WorldWideScience

Sample records for relativistic free-streaming gas

  1. Ionization distribution near a relativistic particle track in gas

    CERN Document Server

    Grichine, V M

    2009-01-01

    The space distribution of ionization produced by relativistic charged particle around its trajectory is discussed in the framework of photo-absorption ionization model. The mean root square transverse radius of the ionization space distribution shows relativistic rise. The rise is due to relativistic increasing of Cherenkov photon generation. The photons with energy more than the first ionization potential have small but finite range which is typically much more than the range of an electron with the same energy. Calculations illustrating this effect were done using the gas mixture proposed for ALICE LHC time projection chamber.

  2. Entropy of Relativistic Mono-Atomic Gas and Temperature Relativistic Transformation in Thermodynamics

    Directory of Open Access Journals (Sweden)

    Edward Bormashenko

    2007-09-01

    Full Text Available It is demonstrated that the entropy of the ideal mono-atomic gas comprisingidentical spherical atoms is not conserved under the Planck-Einstein like relativistictemperature transformation, as a result of the change in the number of atomic degrees offreedom. This fact supports the idea that there is no universal relativistic temperaturetransformation.

  3. Effects of unsteady free stream velocity and free stream turbulence on stagnation point heat transfer

    Science.gov (United States)

    Gorla, R. S. R.

    1984-01-01

    The combined effects of transient free stream velocity and free stream turbulence on heat transfer at a stagnation point over a cylinder situated in a crossflow are studied. An eddy diffusivity model was formulated and the governing momentum and energy equations are integrated by means of the steepest descent method. The numerical results for the wall shear stress and heat transfer rate are correlated by a turbulence parameter. The wall friction and heat transfer rate increase with increasing free stream turbulence intensity.

  4. Effects of unsteady free-stream velocity and free-stream turbulence at a stagnation point

    Science.gov (United States)

    Gorla, R. S. R.

    1982-01-01

    The combined effects of transient free stream velocity and turbulence at a stagnation point on a cylinder situated in a crossflow is investigated analytically, and a model is formulated for the eddy diffusivity induced by free-stream turbulence. The steepest descent method is used to integrate the governing momentum expression, and numerical solutions are given for the unsteady wall shear stress function for specific free-stream transients. It is found after correlation of the results by means of a new turbulence parameter that wall friction increases with increasing free-stream turbulence intensity, and that the friction factor increases with increasing reduced frequency of oscillation values.

  5. Combined influence of unsteady free stream velocity and free stream turbulence on stagnation point heat transfer

    Science.gov (United States)

    Gorla, R. S. R.

    1984-01-01

    An analysis is presented to study the combined effects of transient free stream velocity and free stream turbulence on heat transfer at a stagnation point over a cylinder situated in a crossflow. An expression for the eddy diffusivity has been formulated and the governing momentum and energy equations are integrated by means of the steepest descent method. The numerical results for the heat transfer rate are correlated by a turbulence parameter. It has been found that the stagnation point heat transfer rate increases with increasing free stream turbulence intensity.

  6. Approximate Analytical Solutions to the Relativistic Isothermal Gas Spheres

    Science.gov (United States)

    Saad, A. S.; Nouh, M. I.; Shaker, A. A.; Kamel, T. M.

    2017-10-01

    In this paper we introduce a novel analytical solution to Tolman-Oppenheimer-Volkoff (TOV) equation, which is ultimately a hydrostatic equilibrium equation derived from general relativity in the framework of relativistic isothermal spheres. To improve the convergence radii of the obtained series solutions, a combination of an Euler-Abel transformation and a Padé approximation has been done. The solutions are given in the ξ-θ and ξ-ν phase planes taking into account the general relativistic effects σ=0.1, 0.2 and 0.3. A comparison between the results obtained by the suggested approach and the numerical one indicates a good agreement, with a maximum relative error of order 10-3, which establishes the validity and accuracy of the method. The proposed procedure accelerated the power series solution about ten times that of the traditional one. An application to a neutron star is presented.

  7. Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole

    CERN Document Server

    Rioseco, Paola

    2016-01-01

    We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite ex...

  8. Stagnation point heat transfer augmentation due to free stream turbulence

    Science.gov (United States)

    Gorla, R. S. R.

    1982-01-01

    A model has been proposed for the momentum eddy diffusivity induced by free stream turbulence intensity and integral length scale. The eddy diffusivity model is applied to the stagnation point of a cylinder situated in a uniform crossflow in the presence of free stream turbulence. A numerical solution of the governing momentum and energy equations with the proposed eddy diffusivity model yielded results for the skin friction coefficient and the Nusselt number. The numerical predictions of the present work are compared with experimental data and the agreement between the two is seen to be very good.

  9. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  11. THE SHOENBERG EFFECT IN A RELATIVISTIC DEGENERATE ELECTRON GAS AND OBSERVATIONAL EVIDENCE IN MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhaojun; Lue Guoliang; Zhu Chunhua; Huo Wensheng, E-mail: xjdxwzj@sohu.com, E-mail: guolianglv@gmail.com [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China)

    2013-08-20

    The electron gas inside a neutron star is highly degenerate and relativistic. Due to electron-electron magnetic interactions, the differential susceptibility can equal or exceed one, which causes the magnetic system of the neutron star to become metastable or unstable. The Fermi liquid of nucleons under the crust can be in a metastable state, while the crust is unstable to the formation of layers of alternating magnetization. The change of the magnetic stress acting on adjacent domains can result in a series of shifts or fractures in the crust. The release of magnetic free energy and elastic energy in the crust can cause the bursts observed in magnetars. Simultaneously, a series of shifts or fractures in the deep crust that is close to the Fermi liquid of nucleons can trigger a phase transition of the Fermi liquid of nucleons from a metastable state to a stable state. The magnetic free energy released in the Fermi liquid of nucleons corresponds to the giant flares observed in some magnetars.

  12. Effect of Free Stream Turbulence on the Performance of a Marine Hydrokinetic Turbine

    Science.gov (United States)

    Vinod, Ashwin; Banerjee, Arindam

    2015-11-01

    The effects of controlled and elevated levels of free stream turbulence on the performance characteristics of a three bladed, constant chord, untwisted marine hydrokinetic turbine is tested experimentally. Controlled homogeneous free stream turbulence levels ranging from 3% to ~20% are achieved by employing an active grid turbulence generator that is placed at the entrance of the water channel test section and is equipped with motor controlled winglet shafts. In addition to free stream turbulence, various (turbine) operating conditions such as the free stream velocity and rotational speed are varied. A comparison of performance characteristics that includes the mean and standard deviations of the power coefficient (CP) , and thrust coefficient (CT) will be presented and compared to the case of a laminar free stream with FST levels <1%.

  13. Effect of Free-Stream Turbulence Intensity on Transonic Airfoil with Shock Wave

    Science.gov (United States)

    Lutsenko, I.; Serikbay, M.; Akiltayev, A.; Rojas-Solórzano, L. R.; Zhao, Y.

    2017-09-01

    Airplanes regularly operate switching between various flight modes such as take-off, climb, cruise, descend and landing. During these flight conditions the free-stream approaching the wings undergo fundamental changes. In transonic flow conditions, typically in the military or aerospace applications, existence of nonlinear and unsteady effects of the airflow stream significantly alters the performance of an airfoil. This paper presents the influence of free-stream turbulence intensity on transonic flow over an airfoil in the presence of a weak shock wave. In particular, NACA 0012 airfoil performance at Ma∞ = 0.7 is considered in terms of drag, lift, turbulence kinetic energy, and turbulence eddy dissipation parameters under the influence of varying angle of attacks and free-stream turbulence. The finite volume method in a commercial CFD package ANSYS-CFX is used to perform the numerical analysis of the flow. Mesh refinement using a mesh-adaption technique based on velocity gradient is presented for more accurate prediction of shocks and boundary layers. A Shear Stress Transport (SST) turbulence model is validated against experimental data available in the literature. Numerical simulations were performed, with free stream turbulence intensity ranging from low (1%), medium (5%) to high (10%) levels. Results revealed that drag and lift coefficients are approximately the same at every aforementioned value of turbulence intensity. However, turbulence kinetic energy and eddy dissipation contours vary as turbulence intensity changes, but their changes are disproportionally small, compared with values adopted for free-stream turbulence.

  14. The property of {kappa}-deformed statistics for a relativistic gas in an electromagnetic field: {kappa} parameter and {kappa}-distribution

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lina [Department of Physics, School of Science, Tianjin University, Tianjin 300072 (China); Du, Jiulin [Department of Physics, School of Science, Tianjin University, Tianjin 300072 (China)]. E-mail: jiulindu@yahoo.com.cn; Liu, Zhipeng [Department of Physics, School of Science, Tianjin University, Tianjin 300072 (China)

    2007-08-06

    We investigate the physical property of the {kappa} parameter and the {kappa}-distribution in the {kappa}-deformed statistics, based on Kaniadakis entropy, for a relativistic gas in an electromagnetic field. We derive two relations for the relativistic gas in the framework of {kappa}-deformed statistics, which describe the physical situation represented by the relativistic {kappa}-distribution function, provide a reasonable connection between the parameter {kappa}, the temperature four-gradient and the four-vector potential gradient, and thus present for the case {kappa}<>0 one clearly physical meaning. It is shown that such a physical situation is a meta-equilibrium state of the system, but has a new physical characteristic.

  15. The property of κ-deformed statistics for a relativistic gas in an electromagnetic field: κ parameter and κ-distribution

    Science.gov (United States)

    Guo, Lina; Du, Jiulin; Liu, Zhipeng

    2007-08-01

    We investigate the physical property of the κ parameter and the κ-distribution in the κ-deformed statistics, based on Kaniadakis entropy, for a relativistic gas in an electromagnetic field. We derive two relations for the relativistic gas in the framework of κ-deformed statistics, which describe the physical situation represented by the relativistic κ-distribution function, provide a reasonable connection between the parameter κ, the temperature four-gradient and the four-vector potential gradient, and thus present for the case κ≠0 one clearly physical meaning. It is shown that such a physical situation is a meta-equilibrium state of the system, but has a new physical characteristic.

  16. Studies of high-current relativistic electron beam interaction with gas and plasma in Novosibirsk

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsky, S. L., E-mail: s.l.sinitsky@inp.nsk.su; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, 11 Acad. Lavrentyev Ave, Novosibirsk, 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090 (Russian Federation); Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Acad. Lavrentyev Ave, Novosibirsk, 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073 (Russian Federation)

    2016-03-25

    This paper presents an overview of the studies on the interaction of a high-power relativistic electron beam (REB) with dense plasma confined in a long open magnetic trap. The main goal of this research is to achieve plasma parameters close to those required for thermonuclear fusion burning. The experimental studies were carried over the course of four decades on various devices: INAR, GOL, INAR-2, GOL-M, and GOL-3 (Budker Institute of Nuclear Physics) for a wide range of beam and plasma parameters.

  17. On free-stream preservation in stationary grids for arbitrary linear upwind schemes

    CERN Document Server

    Li, Qin; Zhang, Hanxin

    2016-01-01

    In order to improve the application maturity of high-order difference schemes, the free-stream preservation property, whose importance has been widely recognized in recent years, has been developed into a focus of study.. In past literatures, only central schemes are considered to be suitable for free-stream preservation. In this study, the methodology for arbitrary linear schemes to achieve the property is investigated. First, derivations of grid metric by Thomas, Lombard and Neier are reviewed, through which linear schemes for the metric and unsplit flux could attain the property by the proof of Vinokur and Yee firstly. In practical applications, flux splittings are usually at presence and therefore the direct use of upwind schemes seems difficult to fulfill free-stream preservation. To overcome the difficulty, two attempts are made: firstly, a central-scheme-decomposition is worked out, through which a central difference scheme is derived to approximate the first-order partial derivative in metric evaluati...

  18. Comparison of free-streaming ELM formulae to a Vlasov simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, D., E-mail: david.moulton@cea.fr [CEA, IRFM, F-13108 Saint-Paul Lez Durance (France); Fundamenski, W. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Manfredi, G. [Institut de Physique et Chimie des Matériaux, CNRS and Université de Strasbourg, BP 43, F-67034 Strasbourg (France); Hirstoaga, S. [INRIA Nancy Grand-Est and Institut de Recherche en Mathématiques Avancées, 7 rue René Descartes, F-67084 Strasbourg (France); Tskhakaya, D. [Association EURATOM-ÖAW, University of Innsbruck, A-6020 Innsbruck (Austria)

    2013-07-15

    The main drawbacks of the original free-streaming equations for edge localised mode transport in the scrape-off layer [W. Fundamenski, R.A. Pitts, Plasma Phys. Control Fusion 48 (2006) 109] are that the plasma potential is not accounted for and that only solutions for ion quantities are considered. In this work, the equations are modified and augmented in order to address these two issues. The new equations are benchmarked against (and justified by) a numerical simulation which solves the Vlasov equation in 1d1v. When the source function due to an edge localised mode is instantaneous, the modified free-streaming ‘impulse response’ equations agree closely with the Vlasov simulation results. When the source has a finite duration in time, the agreement worsens. However, in all cases the match is encouragingly good, thus justifying the applicability of the free-streaming approach.

  19. Approximate Augmentation of Turbulent Law-of-the-Wall by Periodic Free-Stream Disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    We examine the role of periodic sinusoidal free-stream disturbances on the inner law law-of-the-wall (log-law) for turbulent boundary layers. This model serves a surrogate for the interaction of flight vehicles with atmospheric disturbances. The approximate skin friction expression that is derived suggests that free-stream disturbances can cause enhancement of the mean skin friction. Considering the influence of grid generated free stream turbulence in the laminar sublayer/log law region (small scale/high frequency) the model recovers the well-known shear layer enhancement suggesting an overall validity for the approach. The effect on the wall shear associated with the lower frequency due to the passage of the vehicle through large (vehicle scale) atmospheric disturbances is likely small i.e. on the order 1% increase for turbulence intensities on the order of 2%. The increase in wall pressure fluctuation which is directly proportional to the wall shear stress is correspondingly small.

  20. Experimental Investigation on a Pitching Motion Delta Wing in Unsteady Free Stream

    Science.gov (United States)

    Shi, Zhiwei; Ming, Xiao

    As combat aircraft becomes more and more maneuverable, the need to understand the unsteady behavior of aircraft in dynamic flow fields becomes more important. Usually researchers pay more attention to the effects on the changes of AOA, but ignore the effects of velocity variations. It is known that the velocity of aircraft changes greatly when the aircraft undergoes a high angle of attack maneuver, like "cobra" maneuver. To completely simulate and study the effect of rapid changes in both free stream velocity and angle of attack, a pitching motion setup is developed in the unsteady wind tunnel of NUAA. By measuring unsteady loads, unsteady pressure distribution and flow visualization, the unsteady aerodynamic behavior of a pitching isolated delta wing and the pitching delta wing coupled with unsteady free stream are investigated. It is found that the oscillating free stream velocity affects the hysteresis characteristics of the pitching delta wing further. The pressure distribution and flow visualization measurements show that the changes in the structure of the leading-edge vortices are the main reason. These studies conclude that a good understanding of the unsteady aerodynamics is vitally important in the design of super-maneuverable aircraft.

  1. Separation & free-stream turbulence: implications for surface aerodynamics & heat transfer

    Science.gov (United States)

    Stevenson, J. P. J.; Walsh, E. J.; Nolan, K. P.; Davies, M. R. D.

    2014-07-01

    Preliminary results from a Particle Image Velocimetry (PIV) investigation of the separation-reattachment flow over a flat plate are presented. The experiments address the effects of two key variables: flow approach angle (manipulated indirectly with a trailing edge flap) and free-stream turbulence level (introduced upstream with grids). The plate thickness Reynolds number is fixed throughout and lies within the transitional regime. In the first test series (I), it is shown that increasing the turbulence level and reducing the approach angle cause the mean leading-edge separation bubble to shrink. The effect of free- stream turbulence, in particular, diminishes progressively as its level is raised. In the second series (II), downstream development of the reattached boundary layer is found to unfold rapidly at first but plateau after approximately three bubble-lengths. Momentum thickness Reynolds and Stanton numbers develop independently of the free-stream turbulence thereafter, and are well described by shifted turbulent correlations. Heat transfer potential ultimately depends upon the balance between frictional loss, bubble size and downstream mixing.

