to poles in the lower half-plane of the unphysical sheet of the complex energy plane. So far we have demonstrated the feasibility of the coupled-channels approach to hadron resonances along model calculations producing indeed the desired properties. The corresponding spectral properties will be discussed in this contribution. More refined studies are under way towards constructing a coupled-channels relativistic constituent-quark model for meson and baryon resonances.
Lambda Hypernuclei in a Chiral Hadronic Model
LIANG Yin-Hua; GUO Hua
2005-01-01
@@ Nuclear matter calculations in a chiral hadronic model have been performed. It has been found that the scalar and the vector potentials and binding energies per nucleon in the chiral hadronic model are very close to those of the microscopic relativistic Brueckner-Hartree-Fock calculations. The good results for finite nuclei can be obtained in the mean field approximation only if scalar mass ms and coupling constant gs have been improved with the fixed values of cs2 ≡ g2s(M/ms)2 as those given by the original parameter sets of the chiral hadronic model. Then the chiral hadronic model is extended to lambda hypernuclei. Our results predicted by the chiral hadronic model are compared with those by the nonlinear Walecka model. It has been shown that the hadronic model can also be used to describe lambda hypernuclei successfully.
Millimeter emission from protoplanetary disks : dust, cold gas, and relativistic electrons
Salter, Demerese Marie
2010-01-01
Star formation occurs when a dense cloud of interstellar gas and dust gravitationally collapses. Rotation during this collapse leads naturally to the formation of a flattened circumstellar disk around the forming star. These disks are additionally known as protoplanetary disks because the orbiting c
Chemical freeze-out in relativistic heavy-ion collisions
Xu, Jun; Ko, Che Ming
2017-09-01
One surprising result in relativistic heavy-ion collisions is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these collisions, we find, as an example, that the effective pion to nucleon ratio, which includes those from resonance decays, indeed changes very little during the evolution of the hadronic matter from the chemical to the kinetic freeze-out, and it is also accompanied by an almost constant specific entropy. We further use a hadron resonance gas model to illustrate the results from the transport model study.
Hard Thermal Photon Production in Relativistic Heavy Ion Collisions
Steffen, F D; Steffen, Frank D.; Thoma, Markus H.
2001-01-01
The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.
Hard thermal photon production in relativistic heavy ion collisions
Steffen, F. D.; Thoma, M. H.
2001-06-01
The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.
Ivanov, M V; Caballero, J A; Antonov, A N; de Guerra, E Moya; Gaidarov, M K
2008-01-01
The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on $^{12}$C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.
Correlated emission of hadrons from recombination of correlated partons.
Fries, R J; Bass, S A; Müller, B
2005-04-01
We discuss different sources of hadron correlations in relativistic heavy ion collisions. We show that correlations among partons in a quasithermal medium can lead to the correlated emission of hadrons by quark recombination and argue that this mechanism offers a plausible explanation for the dihadron correlations in the few GeV/c momentum range observed in Au+Au collisions at the BNL Relativistic Heavy Ion Collider.
Yamazaki, Takeshi
2015-01-01
Understanding hadronic interactions is crucial for investigating the properties of unstable hadrons, since measuring physical quantities for unstable hadrons including the resonance mass and decay width requires simultaneous calculations of final scattering states. Recent studies of hadronic scatterings and decays are reviewed from this point of view. The nuceon-nucleon and multi-nucleon interactions are very important to understand the formation of nucleus from the first principle of QCD. These interactions have been studied mainly by two methods, due originally to L\\"uscher and to HALQCD. The results obtained from the two methods are compared in three channels, $I=2$ two-pion, H-dibaryon, and two-nucleon channels. So far the results from the two methods for the two-nucleon channels are different even at the level of the presence or absence of bound states. We then discuss possible uncertainties in each method. Recent results on the binding energy for helium nuclei are also reviewed.
K. Orginos
2011-12-01
In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.
Belkacem, M; Bass, S A; Bleicher, M; Bravina, L V; Gorenstein, M I; Konopka, J; Neise, L; Spieles, C; Soff, S; Weber, H; Stöcker, H; Greiner, W
1998-01-01
Equilibrium properties of infinite relativistic hadron matter are investigated using the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model. The simulations are performed in a box with periodic boundary conditions. Equilibration times depend critically on energy and baryon densities. Energy spectra of various hadronic species are shown to be isotropic and consistent with a single temperature in equilibrium. The variation of energy density versus temperature shows a Hagedorn-like behavior with a limiting temperature of 130$\\pm$10 MeV. Comparison of abundances of different particle species to ideal hadron gas model predictions show good agreement only if detailed balance is implemented for all channels. At low energy densities, high mass resonances are not relevant; however, their importance raises with increasing energy density. The relevance of these different conceptual frameworks for any interpretation of experimental data is questioned.
High-pT hadron production and triggered particle correlations
Mischke, A.
2006-01-01
The STAR experiment at the Relativistic Heavy-Ion Collider has performed measurements of high transverse momentum particle production in ultra-relativistic heavy-ion collisions. High-pT hadrons are generated from hard parton scatterings early in the collision. The outgoing partons probe the surround
Electromagnetic recombination spectra at the quark-hadron phase transition
Young, Clint
2015-01-01
When quarks hadronize, they accelerate. Because they carry electric charge, they must radiate light as they accelerate and hadronize. This is true not only in jets but also in heavy ion collisions, where a thermalized plasma of quarks and gluons cools into a gas of hadrons. First, direct emission of photons from two quarks coalescing into pions is calculated using the quark-meson model. The yield of final-state photons to pions is found to be about $e^2/g^2_{\\pi qq}$, which is on the order of a percent. Second, the yield of photons from the decay of highly excited color singlets, which may exist ephemerally during hadronizaton, is estimated. Because these contributions occur late in the reaction, they should carry significant elliptic flow, which may help explain the large observed flow of direct photons at RHIC by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). The enhanced emission also helps explain PHENIX's surprisingly large observed $\\gamma/\\pi$ ratio.
Xu, Hao-jie
2017-02-01
The effects of volume corrections and resonance decays (the resulting correlations between positive charges and negative charges) on cumulants of net-proton distributions and net-charge distributions are investigated by using a Monte Carlo hadron resonance gas (MCHRG) model. The required volume distributions are generated by a Monte Carlo Glauber (MC-Glb) model. Except the variances of net-charge distributions, the MCHRG model with more realistic simulations of volume corrections, resonance decays and acceptance cuts can reasonably explain the data of cumulants of net-proton distributions and net-charge distributions reported by the STAR collaboration. The MCHRG calculations indicate that both the volume corrections and resonance decays make the cumulant products of net-charge distributions deviate from the Skellam expectations: the deviations of Sσ and κσ2 are dominated by the former effect while the deviations of ω are dominated by the latter one.
Bouhali, Othmane
2017-01-01
After the discovery of the long awaited Higgs boson in 2012, the Large hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) and its two general purpose experiments (ATLAS and CMS) are preparing to break new grounds in High Energy Physics (HEP). The international HEP collaboration has established a rigorous research program of exploring new physics at the high energy frontiers. The program includes substantial increase in the luminosity of the LHC putting detectors into a completely new and unprecedented harsh environment. In order to maintain their excellent performance, an upgrade of the existing detectors is mandatory. In this work we will describe ongoing efforts for the upgrade of the CMS muon detection system, in particular the addition of detection layers based on the Gas Electron Multiplier (GEM) technology. We will summarize the past 5-year R\\ and D program and the future installation and operation plans.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Decaying hadrons within constituent-quark models
Kleinhappel, Regina
2012-01-01
Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...
Forced canonical thermalization in a hadronic transport approach at high density
Oliinychenko, Dmytro; Petersen, Hannah
2017-03-01
Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we effectively simulate the high-density regime using the local forced canonical thermalization. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modeling hot and dense strongly interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.
Gutsche, Thomas; Faessler, Amand; Lee, Ian Woo; Lyubovitskij, Valery E
2010-01-01
We discuss a possible interpretation of the open charm mesons $D_{s0}^*(2317)$, $D_{s1}(2460)$ and the hidden charm mesons X(3872), Y(3940) and Y(4140) as hadron molecules. Using a phenomenological Lagrangian approach we review the strong and radiative decays of the $D_{s0}^* (2317)$ and $D_{s1}(2460)$ states. The X(3872) is assumed to consist dominantly of molecular hadronic components with an additional small admixture of a charmonium configuration. Determing the radiative ($\\gamma J/\\psi$ and $\\gamma \\psi(2s)$) and strong ($J/\\psi 2\\pi $ and $ J/\\psi 3\\pi$) decay modes we show that present experimental observation is consistent with the molecular structure assumption of the X(3872). Finally we give evidence for molecular interpretations of the Y(3940) and Y(4140) related to the observed strong decay modes $J/\\psi + \\omega$ or $J/\\psi + \\phi$, respectively.
Exotic hadrons from heavy ion collisions
Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi
2017-07-01
High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally
Rosnet, Ph
2008-01-15
The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Specific Heat of Matter Formed in Relativistic Nuclear Collisions
Basu, Sumit; Chatterjee, Rupa; Nayak, Tapan K; Nandi, Basanta K
2016-01-01
We report the excitation energy dependence of specific heat (\\cv) of hadronic matter at freeze-out in Au+Au and Cu+Cu collisions at the Relativistic Heavy Ion Collider energies by analyzing the published data on event-by-event mean transverse momentum (\\meanpt) distributions. The \\meanpt~distributions in finite \\pt~ranges are converted to distributions of effective temperatures, and dynamical fluctuations in temperature are extracted by subtracting widths of the corresponding mixed event distributions. The heat capacity per particle at the kinetic freezeout surface is presented as a function of collision energy, which shows a sharp rise in \\cv~below \\sNN~=~62.4~GeV. We employ the Hadron Resonance Gas (HRG) model to estimate \\cv~at the chemical and kinetic freezeout surfaces. The experimental results are compared to the HRG and other theoretical model calculations. HRG results show good agreement with data. Model predictions for \\cv~at the Large Hadron Collider energy are presented.
Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar
2016-12-01
Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.
The relativistic virial theorem and scale invariance
Gaite, Jose
2013-01-01
The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.
Bazavov, A; DeTar, C E; Ding, H -T; Gottlieb, Steven; Gupta, Rajan; Hegde, P; Heller, Urs; Karsch, F; Laermann, E; Levkova, L; Mukherjee, Swagato; Petreczky, P; Schmidt, Christian; Soltz, R A; Soeldner, W; Sugar, R; Vranas, Pavlos M
2012-01-01
We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results in the continuum limit are obtained using calculations with tree level improved gauge and the highly improved staggered quark (HISQ) actions with almost physical light and strange quark masses at three different values of the lattice cut-off. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T < 150 MeV. We observe significant deviations in the temperature range 160 MeV < T < 170 MeV and qualitative differences in the behavior of the three conserved charge sectors. At $T \\simeq 160 MeV$ quadratic net baryon number fluctuations in QCD agree with HRG model calculations while, the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These fin...
Fukuda, Y; Tampo, M; Pikuz, T A; Nakamura, T; Kando, M; Hayashi, Y; Yogo, A; Sakaki, H; Kameshima, T; Pirozhkov, A S; Ogura, K; Mori, M; Esirkepov, T Zh; Boldarev, A S; Gasilov, V A; Magunov, A I; Kodama, R; Bolton, P R; Kato, Y; Tajima, T; Daido, H; Bulanov, S V
2009-01-01
We demonstrate generation of 10-20 MeV/u ions with a compact 4 TW laser using a gas target mixed with submicron clusters, corresponding to tenfold increase in the ion energies compared to previous experiments with solid targets. It is inferred that the high energy ions are generated due to formation of a strong dipole vortex structure. The demonstrated method has a potential to construct compact and high repetition rate ion sources for hadron therapy and other applications.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek
2016-01-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...
Electromagnetic recombination spectra at the quark-hadron phase transition
Young, Clint; Pratt, Scott
2016-10-01
Because quarks carry electric charge, they can radiate light when they change energy levels, which is exactly what happens when they hadronize. This is true not only in jets but also in heavy-ion collisions, where a thermalized plasma of quarks and gluons cools into a gas of hadrons. First, direct emission of photons from two quarks coalescing from the continuum into pions is calculated using the quark-meson model. The yield of final-state photons to pions is found to be about e2/gπq q 2 , which is on the order of a percent. Second, the yield of photons from the decay of highly excited color singlets, which may exist ephemerally during hadronizaton, is estimated. Because these contributions occur late in the reaction, they should carry significant elliptic flow, which may help explain the large observed flow of direct photons by the PHENIX Collaboration at the BNL Relativistic Heavy Ion Collider. The enhanced emission also helps explain the PHENIX Collaboration's surprisingly large observed γ /π ratio.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Olsen, Stephen Lars
2016-01-01
A number of candidate multiquark hadrons, i.e., particle resonances with substructures that are more complex than the quark-antiquark mesons and three-quark baryons that are prescribed in the textbooks, have recently been observed. In this talk I present: some recent preliminary BESIII results on the near-threshold behavior of sigma(e+e- --> Lambda Lambda-bar) that may or may not be related to multiquark mesons in the light- and strange-quark sectors; results from Belle and LHCb on the electrically charged, charmoniumlike Z(4430)^+ --> pi^+ psi ' resonance that necessarily has a four-quark substructure; and the recent LHCb discovery of the P_c(4380) and P_c(4450) hidden-charm resonances seen as a complex structure in the J/psi p invariant mass distribution for Lambda_b --> K^-J/psi p decays and necessarily have a five-quark substructure and are, therefore, prominent candidates for pentaquark baryons.