  2. Effects of compressibility and free-stream turbulence on boundary layer transition in high-subsonic and transonic flows

    Science.gov (United States)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Based on the existing boundary layer transition data, the effects of compressibility, pressure fluctuations, and free-stream turbulence have been reexamined for subsonic and transonic flow speeds. It is confirmed that the compressibility effects may be adequately expressed in terms of a simple correlation with free-stream Mach number. Pressure fluctuations, especially at low levels, do not seem to significantly affect the transition phenomenon. Effects of free-stream turbulence in high-subsonic and transonic flows are similar to the trends observed for low-speed flows and the transition process is hastened. The trends, as seen from slender cone flow data, seem to suggest power law correlations between transition Reynolds number and free-stream turbulence.

  3. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  4. Radiation Hazard of Relativistic Interstellar Flight

    OpenAIRE

    Semyonov, Oleg G.

    2006-01-01

    From the point of view of radiation safety, interstellar space is not an empty void. Interstellar gas and cosmic rays, which consist of hydrogen and helium nucleons, present a severe radiation hazard to crew and electronics aboard a relativistic interstellar ship. Of the two, the oncoming relativistic flow of interstellar gas produces the most intence radiation. A protection shield will be needed to block relativistic interstellar gas that can also absorb most of the cosmic rays which, as a r...

  5. Closed-loop control of boundary layer streaks induced by free-stream turbulence

    Science.gov (United States)

    Papadakis, George; Lu, Liang; Ricco, Pierre

    2016-08-01

    The central aim of the paper is to carry out a theoretical and numerical study of active wall transpiration control of streaks generated within an incompressible boundary layer by free-stream turbulence. The disturbance flow model is based on the linearized unsteady boundary-region (LUBR) equations, studied by Leib, Wundrow, and Goldstein [J. Fluid Mech. 380, 169 (1999), 10.1017/S0022112098003504], which are the rigorous asymptotic limit of the Navier-Stokes equations for low-frequency and long-streamwise wavelength. The mathematical formulation of the problem directly incorporates the random forcing into the equations in a consistent way. Due to linearity, this forcing is factored out and appears as a multiplicative factor. It is shown that the cost function (integral of kinetic energy in the domain) is properly defined as the expectation of a random quadratic function only after integration in wave number space. This operation naturally introduces the free-stream turbulence spectral tensor into the cost function. The controller gains for each wave number are independent of the spectral tensor and, in that sense, universal. Asymptotic matching of the LUBR equations with the free-stream conditions results in an additional forcing term in the state-space system whose presence necessitates the reformulation of the control problem and the rederivation of its solution. It is proved that the solution can be obtained analytically using an extension of the sweep method used in control theory to obtain the standard Riccati equation. The control signal consists of two components, a feedback part and a feed-forward part (that depends explicitly on the forcing term). Explicit recursive equations that provide these two components are derived. It is shown that the feed-forward part makes a negligible contribution to the control signal. We also derive an explicit expression that a priori (i.e., before solving the control problem) leads to the minimum of the objective cost

  6. Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions

    Science.gov (United States)

    Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie B.

    2015-01-01

    Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate at low Reynolds number and over a wide range in incidence associated with shaft speed change. A comprehensive linear cascade data set obtained includes the effects of Reynolds number, free-stream turbulence and incidence is available and this paper concerns itself with the presentation and numerical simulation of conditions resulting in a selected set of those data. As such, post-dictions of blade pressure loading, total-pressure loss and exit flow angles under conditions of high and low turbulence intensity for a single Reynolds number are presented. Analyses are performed with the three-equation turbulence models of Walters- Leylek and Walters and Cokljat. Transition, loading, total-pressure loss and exit angle variations are presented and comparisons are made with experimental data as available. It is concluded that at the low freestream turbulence conditions the Walters-Cokljat model is better suited to predictions while for high freestream conditions the two models generate similar predications that are generally satisfactory.

  7. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  8. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  9. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  10. Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream

    Directory of Open Access Journals (Sweden)

    Norfifah Bachok

    2012-01-01

    Full Text Available The steady boundary layer flow and heat transfer of a viscous fluid on a moving flat plate in a parallel free stream with variable fluid properties are studied. Two special cases, namely, constant fluid properties and variable fluid viscosity, are considered. The transformed boundary layer equations are solved numerically by a finite-difference scheme known as Keller-box method. Numerical results for the flow and the thermal fields for both cases are obtained for various values of the free stream parameter and the Prandtl number. It is found that dual solutions exist for both cases when the fluid and the plate move in the opposite directions. Moreover, fluid with constant properties shows drag reduction characteristics compared to fluid with variable viscosity.

  11. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  12. Radiatively-driven general relativistic jets

    Indian Academy of Sciences (India)

    Mukesh K. Vyas

    2018-02-10

    Feb 10, 2018 ... of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space- time around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the ...

  13. Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence.

    Science.gov (United States)

    Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram

    2017-03-13

    A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. Sarma phase in relativistic and non-relativistic systems

    Directory of Open Access Journals (Sweden)

    I. Boettcher

    2015-03-01

    Full Text Available We investigate the stability of the Sarma phase in two-component fermion systems in three spatial dimensions. For this purpose we compare strongly-correlated systems with either relativistic or non-relativistic dispersion relation: relativistic quarks and mesons at finite isospin density and spin-imbalanced ultracold Fermi gases. Using a Functional Renormalization Group approach, we resolve fluctuation effects onto the corresponding phase diagrams beyond the mean-field approximation. We find that fluctuations induce a second-order phase transition at zero temperature, and thus a Sarma phase, in the relativistic setup for large isospin chemical potential. This motivates the investigation of the cold atoms setup with comparable mean-field phase structure, where the Sarma phase could then be realized in experiment. However, for the non-relativistic system we find the stability region of the Sarma phase to be smaller than the one predicted from mean-field theory. It is limited to the BEC side of the phase diagram, and the unitary Fermi gas does not support a Sarma phase at zero temperature. Finally, we propose an ultracold quantum gas with four fermion species that has a good chance to realize a zero-temperature Sarma phase.

  15. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic correcti......Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...... shieldings and chemical shifts are combined with non-relativistic CCSD(T) calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr and the AQZP basis set for Xe. For the dimers also zero-point vibrational corrections obtained at the CCSD......(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, zero-point vibrational and relativistic corrections for the shieldings and chemical shifts is analyzed....

  16. The Role of Free-Stream Turbulence on High Pressure Turbine Aero-Thermal Stage Interaction

    Science.gov (United States)

    Kopriva, James Earl

    Turbulence plays an important role on the aero-thermal performance of modern aircraft engine High Pressure Turbines (HPT). The role of the vane wake and passage turbulence on the downstream blade flow field is an important consideration for both performance and durability. Obtaining measurements to fully characterize the flow field can be challenging and costly in an experimental facility. Advances in computational Fluid Dynamic (CFD) modeling and High Performance Computing (HPC) are providing opportunity to close these measurement gaps. In order for CFD to be adopted, methods need to be both accurate and efficient. Meshing approaches must also be able to resolve complex HPT geometry while maintaining quality adequate for scale-resolved simulations. Therefore, the accuracy of executing scale-resolved simulations with a second-order code on a mesh of prisms and tetrahedrals in Fluent is considered. Before execution of the HPT computational study, a building block approach is taken to gain quantified predictive performance in the modeling approach as well as understanding limitations in lower computational cost modeling approaches. The predictive capability for Reynolds Averaged Navier Stokes (RANS), Hybrid Large Eddy Simulation (LES), and wall-resolved LES turbulence modeling approaches are first assessed for a cylinder in cross-flow at a Reynolds number of 2580. The flow condition and simple geometry facilitate a quick turn-around for modeling assessment before moving the HPT vane study at high Reynolds and Mach number conditions. Modeling approaches are then assessed relative to the experimental measurements of Arts and Rouvroit (1992) on a pitch-line HPT uncooled vane at high Mach and Reynolds numbers conditions with low (0-6%) free-stream turbulence. The current unstructured second-order LES approach agrees with experimental data and is found to be within the equivalent experimental uncertainty when compared to the structured high-ordered solver FDL3DI. The

  17. Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence

    Science.gov (United States)

    Alhamdi, Sabah F. H.; Bailey, Sean C. C.

    2017-11-01

    Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale based on the distance from the wall [as suggested by Bailey and Witte, "On the universality of local dissipation scales in turbulent channel flow," J. Fluid Mech. 786, 234-252 (2015)] was utilized to scale the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows, in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation scales were observed to be dependent on the wall-normal position. This was found to be attributable to the presence of external intermittency in the outer layer as the presence of free-stream turbulence was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent flow.

  18. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  19. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  20. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  1. Comparison of spatial and temporal characteristics of a turbulent boundary layer in the presence of free-stream turbulence

    Science.gov (United States)

    Dogan, Eda; Hearst, R. Jason; Hanson, Ronald E.; Ganapathisubramani, Bharathram

    2016-11-01

    Free-stream turbulence (FST) has previously been shown to enhance the scale interactions occurring within a turbulent boundary layer (TBL). This is investigated further by generating FST with an active grid over a zero-pressure gradient TBL that developed on a smooth flat plate. Simultaneous measurements were performed using four hot-wires mounted to a rake that traversed the boundary layer height. Planar PIV measurements were also performed. Hot-wire measurements indicate that on average large-scale structures occurring in the free-stream penetrate the boundary layer and increase the streamwise velocity fluctuations throughout. Two-point correlations of the streamwise velocity fluctuations from the hot-wires enable determination of the inclination angle of the wall-structures in the boundary layer using Taylor's hypothesis. This angle is observed to be invariant around 11-15 degrees in the near-wall region in agreement with the literature for canonical TBLs. This presentation will compare the planar PIV data to these hot-wire measurements to determine if these phenomena that appear in the statistics using Taylor's hypothesis can be tracked to instantaneous spatial features in the TBL subjected to FST. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472), EPSRC (Grant ref no: EP/I037717/1).

  2. Free-stream turbulence effects on the boundary layer of a high-lift low-pressure-turbine blade

    Science.gov (United States)

    Simoni, D.; Ubaldi, M.; Zunino, P.; Ampellio, E.

    2016-06-01

    The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  3. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2017-03-15

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands, the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.

  4. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    online experiments, which is about three times larger than any stopping cell, using RF structures for the extraction of ions, has demonstrated. The area density and therefore the stopping power of the CSC is limited by the differential pumping. To overcome this limitation the CSC was tested with neon as a stopping gas with area densities of up to 11.3 mg/cm{sup 2} helium equivalent, demonstrating a unprecedented area density for stopping cells based on RF structures. The RF carpet performed reliably and its potential for the future FAIR stopping cell was shown. During the experiments at GSI the mean extraction time of {sup 221}Ac ions from the CSC to a silicon surface detector was measured, it amounts to 24 ms. This value is well in agreement with offline measurements using a pulsed {sup 223}Ra recoil ion source. The combination of a high density stopping cell with high total efficiencies and a non-scanning high-resolution mass spectrometer can be used as an independent identification detector for exotic nuclei by their mass, allowing a recalibration of the in-flight detectors of any fragment separator. As a proof-of-principal experiment the CSC and a MR-TOF-MS have been used as a mass tagger for the FRS at GSI. 134-I ions were produced by in-flight fission from an {sup 238}U primary beam at 1000 MeV/u and identified by the mass tagger. The new method does not rely on specific decay properties and therefore allows a recalibration of the fragment separator independent of the fragment and can also be used with stable nuclides. The usage of the CSC and a MR-TOF-MS will allow fast recalibration and a more effective usage of the limited amount of beam time for all experiments with exotic nuclei even in the case the nuclide of interest is not clearly identified by the in-flight detection scheme. With the CSC low energy experiments such as high-precision mass measurements and decay spectroscopy were made possible, the half lifes of {sup 221}Ac and {sup 223}Th have been measured

  5. An experimental study on laminar-turbulent transition at high free-stream turbulence in boundary layers with pressure gradients

    Directory of Open Access Journals (Sweden)

    Chernoray Valery

    2012-04-01

    Full Text Available We report here the results of a study on measurements and prediction of laminar-turbulent transition at high free-stream turbulence in boundary layers of the airfoil-like geometries with presence of the external pressure gradient changeover. The experiments are performed for a number of flow cases with different flow Reynolds number, turbulence intensity and pressure gradient distributions. The results were then compared to numerical calculations for same geometries and flow conditions. The experiments and computations are performed for the flow parameters which are typical for turbomachinery applications and the major idea of the current study is the validation of the turbulence model which can be used for such engineering applications.

  6. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  7. Skin-friction measurements in a turbulent boundary layer under the influence of free-stream turbulence

    Science.gov (United States)

    Esteban, Luis Blay; Dogan, Eda; Rodríguez-López, Eduardo; Ganapathisubramani, Bharathram

    2017-09-01

    This experimental investigation deals with the influence of free-stream turbulence (FST) produced by an active grid on the skin friction of a zero-pressure-gradient turbulent boundary layer. Wall shear stress is obtained by oil-film interferometry. In addition, hot-wire anemometry was performed to obtain wall-normal profiles of streamwise velocity. This enables the skin friction to be deduced from the mean profile. Both methods show remarkable agreement for every test case. Although skin friction is shown to increase with FST, the trend with Reynolds number is found to be similar to cases without FST. Furthermore, once the change in the friction velocity is accounted for, the self-similarity of the logarithmic region and below (i.e. law of the wall) appears to hold for all FST cases investigated.

  8. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  9. Relativistic methods for chemists

    CERN Document Server

    Barysz, Maria

    2010-01-01

    "Relativistic Methods for Chemists", written by a highly qualified team of authors, is targeted at both experimentalists and theoreticians interested in the area of relativistic effects in atomic and molecular systems and processes and in their consequences for the interpretation of the heavy element's chemistry. The theoretical part of the book focuses on the relativistic methods for molecular calculations discussing relativistic two-component theory, density functional theory, pseudopotentials and correlations. The experimentally oriented chapters describe the use of relativistic methods in different applications focusing on the design of new materials based on heavy element compounds, the role of the spin-orbit coupling in photochemistry and photobiology, and chirality and its relations to relativistic description of matter and radiation. This book is written at an intermediate level in order to appeal to a broader audience than just experts working in the field of relativistic theory.

  10. Relativistic Thermodynamics: A Modern 4-Vector Approach

    Directory of Open Access Journals (Sweden)

    J. Güémez

    2011-01-01

    Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ  =  Wμ  +  Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.

  11. Special vortex in relativistic hydrodynamics

    Science.gov (United States)

    Chupakhin, A. P.; Yanchenko, A. A.

    2017-10-01

    An exact solution of the Euler equations governing the flow of a compressible fluid in relativistic hydrodynamics is found and studied. It is a relativistic analogue of the Ovsyannikov vortex (special vortex) investigated earlier for classical gas dynamics. Solutions are partially invariant of Defect 1 and Rank 2 with respect to the rotation group. A theorem on the representation of the factor-system in the form of a union of a non-invariant subsystem for the function determining the deviation of the velocity vector from the meridian, and invariant subsystem for determination of thermodynamic parameters, the Lorentz factor and the radial velocity component is proved. Compatibility conditions for the overdetermined non-invariant subsystem are obtained. A stationary solution of this type is studied in detail. It is proved that its invariant subsystem reduces to an implicit differential equation. For this equation, the manifold of branching of solutions is investigated, and a set of singular points is found.

  12. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics

    NARCIS (Netherlands)

    Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.

    2012-01-01

    Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed

  13. Excited State Chemistry in the Free Stream of the NASA IHF Arc Jet Facility Observed by Emission Spectroscopy

    Science.gov (United States)

    Winter, Michael W.; Prabhu, Dinesh K.

    2011-01-01

    Spectroscopic measurements of non-equilibrium emission were made in the free stream of the 60 megawatts Interaction Heating Facility at NASA Ames Research Center. In the visible near infrared wavelength region, the most prominent emission was from molecular N2, and in the ultra violet region, the spectra were dominated by emission from molecular NO. The only atomic lines observed were those of copper (an erosion product of the electrodes). The bands of the 1st Positive system of N2 (if B is true then A is true) differed significantly from spectra computed spectra assuming only thermal excitation, suggesting overpopulation of the high vibrational states of the B state of N2. Populations of these high vibrational levels (peaking at v (sub upper) equals 13) of the N2 B state were determined by scaling simulated spectra; calculations were performed for each upper vibrational state separately. The experimental-theoretical procedure was repeated for several radial positions away from the nozzle axis to obtain spatial distributions of the upper state populations; rotational symmetry of the flow was assumed in simulations. The overpopulation of the high vibrational levels has been interpreted as the effect of inverse pre-dissociation of neutral atoms in the N2 A state, which populates the N2 B state through a level crossing process at v (sub upper) is greater than 10.