Medium-induced color flow softens hadronization
Beraudo, A; Wiedemann, U A
2012-01-01
Medium-induced parton energy loss, resulting from gluon exchanges between the QCD matter and partonic projectiles, is expected to underly the strong suppression of jets and high-$p_T$ hadron spectra observed in ultra-relativistic heavy ion collisions. Here, we present the first color-differential calculation of parton energy loss. We find that color exchange between medium and projectile enhances the invariant mass of energetic color singlet clusters in the parton shower by a parametrically large factor proportional to the square root of the projectile energy. This effect is seen in more than half of the most energetic color-singlet fragments of medium-modified parton branchings. Applying a standard cluster hadronization model, we find that it leads to a characteristic additional softening of hadronic spectra. A fair description of the nuclear modification factor measured at the LHC may then be obtained for relatively low momentum transfers from the medium.
Thermal and chemical equilibration of hadronic matter
Bratkovskaya, E L; Greiner, C; Effenberger, M; Mosel, U; Sibirtsev, A A
2001-01-01
We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model with resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box employing periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than $\\simeq$ 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of $T_s\\simeq$ 150 MeV.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
Albright, Michael Glenn
In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic
Universal QGP Hadronization Conditions at RHIC and LHC
Rafelski Johann
2014-01-01
Full Text Available We address the principles governing QGP hadronization and particle production in relativistic heavy-ion collisions. We argue that chemical non-equilibrium is required and show that once this condition is assumed a very good description of hadron production in collider RHIC and LHC heavy ion experiments follows. We present results of our analysis as a function of centrality. Comparing most extreme experimental conditions we show that only the reaction volume and degree of strangeness phase space saturation change. We determine the universal QGP fireball hadronization conditions.
Universal QGP Hadronization Conditions at RHIC and LHC
Rafelski, Johann
2014-01-01
We address the principles governing QGP hadronization and particle production in relativistic heavy-ion collisions. We argue that chemical non-equilibrium is required and show that once this condition is assumed a very good description of hadron production in collider RHIC and at LHC heavy ion experiments follows. We present results of our analysis as a function of centrality. Comparing most extreme experimental conditions we show that only the reaction volume and degree of strangeness phase space saturation change. We determine the universal QGP fireball hadronization conditions.
Quarkonium+{gamma} production in coherent hadron-hadron interactions at LHC energies
Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Caixa Postal 354, Pelotas, RS (Brazil); Machado, M.M. [IF - Farroupilha, Instituto Federal de Educacao, Ciencia e Tecnologia, Sao Borja, RS (Brazil)
2012-11-15
In this paper we study the H+{gamma} (H=J/{Psi} and and upsilon;) production in coherent hadron-hadron interactions at LHC energies. Considering the ultrarelativistic protons as a source of photons, we estimate the {gamma}+p{yields}H+{gamma}+X cross section using the non-relativistic QCD (NRQCD) factorization formalism and considering different sets of values for the matrix elements. Our results for the total p+p{yields}p+H+{gamma}+X cross sections and rapidity distributions at {radical}(s) = 7 and 14 TeV demonstrate that the experimental analysis of the J/{Psi}+{gamma} production at LHC is feasible. (orig.)
Cosmic rays and hadronic interactions
Lipari Paolo
2015-01-01
Full Text Available The study of cosmic rays, and more in general of the “high energy universe” is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma–rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non–perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ∼ 1020 eV, or a nucleon–nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.
Parton-hadron dynamics in heavy-ion collisions
Bratkovskaya, E L; Cassing, W; Konchakovski, V P; Linnyk, O; Marty, R; Berrehrah, H
2013-01-01
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) including a dynamical hadronization scheme. The PHSD approach is applied to nucleus-nucleus collisions from low SPS to LHC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons and in their transverse mass spectra. We investigate also the equilibrium properties of strongly-interacting infinite parton-hadron matter characterized by transport coefficients such as shear and bulk viscosities and the electric conductivity in comparison to lattice QCD results.
FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.
LUDLAM, T.
2006-12-21
QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation
Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyong; Gale, Charles
2014-01-01
Using 3+1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Finite Volume Effect of Baryons in Strange Hadronic Matter
SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang
2001-01-01
The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.
QCD in hadron-hadron collisions
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.
General characteristics of hadron-hadron collisions
Kittel, E W
2004-01-01
Soft multiparticle production in hadron-hadron collisions is reviewed with particular emphasis on its role as a standard for heavy-ion collisions at SPS and RHIC energies and as a bridge interpolating between the most simple e **+e**- and the most complex AA collisions.
Fractality and geometry in ultra-relativistic nuclear collisions
Zborovský, I
2002-01-01
Assuming fractality of hadronic constituents, we argue that asymmetry of space-time can be induced in the ultra-relativistic interactions of hadrons and nuclei. The asymmetry is expressed in terms of the anomalous fractal dimensions of the colliding objects. Besides state of motion, the relativistic principle is applied to the state of asymmetry as well. Such realization of relativity concerns scale dependence of physical laws emerging at small distances. We show that induced asymmetries of space-time are a priori not excluded by the Michelson's experiment even at large scales.
CMS Central Hadron Calorimeter
Budd, Howard S.
2001-01-01
We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.
2003-01-01
Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)
Novel Perspectives for Hadron Physics
Brodsky, Stanley J.; /SLAC
2012-03-09
I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.
An estimate of the bulk viscosity of the hadronic medium
Sarwar, Golam; Alam, Jan-e
2015-01-01
The bulk viscosity of the hadronic medium within the ambit of the Hadron Resonance Gas (HRG) model approach including the Hagedorn density of states has been estimated. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the hadronic bulk viscosity $\\zeta$ upto a relaxation time. We study the influence of the hadronic spectrum on $\\zeta$ and find its correlation with the conformal symmetry breaking (CSB) measure, $\\epsilon-3P$. We estimate $\\zeta$ along the chemical freezeout curve and find that at FAIR energies $\\zeta/s$ can be enhanced by a factor of five as compared to LHC energies.
The Common Elements of Atomic and Hadronic Physics
Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-02-26
Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.
Hadron Colliders and Hadron Collider Physics Symposium
Denisov D.
2013-05-01
Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.
Energy and Centrality Dependences of Charged Multiplicity Density in Relativistic Nuclear Collisions
SA; Ben-hao; Bonasera; A; TAI; An
2002-01-01
Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of chargedparticle pseudo rapidity density in relativistic nuclear collisions were studied. Within the framework ofthis model, both the relativistic p + p experimental data and the PHOBOS and PHENIX Au + Au data at
Finite Size Corrected Relativistic Mean-Field Model and QCD Critical End Point
Uddin, Saeed; Ahmad, Jan Shabir
2012-01-01
The effect of finite size of hadrons on the QCD phase diagram is analyzed using relativistic mean field model for the hadronic phase and the Bag model for the QGP phase. The corrections to the EOS for hadronic phase are incorporated in a thermodynamic consistent manner for Van der Waals like interaction. It is found that the effect of finite size of baryons is to shift CEP to higher chemical potential values.
The thermodynamics of heavy light hadrons at freezeout
Sharma, Sayantan
2014-01-01
In the discussion of hadronization at or close to the freeze-out curve statistical (hadron resonance gas) models play an important role. In particular, in the charmonium sector, regeneration models are considered which rely on the fact that charmonium states can form again already at temperatures well above the QCD transition or hadronization temperature. An important ingredient in these considerations is the regeneration or hadronization of open charm states. In this talk we report on a lattice QCD analysis of correlations of open strange and charm with other conserved quantum numbers like the net baryon number and electric charge. We analyze the temperature range in which an uncorrelated hadron resonance gas (HRG) provides an adequate description of such correlations. This limits the range of validity of HRG based thermodynamics in open flavor channels and provides an estimate for the melting temperature of heavy-light hadrons.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Charm-Hadron Production at Hadron Colliders
Watson, Miriam; The ATLAS collaboration
2016-01-01
Recent results on charm hadron production are presented, using data recorded in proton-proton collisions at the Large Hadron Collider and in proton-antiproton collisions at the Tevatron. These results include the production of charmonium and of open charm mesons, and their comparison with theoretical predictions. Measurements of the associated production of hidden or open charm mesons with additional quarkonium states are also presented.
Hadron multiplicity in pp and AA collisions at LHC from the color glass condensate
Levin, Eugene; Rezaeian, Amir H.
2010-09-01
We provide quantitative predictions for the rapidity, centrality and energy dependencies of inclusive charged-hadron productions for the forthcoming LHC measurements in nucleus-nucleus collisions based on the idea of gluon saturation in the color-glass condensate framework. Our formulation gives very good descriptions of the first data from the LHC for the inclusive charged-hadron production in proton-proton collisions, the deep inelastic scattering at the Hadron-Elektron-Ring-Anlage at small Bjorken x, and the hadron multiplicities in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.
LOCAL CLASSICAL SOLUTIONS TO THE EQUATIONS OF RELATIVISTIC HYDRODYNAMICS
史一蓬
2001-01-01
In this paper, we prove that the convexity of the negative thermodynamical entropy of the equations of relativistic hydrodynamics for ideal gas keeps its invariance under the Lorentz transformation if and only if the local sound speed is less than the light speed in vacuum. Then a symmetric form for the equations of relativistic hydrodynamics is presented and the local classical solution is obtained. Based on this,we prove that the nonrelativistic limit of the local classical solution to the relativistic hydrodynamics equations for relativistic gas is the local classical solution of the Euler equations for polytropic gas.
Conserved charge fluctuations are not conserved during the hadronic phase
Steinheimer, J; Aichelin, J; Bleicher, M; Stöcker, H
2016-01-01
We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.
Aspects of thermal and chemical equilibration of hadronic matter
Bratkovskaya, E L; Greiner, C; Effenberger, M; Mosel, U; Sibirtsev, A A
2000-01-01
We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model that contains resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box with periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than $\\simeq$ 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of $T_s\\simeq$ 150 MeV. We, furthermore, study the expansion of a hadronic fireball after equilibration. The slope parameters of the particles after expansion increase with their mass; the pions leave the fireball much faster then nucleons and accelerate subsequently heavier ...
Photons from quark gluon plasma and hot hadronic matter
Jan-E Alam
2003-04-01
The productions of real photons from quark gluon plasma and hot hadronic matter formed after the nucleus–nucleus collisions at ultra-relativistic energies are discussed. The effects of the spectral shift of the hadrons at ﬁnite temperature on the production of photons are investigated. On the basis of the present analysis it is shown that the photon spectra measured by WA98 collaboration in Pb + Pb collisions at CERN SPS energies can be explained by both QGP as well as hadronic initial states if the spectral shift of hadrons at ﬁnite temperature is taken into account. Several other works on the analysis of WA98 photon data have also been brieﬂy discussed.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)
2017-03-15
We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands, the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.
Unraveling hadron structure with generalized parton distributions
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.
Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting
Page, P R; Ginocchio, J N; Page, Philip R.; Goldman, Terry; Ginocchio, Joseph. N.
2001-01-01
Experimental data indicate small spin-orbit splittings in hadrons. Forheavy-light mesons we identify a relativistic symmetry that suppresses thesesplittings. We suggest an experimental test in electron-positron annihilation.Furthermore, we argue that the dynamics necessary for this symmetry arepossible in QCD.
U Mosel
2006-04-01
In these lectures I first give the motivation for investigations of in-medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. Here I put an emphasis on new experiments on changes of the - and -mesons in medium.
Leptonic and Hadronic Modeling of Fermi-Detected Blazars
Böttcher Markus
2013-12-01
Full Text Available We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in AGN in a temporary steady state. The new model implementations are used to fit snap-shot spectral energy distributions of a representative set of Fermi-LAT detected blazars from the first LAT AGN catalogue. We find that the leptonic model is capable of producing acceptable fits to the SEDs of almost all blazars with reasonable parameters close to equipartition between the magnetic field and the relativistic electron population. If charge neutrality in leptonic models is provided by cold protons, our fits indicate that the kinetic energy carried by the jet should be dominated by protons. We also find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. All of our hadronic model fits require powers in relativistic protons in the range 1047 – 1049 erg/s. As a potential way to distinguish between the leptonic and hadronic high-energy emission models considered here, we suggest diagnostics based on the predicted X-ray and γ-ray polarization, which are drastically different for the two types of models.
Strong evidence for hadron acceleration in Tycho's supernova remnant
Morlino, G.; Caprioli, D.
2012-02-01
Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.
Reiter, Moritz Pascal
2015-07-01
online experiments, which is about three times larger than any stopping cell, using RF structures for the extraction of ions, has demonstrated. The area density and therefore the stopping power of the CSC is limited by the differential pumping. To overcome this limitation the CSC was tested with neon as a stopping gas with area densities of up to 11.3 mg/cm{sup 2} helium equivalent, demonstrating a unprecedented area density for stopping cells based on RF structures. The RF carpet performed reliably and its potential for the future FAIR stopping cell was shown. During the experiments at GSI the mean extraction time of {sup 221}Ac ions from the CSC to a silicon surface detector was measured, it amounts to 24 ms. This value is well in agreement with offline measurements using a pulsed {sup 223}Ra recoil ion source. The combination of a high density stopping cell with high total efficiencies and a non-scanning high-resolution mass spectrometer can be used as an independent identification detector for exotic nuclei by their mass, allowing a recalibration of the in-flight detectors of any fragment separator. As a proof-of-principal experiment the CSC and a MR-TOF-MS have been used as a mass tagger for the FRS at GSI. 134-I ions were produced by in-flight fission from an {sup 238}U primary beam at 1000 MeV/u and identified by the mass tagger. The new method does not rely on specific decay properties and therefore allows a recalibration of the fragment separator independent of the fragment and can also be used with stable nuclides. The usage of the CSC and a MR-TOF-MS will allow fast recalibration and a more effective usage of the limited amount of beam time for all experiments with exotic nuclei even in the case the nuclide of interest is not clearly identified by the in-flight detection scheme. With the CSC low energy experiments such as high-precision mass measurements and decay spectroscopy were made possible, the half lifes of {sup 221}Ac and {sup 223}Th have been measured
Statistical fluctuations and correlations in hadronic equilibrium systems
Hauer, Michael
2010-06-17
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Statistical Hadronization and Holography
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal......, and so statistical, shape for it....
Toponium at hadronic colliders
Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))
1982-05-27
We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.
Evaporation/Hadronization Correspondence
Allahbakhshi, Davood
2016-01-01
A holographic duality is proposed between black hole evaporation in the bulk and hadronization (confinement) in dual field theory. Information paradox is discussed in this duality. We also propose that the recently introduced semi black brane solution is holographically dual to a mixed plasma of quarks, gluons and hadrons in global equilibrium.
Fragmentation and Hadronization
Webber, B. R.
1999-01-01
Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.
Multi-Λ Hypernuclei in an Effective Hadronic Model
LIANG Yin-Hua; GUO Hua; LIU Yu-Xin
2007-01-01
@@ We extend the chiral hadronic model (FST) with an inclusion of Λ hyperon to investigate the propertiks of multi-Λ hypernuclei. With such an effective hadronic model in the relativistic mean-field approximation, we accomplish the calculations with both the conventional strong Λ-Λ interaction and the weak Λ-Λ interaction determined from recent experiment. Our calculations indicate that not only the strong but also the weak Λ-Λ interaction provide tighter binding for multi-Λ hypernuclei than the ones with only nucleons. However the strong interaction generates a binding slightly tighter than the weak interaction.
Relativistic Gravothermal Instabilities
Roupas, Zacharias
2014-01-01
The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...
Leptonic and Hadronic Modeling of Fermi-Detected Blazars
Boettcher, M; Sweeney, K; Prakash, A
2013-01-01
We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in AGN in a temporary steady state. For the leptonic model, a temporary equilibrium between particle injection/acceleration, radiative cooling, and escape from a spherical emission region is evaluated, and the self-consistent radiative output is calculated. For the hadronic model, a temporary equilibrium between particle injection/acceleration, radiative and adiabatic cooling, and escape is evaluated for both primary electrons and protons. A new, semi-analytical method to evaluate the radiative output from cascades initiated by internal gamma-gamma pair production is presented. We use our codes to fit snap-shot spectral energy distributions of a representative set of Fermi-LAT detected blazars. We find that the leptonic model provides acceptable fits to the SEDs of almost all blazars with parameters close to equipartition between the magnetic field and the relativistic electron population. However...
Hadron multiplicities at COMPASS
Du Fresne Von Hohenesche, Nicolas
2014-01-01
Quark fragmentation functions (FF) D h q ( z ; Q 2 ) describe final-state hadronisation of quarks q into hadrons h . The FFs can be extracted from hadron multiplicities produced in semi-inclusive deep inelastic scattering. The COMPASS collaboration has recently measured charged hadron multiplicities for identified pions and kaons using a 160 GeV/c muon beam impinging on an isoscalar LiD target. The data cover a large kinematical range and provide an important input for global QCD analyses of world data at NLO, aiming at the determination of FFs. The latest results from COMPASS on pion multiplicities and pion fragmentation functions will be discussed.
Deppman, Airton
2016-01-01
The non extensive aspects of $p_T$ distributions obtained in high energy collisions are discussed in relation to possible fractal structure in hadrons, in the sense of the thermofractal structure recently introduced. The evidences of self-similarity in both theoretical and experimental works in High Energy and in Hadron Physics are discussed, to show that the idea of fractal structure of hadrons and fireballs have being under discussion for decades. The non extensive self-consistent thermodynamics and the thermofractal structure allow one to connect non extensivity to intermittence and possibly to parton distribution functions in a single theoretical framework.
Weibull model of Multiplicity Distribution in hadron-hadron collisions
Dash, Sadhana
2014-01-01
We introduce the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes involving fragmentation processes. This gives a natural connection to the available state-of-the-art models for multi-particle production in hadron hadron collisions involving QCD parton fragmentation and hadronization.
Remarks concerning bulk viscosity of hadron matter in relaxation time ansatz
Khvorostukhin, A.S., E-mail: hvorost@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu (Moldova, Republic of); Toneev, V.D. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Voskresensky, D.N. [National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409 (Russian Federation)
2013-10-03
The bulk viscosity is calculated for hadron matter produced in heavy-ion collisions, being described in the relaxation time approximation within the relativistic mean-field-based model with scaled hadron masses and couplings. We show how different approximations used in the literature affect the result. Numerical evaluations of the bulk viscosity with three considered models deviate not much from each other confirming earlier results.
Detailed comparison between parton cascade and hadronic cascade at SPS and RHIC
Nara, Y; Longacre, R S
1999-01-01
We study the importance of the partonic phase produced in relativistic heavy ion collision by comparing the parton cascade model and the hadronic cascade model. Hadron yield, baryon stopping and transverse momentum distribution are calculated with JAM and discussions are given comparing with VNI. Both of these models give good description of experimental data. We also discuss the strangeness production mechanism and the directed transverse flow. (21 refs).
Hadronic "flow" in p--Pb collisions at the Large Hadron Collider?
Zhou, You; Li, Pengfei; Song, Huichao
2015-01-01
Using the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model, we investigate azimuthal correlations in p--Pb collisions at $\\sqrt{s_{_{\\rm NN}}}=5.02$ TeV. Comparison with the experimental data shows that UrQMD can not reproduce the multiplicity dependence of 2- and 4-particle cumulants, especially the transition from positive to negative values of $c_{2}\\{4\\}$ in high multiplicity events, which has been taken as experimental evidence of collectivity in p--Pb collisions. Meanwhile, UrQMD can not qualitatively describe the differential elliptic flow, $v_{2}(p_{\\rm T})$, of all charged hadrons at various multiplicity classes. These discrepancies show that the simulated hadronic p--Pb systems can not generate enough collective flow as observed in experiment, the associated hadron emissions are largely influenced by non-flow effects. However, the characteristic $v_{2}(p_{\\rm T})$ mass-ordering of pions, kaons and protons is observed in UrQMD, which is the consequence of hadronic interactions and not nece...
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Inelastic quarkonium photoproduction in hadron-hadron interactions at LHC energies
Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Machado, M.M. [Ciencia e Tecnologia, IF - Farroupilha, Instituto Federal de Educacao, Sao Borja, RS (Brazil)
2014-04-15
In this paper we study the inelastic quarkonium photoproduction in coherent pp/p Pb/PbPb interactions. Considering the ultra-relativistic hadrons as a source of photons, we estimate the total h{sub 1}+h{sub 2} → h x V+X (V=J/Ψ and Υ) cross sections and rapidity distributions at LHC energies. Our results demonstrate that the experimental analysis of this process can be used to understand the underlying mechanism governing heavy quarkonium production. (orig.)
Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions
WEI Xin-Bing; FENG Sheng-Qin
2012-01-01
We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced Cooper-Frye hydrodynamic evolution to systematically study the pseudorapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.
Moreau, Pierre; Palmese, Alessia; Bratkovskaya, Elena
2016-01-01
We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies provide a microscopic explanation for the maximum in the $K^+/\\pi^+$ ratio at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
Swanson, E S
2009-01-01
A brief review of theoretical progress in hadron spectroscopy and nonperturbative QCD is presented. Attention is focussed on recent lattice gauge theory, the Dyson-Schwinger formalism, unquenching constituent models, and some beyond the Standard Model physics.
Tang, Alfred [Univ. of Wiscon, Milwaukee, WI (United States)
2002-08-01
Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...
The Mesozoic Era of relativistic heavy ion physics and beyond
Harris, J.W.
1994-03-01
In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.
Thermodynamics of heavy-light hadrons
Ding, Heng-Tong
2014-01-01
Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. We calculate second and fourth order cumulants of net charm and strange fluctuations and their correlations with other conserved charges such as net baryon number and electric charge. Simulation are performed on $N_\\tau$=6 and 8 lattices using the Highly Improved Staggered Quark (HISQ) action with a light to strange quark mass ratio of 1/20 and having charm quarks treated in the quenched approximation. Analysing appropriate ratios of these cumulants we observe that both open strange and charm hadrons start to get dissociated in the chiral crossover region. We provide indirect evidence for the existence of additional, experimentally yet unobserved open charm and strange hadrons from QCD thermodynamics. This is done by comparing lattice QCD results to Hadron Resonance Gas (HRG) model calculations performed with a...
Holography inspired stringy hadrons
Sonnenschein, Jacob
2017-01-01
Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.
Recent results on relativistic heavy ion collisions
Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica
2013-07-01
Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Introduction to the relativistic string theory
Barbashov, B M
1990-01-01
This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the "cosmic" strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), th
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Relativistic Thermodynamics: A Modern 4-Vector Approach
J. Güémez
2011-01-01
Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ = Wμ + Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.
More strange hadrons from QCD thermodynamics and strangeness freeze-out in heavy ion collisions
Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-01-01
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. This provides evidence for the thermodynamic importance of additional, experimentally unobserved strange hadrons close to the QCD crossover. We show that, owing to overall strangeness neutrality, the thermodynamic presence of these additional states gets imprinted in the yields of the ground state strange hadrons leading to ob...
Thermophoretic Flow in Relativistic Heavy-Ion Collisions
Thoma, M H
2001-01-01
If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there might be a mixed phase of quarks and gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase thermophoresis leads to a strong flow.
Agakishiev, H.; Aggarwal, M.M.; Braidot, E; Mischke, A.; Peitzmann, T.; Zoulkarneeva, Y.
2011-01-01
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at the BNL Relativistic Heavy Ion Collider (RHIC). Pairs of back-to-back high-transverse-momentum hadrons are used for triggers to study asso
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
The description for the spin polarizabilities of hadrons based on the covariant Lagrangian
Belousova, S A
2000-01-01
On the basis of the correspondence principle between the relativistic moving medium electrodynamics and relativistic quantum field theory the covariant Lagrangian of the electromagnetic field interaction with the polarized spin particles have been obtained. This Lagrangian satisfies the main relativistic quantum field theory requirements and contains four independent covariant spin structures, which have particular physical meaning. It is shown that the spin polarizabilities give the contribution to the amplitude for Compton scattering on the spin-1/2 hadron in the ${\\cal O}(\\omega^3)$.
Study of highly-excited string states at the Large Hadron Collider
Gingrich, Douglas M
2008-01-01
In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC
Zimmermann, F
2013-01-01
Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.
2009-01-01
The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Mallik, Samirnath
2016-01-01
High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Quigg, C.
1982-11-01
The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple.
,
2011-01-01
I review here the most recent results about the observation and the study of hadronic bound states that do not fit well in the standard quarkonium picture. Several new states have been observed in the last few years, at B-, tau-Factories and hadron colliders. For most of them, quantum number determinations are available and allow to develop the basis of a new spectroscopy based on exotic compounds like tetraquarks or meson molecules. Nonetheless, there is still a lot of work to do to complete the picture.
Pennington, Michael R
2000-01-01
Ask a group of particle theorists about low energy hadron physics and they will say that this is a subject that belongs to the age of the dinosaurs. However, it is GeV physics that controls the outcome of every hadronic interaction at almost every energy. Confinement of quarks and gluons (and any other super-constituents) means that it is the femto-universe that determines what experiments detect. What we have to learn at the start of the 21st century is discussed.
Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei
Hofmann, F. Keil; Lenske, H.
2001-01-01
Published in: Phys. Rev. C 64 (2001) , pp.034314 citations recorded in [Science Citation Index] Abstract: The density dependent relativistic hadron field (DDRH) theory is applied to strongly asymmetric nuclear matter and finite nuclei far off stability. A new set of in-medium meson-nucleon vertices
Bottomonium production in hadron colliders
Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics
2004-07-01
Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Shepherd, M R
2008-01-01
The charmonium system provides an opportunity to explore a wide variety of topics in hadronic physics. Studies of the properties of and transitions among cc-bar states yield insight into relativistic and non-perturbative QCD effects. At the same time, studies of the decays of charmonium states are a window into gluon dynamics and the role of glueball mixing in the production of light quark states. A collection of preliminary results utilizing the full CLEO-c psi(2S) data sample is presented including two-body branching fractions of chi_cJ decays, a precision measurement of the h_c mass, and results on the hindered M1 transition: psi(2S) -> gamma eta_c.
Quantum chaos in QCD and hadrons
Markum, H; Pullirsch, R; Sengl, B; Wagenbrunn, R F; Markum, Harald; Plessas, Willibald; Pullirsch, Rainer; Sengl, Bianka; Wagenbrunn, Robert F.