  14. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    Science.gov (United States)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  15. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  16. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  17. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  18. Towards relativistic quantum geometry

    Directory of Open Access Journals (Sweden)

    Luis Santiago Ridao

    2015-12-01

    Full Text Available We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  19. Relativistic Coulomb fission

    Science.gov (United States)

    Norbury, John W.

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  20. Relativistic versus non-relativistic mean field

    Science.gov (United States)

    Reinhard, Paul-Gerhard

    Three variants of the relativistic mean-field model (RMF) and the nonrelativistic Skyrme-Hartree-Fock model (SHF) are compared. Overall quality, predictive power, and correlations between observables are addressed using statistical analysis on the basis of least squares fits. Appropriate density dependence is a crucial ingredient for good performance of RMF. However, SHF shows still more flexibility particularly in the isovector channel.

  1. Full Coverage Shaped Hole Film Cooling in an Accelerating Boundary Layer with High Free-Stream Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest E. [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR

  2. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  3. Relativistic Hall effect.

    Science.gov (United States)

    Bliokh, Konstantin Y; Nori, Franco

    2012-03-23

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.

  4. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  5. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  6. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  7. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  8. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  9. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  10. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  11. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  12. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  13. Relativistic configuration interaction approach

    Indian Academy of Sciences (India)

    level of reliability and accuracy in accounting for both relativistic and correlation effects associated with these properties has gained importance. In this paper, we will compute one of the P, ... this procedure provides reasonable accuracy with small computational cost. Titov and co-workers have also reported the result of Wd.

  14. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  15. Relativistic stellar models

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 77; Issue 3. Relativistic stellar models ... Upon specifying particular forms for one of the gravitational potentials and the electric field intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters. For particular ...

  16. A relativistic Zeno effect

    NARCIS (Netherlands)

    Atkinson, David

    A Zenonian supertask involving an infinite number of identical colliding balls is generalized to include balls with different masses. Under the restriction that the total mass of all the balls is finite, classical mechanics leads to velocities that have no upper limit. Relativistic mechanics results

  17. Relativistic Quantum Information Theory

    Science.gov (United States)

    2007-11-20

    Relativistic Quantum Information Theory Army Research Office Grant # DAAD -0301-0207 Christoph Adami November 16, 2007 1 Foreword The stated goal of the...the future will allow us to finish the work we started. A List of manuscripts produced under ARO grant # DAAD - 0301-0207 All these manuscripts

  18. A relativistic trolley paradox

    OpenAIRE

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-01-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 p R ,where R is the radius of the wheel, but 2 p R = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi...

  19. Numerical Relativistic Quantum Optics

    Science.gov (United States)

    2013-11-08

    m is a signed cyclotron frequency, nr is the radial quantum number and ` is the orbital quantum number. The principle quantum number is n ≡ nr...Gordon equation is accomplished via domain decomposition, where each GPGPU advances the solution in a given domain, and MPI is used for commu...other points to the corresponding location in the transfer buffer. Once the ghost cells have been updated, the GPGPU can advance the relativistic wave

  20. The relativistic glider revisited

    OpenAIRE

    Bergamin, L.; Delva, P.; Hees, A.

    2009-01-01

    In this paper we analyze some aspects of the "relativistic glider" proposed by Gu\\'eron and Mosna more in detail. In particular an explicit weak gravity and low velocity expansion is presented, the influence of different initial conditions are studied and the behavior of the glider over a longer integration time is presented. Our results confirm that the system can be used as a glider, but is not able to stop or even revert the fall of an object.

  1. Relativistic tidal disruption events

    Directory of Open Access Journals (Sweden)

    Levan A.

    2012-12-01

    Full Text Available In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s−1 at peak, rapid X-ray variability (factors of >100 on timescales of 100 seconds and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ∼ 2 − 5, created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  2. A relativistic gravity train

    Science.gov (United States)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  3. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  4. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    2015-04-29

    Apr 29, 2015 ... Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider. Subrata Pal. Volume 84 Issue 5 May 2015 pp ... Subrata Pal1. Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  5. Relativistic Dynamics of Graphene

    Science.gov (United States)

    Semenoff, Gordon

    2011-10-01

    Graphene is a one-atom thick layer of carbon atoms where electrons obey an emergent Dirac equation. Only seven years after it first became available in the laboratory, graphene has captured the attention of a wide spectrum of scientists: from particle physicists interested in using graphene's emergent relativistic dynamics to study quantum field theory phenomena to condensed matter physicists fascinated by its unusual electronic propertied and technologists searching for materials for the nest generation of electronic devices. This presentation will review the basics of graphene and some questions, such as the possibility of chiral symmetry breaking, which have overlap with similar ones in strong interaction particle physics.

  6. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  7. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  8. Relativistic dissipative fluids

    CERN Document Server

    Geroch, R

    1993-01-01

    We observe in Nature fluids that manifest dissipation, e.g., the effects of heat conductivity and viscosity. We believe that all physical phenomena are to be described within the framework of General Relativity. What, then, is the appropriate description of a relativistic dissipative fluid? This is not only a question of principle, but also one of practical interest. There exist systems, such as certain neutron stars, in which relativity and dissipation are at the same time significant.

  9. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    Science.gov (United States)

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  10. Exotic Non-relativistic String

    CERN Document Server

    Casalbuoni, Roberto; Longhi, Giorgio

    2007-01-01

    We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.

  11. relline: Relativistic line profiles calculation

    Science.gov (United States)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  12. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data

    Science.gov (United States)

    Iršič, Vid; Viel, Matteo; Haehnelt, Martin G.; Bolton, James S.; Cristiani, Stefano; Becker, George D.; D'Odorico, Valentina; Cupani, Guido; Kim, Tae-Sun; Berg, Trystyn A. M.; López, Sebastian; Ellison, Sara; Christensen, Lise; Denney, Kelly D.; Worseck, Gábor

    2017-07-01

    We present new measurements of the free-streaming of warm dark matter (WDM) from Lyman-α flux-power spectra. We use data from the medium resolution, intermediate redshift XQ-100 sample observed with the X-shooter spectrograph (z =3 - 4.2 ) and the high-resolution, high-redshift sample used in Viel et al. (2013) obtained with the HIRES/MIKE spectrographs (z =4.2 - 5.4 ). Based on further improved modelling of the dependence of the Lyman-α flux-power spectrum on the free-streaming of dark matter, cosmological parameters, as well as the thermal history of the intergalactic medium (IGM) with hydrodynamical simulations, we obtain the following limits, expressed as the equivalent mass of thermal relic WDM particles. The XQ-100 flux power spectrum alone gives a lower limit of 1.4 keV, the re-analysis of the HIRES/MIKE sample gives 4.1 keV while the combined analysis gives our best and significantly strengthened lower limit of 5.3 keV (all 2 σ C.L.). The further improvement in the joint analysis is partly due to the fact that the two data sets have different degeneracies between astrophysical and cosmological parameters that are broken when the data sets are combined, and more importantly on chosen priors on the thermal evolution. These results all assume that the temperature evolution of the IGM can be modeled as a power law in redshift. Allowing for a nonsmooth evolution of the temperature of the IGM with sudden temperature changes of up to 5000 K reduces the lower limit for the combined analysis to 3.5 keV. A WDM with smaller thermal relic masses would require, however, a sudden temperature jump of 5000 K or more in the narrow redshift interval z =4.6 - 4.8 , in disagreement with observations of the thermal history based on high-resolution resolution Lyman-α forest data and expectations for photo-heating and cooling in the low density IGM at these redshifts.

  13. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  14. A relativistic trolley paradox

    Science.gov (United States)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  15. Relativistic ring models

    Energy Technology Data Exchange (ETDEWEB)

    Ujevic, Maximiliano [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Letelier, Patricio S.; Vogt, Daniel [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Matematica, Estatistica e Computacao Cientifica. Dept. de Matematica Aplicada

    2011-07-01

    Full text: Relativistic thick ring models are constructed using previously found analytical Newtonian potential-density pairs for flat rings and toroidal structures obtained from Kuzmin-Toomre family of discs. This was achieved by inflating previously constructed Newtonian ring potentials using the transformation |z|{yields}{radical}z{sup 2} + b{sup 2}, and then finding their relativistic analog. The models presented have infinite extension but the physical quantities decays very fast with the distance, and in principle, one could make a cut-off radius to consider it finite. In particular, we present systems with one ring, two rings and a disc with a ring. Also, the circular velocity of a test particle and its stability when performing circular orbits are presented in all these models. Using the Rayleigh criterion of stability of a fluid at rest in a gravitational field, we find that the different systems studied present a region of non-stability that appears in the intersection of the disc and the ring, and between the rings when they become thinner. (author)

  16. Relativistic Planck-scale polymer

    Science.gov (United States)

    Amelino-Camelia, Giovanni; Arzano, Michele; Da Silva, Malú Maira; Orozco-Borunda, Daniel H.

    2017-12-01

    Polymer quantum mechanics has been studied as a simplified picture that reflects some of the key properties of Loop Quantum Gravity; however, while the fate of relativistic symmetries in Loop Quantum Gravity is still not established, it is usually assumed that the discrete polymer structure should lead to a breakdown of relativistic symmetries. We here focus for simplicity on a one-spatial-dimension polymer model and show that relativistic symmetries are deformed, rather than being broken. The specific type of deformed relativistic symmetries which we uncover appears to be closely related to analogous descriptions of relativistic symmetries in some noncommutative spacetimes. This also contributes to an ongoing effort attempting to establish whether the ;quantum-Minkowski limit; of Loop Quantum Gravity is a noncommutative spacetime.

  17. Flow visualisation of a normal shock impinging over a rounded contour bump in a Mach 1.3 free-stream.

    Science.gov (United States)

    Lo, Kin Hing; Kontis, Konstantinos

    2017-01-01

    An experimental study has been conducted to visualise the instantaneous streamwise and spanwise flow patterns of a normal shock wave impinging over a rounded contour bump in a Mach 1.3 free-stream. A quartz-made transparent shock generator was used, so that instantaneous images could be captured during the oil-flow visualisation experiments. Fluorescent oil with three different colours was used in the surface oil-flow visualisation experiment to enhance the visualisation of flow mixing and complicated flow features that present in the flow field. Experimental data showed that the rounded contour bump could split the impinging normal shock wave into a or a series of lambda-shaped shock wave structure(s). In addition, it was found that the flow pattern and the shock wave structures that appeared over the rounded contour bump depended highly on the impinging location of the normal shock wave. The flow pattern shown in this study agreed with the findings documented in literature. Moreover, it was observed from the instantaneous oil streaks that the normal shock impinging location also affected the size and the formation location of the spanwise counter-rotating vortices downstream of the bump crest. Finally, it was concluded that the terminating shock could distort the oil streaks that left over the surface of the contour bump. Therefore, the use of the transparent normal shock wave generator is recommended when conducting experiments with normal shock wave impingement involved.

  18. Relativistic hydrodynamic jets in the intracluster medium

    Science.gov (United States)

    Choi, Eunwoo

    2017-08-01

    We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.

  19. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  20. Relativistic gauge invariant potentials

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Negro, J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Olmo, M.A. del (Valladolid Univ. (Spain). Dept. de Fisica Teorica)

    1995-01-01

    A global method characterizing the invariant connections on an abelian principal bundle under a group of transformations is applied in order to get gauge invariant electromagnetic (elm.) potentials in a systematic way. So, we have classified all the elm. gauge invariant potentials under the Poincare subgroups of dimensions 4, 5, and 6, up to conjugation. It is paid attention in particular to the situation where these subgroups do not act transitively on the space-time manifold. We have used the same procedure for some galilean subgroups to get nonrelativistic potentials and study the way they are related to their relativistic partners by means of contractions. Some conformal gauge invariant potentials have also been derived and considered when they are seen as consequence of an enlargement of the Poincare symmetries. (orig.)

  1. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  2. Relativistic Light Sails

    Science.gov (United States)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ˜10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  3. Scientific Transactions No. 11 of the Institute of Mechanics, Moscow State University. [supersonic and hypersonic gas flow and the movement of gas with exothermic reactions

    Science.gov (United States)

    Gonor, A. L. (Editor)

    1982-01-01

    The results of flow around wings, the determination of the optimal form, and the interaction of the wake with the accompanying flow at supersonic and hypersonic speeds of the free-stream flow are given. Methods of numerical and analytical calculation of one dimensional unsteady and two dimensional steady motions of fuel-gas mixtures with exothermic reactions are also considered.

  4. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  5. Superposition as a Relativistic Filter

    Science.gov (United States)

    Ord, G. N.

    2017-07-01

    By associating a binary signal with the relativistic worldline of a particle, a binary form of the phase of non-relativistic wavefunctions is naturally produced by time dilation. An analog of superposition also appears as a Lorentz filtering process, removing paths that are relativistically inequivalent. In a model that includes a stochastic component, the free-particle Schrödinger equation emerges from a completely relativistic context in which its origin and function is known. The result establishes the fact that the phase of wavefunctions in Schrödinger's equation and the attendant superposition principle may both be considered remnants of time dilation. This strongly argues that quantum mechanics has its origins in special relativity.

  6. Relativistic multiwave Cerenkov generator

    Science.gov (United States)

    Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A.

    1983-11-01

    The design and operation of a multiwave Cerenkov generator using a relativistic electron beam are reported. The device comprises a 3-cm-radius tubular graphite cathode fed with a 1-microsec 1-2.5-MW pulse from a Marx generator; a 5.6-cm-radius anode; an increasing 14-32-kG magnetic field; a 3.4-cm-aperture-radius graphite collimating iris; a stainless-steel semitoroidal-iris-loaded slow-wave structure of maximum length 48.6 cm, inside radius 4.2 cm, iris aperture radius 3.0 cm, iris minor radius 3 mm, and period 1.5 cm; a stainless-steel cone collector; and a vacuum-tight 60-cm-radius window. At 2.5 MV and 21 kG, output power at wavelength 3.15 + or - 0.1 cm is measured as about 5 GW, with baseline pulse length 30-50 nsec and efficiency up to about 10 percent.

  7. Relativistic Electron Vortices.

    Science.gov (United States)

    Barnett, Stephen M

    2017-03-17

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  8. Wind tunnel investigation of the Titan Forward Skirt compartment vent from a free-stream Mach number of 0.80 to 1.96. [conducted in the Lewis Research Center 8 by 6 foot supersonic wind tunnel

    Science.gov (United States)

    Johns, A. L.

    1980-01-01

    A test was conducted to determine the flow characteristics of the Titan forward skirt compartment vent over a free stream Mach number range of 0.80 to 1.96. The vent was mounted in a flat plate and the plate was flush mounted to the tunnel side wall with coinciding center lines. Air was discharged from a duct, located on the tunnel side wall behind the plate, through a canted aft 30 deg honeycomb vent into the free stream. Data for the analysis of the Titan forward skirt compartment venting during ascent through the atmosphere are provided. Full scale simulated flight hardware, such as the honeycomb vent, duct corrugations and field joint ring were used. Boundary layer thicknesses were used to vary boundary height. The highest vent discharge coefficient for any given Mach number and vent pressure ratio generally occurred at the maximum displacement thickness. With no vent flow the static pressure in the vent region was generally less than the free stream static pressure. With vent flow, the static pressures upstream of the vent increased, and those downstream of the vent decreased.

  9. Loads Induced on a Flat-Plate Wing by an Air Jet Exhausting Perpendicularly through the Wing and Normal to a Free-Stream Flow of Mach Number 2.0

    Science.gov (United States)

    Janos, Joseph J.

    1961-01-01

    Measurements were made of loads induced on a flat-plate wing by an air jet exhausting perpendicularly through the wing and normal to the free-stream flow.The investigation was conducted at a free-stream Mach number of 2.0 and a Reynolds number per foot of 14.4 x 10(exp 6). An axially symmetric sonic nozzle and two supersonic nozzles were employed for the jets. The supersonic nozzles consisted of an axially symmetric nozzle with exit Mach number of 3.44 and a two-dimensional nozzle with exit Mach number of 1.76. The ratio of nozzle total pressure to free-stream static pressure was varied from 20 to 110. Negative loads were induced on the flat-plate wing by all the jets. As the nozzle pressure ratio was increased the magnitude of interference loads due to jet thrust decreased. The chordwise center-of-pressure location generally moved toward the nozzle center line as the pressure ratio was increased.

  10. A measurement of the relativistic rise in xenon-filled ionisation chambers for cosmic ray iron

    Science.gov (United States)

    Gregory, J. C.; Parnell, T. A.

    1980-01-01

    The relativistic rise of ionization in a pair of xenon-filled pulse ion chambers was measured for primary iron nuclei during a recent balloon flight. Energy calibration over the range 21.5-60 GeV/n was made with a Freon-12 gas Cerenkov detector. This allowed a comparison with recent calculations of the relativistic rise in xenon counters and an estimate of the ion chamber resolution above 21.5 GeV/n to be made.

  11. Relativistic quantum mechanics wave equations

    CERN Document Server

    Greiner, Walter

    1990-01-01

    Relativistic Quantum Mechanics - Wave Equations concentrates mainly on the wave equations for spin-0 and spin-12 particles Chapter 1 deals with the Klein-Gordon equation and its properties and applications The chapters that follow introduce the Dirac equation, investigate its covariance properties and present various approaches to obtaining solutions Numerous applications are discussed in detail, including the two-center Dirac equation, hole theory, CPT symmetry, Klein's paradox, and relativistic symmetry principles Chapter 15 presents the relativistic wave equations for higher spin (Proca, Rarita-Schwinger, and Bargmann-Wigner) The extensive presentation of the mathematical tools and the 62 worked examples and problems make this a unique text for an advanced quantum mechanics course

  12. Non-Relativistic Superstring Theories

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  13. Relativistic EOS for supernova simulations

    Directory of Open Access Journals (Sweden)

    Shen H.

    2014-03-01

    Full Text Available We study the relativistic equation of state (EOS of dense matter covering a wide range of temperature, proton fraction, and baryon density for the use of supernova simulations. This work is based on the relativistic mean-field theory (RMF and the Thomas-Fermi approximation. The Thomas-Fermi approximation in combination with assumed nucleon distribution functions and a free energy minimization is adopted to describe the non-uniform matter, which is composed of a lattice of heavy nuclei. We treat the uniform matter and non-uniform matter consistently using the same RMF theory. We compare the EOS tables in detail.

  14. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  15. Transport models for relativistic heavy-ion collisions at Relativistic ...

    Indian Academy of Sciences (India)

    Abstract. We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of ...

  16. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    Relativistic heavy-ion collisions; fluctuation phenomena; relativistic diffusion model; net-proton rapidly ... cients on the available relativistic energy, results at 40 A•GeV/c are obtained. Extrapolat- ing to higher ... proached for times t ^τs larger than the time τs that is characteristic for strong coupling. – when all secondary ...

  17. Future relativistic heavy ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned. (GHT)

  18. Revisiting non-relativistic limits

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kristan [C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook,Stony Brook, NY 11794-3840 (United States); Karch, Andreas [Department of Physics, University of Washington,Seattle, WA 98195 (United States)

    2015-04-28

    We show that the full spurionic symmetry of Galilean-invariant field theories can be deduced when those theories are the limits of relativistic parents. Under the limit, the non-relativistic daughter couples to Newton-Cartan geometry together with all of the symmetries advocated in previous work, including the recently revived Milne boosts. Our limit is a covariant version of the usual one, where we start with a gapped relativistic theory with a conserved charge, turn on a chemical potential equal to the rest mass of the lightest charged state, and then zoom in to the low energy sector. This procedure gives a simple physical interpretation for the Milne boosts. Our methods even apply when there is a magnetic moment, which is known to modify the non-relativistic symmetry transformations. We focus on two examples. Free scalars are used to demonstrate the basic procedure, whereas hydrodynamics is used in order to exhibit the power of this approach in a fully dynamical setting, correcting several inaccuracies in the existing literature.

  19. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  20. Computer program of data reduction procedures for facilities using CO2-N2-O2-Ar equilibrium real-gas mixtures

    Science.gov (United States)

    Miller, C. G., III

    1972-01-01

    Data reduction procedures for determining free-stream and post-normal-shock flow conditions are presented. These procedures are applicable to flows of CO2, N2, O2, Ar, or mixtures of these gases and include the effects of dissociation and ionization. The assumption of thermochemical equilibrium free-stream and post-normal-shock flow is made. Although derived primarily to meet the immediate needs of an expansion tube of a hot gas radiation research facility, these procedures are applicable to any supersonic or hypersonic test facility using these gases or mixtures thereof. The data reduction procedures are based on combinations of three of the following flow parameters measured in the immediate vicinity of the test section: (1) stagnation pressure behind normal shock, (2) free-stream static pressure, (3) stagnation-point heat-transfer rate, (4) free-stream velocity, and (5) free-stream density. Thus, these procedures do not depend explicitly upon measured or calculated upstream flow parameters. The procedures are incorporated into a single computer program written in FORTRAN IV language. A listing of this computer program is presented, along with a description of the inputs required and a sample of the data printout.

  1. Transition in the Equilibrium Distribution Function of Relativistic Particles

    Science.gov (United States)

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  2. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  3. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  4. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  5. Relativistic stars in bigravity theory

    CERN Document Server

    Aoki, Katsuki; Tanabe, Makoto

    2016-01-01

    Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in GR. On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.

  6. Towards a relativistic statistical theory

    Science.gov (United States)

    Kaniadakis, G.

    2006-06-01

    In special relativity the mathematical expressions, defining physical observables as the momentum, the energy etc. emerge as one parameter (light speed) continuous deformations of the corresponding ones of the classical physics. Here, we show that the special relativity imposes a proper one parameter continuous deformation also to the expression of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits to construct a coherent and selfconsistent relativistic statistical theory [G. Kaniadakis, Phys. Rev. E 66 (2002) 056125; G. Kaniadakis, Phys. Rev. E 72 (2005) 036108], preserving the main features (maximum entropy principle, thermodynamic stability, Lesche stability, continuity, symmetry, expansivity, decisivity, etc.) of the classical statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power-law tails in accordance with the experimental evidence.

  7. Relativistic gravitational deflection of photons

    CERN Document Server

    Saca, J M

    2002-01-01

    A relativistic analysis of the deflection of a light ray due to a massive attractive centre is here developed by solving a differential equation of the orbit of photons. Results are compared with a widely known approximate formula for the deflection obtained by Einstein in 1916. Finally, it is concluded that the results here obtained, although very close to Einstein's values, could stand out as a conclusive reference for comparison with future direct measurements of the deflection.

  8. Relativistic approach to electromagnetic imaging

    OpenAIRE

    Budko, Neil

    2004-01-01

    A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source a...

  9. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  10. Intense Relativistic Electron Beam Investigations

    Science.gov (United States)

    1979-04-01

    dif- fusion pump furnished with the electron beam machine was sized to hold vacuum rathcr thani to ,achieve rapid pump down, we were limited to 2 or...camera and lasers as well as providing an advance synchronized trigger pulse to the oscilloscopes. Since this water filled spark gap switch initiates...Equipment Source NRL 0.5 XeV 7 ohm relativistic "electron beam machine Government furnished Capacitor bank and magnetic field solenoid 4’ long with

  11. A special relativistic heat engine

    Directory of Open Access Journals (Sweden)

    William S. Cariens

    1983-01-01

    main concepts taken from themodynamics and special relativity are those of a heat engine and E=mc2 respectively. Central to understanding the operation of this relativistic heat engine is the fact that upon heating a mass, its rest mass increases! This concept is nonexistent in classical thermodynamics. An increase in rest mass means that both the internal energy of a mass and its macroscopic kinetic energy increase!!!

  12. Radiation reaction and relativistic hydrodynamics.

    Science.gov (United States)

    Berezhiani, V I; Hazeltine, R D; Mahajan, S M

    2004-05-01

    By invoking the radiation reaction force, first perturbatively derived by Landau and Lifschitz, and later shown by Rohrlich to be exact for a single particle, we construct a set of fluid equations obeyed by a relativistic plasma interacting with the radiation field. After showing that this approach reproduces the known results for a locally Maxwellian plasma, we derive and display the basic dynamical equations for a general magnetized plasma in which the radiation reaction force augments the direct Lorentz force.

  13. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  14. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  15. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  16. Calculations of nuclear magnetic shielding constants based on the exact two-component relativistic method

    Science.gov (United States)

    Yoshizawa, Terutaka; Hada, Masahiko

    2017-10-01

    From the matrix representation of the modified Dirac equation based on the restricted magnetically balanced gauge-including atomic orbital (RMB-GIAO) basis, previously one of the authors (Yoshizawa) and co-workers derived the two-component normalized elimination of the small component (2c-NESC) formulas for 2c relativistic calculations of nuclear magnetic resonance (NMR) shielding tensors. In the present study, at the Hartree-Fock (HF) level, we numerically confirm that for several molecules the RMB-GIAO-based 2c-NESC method provides gauge-origin independent NMR shielding values. Moreover, we investigate the accuracy of the 2c-NESC method by comparison with the 4c relativistic NMR calculations at the HF level. For noble gas dimers and Hg compounds, it is shown that the 2c-NESC method reproduces the 4c relativistic NMR shielding constants within errors of 0.12%-0.31% of the 4c relativistic values and yields chemical shifts sufficiently close to the 4c relativistic results. Also, we discuss the basis set convergence of NMR shielding constants calculated with the 2c-NESC and 4c relativistic methods.

  17. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  18. Symmetries of relativistic world lines

    Science.gov (United States)

    Koch, Benjamin; Muñoz, Enrique; Reyes, Ignacio A.

    2017-10-01

    Symmetries are essential for a consistent formulation of many quantum systems. In this paper we discuss a fundamental symmetry, which is present for any Lagrangian term that involves x˙2. As a basic model that incorporates the fundamental symmetries of quantum gravity and string theory, we consider the Lagrangian action of the relativistic point particle. A path integral quantization for this seemingly simple system has long presented notorious problems. Here we show that those problems are overcome by taking into account the additional symmetry, leading directly to the exact Klein-Gordon propagator.

  19. Quasiparticle Dynamics in Relativistic Plasmas

    Science.gov (United States)

    Yaffe, Laurence G.

    2003-06-01

    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature T) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. This effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations, to leading order in the running coupling g(T) and all orders in 1/log g(T)-1. Suitable observables include transport coefficients (viscosities and diffusion constants) and energy loss rates. This summary sketches the form of the effective theory and outlines its domain of applicability.

  20. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  1. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A

    2016-01-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  2. Relativistic solitons and superluminal signals

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it

    2005-02-01

    Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.

  3. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  4. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Abstract. The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  5. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    Using response function methods we report calculations of the dynamic isotropic polarizability of SnH4 and PbH4 and of the relativistic corrections to it in the random phase approximation and at the correlated multiconfigurational linear response level of approximation. All relativistic correctio...

  6. Compton Effect with Non-Relativistic Kinematics

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  7. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  8. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Relativistic calculations of coalescing binary neutron stars. JOSHUA FABER, PHILIPPE GRANDCLÉMENT and FREDERIC RASIO. Department of Physics and Astronomy, Northwestern University, Evanston,. IL 60208-0834, USA. E-mail: rasio@mac.com. Abstract. We have designed and tested a new relativistic Lagrangian ...

  9. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    This workshop saw five presentations in the field of gravitational radiation and two on compact, relativistic self-gravitating systems. Gravitational waves (GWs) and black holes (BHs) are two of the most significant predictions of Einstein's relativistic theory of gravity and, as far as their experimental status is concerned, both of ...

  10. Soft-x-ray harmonic comb from relativistic electron spikes.

    Science.gov (United States)

    Pirozhkov, A S; Kando, M; Esirkepov, T Zh; Gallegos, P; Ahmed, H; Ragozin, E N; Faenov, A Ya; Pikuz, T A; Kawachi, T; Sagisaka, A; Koga, J K; Coury, M; Green, J; Foster, P; Brenner, C; Dromey, B; Symes, D R; Mori, M; Kawase, K; Kameshima, T; Fukuda, Y; Chen, L; Daito, I; Ogura, K; Hayashi, Y; Kotaki, H; Kiriyama, H; Okada, H; Nishimori, N; Imazono, T; Kondo, K; Kimura, T; Tajima, T; Daido, H; Rajeev, P; McKenna, P; Borghesi, M; Neely, D; Kato, Y; Bulanov, S V

    2012-03-30

    We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multiterawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving μJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

  11. On the Relativistic Micro-Canonical Ensemble and Relativistic Kinetic Theory for N Relativistic Particles in Inertial and Non-Inertial Rest Frames

    OpenAIRE

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2012-01-01

    A new formulation of relativistic classical mechanics allows a revisiting of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincar\\'e generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonica...

  12. Non-relativistic scale anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Arav, Igal [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,55 Haim Levanon street, Tel-Aviv, 69978 (Israel); Chapman, Shira [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,55 Haim Levanon street, Tel-Aviv, 69978 (Israel)

    2016-06-27

    We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z=2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1+1 and 2+1 spacetime dimensions. In 1+1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2+1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

  13. Lecture Series on Relativistic Quantum Information

    Science.gov (United States)

    Fuentes, Ivette

    2013-09-01

    The insight that the world is fundamentally quantum mechanical inspired the development of quantum information theory. However, the world is not only quantum but also relativistic, and indeed many implementations of quantum information tasks involve truly relativistic systems. In this lecture series I consider relativistic effects on entanglement in flat and curved spacetimes. I will emphasize the qualitative differences to a non-relativistic treatment, and demonstrate that a thorough understanding of quantum information theory requires taking relativity into account. The exploitation of such relativistic effects will likely play an increasing role in the future development of quantum information theory. The relevance of these results extends beyond pure quantum information theory, and applications to foundational questions in cosmology and black hole physics will be presented.

  14. Pressure Loads Produced on a Flat-Plate Wing By Rocket Jets Exhausting in a Spanwise Direction Below the Wing and Perpendicular to a Free-Stream Flow of Mach Number 2.0

    Science.gov (United States)

    Falanga, Ralph A.; Janos, Joseph J.

    1961-01-01

    An investigation at a Reynolds number per foot of 14.4 x 10(exp 6) was made to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a free-stream flow of Mach number 2.0. The ranges of the variables involved were (1) nozzle types - one sonic (jet Mach number of 1.00), two supersonic (jet Mach numbers of 1.74 and 3.04),. and one two-dimensional supersonic (jet Mach number of 1.71); (2) vertical nozzle positions beneath the wing of 4, 8 and 12 nozzle-throat diameters; and (3) ratios of rocket-chamber total pressure to free- stream static pressure from 0 to 130. The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased. The chordwise coordinate of the incremental-normal-force center of pressure remained upstream of the nozzle center line for the nozzle positions and pressure ratios of the investigation. The chordwise coordinate approached zero as the jet vertical distance beneath the wing increased. In the spanwise direction there was little change due to varying rocket-jet position and pressure ratio. Some boundary-layer flow separation on the wing was observed for the rocket jets close to the wing and at the higher pressure ratios. The magnitude of the chordwise and spanwise pressure distributions due to jet interference was greatest for rocket jets close to the wing and decreased as the jet was displaced farther from the wing. The design procedure for the rockets used is given in the appendix.

  15. Relativistic analysis of stochastic kinematics

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

  16. Magnetohydrodynamic production of relativistic jets.

    Science.gov (United States)

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  17. Some lessons from relativistic reduction models

    CERN Document Server

    Ghirardi, Gian Carlo

    1999-01-01

    We reconsider some recently proposed relativistic dynamical reduction models and we point out the new conceptual picture about reduction processes that they impose on our considerations. Ignoring the specific technical difficulties of such generalizations we show that the just mentioned picture fits perfectly the natural ontology of the dynamical reduction program and yields a consistent description of macro-objectification in a relativistic and nonlocal context. We consider recent criticisms of the relativistic dynamical reduction program and we show that they are inappropriate, the reason being that they derive from serious misunderstandings of some technical and conceptual points of the theory. (53 refs).

  18. The relativistic Black-Scholes model

    Science.gov (United States)

    Trzetrzelewski, Maciej

    2017-02-01

    The Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore, the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way, one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.

  19. Relativistic Electron Experiment for the Undergraduate Laboratory

    CERN Document Server

    Marvel, Robert E

    2011-01-01

    We have developed an undergraduate laboratory experiment to make independent measurements of the momentum and kinetic energy of relativistic electrons from a \\beta -source. The momentum measurements are made with a magnetic spectrometer and a silicon surface-barrier detector is used to measure the kinetic energy. A plot of the kinetic energy as a function of momentum compared to the classical and relativistic predictions clearly shows the relativistic nature of the electrons. Accurate values for the rest mass of the electron and the speed of light are also extracted from the data.