2005-01-01
This article is the written version of a talk delivered at the Workshop on Nonlinear Dynamics and Fundamental Interactions in Tashkent and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. In accordance to the title, the presentation is twofold and begins with research results on quantum chromodynamics and the quark-gluon plasma. We conclude with recent research work on the spectroscopy of baryons. Within the framework of a relativistic constituent quark model we investigate the excitation spectra of the nucleon and the delta with regard to a possible chaotic behavior for the cases when a hyperfine interaction of either Goldstone-boson-exchange or one-gluon-exchange type is added to the confinement interaction. Agreement with predictions from the experimental hadron spectrum is established.
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT
Friedlander, Erwin M.; Heckman, Harry H.
1982-04-01
Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.
Weibull model of multiplicity distribution in hadron-hadron collisions
Dash, Sadhana; Nandi, Basanta K.; Sett, Priyanka
2016-06-01
We introduce the use of the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that involve fragmentation processes. This provides a natural connection to the available state-of-the-art models for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies better than the single negative binomial distribution.
Weidinger Matthias
2013-12-01
Full Text Available The ongoing systematic search for sources of extragalactic gamma rays has now revealed many blazars in which the very high energy output can not consistently be described as synchrotron self-Compton radiation. In this paper a self consistent hybrid model is described, explaining the very high energy radiation of those blazars as proton synchrotron radiation accompanied by photo-hadronic cascades. As the model includes all relevant radiative processes it naturally includes the synchrotron self-Compton case as well, depending on the chosen parameters. This paper focuses on rather high magnetic fields to be present within the jet, hence the hadronically dominated case. To discriminate the hadronic scenario against external photon fields being upscattered within the jet to produce the dominating gamma-ray output, the temporal behavior of blazars may be exploited with the presented model. Variability reveals both, the highly non-linear nature caused by the photohadronic cascades and typical timescales as well as fingerprints in the inter-band lightcurves of the involved hadrons. The modeling of two individual sources is shown : 1 ES 1011+496, a high frequency peaked blazar at redshift z = 0.212, which is well described within the hybrid scenario using physically reasonable parameters. The short term variability of the second example, namely 3C 454.3, a Flat Spectrum Radio Quasar at z = 0.859, reveals the limitations of the gamma-rays being highly dominated by proton synchrotron radiation.
Pondrom, L.
1991-10-03
An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.
Wright, Alison
2007-01-01
"We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)
Hirstius, Andreas
2008-01-01
Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)
Speculations in hadron spectroscopy
Richard, J M
2005-01-01
A selected survey is presented of the recent progress in hadron spectroscopy. This includes spin-singlet charmonium states, excitations of charmonium and open-charm mesons, double-charm baryons, and pentaquark candidates. Models proposing exotic bound states or resonances are reviewed. The sector of exotic mesons with two heavy quarks appears as particularly promising.
Hayano, R S
1999-01-01
Japan Hadron Facility (JHF) is a high-intensity proton accelerator complex consisting of a 200 MeV linac, a 3 GeV booster and a 50 GeV main ring. Its status and future possibilities of realizing a versatile antiproton facility at JHF are presented.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Eytier, Jean-Louis
2009-01-01
Qu'aurait-il proposé comme solutions face aux déboires du LHC, le grand collisionneur du hadrons du CERN, arrêté peu après son démarrage à l'automne 2008? Lucien Edmond André Montanet était un des grands de la physique des particules. (2 pages)
Hadron Fragmentation Inside Jets in Hadronic Collisions
Kaufmann, Tom; Vogelsang, Werner
2015-01-01
We present an analytical next-to-leading order QCD calculation of the partonic cross sections for the process $pp\\rightarrow ({\\text{jet}} \\,h)X$, for which a specific hadron is observed inside a fully reconstructed jet. In order to obtain the analytical results, we assume the jet to be relatively narrow. We show that the results can be cast into a simple and systematic form based on suitable universal jet functions for the process. We confirm the validity of our calculation by comparing to previous results in the literature for which the next-to-leading order cross section was treated entirely numerically by Monte-Carlo integration techniques. We present phenomenological results for experiments at the LHC and at RHIC. These suggest that $pp\\rightarrow ({\\text{jet}} \\,h)X$ should enable very sensitive probes of fragmentation functions, especially of the one for gluons.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Debades Bandyopadhyay
2006-05-01
We discuss -equilibrated and charge neutral matter involving hyperons and $\\bar{K}$ condensates within relativistic models. It is observed that populations of baryons are strongly affected by the presence of antikaon condensates. Also, the equation of state including $\\bar{K}$ condensates becomes softer resulting in a smaller maximum mass neutron star.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Hadronic Lorentz violation in chiral perturbation theory
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2017-03-01
Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-08-15
We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.
Non-equilibrium properties of hadronic mixtures
Prakasch, Madappa (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Prakasch, Manju (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Venugopalan, R. (State Univ. of New York, Stony Brook, NY (United States). Physics Dept.); Welke, G. (Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.)
1993-05-01
The equilibration of hot hadronic matter is studied in the framework of relativistic kinetic theory. Various non-equilibrium properties of a mixture comprised of pions, kaons and nucleons are calculated in the dilute limit for small deviations from local thermal equilibrium. Interactions between these constituents are specified through the empirical phase shifts. The properties calculated include the relaxation/collision times, momentum and energy persistence ratios in elastic collisions, and transport properties such as the viscosity, the thermal conductivity, and the diffusion and thermal diffusion coefficients. The Chapman-Enskog formalism is extended to extract relaxation times associated with shear and heat flows, and drag and diffusion flows in a mixture. The equilibrium number concentration of the constituents is chosen to mimic those expected in the mid-rapidity interval of CERN and RHIC experiments. In this case, kaons and nucleons are found to equilibrate significantly more slowly than pions. These results shed new light on the influence of collective flow effects on the transverse momentum distributions of kaons and nucleons versus those of pions in ultra-relativistic nuclear collisions. (orig.)
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
An estimate of the bulk viscosity of the hadronic medium
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
Dremin, I M
2012-01-01
When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...
Juettner Fernandes, Bonnie
2014-01-01
What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.
Mosel Ulrich
2017-01-01
Full Text Available We review the achievements of the project B.5, that deals with the calculation of in-medium properties of vector mesons and an analysis of their experimental signals, with a particular emphasis on the ω photoproduction data from CBELSA/TAPS. Other topics addressed include color transparency, pion electroproduction on nucleons, the Primakoff effect for nuclear targets and studies of hadronization at the EIC.
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)
Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P
2002-01-01
% DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...
Hadron spectrum and hadrons in the nuclear medium
Vacas, M J V
2006-01-01
Some recent developments in chiral dynamics of hadrons and hadrons in a medium are presented. Unitary schemes based on chiral Lagrangians describe some hadronic states as being dynamically generated resonances. We discuss how standard quantum many body techniques can be used to calculate the properties of these dynamically generated and other hadrons in the nuclear medium. We present some results for vector mesons ($\\rho$ and $\\phi$), scalar mesons ($\\sigma$, $\\kappa$, $a_0(980)$, $f_0(980)$), the $\\Lambda(1520)$ and for the in-medium baryon-baryon interaction.
Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions
Castorina, P
2014-01-01
The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, $e^+e^-$ and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than $\\simeq 0.5$ fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark- antiquark pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, $T \\simeq 170$ Mev,related to the quark acceleration, a, by $T=a/2\\pi$. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilib...
Hadron Production in Heavy Ion Collisions
Ritter, Hans Georg; Xu, Nu
2009-05-19
Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards
The ALICE experiment at the large hadron collider
Munhoz, Marcelo Gameiro [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica
2012-07-01
Full text: ALICE (A Large Ion Collider Experiment) is the only experiment form the Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research) dedicated mainly to study relativistic heavy ion collisions. The experiment was optimized to measure a great variety of observables that allow us to study the properties of the Quark Gluon Plasma, a new state of nuclear matter where quarks and gluons are deconfined from hadrons. The enlightenment of such properties will provide great insight in the understanding of the strong interaction described by QCD. In this talk, I will present the ALICE experiment, the latest results obtained by the collaboration in the last 2 years and discuss the Brazilian participation in this very interesting and important international project. (author)
Rapidity dependence of the average transverse momentum in hadronic collisions
Durães, F. O.; Giannini, A. V.; Gonçalves, V. P.; Navarra, F. S.
2016-08-01
The energy and rapidity dependence of the average transverse momentum in p p and p A collisions at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) are estimated using the color glass condensate (CGC) formalism. We update previous predictions for the pT spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole-target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for hadron production in p p , d Au , and p Pb collisions at pT≤20 GeV. Moreover, we present our predictions for and demonstrate that the ratio / decreases with the rapidity and has a behavior similar to that predicted by hydrodynamical calculations.
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Hadronic Light-Front Wavefunctions and QCD Phenomenology
Brodsky, Stanley J.
2001-02-02
A fundamental goal in QCD is to understand the non-perturbative structure of hadrons at the amplitude level--not just the single-particle flavor, momentum, and helicity distributions of the quark constituents, but also the multi-quark, gluonic, and hidden-color correlations intrinsic to hadronic and nuclear wavefunctions. A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. A new type of jet production reaction, ''self-resolving diffractive interactions'' can provide direct information on the light-front wavefunctions of hadrons in terms of their quark and gluon degrees of freedom as well as the composition of nuclei in terms of their nucleon and mesonic degrees of freedom.
Influence of pions on the hadron-quark phase transition
Lourenço, O; Frederico, T; Delfino, A; Malheiro, M
2013-01-01
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.
Influence of pions on the hadron-quark phase transition
Lourenco, O.; Dutra, M.; Frederico, T.; Malheiro, M. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-150, Boa Viagem, Niteroi RJ (Brazil)
2013-05-06
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T{sub 0}) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T{sub 0}, namely, T{sub 0}= 270 MeV and T{sub 0}= 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.
Charmed hadrons in matter and SU(4 flavor symmetry
Krein Gastão
2014-06-01
Full Text Available There is great recent interest in the study of bound states of charmed hadrons with atomic nuclei. The studies rely on effective interactions expressed through couplings between charmed and light-flavored hadrons whose values are fixed using SU(4 flavor symmetry. In the present communication we present results of recent studies examining the accuracy of SU(4-flavor symmetry relations between hadron-hadron couplings with particular interest in the couplings of charmed D mesons to light mesons and nucleons. We discuss results obtained from a 3P0 quark-pair creation model and from a framework based on Dyson-Schwinger equations in QCD that incorporates a consistent, direct and simultaneous description of light- and heavy-quarks. We focus on the three-meson couplings ρππ, ρKK, and ρDD and meson-baryon-brayon couplings πNN, KΛsN, and DΛcN. While the 3P0 model predicts that the SU(4 breaking is at most 40% in the charm sector, the relativistic Dyson-Schwinger framework predicts a breaking 10 times bigger. Consequences of these findings for the predictions of DN cross sections, formation of bound states of D-mesons and J/Ψ, and the formation of charmed hypernuclei are discussed.
Hadron production and bottomia suppression at the LHC
Wolschin Georg
2014-01-01
Full Text Available Hadron production in relativistic heavy-ion collisions at LHC energies is investigated. After a brief consideration of stopping, particle production is accounted for in a relativistic diffusion model with two fragmentation sources, and a central source that is mostly due to gluon-gluon collisions. The particle content and energy dependence of the sources is discussed. The suppression of ϓ-mesons in the hot quark-gluon medium in PbPb collisions as compared to pp at √sNN = 2.76 TeV is accounted for in a model that encompasses gluodissociation, collisional damping, screening, and reduced feed-down. Model results are compared with CMS and ALICE data.
Pseudospin Symmetry as a Bridge between Hadrons and Nuclei
Joseph N. Ginocchio
2016-03-01
Full Text Available Atomic nuclei exhibit approximate pseudospin symmetry. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from the insight that pseudospin symmetry has relativistic origins . We show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei. Since QCD sum rules predict that the sum of the scalar and vector potentials is small, we discuss the quark origins of pseudospin symmetry in nuclei and spin symmetry in hadrons.
Exact Relativistic 'Antigravity' Propulsion
Felber, F S
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Formation time of hadronic resonances
Vitev Ivan
2012-11-01
Full Text Available In heavy-ion collisions, formation time of hadrons of high transverse momentum can play a pivotal role in determining the perturbative dynamics of the final-state parton and particle system. We present methods to evaluate the formation times of light hadrons, hadronic resonances, open heavy flavor and quarkonia. Experimental implications of the short formation times of heavy particles are discussed in light of recent RHIC and LHC data.
Supersymmetry across the light and heavy-light hadronic spectrum
Dosch, Hans Gunter [Institut fur Theoretische Physik, Heidelberg (Germany); de Teramond, Guy F. [Univ. de Costa Rica, San Pedro de Montes de Oca (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-10-07
Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Liu, Chuan
2016-01-01
I review some of the lattice results on spectroscopy and resonances in the past years. For the conventional hadron spectrum computations, focus has been put on the isospin breaking effects, QED effects, and simulations near the physical pion mass point. I then go through several single-channel scattering studies within L\\"uscher formalism, a method that has matured over the past few years. The topics cover light mesons and also the charmed mesons, with the latter case intimately related to the recently discovered exotic $XYZ$ particles. Other possible related formalisms that are available on the market are also discussed.