  20. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  1. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    Science.gov (United States)

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  2. Relativistic contributions to single and double core electron ionization energies of noble gases.

    Science.gov (United States)

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  3. Relativistic transformation of phase-space distributions

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-07-01

    Full Text Available We investigate the transformation of the distribution function in the relativistic case, a problem of interest in plasma when particles with high (relativistic velocities come into play as for instance in radiation belt physics, in the electron-cyclotron maser radiation theory, in the vicinity of high-Mach number shocks where particles are accelerated to high speeds, and generally in solar and astrophysical plasmas. We show that the phase-space volume element is a Lorentz constant and construct the general particle distribution function from first principles. Application to thermal equilibrium lets us derive a modified version of the isotropic relativistic thermal distribution, the modified Jüttner distribution corrected for the Lorentz-invariant phase-space volume element. Finally, we discuss the relativistic modification of a number of plasma parameters.

  4. Coherent states for the relativistic harmonic oscillator

    Science.gov (United States)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  5. Limits and signatures of relativistic spaceflight

    Science.gov (United States)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  6. Nuclear curvature energy in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X. [Departament dEstructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Schuck, P. [Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique (CNRS--IN2P3), Universite Joseph Fourier, Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026 Grenoble Cedex (France)

    1996-02-01

    The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. {copyright} {ital 1996 The American Physical Society.}

  7. Relativistic DNLS and Kaup-Newell Hierarchy

    Science.gov (United States)

    Pashaev, Oktay K.; Lee, Jyh-Hao

    2017-07-01

    By the recursion operator of the Kaup-Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit c → ∞ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit representation of the linear problem for this equation becomes possible due to notions of the q-calculus with two bases, one of which is the recursion operator, and another one is the spectral parameter.

  8. Q-oscillators and relativistic position operators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Dept. of Mathematics, Istanbul Technical Univ. (Turkey)); Mungan, M. (Dept. of Physics, Bogazici Univ., Istanbul (Turkey))

    1992-05-21

    We investigate the multi-dimensional q-oscillator whose commutation relations are invariant under the quantum group. The no-interaction limit corresponds to a contraction of the q-oscillator algebra and yields relativistic position operators which can be expressed in terms of the generators of the Poincare group. This leads to the interpretation of the interacting q-oscillator as an relativistic quantum system and results in a hamiltonian whose spectrum is exactly exponential. (orig.).

  9. Relativistic entropy and related Boltzmann kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kaniadakis, G. [Politecnico di Torino (Italy). Dipartimento di Fisica

    2009-06-15

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmann equation, fixes univocally the entropy of the system, which turns out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect to its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitly remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativistic Boltzmann equation, obeys the H-theorem and predicts a stationary stable distribution, presenting power law tails in the high-energy region. The ensued relativistic kinetic theory preserves the main features of the classical kinetics, which recovers in the c{yields}{infinity} limit. (orig.)

  10. The relativistic geoid: redshift and acceleration potential

    Science.gov (United States)

    Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker

    2017-04-01

    We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.

  11. Stability of dual solutions of mass transfer on a continuous flat plate moving in parallel or reversely to a free stream in the presence of a chemical reaction with second order slip

    Science.gov (United States)

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md.

    2017-04-01

    The present paper investigates the steady viscous flow and mass transfer on a moving plate in parallel or reversely to a free stream in the presence of chemical reaction using a second order slip flow model. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using appropriate similarity transformations, which are then solved numerically using shooting method for different values of selected parameters. We found that dual solutions exist for a certain range of the velocity ratio parameter. By using bvp4c solver in Matlab software, a stability analysis is performed to show that the first solutions are stable and physically relevant, while the second solutions are unstable and not physically relevant. The effects of reaction rate parameter, Schmidt number, first order slip parameter and second order slip parameter on the skin friction coefficient, mass transfer from the surface of the plate, dimensionless velocity and concentration profiles are figured out graphically and discussed. These results reveal that the second order slip flow model is necessary to give better prediction to the flow behavior.

  12. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lusanna, Luca, E-mail: lusanna@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico, Via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2011-07-08

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  13. On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames

    Science.gov (United States)

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2015-03-01

    A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.

  14. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  15. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  16. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    Science.gov (United States)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  17. Relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig

    2010-01-01

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...

  18. Anisotropic Particle Acceleration in Relativistic Shear Layers

    Science.gov (United States)

    Boettcher, Markus; Liang, Edison P.; Fu, Wen

    2017-08-01

    We present results of Particle in Cell (PIC) simulations of relativistic shear layers as relevant to the relativistic jets of acive galactic nuclei and gamma-ray bursts. We study the self-generation of electro-magnetic fields and particle acceleration for various different plasma compositions (electron-ion vs. electron-positron pair vs. hybrid). Special emphasis is placed on the angular distribution of accelerated particles. We find that electron-ion shear layers lead to highly anisotropic particle distributions in the frame of the fast-moving inner spine. The beaming pattern of the highest-energy particles is much narrower than the characteristic beaming angle of 1/Gamma resulting from relativistic aberration of a co-moving isotropic distribution. This may pose a possible solution to the Lorentz-Factor crisis in blazars and explain very hard X-ray / soft gamma-ray spectra of some gamma-ray bursts.

  19. Exact quantisation of the relativistic Hopfield model

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)

    2016-11-15

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  20. Nonlinear relativistic plasma resonance: Renormalization group approach

    Energy Technology Data Exchange (ETDEWEB)

    Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  1. Theory of relativistic radiation reflection from plasmas

    Science.gov (United States)

    Gonoskov, Arkady

    2018-01-01

    We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.

  2. General relativistic tidal heating for Moller pseudotensor

    CERN Document Server

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  3. Relativistic quantum mechanics of a Dirac oscillator

    CERN Document Server

    Martines y Romero, R P; Salas-Brito, A L

    1995-01-01

    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside a uniformly charged sphere. (author)

  4. Fermi Acceleration in driven relativistic billiards

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rafael S., E-mail: rsoaresp@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Letelier, Patricio S. [Departamento de Matematica Aplicada, Instituto de Matematica, Estatistica e Computacao Cientifica, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil)

    2011-08-29

    We show numerical experiments of driven billiards using special relativity. We have the remarkable fact that for the relativistic driven circular and annular concentric billiards, depending on initial conditions and parameters, we observe Fermi Acceleration, absent in the Newtonian case. The velocity for these cases tends to the speed of light very quickly. We find that for the annular eccentric billiard the initial velocity grows for a much longer time than the concentric annular billiard until it asymptotically reach c. -- Highlights: → Fermi Acceleration is studied for relativistic driven billiards. → We studied regular and chaotic billiards with different parameters. → Fermi Acceleration is present even for static regular billiards.

  5. Level density parameter in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M. (Dept. d' Estructura i Constituents de la Materia, Facultat de Fisica, Univ. de Barcelona (Spain)); Vinas, X. (Dept. d' Estructura i Constituents de la Materia, Facultat de Fisica, Univ. de Barcelona (Spain)); Schuck, P. (Inst. des Sciences Nucleaires, 38 Grenoble (France))

    1994-01-24

    The level density parameter for finite nuclei is studied in the framework of the relativistic mean field theory. Systematic self-consistent calculations are performed in the Thomas-Fermi approximation using [sigma]-[omega] models that include scalar meson self-couplings. For realistic nuclear matter properties, the level density parameter turns out to be in the range of values obtained in non-relativistic calculations with Skyrme interactions, and thus it is smaller than the global trend of the experimental data. The implications for the level density parameter of including vacuum fluctuations and exchange corrections in the mean field theory are also investigated. (orig.)

  6. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  7. Chemical freeze-out in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Jun Xu

    2017-09-01

    Full Text Available One surprising result in relativistic heavy-ion collisions is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these collisions, we find, as an example, that the effective pion to nucleon ratio, which includes those from resonance decays, indeed changes very little during the evolution of the hadronic matter from the chemical to the kinetic freeze-out, and it is also accompanied by an almost constant specific entropy. We further use a hadron resonance gas model to illustrate the results from the transport model study.

  8. Relativistic Mergers of Supermassive Black Holes and their Electromagnetic Signatures

    CERN Document Server

    Bode, Tanja; Bogdanovic, Tamara; Laguna, Pablo; Shoemaker, Deirdre

    2009-01-01

    Coincident detections of electromagnetic (EM) and gravitational wave (GW) signatures from coalescence events of supermassive black holes are the next observational grand challenge. Such detections will provide the means to study cosmological evolution and accretion processes associated with these gargantuan compact objects. More generally, the observations will enable testing general relativity in the strong, nonlinear regime and will provide independent cosmological measurements to high precision. Understanding the conditions under which coincidences of EM and GW signatures arise during supermassive black hole mergers is therefore of paramount importance. As an essential step towards this goal, we present results from the first fully general relativistic, hydrodynamical study of the late inspiral and merger of equal-mass, spinning supermassive black hole binaries in a gas cloud. We find that variable EM signatures correlated with GWs can arise in merging systems as a consequence of shocks and accretion combi...

  9. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  10. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  11. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly ...

  12. On the Raman instability in degenerate relativistic plasmas

    Science.gov (United States)

    Chanturia, G. T.; Berezhiani, V. I.; Mahajan, S. M.

    2017-07-01

    The stimulated Raman scattering instability in a fully degenerate electron plasma is studied applying relativistic hydrodynamic and Maxwell equations. We demonstrated that the instability develops for weakly and strongly relativistic degenerate plasmas. It is shown that in the field of strong radiation, a degenerate relativistic plasma effectively responses as in the case of weak degeneracy.

  13. The N body problem. Relativistic approach; Le probleme a N corps. Approches relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Mathiot, Jean-Francois [Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Universite Blaise Pascal, F-63177 Aubiere Cedex (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    We shall detail in a first part the physical motivation of relativistic approaches by investigating the underlying elementary mechanisms. The second part will be devoted to the understanding of nuclear matter and finite nuclei in these approaches. We shall see, in particular, how one can easily derive an effective interaction of Skyrme type from these relativistic approaches. We shall discuss, in the third part, some recent results obtained in nuclear structure. (author) 20 refs., 8 figs., 2 tabs.

  14. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...

  15. Deriving relativistic Bohmian quantum potential using variational ...

    Indian Academy of Sciences (India)

    Deriving relativistic Bohmian quantum potential using variational method and conformal transformations ... We obtain this potential by using variational method. Then ... Department of Physics, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Iran; School of Physics, Institute for Research in Fundamental Science (IPM), ...

  16. Photon and gluon emission in relativistic plasmas

    Science.gov (United States)

    Arnold, Peter; Moore, Guy D.; Yaffe, Laurence G.

    2002-06-01

    We recently derived, using diagrammatic methods, the leading-order hard photon emission rate in ultra-relativistic plasmas. This requires a correct treatment of multiple scattering effects which limit the coherence length of emitted radiation (the Landau-Pomeranchuk-Migdal effect). In this paper, we provide a more physical derivation of this result, and extend the treatment to the case of gluon radiation.

  17. Relativistic atomic physics at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  18. Deriving relativistic Bohmian quantum potential using variational ...

    Indian Academy of Sciences (India)

    ever, this postulate (locality) breaks down and opens new windows for understanding our. Universe. 2.2 Relativistic quantum potential for a spinless particle. Following Bohm, we substitute the polar form of the wave function into the Klein–Gordon equation to derive the quantum mechanical Hamilton–Jacobi equation for a ...

  19. Instabilities in a Relativistic Viscous Fluid

    Science.gov (United States)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  20. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  1. Kinematical Diagrams for Conical Relativistic Jets

    Indian Academy of Sciences (India)

    ... a variety of radio observations of blazar jets. In addition to uniform jet flows (i.e., those having a uniform bulk Lorentz factor, ), computational results are also presented for stratified jets where an ultra-relativistic central spine along the jet axis is surrounded by a slower moving sheath, possibly arising from a velocity shear.

  2. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...

  3. Astrophysical Applications of Relativistic Shear Flows

    Science.gov (United States)

    Liang, Edison

    2017-10-01

    We review recent PIC simulation results of relativistic collisionless shear flows in both 2D and 3D. We apply these results to spine-sheath jet models of blazars and gamma-ray-bursters, and to shear flows near the horizon of rapidly spinning black holes. We will discuss magnetic field generation, particle energization and radiation processes, and their observational consequences.

  4. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super ... The energy dependence of the charged particle density dNch/dη, normalized to the num- ..... meson both in the dropping mass and the collision broadening scenarios, is almost as high at RHIC as at ...

  5. Structure and thermodynamic properties of relativistic electron gases.

    Science.gov (United States)

    Liu, Yu; Wu, Jianzhong

    2014-07-01

    Relativistic effect is important in many quantum systems but theoretically complicated from both fundamental and practical perspectives. Herein we introduce an efficient computational procedure to predict the structure and energetic properties of relativistic quantum systems by mapping the Pauli principle into an effective pairwise-additive potential such that the properties of relativistic nonquantum systems can be readily predicted from conventional liquid-state methods. We applied our theoretical procedure to relativistic uniform electron gases and compared the pair correlation functions with those for systems of nonrelativistic electrons. A simple analytical expression has been developed to correlate the exchange-correlation free energy of relativistic uniform electron systems.

  6. Advanced relativistic VLBI model for geodesy

    Science.gov (United States)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2017-07-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  7. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  8. The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations

    Science.gov (United States)

    Wei, Changhua

    2017-10-01

    This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.

  9. PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)

    2015-07-20

    A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.

  10. Relativistic-microwave theory of ball lightning

    Science.gov (United States)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  11. Relativistic quantum chemistry on quantum computers

    DEFF Research Database (Denmark)

    Veis, L.; Visnak, J.; Fleig, T.

    2012-01-01

    The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...

  12. Formation of Hypernuclei in Relativistic Ion Collisions

    Science.gov (United States)

    Botvina, Alexander; Bleicher, Marcus; Pochodzalla, Josef; Steinheimer, Jan

    We develop a versatile model of hypernuclei production in relativistic hadron and ion collisions. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for the hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin, and the production of multi-strange nuclei including new excited states is quite abundant. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

  13. Hyperbolic Triangle Centers The Special Relativistic Approach

    CERN Document Server

    Ungar, A.A

    2010-01-01

    After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytic...

  14. Newtonian view of general relativistic stars

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.M. [Instituto Federal do Espirito Santo (IFES), Grupo de Ciencias Ambientais e Recursos Naturais, Guarapari (Brazil); Velten, H.E.S.; Fabris, J.C. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Vitoria (Brazil); Salako, I.G. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin)

    2014-11-15

    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore cannot be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian, and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars' equations of state. (orig.)

  15. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  16. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  17. Hydrodynamics of ultra-relativistic bubble walls

    Directory of Open Access Journals (Sweden)

    Leonardo Leitao

    2016-04-01

    Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  18. Transient effects in a relativistic quantum system

    Energy Technology Data Exchange (ETDEWEB)

    Sadurni, E.; Moshinsky, M. [IFUNAM, Departamento de Fisica Teorica, A.P. 20-364, 01000 Mexico D.F. (Mexico)]. e-mail: sadurni@fisica.unam.mx

    2007-12-15

    The spectral decomposition of propagators is useful in the study of dynamical problems in the Schroedinger picture. However, relativistic problems exhibit complicated spectra containing positive and negative energies. In this work we write an appropriate spectral decomposition for the propagator of the Dirac oscillator. With such propagator we study the dynamical problem of sudden frequency change related to processes in which the isospin projection of the particle is modified. (Author)

  19. Collective dynamics in relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, Harri [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland)

    2014-11-15

    I will review the current status of describing spacetime evolution of the relativistic nuclear collisions with fluid dynamics, and of determining the transport coefficients of strongly interacting matter. The fluid dynamical models suggest that shear viscosity to entropy density ratio of the matter is small. However, there are still considerable challenges in determining the transport coefficients, and especially their temperature dependence is still poorly constrained.

  20. Relativistic-microwave theory of ball lightning

    OpenAIRE

    H.-C. Wu

    2016-01-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by partic...

  1. q-Deformed Relativistic Fermion Scattering

    Directory of Open Access Journals (Sweden)

    Hadi Sobhani

    2017-01-01

    Full Text Available In this article, after introducing a kind of q-deformation in quantum mechanics, first, q-deformed form of Dirac equation in relativistic quantum mechanics is derived. Then, three important scattering problems in physics are studied. All results have satisfied what we had expected before. Furthermore, effects of all parameters in the problems on the reflection and transmission coefficients are calculated and shown graphically.

  2. Supersymmetric solutions for non-relativistic holography

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)

    2009-01-15

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  3. On relativistic models of strange stars

    Indian Academy of Sciences (India)

    The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic ...

  4. Relativistic quantum teleportation with superconducting circuits.

    Science.gov (United States)

    Friis, N; Lee, A R; Truong, K; Sabín, C; Solano, E; Johansson, G; Fuentes, I

    2013-03-15

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes nonuniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion. However, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.

  5. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    way similar to that for conventional two-dimensional semiconductor quantum dot systems. However, the magnetic properties of graphene are quite... semiconductor 2DEG and graphene systems, as shown in Fig. 8. Details of this work can be found in • R. Yang, L. Huang, Y.-C. Lai, C. Grebogi, and L. M...AFRL-OSR-VA-TR-2015-0158 Relativistic Quantum Transport in Graphene Systems Ying Cheng Lai ARIZONA STATE UNIVERSITY Final Report 07/09/2015

  6. Relativistic timescale analysis suggests lunar theory revision

    Science.gov (United States)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  7. Experimental tests of relativistic gravitation theories

    Science.gov (United States)

    Anderson, J. D.

    1971-01-01

    Experimental tests were studied for determining the potential uses of future deep space missions in studies of relativistic gravity. The extensions to the parametrized post-Newtonian framework to take explicit account of the solar system's center of mass relative to the mean rest frame of the Universe is reported. Discoveries reported include the Machian effects of motion relative to the universal rest frame. Summaries of the JPL research are included.

  8. Relativistic Magnetron Priming Experiments and Theory

    Science.gov (United States)

    2010-03-29

    Radiological Scinces dept. University of Michigan Ann Arbor, MI 48109 University of Nevada Reno, Reno NV 10-1 Air Force Office of Scientific Research...versus 30% in the simulation). Due to the idealizations used in the magnetic priming simulations of the UM/L-3 Titan relativistic magnetron, direct ...Laboratory, High Power Microwave Division, Directed Energy Directorate, Kirtland AFB, Albuquerque, NM 87117 USA Abstract Using a hybrid approach, three

  9. On the Relativistic Formulation of Matter

    CERN Document Server

    Vishwakarma, Ram Gopal

    2012-01-01

    A critical analysis of the relativistic formulation of matter reveals some surprising inconsistencies and paradoxes. Corrections are discovered which lead to the long-sought-after equality of the gravitational and inertial masses, which are otherwise different in general relativity. Realizing the potentially great impact of the discovered corrections, an overview of the situation is provided resulting from the newly discovered crisis, amid the evidences defending the theory.

  10. Considerations of acceleration effects in relativistic kinematics

    Science.gov (United States)

    Caviness, Kenneth Edwin

    An extended special-relativistic formalism incorporating non-inertial frames undergoing constant proper acceleration is developed as a natural outgrowth of Einstein's 1905 and 1907 treatises. Based on the so-called clock hypothesis, tacitly used by Einstein, and enunciated by von Laue in 1913, which states that the rate of a ideal clock is independent of its momentary acceleration, extended special relativity (ESR) makes use of the Moeller transformation and generalizes the work of Brehme to form a consistent mathematical framework, revealing a number of hitherto hidden features. From this basis, a number of highly interesting kinematic phenomena are considered, among which are: the nonconstancy of the speed of light and the variation of time rates within an accelerated system; the Doppler shift and aberration of light in a noninertial system, viewed by an inertial observer; the curved path of a light signal, preparatory to a treatment of the spatial and temporal Terrell effects in the ESR formalism. The ensuing equations are compared with special relativistic results, and in each case the role of acceleration in the formulae is defined. Quantitative calculations were made, and the results shown in graph form. The ESR formalism is then shown to be a particular case of the general-relativistic formalism. The limits of the accelerated observer's universe and the limits of the theory are discussed.

  11. Relativistic dynamics, Green function and pseudodifferential operators

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2016-06-15

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  12. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  13. Relativistically strong electromagnetic radiation in a plasma

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  14. Substructures in Simulations of Relativistic Jet Formation

    Science.gov (United States)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-04-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  15. Ejection of stars with relativistic velocities

    Science.gov (United States)

    Dryomova, G.; Dryomov, V.; Tutukov, A.

    We present the results of numerical simulations performed in terms of modified Hills' scenario involving two supermassive black holes (SMBHs). In contrast to the classic Hills scenario (Hills 1988), here one component of the ordinary stellar binary system is replaced with a SMBH that provides a kinetic resource for ejecting a star (the secondary component of the binary) with relativistic velocity (RVS). We examine the conditions that favor relativistic ejections of stars, depending on the pericentric approach, the mass ratio of two SMBHs, and the orbital configuration of the binary system. Applying the simple criteria helped us to sort out the results of numerical simulations by the outcome: conservation of the orbital configuration of the binary system, dynamic recapture of the star by the central SMBH, emission of hypervelocity stars (HVSs), and RVS ejection. In the framework of N-body simulations we estimate the probability for a star to survive in the cross-field of two SMBHs during the ejection with relativistic velocity, and discuss the probability of the detection of RVSs in our Galaxy in the cases where such stars are generated in distant interacting galaxies undergoing a merger of their central parts occupied by SMBHs.

  16. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    Science.gov (United States)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  17. Formulation of the relativistic quantum Hall effect and parity anomaly

    Science.gov (United States)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  18. A fast numerical integrator for relativistic charged particle tracking

    Science.gov (United States)

    Qiang, Ji

    2017-09-01

    In this paper, we report on a fast second-order numerical integrator to solve the Lorentz force equations of a relativistic charged particle in electromagnetic fields. This numerical integrator shows less numerical error than the popular Boris algorithm in tracking the relativistic particle subject to electric and magnetic space-charge fields and requires less number of operations than another recently proposed relativistic integrator.

  19. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  20. Simulations of Relativistic Effects, Relativistic Time, and the Constancy of Light Velocity

    Science.gov (United States)

    Matveev, Vadim N.; Matvejev, Oleg V.

    2013-09-01

    Based on pre-Einstein classical mechanics, a theoretical model is constructed that describes the behavior of objects in a liquid environment that conduct themselves in accordance with the formal laws of the special theory of relativity. This model reproduces Lorentz contraction, time dilation, the relativity of simultaneity, the Doppler effect in its symmetrical relativistic form, the twin paradox effects, Bell effect, the relativistic addition of velocities. The model makes it possible to obtain Lorentz transforms and to simulate Minkowski four-dimensional space-time.

  1. Mass spectrum bound state systems with relativistic corrections

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)

    2009-07-28

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.

  2. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  3. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  4. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    Science.gov (United States)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  5. Introduction to the relativistic string theory

    CERN Document Server

    Barbashov, B M

    1990-01-01

    This book presents a systematic and detailed account of the classical and quantum theory of the relativistic string and some of its modifications. Main attention is paid to the first-quantized string theory with possible applications to the string models of hadrons as well as to the superstring approach to unifications of all the fundamental interactions in the elementary particle physics and to the "cosmic" strings. Some new aspects are provided such as the consideration of the string in an external electromagnetic field and in the space-time of constant curvature (the de Sitter universe), th

  6. Relativistic field theory and chaotic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yosuke

    2005-01-01

    We have studied the relativistic equations and chaotic motions of gravitational field on the basis of the theory of relativity and chaos. Friedmann equation (the space component) shows the chaotic behaviours in case of the inflation universe (G/G>0) and shows the non-chaotic behaviours in case of the flat and contraction universe (G/G {<=} 0). With the use of Kerr metric, we have discussed the non-diagonal tensor effect on gravitational field and chaotic dynamics. We have also discussed the dimension of the universe on the basis of E infinity theory.

  7. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  8. Kelvin-Helmholtz instability for relativistic fluids

    Science.gov (United States)

    Bodo, G.; Mignone, A.; Rosner, R.

    2004-09-01

    We reexamine the stability of an interface separating two nonmagnetized relativistic fluids in relative motion, showing that, in an appropriate reference frame, it is possible to find analytic solutions to the dispersion relation. Moreover, we show that the critical value of the Mach number, introduced by compressibility, is unchanged from the nonrelativistic case if we redefine the Mach number as M=[β/(1-β2)1/2][βs/(1-βs2)1/2]-1 , where β and βs are, respectively, the speed of the fluid and the speed of sound (in units of the speed of light).

  9. A Relativistic Symmetrical Interpretation of Quantum Mechanics

    Science.gov (United States)

    Heaney, Michael B.

    This poster describes a relativistic symmetrical interpretation (RSI) which postulates: quantum mechanics is intrinsically time-symmetric, with no arrow of time; the fundamental objects of quantum mechanics are transitions; a transition is fully described by a complex transition amplitude density with specified initial and final boundary conditions, and; transition amplitude densities never collapse. This RSI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein's bubble experiment using both the Dirac and Klein-Gordon equations. The RSI has no zitterbewegung in the particle's rest frame, resolves some inconsistencies of the CI, and gives intuitive explanations of some previously mysterious quantum effects.

  10. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1995-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  11. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  12. Relativistic dynamical spin excitations of magnetic adatoms

    Science.gov (United States)

    dos Santos Dias, M.; Schweflinghaus, B.; Blügel, S.; Lounis, S.

    2015-02-01

    We present a first-principles theory of dynamical spin excitations in the presence of spin-orbit coupling. The broken global spin rotational invariance leads to a new sum rule. We explore the competition between the magnetic anisotropy energy and the external magnetic field, as well as the role of electron-hole excitations, through calculations for 3 d -metal adatoms on the Cu(111) surface. The spin excitation resonance energy and lifetime display nontrivial behavior, establishing the strong impact of relativistic effects. We legitimate the use of the Landau-Lifshitz-Gilbert equation down to the atomic limit, but with parameters that differ from a stationary theory.

  13. Relativistic effects in the pionium lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Jallouli, H.; Sazdjian, H.

    1997-12-31

    Pionium decay width is evaluated in the framework of chiral perturbation theory and the relativistic bound state formalism of constraint theory. Corrections of order O({alpha}) are calculated with respect to the conventional lowest-order formula, in which the strong interaction amplitude has been calculated to two-loop order with charged pion masses. Strong interaction corrections, electromagnetic radiative corrections due to pion-photon interactions, electromagnetic mass shift insertions in internal propagators and correction due to the passage from the strong interaction scattering amplitude are calculated. (author). 53 refs.

  14. The 'twin paradox' in relativistic rigid motion

    OpenAIRE

    Ben-Ya'acov, Uri

    2017-01-01

    Relativistic rigid motion suggests a new version for the so-called `twin paradox', comparing the ages of two astronauts on a very long spaceship. Although there is always an instantaneous inertial frame in which the whole spaceship, being rigid, is simultaneously at rest, the twins' ages, measured as the proper-times along their individual world lines, are different when they are located at remote parts of the spaceship. The age, or proper-time, difference depends on the distance at rest betw...

  15. Dynamical friction in a relativistic plasma.

    Science.gov (United States)

    Pike, O J; Rose, S J

    2014-05-01

    The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner.

  16. Modeling the Emission from Turbulent Relativistic Jets in Active ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and ...

  17. Modeling the Emission from Turbulent Relativistic Jets in Active ...

    Indian Academy of Sciences (India)

    2014-07-12

    Jul 12, 2014 ... Abstract. We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boost- ing factor, computed as a function of the relativistic sum of the individual eddy and bulk jet ...

  18. Semi-classical limit of relativistic quantum mechanics

    Indian Academy of Sciences (India)

    problems at condition (7) is not directly proportional to the inverse of the particle velocity. 6. Non-relativistic limit. For velocities smaller than the velocity of light, eqs (17) and (19) should reduce to the corresponding formulae of non-relativistic mechanics. Classical equivalents of eqs (17) and (19) are equations. ρSchr = R2.

  19. Symmetries and couplings of non-relativistic electrodynamics

    NARCIS (Netherlands)

    Festuccia, G.; Hansen, D.; Hartong, J.; Obers, N.A.

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the

  20. On the relativistic extended Thomas-Fermi method

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X.; Barranco, M. (Barcelona Univ. (Spain). Dept. de Estructura y Constituyentes de la Materia); Schuck, P. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires)

    1990-12-03

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to {Dirac h}{sup 2} corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.).

  1. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Vol. 57, No. 1. — journal of. July 2001 physics pp. 161–164. Gamma-ray spectroscopy with relativistic exotic heavy-ions. SAMIT MANDAL, J GERL, H GEISSEL, K HAUSCHILD. ¿. , M HELLSTR ¨OM, ... large [2,3] to perform a meaningful high spin decay spectroscopy of exotic nuclei. At the same time relativistic Coulomb ...

  2. Standard relativistic reference systems and the IAU framework

    Science.gov (United States)

    Soffel, Michael

    2010-01-01

    The IAU framework for relativistic reference systems is based upon the work by Brumberg and Kopeikin and by Damour, Soffel and Xu (DSX). We begin with a brief introduction into the DSX-formalism. After that the various IAU Resolutions concerning relativistic astronomical reference systems are discussed. Finally, it is indicated how the expansion of the universe can be considered in the BCRS.

  3. Analytical algorithms of relativistic reduction of astronomical observations.

    Science.gov (United States)

    Brumberg, V. A.; Bretagnon, P.; Francou, G.

    Using the analytical planetary theories VSOP87 (Bretagnon and Francou, 1988) and the relativistic theory of astronomical reference systems of Brumberg and Kopejkin (1989) the authors have derived the analytical expressions of the relativistic quantities enabling one to set the relationships between (1) TCB and TCG, (2) barycentric spatial coordinates and geocentric spatial coordinates and (3) observer's proper time and TCG.

  4. Relativistic effects on the modulational instability of electron plasma ...

    Indian Academy of Sciences (India)

    netosphere [2], Van Allen radiation belts [3] and laser–plasma interaction experiments. [4]. The relativistic motion in plasmas is assumed to exist during the early evolution of the Universe [5]. Studies on relativistic effects on ion-acoustic solitary waves are many. Das and Paul [6] first investigated the ion-acoustic solitary ...

  5. Development of a 2 MW relativistic backward wave oscillator

    Indian Academy of Sciences (India)

    In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an ...

  6. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    This may give us some insight into how we can safeguard geostationary satellites from functional anomalies of the deep dielectric charging type, which are caused by charge accumulation and subsequent discharge of relativistic electrons. In this study we examine whether there is any energy dependence in relativistic ...

  7. Generation of whistler mode in a relativistic plasma

    Indian Academy of Sciences (India)

    In view of the above facts, we study the generation of whistler wave in the presence of ion acoustic turbulence in a relativistic plasma through the process of plasma maser effect in plasma. In this effect we have considered the relativistic interaction of plasma particle with two kinds of waves: one is resonant low frequency.

  8. Experimental study on hard X-ray generation of relativistic electron beams in azimuthal magnetic field

    CERN Document Server

    Fan Ya Jun; Qiu Aici

    2002-01-01

    Experimental study on hard X-ray generation was carried out on Flash 2 accelerator, with the method of relativistic electron beams transported in a low pressure gas via azimuthal magnetic field and interacted with Ta target. At 47 cm transporting distance, the measured areal integral of hard X-ray dose rate was 2.1 x 10 sup 1 sup 0 Gy centre dot cm sup 2 /s, total areal integral of hard X-ray dose was 1843 Gy centre dot cm sup 2 , and X-ray convert rate was 108 Gy centre dot cm sup 2 /kJ

  9. Modified Newtonian Dynamics (MOND: Observational Phenomenology and Relativistic Extensions

    Directory of Open Access Journals (Sweden)

    Stacy S. McGaugh

    2012-09-01

    Full Text Available A wealth of astronomical data indicate the presence of mass discrepancies in the Universe. The motions observed in a variety of classes of extragalactic systems exceed what can be explained by the mass visible in stars and gas. Either (i there is a vast amount of unseen mass in some novel form - dark matter - or (ii the data indicate a breakdown of our understanding of dynamics on the relevant scales, or (iii both. Here, we first review a few outstanding challenges for the dark matter interpretation of mass discrepancies in galaxies, purely based on observations and independently of any alternative theoretical framework. We then show that many of these puzzling observations are predicted by one single relation - Milgrom's law - involving an acceleration constant a_0 (or a characteristic surface density Σ_† = a_0∕G on the order of the square-root of the cosmological constant in natural units. This relation can at present most easily be interpreted as the effect of a single universal force law resulting from a modification of Newtonian dynamics (MOND on galactic scales. We exhaustively review the current observational successes and problems of this alternative paradigm at all astrophysical scales, and summarize the various theoretical attempts (TeVeS, GEA, BIMOND, and others made to effectively embed this modification of Newtonian dynamics within a relativistic theory of gravity.