Chen, Wei; Steele, T G; Kleiv, R T; Bulthuis, B; Harnett, D; Richards, T; Zhu, Shi-Lin
2014-01-01
Many charmonium-like and bottomonium-like $XYZ$ resonances have been observed by the Belle, Babar, CLEO and BESIII collaborations in the past decade. They are difficult to fit in the conventional quark model and thus are considered as candidates of exotic hadrons, such as multi-quark states, meson molecules, and hybrids. In this talk, we first briefly introduce the method of QCD sum rules and then provide a short review of the mass spectra of the quarkonium-like tetraquark states and the heavy quarkonium hybrids in the QCD sum rules approach. Possible interpretations of the $XYZ$ resonances are briefly discussed.
Stenson, K
2002-01-01
Recent hadronic charm decay results from fixed-target experiments are presented. New measurements of the D0 to K-K+K-pi+ branching ratio are shown as are recent results from Dalitz plot fits to D+ to K-K+pi+, pi+pi-pi+, K-pi+pi+, K+pi-pi+ and D_s+ to pi+pi-pi+, K+pi-pi+. These fits include measurements of the masses and widths of several light resonances as well as strong evidence for the existence of two light scalar particles, the pipi resonance sigma and the Kpi resonance kappa.
Wada Masayuki
2012-11-01
Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.
Hirstius, Andreas
2008-11-01
In the mid-1990s, when CERN physicists made their first cautious estimates of the amount of data that experiments at the Large Hadron Collider (LHC) would produce, the microcomputer component manufacturer Intel had just released the Pentium Pro processor. Windows was the dominant operating system, although Linux was gaining momentum. CERN had recently made the World Wide Web public, but the system was still a long way from the all-encompassing network it is today. And a single gigabyte (109 bytes) of disk space cost several hundred dollars.
The melting and abundance of open charm hadrons
Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M
2014-01-01
Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas...
Hadron Spectroscopy in COMPASS
Grube, Boris
2012-01-01
The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied ...
Olsen, Stephen Lars
2014-01-01
QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark, hybrid and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have been identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states --the proton-antiproton state and the so-called XYZ mesons-- and compare them with expectations for convent...
Heavy hadrons in nuclear matter
Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2017-09-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.
Heavy Hadrons in Nuclear Matter
Hosaka, Atsushi; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2016-01-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia ($J/\\psi$, $\\Upsilon$), heavy-light mesons ($D$/$\\bar{D}$, $\\bar{B}$/$B$) and heavy baryons ($\\Lambda_{c}$, $\\Lambda_{b}$). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in nuclear matter with infinite volume, but also in atomic nuclei with finite bary...
Dijet imbalance in hadronic collisions
Boer, Daniel; Mulders, Piet J.; Pisano, Cristian
2009-01-01
The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of init
Quarkonium production in hadronic collisions
Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others
1995-07-01
We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.
Workshop on heavy hadron spectroscopy
2017-01-01
The recent developments in heavy hadron spectroscopy at LHCb have shown that LHCb has a unique potential in the field, combining hadronic production mechanisms to a powerful identification system. In this short workshop we focus on the recent results from LHCb and theoretical developments with attention to the future perspectives, in the context of the potential of current and future experiments.
Krein, Gastão [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP (Brazil)
2016-01-22
I review the present status in the theoretical and phenomenological understanding of hadron properties in strongly interacting matter. The topics covered are the EMC effect, nucleon structure functions in cold nuclear matter, spectral properties of light vector mesons in hot and cold nuclear matter, and in-medium properties of heavy flavored hadrons.
Dynamical growth of the hadron bubbles during the quark-hadron phase transition
Shukla, P K; Sen-Gupta, S K
2001-01-01
The rate of dynamical growth of the hadron bubbles in a supercooled baryon free quark-gluon plasma, is evaluated by solving the equations of relativistic fluid dynamics in all space. For a non-viscous plasma, this dynamical growth rate is found to depend only on the range of correlation $\\xi$ of order parameter fluctuation, and the radius $R$ of the critical hadron bubble, the two length scales relevant for the description of the critical phenomena. Unlike Csernai-Kapusta result, this rate does not vanish in the limit of zero viscosity. Further, it is shown that the dynamical prefactor acquires an additive component when the medium becomes viscous. Interestingly, under certain reasonable assumption for the velocity of the sound in the medium, the viscous and the non-viscous parts of the prefactor are found to be identical to the results obtained by Csernai-Kapusta and Ruggeri-Friedman (for the case of zero viscosity) respectively. It is also demonstrated that the first order phase transition from QGP to hadro...
Peitzmann, T.; Grelli, A.; Mischke, A.; Snellings, R.J.M.; van Leeuwen, M.; Nooren, G.J.L.
2016-01-01
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic
Krzewicki, M
2013-01-01
In relativistic heavy-ion collisions a dense and hot medium is created. It is thought to be the quark-gluon plasma (QGP), a state of matter in which the quarks and gluons, normally confined in hadrons, are (quasi-) free. The QGP is believed to have existed in the first few microseconds after the Big
Photons from Quark and Hadron Phases in Au+Au Collisions
LONG Jia-Li; HE Ze-Jun; MA Yu-Gang; GUAN Na-Na
2008-01-01
Based on a relativistic hydrodynamic model describing the evolution of the chemically equilibrating quark-gluon plasma system with finite baryon density in a 3+l-dimensional spacetime, we compute photons from the quark phase, hadronic phase and initial non-thermal contributions. It is found that due to the effects of the initial quark chemical potential, chemical equilibration and rapid expansion of the system, the photon yield of the quark-gluon plasma is strongly suppressed, and photons from hadronic matter and initial non-thermal contributions almost reproduce experimental data.
Suppression of back-to-back hadron pairs at forward rapidity in d+Au collisions at √s(NN)=200 GeV.
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Angerami, A; Aoki, K; Apadula, N; Aramaki, Y; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Inaba, M; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kinney, E; Kiss, Á; Kistenev, E; Kochenda, L; Komkov, B; Konno, M; Koster, J; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, S K; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Rukoyatkin, P; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sziklai, J; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zhou, S; Zolin, L
2011-10-21
Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|hadron at forward rapidity (deuteron direction, 3.0hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d+Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p+p collisions. The kinematics of these pairs is expected to probe partons in the Au nucleus with a low fraction x of the nucleon momenta, where the gluon densities rise sharply. The observed suppression as a function of nuclear thickness, p(T), and η points to cold nuclear matter effects arising at high parton densities.
Relativistic Kinetic Theory: An Introduction
Sarbach, Olivier
2013-01-01
We present a brief introduction to the relativistic kinetic theory of gases with emphasis on the underlying geometric and Hamiltonian structure of the theory. Our formalism starts with a discussion on the tangent bundle of a Lorentzian manifold of arbitrary dimension. Next, we introduce the Poincare one-form on this bundle, from which the symplectic form and a volume form are constructed. Then, we define an appropriate Hamiltonian on the bundle which, together with the symplectic form yields the Liouville vector field. The corresponding flow, when projected onto the base manifold, generates geodesic motion. Whenever the flow is restricted to energy surfaces corresponding to a negative value of the Hamiltonian, its projection describes a family of future-directed timelike geodesics. A collisionless gas is described by a distribution function on such an energy surface, satisfying the Liouville equation. Fibre integrals of the distribution function determine the particle current density and the stress-energy ten...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Relativistic Quantum Communication
Hosler, Dominic
2013-01-01
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Kaplan, Alexander; Schultz-Coulon, Hans-Christian; Dubbers, Dirk
This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...
Ostroumov, Peter
2013-01-01
This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...
Fioravanti, Elisa
2012-01-01
FAIR a new International Facility for Antiproton and Ion Reaserach, is under construction at Darmstadt, in Germany. This will provide scientists in the world with outstanding beams and experimental conditions for studying matter at the level of atoms, nuclei, and other subnuclear constituents. An antiproton beam with intensity up to 2x10$^7$ $\\bar{p}/s$ and high momentum resolution will be available at the High Energy Storage Ring (HESR) where the $\\bar{P}$ANDA (Antiproton Annihilation At Darmstadt) detector will be installed. In this paper we will illustrate the details of the $\\bar{P}$ANDA scientific program related to hadron spectroscopy, after a brief introduction about the FAIR facility and the $\\bar{P}$ANDA detector.
[Hadron therapy in carcinoma].
Vobornik, Slavenka; Dalagija, Faruk
2002-01-01
According to some statistics, in the developed countries of west Europe, one in three of population will have an encounter with cancer and, only one in eight of this will have treated by use a linear accelerator. Conventional accelerator-based treatments use photon or electron or proton beams collimated to the tumour place. However, some tumors are resistant on this therapy, while others have complex shapes or are located around vital radiosensitive organs. In those cases it is necessary higher radiobiological efficiency and higher precision. New generation of hadron therapy accelerators are arming with light ions. This therapy is characterized with high precision, in millimeter range over complex volumes. That is also good example how particle physics can benefit medical treatments.
Hadron accelerators for radiotherapy
Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan
2014-04-01
Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.
Relativistic electronic dressing
Attaourti, Y
2002-01-01
We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.
Fabian, A C; Parker, M L
2014-01-01
Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
The special relativistic shock tube
Thompson, Kevin W.
1986-01-01
The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Experimental techniques in hadron spectroscopy
Gianotti P.
2015-01-01
Full Text Available Quantum Chromodynamics (QCD is the theory of the strong interaction, but the properties of the hadrons cannot be directly calculated from the QCD Lagrangian and alternative approaches are then used. In order to test the different models, precise measurements of hadron properties are of extreme importance. This is the main motivation for the hadron spectroscopy experimental program carried out since many years with different probes and different detectors. A survey of some recent results in the field is here presented and commented, together with the opportunities offered by the forthcoming experimental programs.
Physics at Future Hadron Colliders
Rizzo, Thomas G.
2002-08-07
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Hadron collider physics at UCR
Kernan, A.; Shen, B.C.
1997-07-01
This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.
Heredia De La Cruz, Ivan
2016-01-01
Precise measurements of B hadron properties are crucial to improve or constrain models based on non-perturbative quantum chromodynamics, which provide predictions of mass, lifetime, cross section, polarization, and branching ratios (among several other properties) of B hadrons. Measurements of CP violation in $B^0_s$ and properties of rare B decays also provide many opportunities to search for new physics. This article presents some B hadron property results obtained by CMS using Run~I (2011-2012) data, and prospects for the Run~II (2015-2017) data taking period.
Physics at future hadron colliders
U. Baur et al.
2002-12-23
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Limits on hadron spectrum from bulk medium properties
Broniowski, Wojciech
2016-01-01
We bring up the fact that the bulk thermal properties of the hadron gas, as measured on the lattice, preclude a very fast rising of the number of resonance states in the QCD spectrum, as assumed by the Hagedorn hypothesis, unless a substantial repulsion between hadronic resonances is present. If the Hagedorn growth continued above masses ~1.8 GeV, then the thermodynamic functions would noticeably depart from the measured lattice values at temperatures above 140 MeV, just below the transition temperature to quark-gluon plasma.
Unified description of hadrons and heavy hadron decays
Kitazawa, N
1993-01-01
We construct an effective Lagrangian which describes interactions of heavy and light hadrons utilizing the chiral flavor symmetry for light quarks and heavy quark symmetry. For both light and heavy sector we include pseudo scalars, vectors and baryons in the Lagrangian. Heavy hadron decays are discussed as application of our formalism. The $D_s$ decay constant and the coupling constant among heavy meson, heavy vector meson and light meson are fitted from the experimental data of $D^0 \\rightarrow K^- e^+\
Relativistic cosmology; Cosmologia Relativista
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic length agony continued
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic bound state approach to fundamental forces including gravitation
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Semi-relativistic hydrodynamics of three-dimensional and low-dimensional quantum plasma
Andreev, Pavel; Kuz'menkov, Leonid
2014-01-01
Contributions of the current-current and Darwin interactions and weak-relativistic addition to kinetic energy in the quantum hydrodynamic equations are considered. Features of hydrodynamic equations for two-dimensional layer of plasma (two-dimensional electron gas for instance) are described. It is shown that the force fields caused by the Darwin interaction and weak-relativistic addition to kinetic energy are partially reduced. Dispersion of three- and two-dimensional semi-relativistic Langmuir waves is calculated.
A Hadron Radiation Installation and Verification Method
Beekman, F.J.; Bom, V.R.
2013-01-01
A hadron radiation installation adapted to subject a target to irradiation by a hadron radiation beam, said installation comprising: - a target support configured to support, preferably immobilize, a target: - a hadron radiation apparatus adapted to emit a hadron radiation beam along a beam axis to
Energy flow in a hadronic cascade: Application to hadron calorimetry
Groom, D E
1994-01-01
The hadronic cascade description developed in an earlier paper is extended to the response of an idealized fine-sampling hadron calorimeter. Calorimeter response is largely determined by the transfer of energy $E_e$ from the hadronic to the electromagnetic sector via $\\pi^0$ production. Fluctuations in this quantity produce the "constant term" in hadron calorimeter resolution. The increase of its fractional mean, $f_{\\rm em}^0 = \\vev{E_e}/E$, with increasing incident energy $E$ causes the energy dependence of the $\\pi/e$ ratio in a noncompensating calorimeter. The mean hadronic energy fraction, $f_h^0 = 1-f_{\\rm em}^0$, was shown to scale very nearly as a power law in $E$: $f_h^0 = (E/E_0)^{m-1}$, where $E_0\\approx1$~GeV for pions, and $m\\approx0.83$. It follows that $\\pi/e=1-(1-h/e)(E/E_0)^{m-1}$, where electromagnetic and hadronic energy deposits are detected with efficiencies $e$ and $h$, respectively. Fluctuations in these quantities, along with sampling fluctuations, are incorporated to give an overall u...