  10. X-ray emission from relativistically moving electron density cusps

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Pirozhkov, A. S.; Nakamura, T.; Hayashi, Y.; Kotaki, H.; Kawase, K.; Esirkepov, T. Zh.; Fukuda, Y.; Kiriyama, H.; Okada, H.; Daito, I.; Kameshima, T.; Mori, M.; Koga, J. K.; Daido, H.; Faenov, A. Ya.; Pikuz, T.; Ma, J.; Chen, L.-M.; Ragozin, E. N. [Japan Atomic Energy Agency (Japan); Osaka University (Japan); Joint Institute for High Temperature of the Russian Academy of Science, Moscow (Russian Federation); Institute of Physics, Chinese Academy of Sciences, Beijing (China); P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky prospekt 53, 119991 Moscow (Russian Federation); Japan Atomic Energy Agency and Graduate School for the Creation of New Photonics Industries (Japan); Ludwig-Maximilians-University (Germany); and others

    2012-07-11

    We report on novel methods to generate ultra-short, coherent, X-rays using a laserplasma interaction. Nonlinear interaction of intense laser pulses with plasma creates stable, specific structures such as electron cusps. For example, wake waves excited in an underdense plasma by an intense, short-pulse laser become dense and propagate along with the laser pulse. This is called a relativistic flying mirror. The flying mirror can reflect a counter-propagating laser pulse and directly convert it into high-frequency radiation, with a frequency multiplication factor of {approx} 4{gamma}{sup 2} and pulse shortening with the same factor. After the proof-of-principle experiments, we observed that the photon number generated in the flying mirror is close to the theoretical estimate. We present the details of the experiment in which a 9 TW laser pulse focused into a He gas jet generated the Flying Mirror, which partly reflected a 1 TW pulse, giving up to {approx} 10{sup 10} photons, 60 nJ (1.4 Multiplication-Sign 10{sup 12} photons/sr) in the XUV spectral region (12.8-22 nm).

  11. Weibel instability in relativistic electron positron plasma

    Science.gov (United States)

    Ehsan, Zahida; Tsintsadze, Nodar; Yoon, Peter

    2017-10-01

    We consider a situation in when the interaction of relativistically intense EM waves with an isotropic electron positron? plasma takes place, i.e., we consider short pulse lasers with intensity up to 1021 W/cm2, in which the photon density is of the order of 1030cm-3 and the strength of electric field E = 109 statvolt/cm. Such a situation is possible in astrophysical and laboratory plasmas which are subject to intense laser radiation, thus leading to nonthermal equilibrium field radiations. Such interaction of the superstrong laser radiation with an isotropic pair plasma leads to the generation of low frequency electromagnetic EM waves and in particular a quasistationary magnetic field. When the relativistic circularly polarized transverse EM wave propagates along z-axis, it creates a ponderomotive force, which affects the motion of particles along the direction of its propagation. On the other hand, motion of the particles across the direction of propagation is defined by the ponderomotive potential. Moreover dispersion relation for the transverse EM wave using a special distribution function, which has an anisotropic form, is derived and is subsequently investigated for a number of special cases. In general, it is shown that the growth rate of the EM wave strongly depends upon its intensity.

  12. CAFE: A New Relativistic MHD Code

    Science.gov (United States)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  13. CAFE: A NEW RELATIVISTIC MHD CODE

    Energy Technology Data Exchange (ETDEWEB)

    Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  14. Experiments with stored relativistic exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H.; Radon, T.; Attallah, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)] [and others

    1998-07-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10{sup -6}. The achieved mass resolving power of m/{Delta}m = 6.5 . 10{sup 5} (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 {<=} Z {<=} 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/{Delta}m = 1.5 . 10{sup 5} (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)

  15. CAFE: A New Relativistic MHD Code

    CERN Document Server

    Lora-Clavijo, F D; Guzman, F S

    2014-01-01

    We present CAFE, a new independent code designed to solve the equations of Relativistic ideal Magnetohydrodynamics (RMHD) in 3D. We present the standard tests for a RMHD code and for the Relativistic Hydrodynamics (RMD) regime since we have not reported them before. The tests include the 1D Riemann problems related to blast waves, head-on collision of streams and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the 2D tests, without magnetic field we include the 2D Riemann problem, the high speed Emery wind tunnel, the Kelvin-Helmholtz instability test and a set of jets, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion and the Kelvin-Helmholtz instability. The code uses High Resolution Shock Capturing methods and as a standard set up we present the error analysis with a simple combination that uses the HLLE flux formula combined with linear, PPM ...

  16. Relativistic theory of the falling retroreflector gravimeter

    Science.gov (United States)

    Ashby, Neil

    2018-02-01

    We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.

  17. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  18. Relativistic numerical cosmology with silent universes

    Science.gov (United States)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  19. Relativistic electrons produced by foreshock disturbances

    CERN Document Server

    Wilson, L B; Turner, D L; Osmane, A; Caprioli, D; Angelopoulos, V

    2016-01-01

    Foreshock disturbances -- large-scale (~1000 km to >30,000 km), transient (~5-10 per day - lasting ~10s of seconds to several minutes) structures [1,2] - generated by suprathermal (>100 eV to 100s of keV) ions [3,4] arise upstream of Earth's bow shock formed by the solar wind colliding with the Earth's magnetosphere. They have recently been found to accelerate ions to energies of several keV [5,6]. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV) [7], it has hitherto been thought impossible to accelerate electrons at the much weaker (M < 20) Earth's bow shock beyond a few 10s of keV [8]. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ~300 keV. Although such energetic electrons have been previously reported, their presence has been attributed to escaping magnetospheric particles [9,10] or solar events [11]. These relativistic electrons are not associated with any solar act...

  20. Towards a unified lattice kinetic scheme for relativistic hydrodynamics

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-05-01

    We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching close to the zero-mass ultrarelativistic regime treated in the previous literature. Starting from an expansion of the Maxwell-Jüttner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through numerical comparison with standard tests and solvers in relativistic fluid dynamics such as Boltzmann approach multiparton scattering and previous relativistic lattice Boltzmann models. This work provides a significant step towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless particles regimes.

  1. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  2. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  3. Dark matter: a problem in relativistic metrology?

    Science.gov (United States)

    Lusanna, Luca

    2017-05-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  4. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  5. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    Science.gov (United States)

    Zrake, Jonathan; MacFadyen, Andrew

    2011-08-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of ɛB>~0.01 are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with relative Lorentz factors of several. These conditions are relevant in models for internal shocks, for the late afterglow phase, for cocoon material along the edge of a relativistic jet as it propagates through a star, as well neutron stars merging with each other and with black hole companions. We find that relativistic turbulence decays extremely quickly, on a sound crossing time of an eddy. Models invoking sustained relativistic turbulence to explain variability in GRB prompt emission are thus strongly disfavored unless a persistant driving of the turbulence is maintained for the duration of the prompt emission.

  6. Towards Understanding the Physics of Collisionless Relativistic Shocks. Relativistic Collisionless Shocks

    Science.gov (United States)

    Pelletier, Guy; Bykov, Andrei; Ellison, Don; Lemoine, Martin

    2017-07-01

    Relativistic astrophysical collisionless shocks represent outstanding dissipation agents of the huge power of relativistic outflows produced by accreting black holes, core collapsed supernovae and other objects into multi-messenger radiation (cosmic rays, neutrinos, electromagnetic radiation). This article provides a theoretical discussion of the fundamental physical ingredients of these extreme phenomena. In the context of weakly magnetized shocks, in particular, it is shown how the filamentation type instabilities, which develop in the precursor of pair dominated or electron-ion shocks, provide the seeds for the scattering of high energy particles as well as the agent which preheats and slows down the incoming precursor plasma. This analytical discussion is completed with a mesoscopic, non-linear model of particle acceleration in relativistic shocks based on Monte Carlo techniques. This Monte Carlo model uses a semi-phenomenological description of particle scattering which allows it to calculate the back-reaction of accelerated particles on the shock structure on length and momentum scales which are currently beyond the range of microscopic particle-in-cell (PIC) simulations.

  7. Relativistic harmonics for turbulent wakefield diagnostics

    Science.gov (United States)

    Kuramitsu, Yasuhiro; Chen, Shih-Hung

    2017-06-01

    The propagation properties of relativistic harmonics excited in a plasma with an intense laser pulse is investigated theoretically and numerically. Focusing on the frequency separation, a cold electron fluid model in two spatial dimension is discussed to obtain the harmonic amplitude. The theoretical predictions are verified by performing particle-in-cell simulations in two spatial dimensions. When the laser amplitude is large, the strong ponderomotive force expels the electrons, creating a large amplitude density structures associated with the wakefield. The harmonics propagate obliquely with respect to the laser propagation direction, which is well represented by the structure of the high density layer resulting from the transverse poderomotive force. We also discuss a possible experimental setup to observe the density structures relevant to wakefield.

  8. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  9. Properties of relativistically rotating quark stars

    Science.gov (United States)

    Zhou, Enping

    2017-06-01

    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  10. Relativistic Magnetic Reconnection in Kerr Spacetime.

    Science.gov (United States)

    Asenjo, Felipe A; Comisso, Luca

    2017-02-03

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  11. Relativistic statistical mechanics and particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burakovsky, L.

    1998-12-01

    The author reviews the formulation of manifestly covariant relativistic statistical mechanics as the description of an ensemble of events in spacetime parameterized by an invariant proper time {tau}. He discusses the linear and cubic mass spectra which result from this formulation (the latter with the inclusion of anti-events) as the actual spectra of an individual hadronic multiplet and hot hadronic matter, respectively. These spectra allow one to predict the masses of particles nucleated to quasi-levels in such an ensemble. As an example, the masses of the ground state mesons and baryons are considered, the results are in excellent agreement with the measured hadron masses. Additivity of inverse Regge slopes is established and shown to be consistent with available experimental data on the D{sup *} meson and {Gamma}{sub c} baryon production.

  12. Relativistic Coulomb excitation of 88Kr

    Science.gov (United States)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  13. General relativistic neutron stars with twisted magnetosphere

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2015-03-01

    Soft gamma-ray repeaters and anomalous X-ray pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here, we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided, to investigate the effects of different current distributions on the overall magnetic field structure.

  14. On relativistic models of strange stars

    Science.gov (United States)

    Tikekar, Ramesh; Jotania, Kanti

    2007-03-01

    The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space--time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.

  15. New approach to relativistic celestial reference frames

    Science.gov (United States)

    Minazzoli, Olivier

    2012-08-01

    The current IAU recommendations regarding relativistic reference frames are mainly based on the works of Brumberg and Kopeikin on one hand and Damour, Soffel and Xu on the other hand. However the current recommendations give the transformations between the barycentric and the local frames in one way only, while both direct and inverse transformations are needed, at least for completion, if not for practical purposes. In our work, we (S. Turyshev, V. Toth and I) give an alternative approach to the two previous ones considered in the IAU resolutions. Conversely to those, our method is not based on the so - called matching technique. Our main result lies in the fact that we got both the direct and the inverse transformation at the same time - allowing checking the consistency of both transformations. Here we describe the simple case with monopoles as sources. The full extended - bodies case will be presented elsewhere.

  16. Physical Determination of Relativistic Motion (Kinematics)

    CERN Document Server

    Hartmann, Bruno

    2012-01-01

    Special Relativity can be founded mathematically as an axiomatic system. This begins with abstract objects and postulates. However one can also consider what actually happens in measurements of real phenomena. The measurement-theoretically based view provides the mathematical formulation of abstract measurement results together with its physical conditions. In the interrelation of physical conditions (of classical laser ranging) the mathematical principle Lorentz symmetry is justified. In the contrast of physical conditions the limitations of the mathematical formalism become transparent regarding the physical resolution of the apparent Twin paradox. In the resulting formalism the physical meaning of its mathematical elements clarifies and simple principles of relativistic physics are uncovered - the key to overcome hidden stumbling blocks and apparent paradoxes from an (unscrutinized) classical intuition.

  17. Relativistic symmetry breaking in light kaonic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rong-Yao; Jiang, Wei-Zhou; Zhang, Dong-Rui; Wei, Si-Na [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2014-12-01

    As the experimental data from kaonic atoms and K{sup -}N scatterings imply that the K{sup -} -nucleon intenraction is strongly attractive at saturation density, there is a possibility to form K{sup -} -nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean-field theory. It is found that the strong attraction between K{sup -} and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei. (orig.)

  18. Relativistic perfect fluids in local thermal equilibrium

    CERN Document Server

    Coll, Bartolomé; Sáez, Juan Antonio

    2016-01-01

    The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...

  19. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  20. Non-relativistic particles in a thermal bath

    Directory of Open Access Journals (Sweden)

    Vairo Antonio

    2014-04-01

    Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.

  1. Dissipation in relativistic pair-plasma reconnection: revisited

    Science.gov (United States)

    Zenitani, Seiji

    2018-01-01

    Basic properties of relativistic magnetic reconnection in electron–positron pair plasmas are investigated by using a particle-in-cell (PIC) simulation. We first revisit a problem by Hesse and Zenitani (2007 Phys. Plasmas 14 112102), who examined the kinetic Ohm’s law across the X line. We formulate a relativistic Ohm’s law by decomposing the stress–energy tensor. Then, the role of the new term, called the heat-flow inertial term, is examined in the PIC simulation data. We further evaluate the energy balance in the reconnection system. These analyses demonstrate physically transparent ways to diagnose relativistic kinetic data.

  2. Rotating black hole solutions in relativistic analogue gravity

    Science.gov (United States)

    Giacomelli, Luca; Liberati, Stefano

    2017-09-01

    Simulation and experimental realization of acoustic black holes in analogue gravity systems have lead to a novel understanding of relevant phenomena such as Hawking radiation or superradiance. We explore here the possibility of using relativistic systems for simulating rotating black hole solutions and possibly get an acoustic analogue of a Kerr black hole. In doing so, we demonstrate a precise relation between nonrelativistic and relativistic solutions and provide a new class of vortex solutions for relativistic systems. Such solutions might be used in the future as a test bed in numerical simulations as well as concrete experiments.

  3. Relativistic Thermodynamics: Transverse Momentum Distributions in High-Energy Physics

    CERN Document Server

    Cleymans, J.

    2012-01-01

    Transverse momentum distributions measured by the STAR and PHENIX collaborations at the Relativistic Heavy Ion Collider and by the ALICE, ATLAS and CMS collaborations at the Large Hadron Collider can be considered in the framework of relativistic thermodynamics using the Tsallis distribution. Theoretical issues are clarified concerning the thermodynamic consistency in the case of relativistic high energy quantum distributions. An improved form is proposed for describing the transverse momentum distribution and fits are presented together with estimates of the parameter q and the temperature T.

  4. Relativistic jet feedback II: Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Science.gov (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole PH

    2018-01-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilize cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low frequency power laws inferred from the radio observations. These new computational models replace the power-law model for the free-free optical depth in the (Bicknell et al. 1997) model by a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low frequency spectra discovered by Callingham et al. (2018) may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure and distribution of gas in the host galaxy.

  5. The geometry of the tangent bundle and the relativistic kinetic theory of gases

    CERN Document Server

    Sarbach, Olivier

    2013-01-01

    This article discusses the relativistic kinetic theory for a simple collisionless gas from a geometric perspective. We start by reviewing the rich geometrical structure of the tangent bundle TM of a given spacetime manifold, including the splitting of the tangent spaces of TM into horizontal and vertical subspaces and the natural metric and symplectic structure it induces on TM. Based on these structures we introduce the Liouville vector field L and a suitable Hamiltonian function H on TM. The Liouville vector field turns out to be the Hamiltonian vector field associated to H. On the other hand, H also defines the mass shells as Lorentzian submanifolds of the tangent bundle. A simple collisionless gas is described by a distribution function on a particular mass shell, satisfying the Liouville equation. Together with the Liouville vector field the distribution function can be thought of as defining a fictitious incompressible fluid on the mass shells, with associated conserved current density. Finally, we disc...