Phenomenology of photon and dilepton production in relativistic nuclear collisions
Bratkovskaya, Elena
2014-11-15
We discuss the latest theoretical results on direct photon and dilepton production from relativistic heavy-ion collisions. While the dilepton spectra at low invariant mass show in-medium effects like collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at relativistic energies. The present status of the photon v{sub 2} “puzzle” – a large elliptic flow v{sub 2} of the direct photons experimentally observed at RHIC and LHC energies – is also addressed. The role of hadronic and partonic sources for the photon spectra and v{sub 2} is considered as well as the possibility to subtract the QGP signal from the experimental observables.
Exploring Jet-Hadron correlations at the LHC with ALICE
Mazer, Joel
2016-08-01
In relativistic heavy ion collisions at the Large Hadron Collider (LHC), the conditions are met to produce the hot and dense, strongly interacting medium known as the Quark Gluon Plasma (QGP). The QGP, a state of matter created shortly after the Big Bang, is a phase where the deconfinement of quarks and gluons is hypothesized. Jets, the collimated sprays of hadrons from fragmenting partons, are a key probe of the medium. The experimental methods used for jet measurements at ALICE to remove, reduce, and correct for the underlying background event will be presented. In pp collisions, jet production is well understood within the framework of perturbative QCD and acts as a rigorous baseline measurement for jet quenching measurements. By comparing to heavy ion collision systems, we can study the suppression of the number of jets seen and study the modification of the pT or angular distributions of jet fragments. Azimuthal angular correlations of charged hadrons with respect to the axis of a full (charged + neutral) reconstructed (trigger) jet in Pb-Pb and pp collisions at √sNN = 2.76 TeV in ALICE will be presented here. Newly developed combinatoric background subtraction methods and their improvement compared to prior techniques will be discussed.
Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC
H. H. Braun
2014-02-01
Full Text Available Reliable predictions of yields of nuclear fragments produced in electromagnetic dissociation and hadronic fragmentation of ion beams are of great practical importance in analyzing beam losses and interactions with the beam environment at the Large Hadron Collider (LHC at CERN as well as for estimating radiation effects of galactic cosmic rays on the spacecraft crew and electronic equipment. The model for predicting the fragmentation of relativistic heavy ions is briefly described, and then applied to problems of relevance for LHC. The results are based on the fluka code, which includes electromagnetic dissociation physics and dpmjet-iii as hadronic event generator. We consider the interaction of fully stripped lead ions with nuclei in the energy range from about one hundred MeV to ultrarelativistic energies. The yields of fragments close in the mass and charge to initial ions are calculated. The approach under discussion provides a good overall description of Pb fragmentation data at 30 and 158A GeV as well as recent LHC data for sqrt[s_{NN}]=2.76 TeV Pb-Pb interactions. Good agreement with the calculations in the framework of different models is found. This justifies application of the developed simulation technique both at the LHC injection energy of 177A GeV and at its collision energies of 1.38, 1.58, and 2.75A TeV, and gives confidence in the results obtained.
Workshop on Quark-Gluon Plasma and Relativistic Heavy Ions
Lombardo, Maria Paola; Nardi, Marzia; GISELDA 2002; QGP 2002
2002-01-01
This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cult
Beyond the thermal model in relativistic heavy-ion collisions
Wolschin, Georg
2016-01-01
Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.
From RHIC to LHC: A relativistic diffusion approach
Kuiper, R; Kuiper, Rolf; Wolschin, Georg
2007-01-01
We investigate the energy dependence of stopping and hadron production in high-energy heavy-ion collisions based on a three-sources Relativistic Diffusion Model. The transport coefficients are extrapolated from Au + Au and Cu + Cu at RHIC energies (sqrt{s_NN)=19.6 - 200 GeV) to Pb + Pb at LHC energies sqrt{s_NN)= 5.52 TeV. Rapidity distributions for net protons, and pseudorapidity spectra for produced charged particles in central collisions are compared to data at RHIC energies, and discussed for several extrapolations to LHC energies.
Physics at Relativistic Heavy Ion Collider (RHIC)
Shuryak, E.V.
1990-08-01
This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/{psi} suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs.
Current operators in relativistic few-body systems
Coester, F.; Klink, W.H.; Polyzou, W.N.
1995-08-01
The interpretation of experiments that explore hadron structure with electromagnetic probes requires both a nonperturbative representation of the hadron states and a compatible representation of the current-density operator. Intuitive interpretations depend strongly on the {open_quotes}impulse approximation{close_quotes}, that is, the use of one-body currents. One-body currents, however, cannot satisfy essentially the constraints imposed by the dynamics. In nonrelativistic quantum mechanics the problem of constructing dynamically required interaction currents is well understood and has been solved. Since Galilei transformations are kinematic, only time-translation covariance and current conservation impose dynamical constraints on current operators. These constraints can be satisfied by the well-known construction of so-called {open_quotes}minimal{close_quotes} or {open_quotes}model-independent{close_quotes} currents. Descriptions of hadron structure and of nuclear effects probed at high energies require a relativistic description. In relativistic few-body dynamics, one-body currents are covariant only under the kinematic subgroup of the Poincare group. Full Poincare covariance and current conservation implies dynamically determined interaction currents. The separation of the current operator into impulse current and interaction current depends on the {open_quotes}form of dynamics{close_quotes}, that is on the choice of the kinematic subgroup. The choice of the light-front kinematics has unique advantages not available with other forms of dynamics: (1) a relevant subgroup of the translations is kinematic, (2) initial and final states are related by kinematic Lorentz transformations, (3) the contributions of the individual constituents are related kinematically to the total current. These features were exploited successfully in calculations of deuteron form factors and quark-model form factors of hadrons.
Legendre Analysis of Hadronic Reactions
Azimov, Ya I
2016-01-01
Expansions over Legendre functions are suggested as a model-independent way of compact presentation of modern precise and high-statistics data for two-hadron reactions. Some properties of the expansions are described.
Large Hadron Collider nears completion
2008-01-01
Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.
Forward physics of hadronic colliders
Ivanov, I. P.
2013-12-01
These lectures were given at the Baikal Summer School on Physics of Elementary Particles and Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the physics of the Pomeron and related topics.
The CMS Outer Hadron Calorimeter
Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush
2006-01-01
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.
Czerwinski, Eryk; Babusci, D; Badoni, D; Bencivenni, G; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Budano, A; Bulychjev, S A; Campana, P; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; De Zorzi, G; Di Domenico, A; Di Donato, C; Di Micco, B; Domenici, D; Erriquez, O; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Hoistad, B; Iarocci, E; Jacewicz, M; Johansson, T; Kulikov, V V; Kupsc, A; Lee-Franzini, J; Loddo, F; Martemianov, M A; Martini, M; Matsyuk, M A; Messi, R; Miscetti, S; Moricciani, D; Morello, G; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Sciubba, A; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Versaci, R; Wislicki, W; Wolke, M; Zdebik, J
2010-01-01
In the upcoming month the KLOE-2 data taking campaign will start at the upgraded DAFNE phi-factory of INFN Laboratori Nazionali di Frascati. The main goal is to collect an integrated luminosity of about 20 fb^(-1) in 3-4 years in order to refine and extend the KLOE program on both kaon physics and hadron spectroscopy. Here the expected improvements on the results of hadron spectroscopy are presented and briefly discussed.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amorós Vicente, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt Cairols, José
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form desig...
Testing the hadronic spectrum in the strange sector
Parotto, Paolo
2016-01-01
Heavier resonances are continually being added to the hadronic spectrum from the Particle Data Group that follow an exponentially increasing mass spectrum. However, it has been suggested that even further states predicted from Quark Models are needed in the hadronic spectrum in order to improve the agreement between the hadron resonance gas model predictions and lattice QCD data. We find that the inclusion of such states with extrapolated branching ratios slightly decreases the freezeout temperature. To eliminate ambiguities, we introduce a first principle method to extract the freeze-out temperature for charged kaons from experimental data, which yields a lower bound of $T_{\\text{fo}} \\gtrsim $145 MeV for the highest collision energy at RHIC.
Bose-Einstein correlation within the framework of hadronic mechanics
Burande, Chandrakant S. [Vilasrao Deshmukh College of Engineering and Technology, Mouda, India-441104, Email: csburande@gmail.com (India)
2015-03-10
The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The
Late effects from hadron therapy
Blakely, Eleanor A.; Chang, Polly Y.
2004-06-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
Late effects from hadron therapy.
Blakely, Eleanor A; Chang, Polly Y
2004-12-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
A. Skuja
Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...
Dremin, I. M.
2013-01-01
Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.
Violation of energy-per-hadron scaling in a resonance matter
Bravina, L V; Fuchs, C; Lu, Z D; Zabrodin, E E; Faessler, Amand
2002-01-01
Yields of hadrons, their average masses and energies per hadron at the stage of chemical freeze-out in (ultra)relativistic heavy-ion collisions are analyzed within the statistical model. The violation of the scaling / = 1 GeV observed in Au+Au collisions at $\\sqrt{s}$ = 130 AGeV is linked to the formation of resonance-rich matter with a considerable fraction of baryons and antibaryons. The rise of the energy-per-hadron ratio in baryon-dominated matter is discussed. A violation of the scaling condition is predicted for a very central zone of heavy-ion collisions at energies around 40 AGeV.
Albright, M
2016-01-01
We develop a flexible quasiparticle theory of transport coefficients of hot hadronic matter at finite baryon density. We begin with a hadronic quasiparticle model which includes a scalar and a vector mean field. Quasiparticle energies and the mean fields depend on temperature and baryon chemical potential. Starting with the quasiparticle dispersion relation, we derive the Boltzmann equation and use the Chapman-Enskog expansion to derive formulas for the shear and bulk viscosities and thermal conductivity. We obtain both relaxation time approximation formulas and more general integral equations. Throughout the work, we explicitly enforce the Landau-Lifshitz conditions of fit and ensure the theory is thermodynamically self-consistent. The derived formulas should be useful for predicting the transport coefficients of the hadronic phase of matter produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and at other accelerators.
Gravitational interaction of hadrons: Band-spinor representations of GL(n,R).
Ne'eman, Y
1977-10-01
We demonstrate the existence of double-valued linear (infinite) spinorial representations of the group of general coordinate transformations. We discuss the topology of the group of general coordinate transformations and its subgroups GA(nR), GL(n,R), SL(nr) for n = 2,3,4, and the existence of a double covering. We present the construction of band-spinor representations of GL(n,R) in terms of Harish-Chandra modules.It is suggested that hadrons interact with gravitation as band-spinors of that type. In the metric-affine extension of general relativity, the hadron intrinsic hypermomentum is minimally coupled to the connection, in addition to the coupling of the energy momentum tensor to the vierbeins. The relativistic conservation of intrinsic hypermomentum fits the observed regularities of hadrons: SU(6) ( approximately spin independence), scaling, and complex-J trajectories. The latter correspond to volume-preserving deformations (confinement?) exciting rotational bands.
Hadron blind detector. Final report, FY1994 and 1995
Chen, M.
1997-10-25
The authors have been developing a novel threshold Cherenkov detector, consisting of a gas radiator followed by a UV photosensitive wire chamber using CsI photocathodes. The photo-detector lies directly in the particle path and is thus required to have single photo-electron sensitivity and yet to be insensitive to the passage of a charged particle. In addition, the detector should be made of low mass material to minimize the effect of multiple scatterings. The proposed threshold Cherenkov counters are called Hadron Blind Detectors (HBDs) because they are blind to low energy hadrons which have lower speed {beta} for given momentum p than that of electrons. HBDs can be used in colliders, especially heavy ion hadron colliders (RHIC, LHC), which have huge {number_sign} of hadrons produced per event, to select electrons by being blind to low-momentum hadrons. The authors have studied two different methods to build HBDs described as follows: (1) windowless configuration; (2) thin window configuration. The authors describe herewith their recent experimental results on HBD research obtained with CsI photo-cathodes and HBD prototype beam testing in 1995.
Photon production in relativistic nuclear collisions at SPS and RHIC energies
Turbide, S; Rapp, R; 10.1142/S0217751X0402258X
2004-01-01
Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.
Jet-hadron correlations relative to the event plane in Pb--Pb collisions at the LHC in ALICE
Mazer, Joel
In relativistic heavy ion collisions at the Large Hadron Collider (LHC), a hot, dense and strongly interacting medium known as the Quark Gluon Plasma (QGP) is produced. Quarks and gluons from incoming nuclei collide to produce partons at high momenta early in the collisions. By fragmenting into collimated sprays of hadrons, these partons form 'jets'. Within the framework of perturbative Quantum Chromodynamics (pQCD), jet production is well understood in pp collisions. We can use jets measured in pp interactions as a baseline reference for comparing to heavy ion collision systems to detect and study jet quenching. The jet quenching mechanism can be studied through the angular correlations of trigger jets with charged hadrons and is examined in transverse momentum bins of the trigger jets, transverse momentum bins of the associated hadrons, and studied as a function of collision centrality. A highly robust and precise background subtraction method is used in this analysis to remove the complex, flow domin...
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Relativistic heavy ion reactions
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Amaldi, U; Arduini, G; Cambria, R; Canzi, C; Furetta, C; Leone, R; Rossi, S; Silari, M; Tosi, G; Vecchi, L
1993-11-01
The neologism "hadrontherapy" means radiotherapy with hadrons, which are the particles constituted by quarks, such as protons, neutrons and ions. The theoretical considerations about the clinical advantages this treatment modality can yield and the results obtained at the centers where it has already been used justify the proposal to project a center of this kind also in our Country. To this purpose, two of the authors of this paper (U. Amaldi, G. Tosi) founded the TERA Group formed by physicists, engineers and radiotherapists who work in close collaboration on a feasibility study for a hadrontherapy facility. The first aim of the Hadrontherapy Project is to design a center equipped with a synchrotron which, at the beginning, will accelerate negative hydrogen ions (H-) which will first produce 70-250 MeV proton beams and, then accelerate light ions (up to 16O) to 430 MeV/amu. This accelerator will serve four or five treatment rooms where patients can be irradiated simultaneously. Two rooms will be equipped with a fixed horizontal beam for the treatment of eye, head and neck tumors; the others will be equipped with rotating gantries to administer, in any clinical situation, really adequate treatment. Such a unit, when enough experience is fained, will allow at least 1000 patients to be treated yearly. The synchrotron injector will be designed so as to allow, parallel to the radiotherapy activities, other applications of medical and biological interest such as: the production of radioisotopes for diagnostic use (especially positron emitters), the analysis of trace elements through the PIXE technique and the production of thermal and epithermal neutrons for boron neutron capture therapy.
Relativistic gravity gradiometry
Bini, Donato; Mashhoon, Bahram
2016-12-01
In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Parker, Edward
2017-08-01
A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.
The melting and abundance of open charm hadrons
A. Bazavov
2014-10-01
Full Text Available Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas models—including only the experimentally established charmed resonances and also including additional states predicted by quark model and lattice QCD calculations. This comparison provides evidence for so far unobserved charmed hadrons that contribute to the thermodynamics in the crossover region.
The melting and abundance of open charm hadrons
Bazavov, A. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52240 (United States); Ding, H.-T.; Hegde, P. [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079 (China); Kaczmarek, O. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Laermann, E.; Maezawa, Y. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Mukherjee, Swagato [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ohno, H. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Schmidt, C. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Sharma, S., E-mail: sayantan@physik.uni-bielefeld.de [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Soeldner, W. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany); and others
2014-10-07
Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas models—including only the experimentally established charmed resonances and also including additional states predicted by quark model and lattice QCD calculations. This comparison provides evidence for so far unobserved charmed hadrons that contribute to the thermodynamics in the crossover region.
Chaoticity parameter $\\lambda$ in two-pion interferometry in an expanding boson gas model
Liu, Jie; Zhang, Wei-Ning; Wong, Cheuk-Yin
2014-01-01
We investigate the chaoticity parameter $\\lambda$ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter $\\lambda$ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the $\\lambda$ value at high pion pair momentum.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
CALICE Digital Hadron Calorimeter: Calibration and Response to Hadrons
Bilki, Burak
2014-01-01
The large CALICE Digital Hadron Calorimeter prototype (DHCAL) was built in 2009 - 2010. The DHCAL uses Resistive Plate Chambers (RPCs) as active media and is read out with 1 x 1 cm2 pads and digital (1 - bit) resolution. With a world record of about 0.5M readout channels, the DHCAL offers the possibility to study hadronic interactions with unprecedented spatial resolution. This talk reports on the results from the analysis of pion events of momenta between 2 to 60 GeV/c collected in the Fermilab test beam with an emphasis on the intricate calibration procedures.
Three Lectures on Hadron Physics
Roberts, Craig D
2015-01-01
These lectures explain that comparisons between experiment and theory can expose the impact of running couplings and masses on hadron observables and thereby aid materially in charting the momentum dependence of the interaction that underlies strong-interaction dynamics. The series begins with a primer on continuum QCD, which introduces some of the basic ideas necessary in order to understand the use of Schwinger functions as a nonperturbative tool in hadron physics. It continues with a discussion of confinement and dynamical symmetry breaking (DCSB) in the Standard Model, and the impact of these phenomena on our understanding of condensates, the parton structure of hadrons, and the pion electromagnetic form factor. The final lecture treats the problem of grand unification; namely, the contemporary use of Schwinger functions as a symmetry-preserving tool for the unified explanation and prediction of the properties of both mesons and baryons. It reveals that DCSB drives the formation of diquark clusters in bar...
Hadron Contribution to Vacuum Polarisation
Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.
2016-10-01
Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.
The Nonperturbative Structure of Hadrons
Hobbs, T J
2014-01-01
In this thesis we explore a diverse array of issues that strike at the inherently nonperturbative structure of hadrons at momenta below the QCD confinement scale. In so doing, we mainly seek a better control over the partonic substructure of strongly-interacting matter, especially as this relates to the nonperturbative effects that both motivate and complicate experiments --- particularly DIS; among others, such considerations entail sub-leading corrections in $Q^2$, dynamical higher twist effects, and hadron mass corrections. We also present novel calculations of several examples of flavor symmetry violation, which also originates in the long-distance properties of QCD at low energy. Moreover, we outline a recently developed model, framed as a hadronic effective theory amenable to QCD global analysis, which provides new insights into the possibility of nonperturbative heavy quarks in the nucleon. This model can be extended to the scale of the lighter mesons, and we assess the accessibility of the structure f...
Hadron Contribution to Vacuum Polarisation
Davier, M; Malaescu, B; Zhang, Z
2016-01-01
Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...
History of hadron therapy accelerators.
Degiovanni, Alberto; Amaldi, Ugo
2015-06-01
In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.
The COMPASS Hadron Spectroscopy Programme
Austregesilo, A
2011-01-01
COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...
Anisotropy of low energy direct photons in relativistic heavy ion collisions
Koide, T.; Kodama, T.
2016-09-01
Using the Wigner function approach for electromagnetic radiation fields, we investigate the behavior of low energy photons radiated by the deceleration processes of two colliding nuclei in relativistic heavy ion collisions. The angular distribution reveals information of the initial geometric configurations, which is reflected in the anisotropic parameter v 2, with an increasing v 2 as energy decreases. This behavior is qualitatively different to the v 2 from the hadrons produced in the collisions.
On relativistically invariant method of constructing one- and two-parton density matrix
Shchelkachev, A V
2001-01-01
Hadron is considered as a system of one or two partons and a nucleus that contains many partons, but is described as a parton with variable mass. By integration over this mass the relativistically invariant density matrix is constructed. Using this method one can obtained simple relationships between the density matrix elements and to check or give a better interpretation of the hypotheses proposed by the parton models of various authors
Anisotropicity of Low Energy Direct Photons in Relativistic Heavy Ion Collisions
Koide, T
2016-01-01
We investigate the behavior of low energy photons radiated by deceleration processes of two colliding nuclei in relativistic heavy ion collisions, where their angular distribution reveals information of the initial geometric configurations. Such a property is reflected in the anisotropic parameter v_{2}, showing an increasing v_{2} as energy decreases, which is qualitatively different behavior from v_{2} from hadrons produced in the collisions.
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
Heavy hadron spectrum and interactions
Ebert, D
1996-01-01
Starting from the approximate symmetries of QCD, namely chiral symmetry for light quarks and spin and flavor symmetry for heavy quarks, we investigate the low-energy properties of heavy hadrons. For this purpose we construct a consistent picture of quark-antiquark and quark-diquark interactions as a low-energy approximation to the flavor dynamics in heavy mesons and heavy baryons, respectively. Using standard functional integration tools, we derive an effective Lagrangian in terms of heavy hadron fields and discuss several properties, like the mass spectrum, coupling and decay constants, Isgur-Wise form factors.
Hadron rich and Centauro events
Barroso, S.L.C. [Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro, RJ (Brazil); Beggio, P.C. [Laboratorio de Ciencias Matematicas, UENF, Campos de Goytacazes, RJ (Brazil); Carvalho, A.O. de; Chinellato, J.A.; Mariano, A.; Oliveira, R. de; Shibuya, E.H. [Instituto de Fisica ' Gleb Wataghin' /UNICAMP, 13083-970 Campinas, SP (Brazil)
2008-01-15
An exploratory statistical analysis of the event C16S086I037 was possible to do using two simulations. A {gamma} and hadron induced showers recognition done on this event through a best fitting procedure shows identification of 25 and 37 for {gamma} and hadron induced showers, respectively. Assuming that the most energetic shower is the surviving particle of an interaction and the tertiary produced particles are from normal multiple pion production, the characteristics of the interaction are: Energy of primary particle E{sub 0}=1,061 TeV, Inelasticity of collision K=0.81, Mean inelasticity of {gamma}-ray =(1.2{+-}0.2) GeV/c, Upper bound of partial cross section {sigma}{<=}(15-39){mu}barn and life time {tau}{<=}10{sup -16} s. Without the surviving particle assumption, the values are: E{sub 0}=873 TeV, K=1.0, =(1.0{+-}0.16) GeV/c. Using another simulation for energy determination with {chi}{sup 2}>3.16 for best fitting results 22 and 40 for {gamma} and hadron induced showers, respectively. Under the surviving particle assumption, the figures are: Energy of primary particle E{sub 0}=1,047 TeV, Inelasticity of collision K=0.80, Mean inelasticity of {gamma}-ray =(1.0{+-}0.2) GeV/c. That is, we get almost similar figures independently of simulation and a mean transverse momentum for this hadron-rich event similar to the Centauro events.
Belle II and Hadron spectroscopy
Križan, Peter, E-mail: peter.krizan@ijs.si [J. Stefan Institute and University of Ljubljana (Slovenia)
2015-08-15
Asymmetric B factories, PEP-II with BaBar and KEKB with Belle, made a decisive contribution to flavour physics. In addition, they also observed a long list of new hadrons, some of which do not fit into the standard meson and baryon schemes. The next generation of B factories, the so called Super B factory will search for departures from the Standard model. For this task, a 50 times larger data sample is needed, corresponding to an integrated luminosity of 50 ab{sup −1}. With such a large data sample there are many more topics to explore, including searches for new and exotic hadrons, and investigation of their properties.
Hadron scattering, resonances, and QCD
Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
An Undergraduate Exercise in the First Law of Relativistic Thermodynamics
Guemez, J.
2010-01-01
The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…
Recurrence relation for relativistic atomic matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
INSPIRE-00360943
2016-01-01
The hot and dense strongly interacting Quark-Gluon Plasma (sQGP) created in ultra-relativistic heavy-ion collisions can be probed by studying high-$p_{\\rm T}$ particle production and parton energy loss. Similar measurements performed in p-Pb collisions may help in determining whether initial or final state nuclear effects play a role in the observed suppression of hadron production at high-$p_{\\rm T}$ in Pb--Pb collisions. By examining the nuclear modification factors through the comparison of identified hadron yields in different collision systems one can gain insight into particle production mechanisms and nuclear effects.
Velocity of sound in hadron matter
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Roulet, E.
1987-09-01
The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied. This velocity of sound appears to be an important tool to distinguish among different bag-model-based thermodynamical descriptions of hadronic matter.
Hadi, Miftachul
2010-01-01
The SU(2) Skyrme model is reviewed. The model, which considers hadron as soliton (Skyrmion), is used for investigating the nucleon mass and delta mass. Keywords: Skyrme model, soliton, hadron, nucleon mass, delta mass.
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Numerical Relativistic Quantum Optics
2013-11-08
µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Rössler, O E; Matsuno, K
1998-04-01
The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.
Formation and collapse of false vacuum bubbles in relativistic heavy-ion collisions
Ray, Rajarshi E-mail: rajarshi@iopb.res.in; Sanyal, Soma E-mail: sanyal@iopb.res.in; Srivastava, Ajit M. E-mail: ajit@iopb.res.in
2002-12-30
It is possible that under certain situations, in a relativistic heavy-ion collision, partons may expand out forming a shell like structure. We analyze the process of hadronization in such a picture for the case when the quark-hadron transition is of first order, and argue that the inside region of such a shell must correspond to a supercooled (to T=0) deconfined vacuum. Hadrons from that region escape out, leaving a bubble of pure deconfined vacuum with large vacuum energy. This bubble undergoes relativistic collapse, with highly Lorentz contracted bubble walls, and may concentrate the entire energy into extremely small regions. Eventually different portions of bubble wall collide, with the energy being released in the form of particle production. Thermalization of this system can lead to very high temperatures. With a reasonably conservative set of parameters, at LHC, the temperature of the hot spot can reach as high as 3 GeV, and well above it with more optimistic parameters. Such a hot spot can leave signals like large P{sub T} partons, dileptons, and enhanced production of heavy quarks. We also briefly discuss a speculative possibility where the electroweak symmetry may get restored in the highly dense region resulting from the decay of the bubble wall via the phenomenon of non-thermal symmetry restoration (which is usually employed in models of pre-heating after inflation). If that could happen then the possibility may arise of observing sphaleron induced baryon number violation in relativistic heavy-ion collisions.
Hadron identification with the HERMES RICH
Hommez, B
2003-01-01
The HERMES experiment has upgraded its spectrometer in 1998 with a ring imaging Cherenkov (RICH) detector to allow the identification of pions, kaons and protons over practically the entire momentum range of HERMES, by using two radiators, silica aerogel and C sub 4 F sub 1 sub 0 gas. The identification of the different hadrons in the HERMES RICH detector is based on two different methods: the inverse ray tracing method (IRT) and the direct ray tracing method (DRT). Both methods use a likelihood analysis to select the most probable particle type. The IRT and DRT method exist in parallel; a decision network chooses the optimal method for a certain event topology. Details on the IRT and DRT methods will be presented as well as the development of an 'unfolding program' which allows to extract true (pi,K,p) momentum distributions from the measured ones.
Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables
Di Toro, Massimo; Greco, Vincenzo [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Physics and Astronomy Dept., Catania (Italy); Colonna, Maria [INFN-Laboratori Nazionali del Sud, Catania (Italy); Shao, Guo-Yun [Xi' an Jiaotong University, Department of Applied Physics, Xi' an (China)
2016-08-15
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: (i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; (ii) an ''Isospin Distillation'' to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program. (orig.)
Measurement of azimuthal correlations between D mesons and charged hadrons with ALICE at the LHC
Colamaria Fabio
2014-01-01
Full Text Available The comparison of angular correlations between charmed mesons and charged hadrons produced in pp, p-Pb and Pb-Pb collisions can give insight into the mechanisms through which charm quarks lose energy in a QGP medium, produced in ultra-relativistic heavy-ion collisions, and can help to recognize possible modifications of their hadronization induced by the presence of the QGP. The analysis of pp and p-Pb data and the comparison with predictions from pQCD calculations, besides constituting the necessary reference for interpreting Pb-Pb data, can provide relevant information on charm production and fragmentation processes. In addition, possible differences between the results from pp and p-Pb collisions can give information on the presence of cold nuclear matter effects, affecting the charm production and hadronization in the latter collision system. A study of azimuthal correlations between D0, D+, and D*+ mesons and charged hadrons in pp collisions at √s = 7 TeV and p-Pb collisions at √sNN = 5.02 TeV are presented. D mesons were reconstructed from their hadronic decays at central rapidity in the transverse-momentum range 3 ≤ pTD ≤ 16 GeV/c and were correlated to charged particles reconstructed in the pseudorapidity range |η| < 0.8. Perspectives for the measurement in Pb-Pb collisions at √sNN = 2.76 TeV will also be presented.
Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP
Kuznetsova, Inga; Rafelski, Johann
2006-01-01
We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.
Observation of relativistic antihydrogen atoms
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
The Relativistic Heavy Ion Collider
Fischer, Wolfram
The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...
Nondiagonal and mixed squark production at hadron colliders
Bozzi, G; Klasen, M; 10.1103/PhysRevD.72.035016
2005-01-01
We calculate squared helicity amplitudes for nondiagonal and mixed squark pair production at hadron colliders, taking into account not only loop-induced QCD diagrams, but also previously unconsidered electroweak channels, which turn out to be dominant. Mixing effects are included for both top and bottom squarks. Numerical results are presented for several SUSY benchmark scenarios at both the CERN LHC and the Fermilab Tevatron, including the possibilities of light stops or sbottoms. The latter should be easily observed at the Tevatron in associated production of stops and sbottoms for a large range of stop masses and almost independently of the stop mixing angle. Asymmetry measurements for light stops at the polarized BNL Relativistic Heavy Ion Collider are also briefly discussed.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
'Antigravity' Propulsion and Relativistic Hyperdrive
Felber, F S
2006-01-01
Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Assembly of the CMS hadronic calorimeter
Maximilien Brice
2004-01-01
The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.
Free quarks and antiquarks versus hadronic matter
XU Xiao-Ming; PENG Ru
2009-01-01
Meson-meson reactions A(q1q1) + B(q2q2) → q1+q1+ q2+q2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.
Energy dependence of resonance production in relativistic heavy ion collisions
Shao, Feng-lan; Wang, Rui-qin; Zhang, Mao-sheng
2016-01-01
The production of hadronic resonances $K^{*}(892)$, $\\phi(1020)$, $\\Sigma^{*}(1385)$, and $\\Xi^{*}(1530)$ in central AA collisions at $\\sqrt{s_{NN}}=$ 17.3, 200, and 2760 GeV are systematically studied. The direct production of these resonances at system hadronization are described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The $p_T$ spectra of $K^{*}(892)$ calculated directly by quark combination model are explicitly higher than the data at low $p_T \\lesssim 1.5$ GeV and taking into account the modification of rescattering effects the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on $\\phi(1020)$ production is weak and including it can slightly improve our description at low $p_T$ on the...
Energy dependence of resonance production in relativistic heavy ion collisions
Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng
2017-01-01
The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
A relativistic trolley paradox
Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.
2016-06-01
We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.
Hadronic interactions and nuclear physics
Beane, S R
2008-01-01
I give an overview of efforts in the last year to calculate interactions among hadrons using lattice QCD. Results discussed include the extraction of low-energy phase shifts and three-body interactions, and the study of pion and kaon condensation. A critical appraisal is offered of recent attempts to calculate nucleon-nucleon and nucleon-hyperon potentials on the lattice.
Koppenburg, Patrick; Smizanska, Maria
2016-01-01
Rare decays of b hadrons provide a powerful way of identifying contributions from physics beyond the Standard Model, in particular from new hypothetical particles too heavy to be produced at colliders. The most relevant experimental measurements are reviewed and possible interpretations are briefly discussed.
Butler, J.N.; /Fermilab
2005-09-01
This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.
Charmed hadrons in nuclear medium
Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.
2010-01-01
We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the op
Mishima, S
2006-01-01
I review recent progress on exclusive hadronic B meson decays in the perturbative QCD approach, with focus on puzzles in the branching ratios and the CP asymmetries of the B -> pi K and B -> pi pi modes, and polarization fractions in B -> VV modes.
A PARTNERship for hadron therapy
2008-01-01
PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.
Electroweak results from hadron colliders
Marcel Demarteau
1999-09-02
A very brief summary of recent electroweak results from hadron colliders is given. The emphasis is placed on inclusive W{sup {+-}} and Z{sup 0} production, the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings.
Moch, S.
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
Hadron production simulation by FLUKA
Battistoni, G; Ferrari, A; Ranft, J; Roesler, S; Sala, P R
2013-01-01
For the purposes of accelerator based neutrino experiments, the simulation of parent hadron production plays a key role. In this paper a quick overview of the main ingredients of the PEANUT event generator implemented in the FLUKA Monte Carlo code is given, together with some benchmarking examples.
Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)
1997-01-01
We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb ^{-1} data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).
Salazar De Paula, Leandro
2015-01-01
The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Lorentz invariant relative velocity and relativistic binary collisions
Cannoni, Mirco
2017-01-01
This paper reviews the concept of Lorentz invariant relative velocity that is often misunderstood or unknown in high energy physics literature. The properties of the relative velocity allow to formulate the invariant flux and cross-section without recurring to nonphysical velocities or any assumption about the reference frame. Applications such as the luminosity of a collider, the use as kinematic variable, and the statistical theory of collisions in a relativistic classical gas are reviewed. It is emphasized how the hyperbolic properties of the velocity space explain the peculiarities of relativistic scattering.
A relativistic toy model for Unruh black holes
Carbonaro, P.
2014-08-01
We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.
Lorentz invariant relative velocity and relativistic binary collisions
Cannoni, Mirco
2016-01-01
This article reviews the concept of Lorentz invariant relative velocity that is often misunderstood or unknown in high energy physics literature. The properties of the relative velocity allow to formulate the invariant flux and cross section without recurring to non--physical velocities or any assumption about the reference frame. Applications such as the luminosity of a collider, the use as kinematic variable, and the statistical theory of collisions in a relativistic classical gas are reviewed. It is emphasized how the hyperbolic properties of the velocity space explain the peculiarities of relativistic scattering.
Tindall, J.; Torres-Rincon, J. M.; Rose, J. B.; Petersen, H.
2017-07-01
Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann-Robertson-Walker spacetime, we implement this metric into the newly developed transport approach Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of the transport equation and compare it to this exact solution for massless particles. We also compare a different initial condition, for which the transport equation can be independently solved numerically. Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we study a gas of massive particles within the same spacetime, where the particle decoupling is forced by the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function of the masses and cross sections of the particles. The results might be of interest for their potential application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms of hadron properties.
Constraining the hadronic spectrum through QCD thermodynamics on the lattice
Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia
2017-08-01
Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.
The computer simulation of laser proton acceleration for hadron therapy
Lykov, Vladimir; Baydin, Grigory
2008-11-01
The ions acceleration by intensive ultra-short laser pulses has interest in views of them possible applications for proton radiography, production of medical isotopes and hadron therapy. The 3D relativistic PIC-code LegoLPI is developed at RFNC-VNIITF for modeling of intensive laser interaction with plasma. The LegoLPI-code simulations were carried out to find the optimal conditions for generation of proton beams with parameters necessary for hadrons therapy. The performed simulations show that optimal for it may be two-layer foil of aluminum and polyethylene with thickness 100 nm and 50 nm accordingly. The maximum efficiency of laser energy transformation into 200 MeV protons is achieved on irradiating these foils by 30 fs laser pulse with intensity about 2.10^22 W/cm^2. The conclusion is made that lasers with peak power about 0.5-1PW and average power 0.5-1 kW are needed for generation of proton beams with parameters necessary for proton therapy.
Shear modulus of the hadron-quark mixed phase
Johnson-McDaniel, Nathan K
2012-01-01
Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the ...
Production of light flavor hadrons and anti-nuclei at the LHC
Kalweit, Alexander
With the recording of the first collisions of the Large Hadron Collider (LHC) in November 2009, a new era in the domain of high energy and relativistic heavy-ion physics has started. As one of the early observables which can be addressed, the measurement of light quark flavor production is presented in this thesis. Hadrons that consist only of u, d, and s quarks constitute the majority of the produced particles in pp and Pb–Pb collisions. Their measurement forms the basis for a detailed understanding of the collision and for the answer of the question if hadronic matter undergoes a phase transition to the deconfined quark-gluon plasma at high temperatures. The basics of ultra-relativistic heavy- ion physics are briefly introduced in the first chapter followed by a short description of the ALICE experiment. A particular focus is put on the unique particle identification (PID) capabilities as they provide the basis of the measurements which are presented in the following chapters. The particle identification ...
Thermalization of Hadrons via Hagedorn States
Beitel, M; Greiner, C
2014-01-01
Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number $B$, strangeness $S$ and electric charge $Q$. The numerical solution of this equation provides Hagedorn spectra, which enable to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single (heavy) Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final hadronic observables like masses, spectral functions and decay branching ratios for hadronic feed down are taken from the hadronic transport model UrQMD. Strikingly, the final energy spectra of resulting hadrons are exponential showing a thermal-like distribution with the characteristic Hagedorn temperature.
Double hadron leptoproduction in the nuclear medium
Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2006-01-01
First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced $A$-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Lock, Maximilian P E
2016-01-01
The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Relativistic Runaway Electrons
Breizman, Boris
2014-10-01
This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of
What is "Relativistic Canonical Quantization"?
Arbatsky, D. A.
2005-01-01
The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Hadron therapy physics and simulations
d’Ávila Nunes, Marcos
2014-01-01
This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a comparison and discussion of both techniques in treatment planning and radiation monitoring. This brief is suitable for newcomers to medical physics as well as seasoned specialists in radiation oncology.
Hadron Structure on the Lattice
Can, K. U.; Kusno, A.; Mastropas, E. V.; Zanotti, J. M.
The aim of these lectures will be to provide an introduction to some of the concepts needed to study the structure of hadrons on the lattice. Topics covered include the electromagnetic form factors of the nucleon and pion, the nucleon's axial charge and moments of parton and generalised parton distribution functions. These are placed in a phenomenological context by describing how they can lead to insights into the distribution of charge, spin and momentum amongst a hadron's partonic constituents. We discuss the techniques required for extracting the relevant matrix elements from lattice simulations and draw attention to potential sources of systematic error. Examples of recent lattice results are presented and are compared with results from both experiment and theoretical models.
Exotic Hadrons from B Factories
Fulsom, Bryan
2017-01-01
The first generation of B-Factories, BaBar and Belle, operated over the previous decade and produced many world-leading measurements related to flavor physics. One of the most important discoveries was that of an apparent four-quark particle, named X(3872). It was the first of a growing X, Y, Z alphabet of exotic hadrons, now numbering more than a dozen, found by the e + e - collider experiments. These multi-quark states represent an unusual departure from the standard description that hadronic matter consists of only two or three quarks. These discoveries have led to the emergence of a new category of physics within heavy meson spectroscopy. This talk will review some of these key experimental results, and highlight the potential of the next generation B-Factory, Belle II, as it begins operation in the coming year.
Hadron therapy information sharing prototype.
Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-07-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Geometrical Models and Hadronic Radii
Zahra, Sarwat; Fazal-e-Aleem,; Hussain, Talib; Zafar, Abrar Ahmad; Tahir, Sohail Afzal
2015-01-01
By using electromagnetic form factors predicted by Generalized Chou Yang model (GCYM), we compute rms radii of several hadrons with varying strangeness content such as (Pion, Proton, Phi, Lambda0, Sigma+, Sigma- and Omega-). The computed radii are found quite consistent with the results of other models and experiments, indicating excellent predicting power of GCYM. The results indicate that rms radii decrease with increase in strangeness content, separately for mesons and baryons.
Hadron Properties with FLIC Fermions
James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang
2003-07-01
The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.
Hard processes in hadronic interactions
Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)
1995-07-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.
Hadron Physics from Lattice QCD
2016-01-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
Compensation effects in hadron calorimeters
Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.
1984-01-01
The pros and cons of utilizing a fissionable material such as /sup 238/U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important. 12 references.