  6. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  7. Solar-system tests of the relativistic gravity

    CERN Document Server

    Ni, Wei-Tou

    2016-01-01

    In 1859, Le Verrier discovered the Mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 156 years to 2016, the precisions and accuracies of laboratory and space experiments, and of astrophysical and cosmological observations on relativistic gravity have been improved by 3-4 orders of magnitude. The improvements have been mainly from optical observations at first followed by radio observations. The achievements for the past 50 years are from radio Doppler tracking and radio ranging together with lunar laser ranging. At the present, the radio observations and lunar laser ranging experiments are similar in the accuracy of testing relativistic gravity. We review and summarize the present status of solar-system tests of relativistic gravity. With planetary laser ranging, spacecraft laser ranging and interferometric laser ranging (laser Doppler ranging) together with the development of drag-free technology, the optical observations will improve...

  8. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Abstract. Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  9. Relativistic reference frames including time scales - Questions and answers

    Science.gov (United States)

    Soffel, M. H.; Brumberg, V. A.

    1991-12-01

    The subject of relativistic reference frames in astronomy is discussed with respect to the problems and needs of the various user groups. For didactical reasons the discussion is presented in the form of a sequence of questions and answers.

  10. Relativistic Electron Pitch Angle Distributions in the Inner Magnetosphere

    Science.gov (United States)

    Friedel, Reiner; Zhao, Hong; Reeves, Geoff; Chen, Yue; Henderson, Mike; Kanekal, Shri; Baker, Dan; Jaynes, Allison

    2017-04-01

    Relativistic electron pitch angle distributions (PADs) in the trapped inner region of the magnetosphere are a sensitive measure of many processes that govern the dynamics of these particles. We report here on statistical observations of relativistic electron PADs from the REPT (Relativistic Electron/Proton Telescope) instrument aboard the Van Allen Probes mission, which show an unexpected dawn/dusk asymmetry that seems to be a persistent feature during quiet times of Dst > -20 nT. The observed PADs show a more peaked pancake distribution at dusk compared to dawn for energies above 1.8 MeV only. Energies from a few 100 KeV to 1 m,eV do NOT show these asymmetries, ruling out magnetic field model effects. These observations hint at persistent processes that can act on relativistic electrons on timescales on the order of the outer radiation belt drift period (10 minutes).

  11. Quantum resonances in reflection of relativistic electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Eykhorn, Yu.L.; Korotchenko, K.B. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Tomsk State University, 36, Lenin Avenue, Tomsk 634050 (Russian Federation); Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

    2015-07-15

    Calculations based on the use of realistic potential of the system of crystallographic planes confirm earlier results on existence of resonances in reflection of relativistic electrons and positrons by the crystal surface, if the crystallographic planes are parallel to the surface.The physical reason of predicted phenomena, similar to the band structure of transverse energy levels, is connected with the Bloch form of the wave functions of electrons (positrons) near the crystallographic planes, which appears both in the case of planar channeling of relativistic electrons (positrons) and in reflection by a crystal surface. Calculations show that positions of maxima in reflection of relativistic electrons and positrons by crystal surface specifically depend on the angle of incidence with respect to the crystal surface and relativistic factor of electrons/positrons. These maxima form the Darwin tables similar to that in ultra-cold neutron diffraction.

  12. Physics and applications with laser-induced relativistic shock waves

    National Research Council Canada - National Science Library

    S Eliezer; J M Martinez-Val; Z Henis; N Nissim; S V Pinhasi; A Ravid; M Werdiger; E Raicher

    2016-01-01

    The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance laser or indirectly by a laser acceleration of a foil that collides with a second static foil...

  13. Surface waves on the relativistic quantum plasma half-space

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jun, E-mail: 5277chanel@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027 (China); Zhao, Hang [State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027 (China); Qiu, Min, E-mail: minqiu@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027 (China); School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden)

    2013-10-15

    We present a theoretical investigation on the propagation of surface waves on the relativistic quantum plasma half-space. The dispersion relations of surface plasmon polaritons (SPPs) and electrostatic surface waves containing relativistic quantum corrected terms are derived. Results show that the frequency of SPPs has a blue-shift, and surface Langmuir oscillations can propagate on the cold plasma half-space due to quantum effects. Numerical evaluation indicates that quantum effects to SPPs and electrostatic surface waves are significant and observable.

  14. Lorentz symmetry breaking effects on relativistic EPR correlations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)

  15. A search for relativistic electron induced stratospheric ozone depletion

    Science.gov (United States)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  16. Visualizing Flat Spacetime: Viewing Optical versus Special Relativistic Effects

    CERN Document Server

    Black, Don V; Wessel, F; Pajarola, R; Kuester, F

    2012-01-01

    A simple visual representation of Minkowski spacetime appropriate for a student with a background in geometry and algebra is presented. Minkowski spacetime can be modeled with a Euclidean 4-space to yield accurate visualizations as predicted by special relativity theory. The contributions of relativistic aberration as compared to classical pre-relativistic aberration to the geometry are discussed in the context of its visual representation.

  17. Compact objects in relativistic theories of gravity

    Science.gov (United States)

    Okada da Silva, Hector

    2017-05-01

    In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia

  18. Relativistic Fluid Dynamics: Physics for Many Different Scales

    Directory of Open Access Journals (Sweden)

    Comer Gregory L.

    2007-01-01

    Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.

  19. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  20. Relativistic Few-Body Hadronic Physics Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In

  1. Two-stream-like Instability in Dilute Hot Relativistic Beams and Astrophysical Relativistic Shocks

    Science.gov (United States)

    Nakar, Ehud; Bret, Antoine; Milosavljević, Miloš

    2011-09-01

    Relativistic collisionless shocks are believed to be efficient particle accelerators. Nonlinear outcome of the interaction of accelerated particles that run ahead of the shock, the so-called precursor, with the unperturbed plasma of the shock upstream, is thought to facilitate additional acceleration of these particles and to possibly modify the hydrodynamic structure of the shock. We explore here the linear growth of kinetic modes appearing in the precursor-upstream interaction in relativistic shocks propagating in non- and weakly magnetized plasmas: electrostatic two-stream parallel mode and electrostatic oblique modes. The physics of the parallel and oblique modes is similar, and thus, we refer to the entire spectrum of electrostatic modes as "two-stream-like." These modes are of particular interest because they are the fastest growing modes known in this type of system. Using a simplified distribution function for a dilute ultrarelativistic beam that is relativistically hot in its own rest frame, yet has momenta that are narrowly collimated in the frame of the cold upstream plasma into which it propagates, we identify the fastest growing mode in the full k-space and calculate its growth rate. We consider all types of plasma (pairs and ions-electrons) and beam (charged and charge-neutral). We find that unstable electrostatic modes are present in any type of plasma and for any shock parameters. We further find that two modes, one parallel (k bottom = 0) and the other one oblique (k_\\bot \\sim k_\\Vert), are competing for dominance and that either one may dominate the growth rate in different regions of the phase space. The dominant mode is determined mostly by the perpendicular spread of the accelerated particle momenta in the upstream frame, which reflects the shock Lorentz factor. The parallel mode becomes more dominant in shocks with lower Lorentz factors (i.e., with larger momentum spreads). We briefly discuss possible implications of our results for

  2. General relativistic polytropes in anisotropic stars

    Science.gov (United States)

    Isayev, A. A.

    2017-10-01

    Spherically symmetric relativistic stars with a polytropic equation of state (EoS), which possess local pressure anisotropy, are considered within the framework of general relativity. The generalized Lane-Emden equations are derived for the arbitrary anisotropy parameter Δ =pt-pr (pt and pr being the transverse and radial pressure, respectively). They are then applied to some special ansatz for the anisotropy parameter in the form of a differential relation between the anisotropy parameter Δ and the metric function ν . The analytical solutions of the obtained equations are found for incompressible fluid stars and then used for getting their mass-radius relation, gravitational energy, and binding energy. Also, following the Chandrasekhar variational approach, the dynamical stability of incompressible anisotropic fluid stars with a polytropic EoS against radial oscillations is studied. It is shown that the local pressure anisotropy with pt>pr can make the incompressible fluid stars unstable with respect to radial oscillations, in contrast to incompressible isotropic fluid stars with a polytropic EoS which are dynamically stable.

  3. Equations of motion in relativistic gravity

    CERN Document Server

    Lämmerzahl, Claus; Schutz, Bernard

    2015-01-01

     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  4. Isospin-dependent multifragmentation of relativistic projectiles

    Science.gov (United States)

    Ogul, R.; Botvina, A. S.; Atav, U.; Buyukcizmeci, N.; Mishustin, I. N.; Adrich, P.; Aumann, T.; Bacri, C. O.; Barczyk, T.; Bassini, R.; Bianchin, S.; Boiano, C.; Boudard, A.; Brzychczyk, J.; Chbihi, A.; Cibor, J.; Czech, B.; de Napoli, M.; Ducret, J.-É.; Emling, H.; Frankland, J. D.; Hellström, M.; Henzlova, D.; Immè, G.; Iori, I.; Johansson, H.; Kezzar, K.; Lafriakh, A.; Le Fèvre, A.; Le Gentil, E.; Leifels, Y.; Lühning, J.; Łukasik, J.; Lynch, W. G.; Lynen, U.; Majka, Z.; Mocko, M.; Müller, W. F. J.; Mykulyak, A.; Orth, H.; Otte, A. N.; Palit, R.; Pawłowski, P.; Pullia, A.; Raciti, G.; Rapisarda, E.; Sann, H.; Schwarz, C.; Sfienti, C.; Simon, H.; Sümmerer, K.; Trautmann, W.; Tsang, M. B.; Verde, G.; Volant, C.; Wallace, M.; Weick, H.; Wiechula, J.; Wieloch, A.; Zwiegliński, B.

    2011-02-01

    The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at the GSI Schwerionen Synchrotron (SIS). Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the statistical multifragmentation model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment-charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z and the isoscaling parameters of Z⩽10 fragments. The calculations are, furthermore, used to address open questions regarding the modification of the surface-term coefficient at freeze-out, the N/Z dependence of the nuclear caloric curve, and the isotopic evolution of the spectator system between its formation during the initial cascade stage of the reaction and its subsequent breakup.

  5. Status of the relativistic heavy ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Karl, F. [Brookhaven National Lab., Upton, NY (United States)

    1999-07-01

    At the present time, commissioning of the 3.8 kilometer Relativistic Heavy Ion Collider (RHIC) is in full swing. On July 16, 1999, the commissioners were successful in circulating a Gold Ion Beam for the first time, in the Blue Ring, as power supplies were being checked out for beam into the Yellow Ring. The commissioning schedule is to accelerate beam in the Blue Ring, then spiral and accelerate beam in the Yellow Ring, then if all goes well, obtain some collisions, all before a fast approaching shutdown in mid-August. The four experimental regions, Star, Phenix, Brahms and Phobos are gearing up for their maiden beam runs and much effort is being spent to make the thirst glimpse of the beam an exciting one. Our Alignment Group has been working closely with the experimenters in these areas, mostly with MANCAT type component pre-surveys and in the near future installing and locating these various components relative to the RHIC Beam Line. (author)

  6. Hyperbolic theory of relativistic conformal dissipative fluids

    Science.gov (United States)

    Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.

    2018-01-01

    We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.

  7. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS, we also predict the bounds 1−4×10−7

  8. Magnetic field generation in relativistic shocks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, J.; Achterberg, A. [Utrecht Univ., Utrecht (Germany). Sterrekundig Instituut

    2005-06-01

    Linear theory of the Weibel instability cannot explain magnetic field generation in relativistic shock fronts in electron-proton plasmas. The fireball model far Gamma-ray Burst afterglows requires a magnetic field in similar shock fronts between the fireball and the surrounding matter to explain the detected nonthermal afterglow radiation. We consider an analytical model of post-shock protons penetrating the hot post-shock electron plasma. The linear Weibel instability produces magnetic fields through self-enhancing current channels. Perturbations with a length-scale comparable to the electron skin depth reach the high est magnetic field before the linear theory breaks down. The electrons quench the linear proton instability so that it cannot randomize the proton velocity distribution and only converts a small fraction of the available kinetic energy of the protons into magnetic fields. We conclude that the linear Weibel instability that dominates in pair plasmas is relatively unimportant in electron-proton plasmas and that non-linear processes are probably much more important.

  9. Relativistic Quantum Field Theory for Condensed -

    Science.gov (United States)

    MATSUURA, HIROYUKI

    We proposed Atomic Schwinger Dyson method (ASD method) in this paper, which was the nonperturbative and finite relativistic quantum field theory, and we treat many electron system and electronic matter. The ASD formalism consists of coupled Dyson equations of electrons and photons. Since, it includes self-energies in a nonperturbative way, higher-order correlations beyond Hartee Fock approximation are taken into account. Some important differences between the ASD formalism for the system of finite electron density and SD formalism of zero electron density are shown. The main difference is due to the existence of condensed photon field, symmetry breaking, and what we call, Coulomb's potential. By paying special attention to the treatment of the condensed photon fields, the coupled Dyson equations of electron and photon are derived based on functional propagator method. It is shown that this treatment of the condensed fields naturally leads to tadpole energy, which cancels the Hartree energy. By using these photon propagators, explicit expression of ASD coupled equations and the energy density of matters are derived for numerical calculations in a subsequent paper. Similarities and differences between ASD and traditional methods such as the mean field theory or the Hartree Fock method are discussed; it is shown that these traditional methods were included in our ASD formalism.

  10. Effective actions for relativistic fluids from holography

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Jan de [Institute of Physics, Universiteit van Amsterdam,Science Park 904, Amsterdam, 1090 GL The (Netherlands); Heller, Michal P. [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Pinzani-Fokeeva, Natalia [Institute of Physics, Universiteit van Amsterdam,Science Park 904, Amsterdam, 1090 GL The (Netherlands)

    2015-08-17

    Motivated by recent progress in developing action formulations of relativistic hydrodynamics, we use holography to derive the low energy dissipationless effective action for strongly coupled conformal fluids. Our analysis is based on the study of novel double Dirichlet problems for the gravitational field, in which the boundary conditions are set on two codimension one timelike hypersurfaces (branes). We provide a geometric interpretation of the Goldstone bosons appearing in such constructions in terms of a family of spatial geodesics extending between the ultraviolet and the infrared brane. Furthermore, we discuss supplementing double Dirichlet problems with information about the near-horizon geometry. We show that upon coupling to a membrane paradigm boundary condition, our approach reproduces correctly the complex dispersion relation for both sound and shear waves. We also demonstrate that upon a Wick rotation, our formulation reproduces the equilibrium partition function formalism, provided the near- horizon geometry is properly accounted for. Finally, we define the conserved hydrodynamic entropy current as the Noether current associated with a particular transformation of the Goldstone bosons.

  11. Conceptual evolution of Newtonian and relativistic mechanics

    CERN Document Server

    Ghosh, Amitabha

    2018-01-01

    This book provides an introduction to Newtonian and relativistic mechanics. Unlike other books on the topic, which generally take a 'top-down' approach, it follows a novel system to show how the concepts of the 'science of motion' evolved through a veritable jungle of intermediate ideas and concepts. Starting with Aristotelian philosophy, the text gradually unravels how the human mind slowly progressed towards the fundamental ideas of inertia physics. The concepts that now appear so obvious to even a high school student took great intellectuals more than a millennium to clarify. The book explores the evolution of these concepts through the history of science. After a comprehensive overview of the discovery of dynamics, it explores fundamental issues of the properties of space and time and their relation with the laws of motion. It also explores the concepts of spatio-temporal locality and fields, and offers a philosophical discussion of relative motion versus absolute motion, as well as the concept of an abso...

  12. Heat dissipation in relativistic single charged fluids

    Science.gov (United States)

    Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.

    2015-11-01

    When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.

  13. Plasmoid statistics in relativistic magnetic reconnection

    Science.gov (United States)

    Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.

    2018-01-01

    Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo (MC) code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.

  14. Dissipation in relativistic superfluid neutron stars

    Science.gov (United States)

    Gusakov, M. E.; Kantor, E. M.; Chugunov, A. I.; Gualtieri, L.

    2013-01-01

    We analyse damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in Gusakov & Kantor. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f modes, (ii) for radial and p modes such an approximation is poor and (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighbouring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.

  15. Gas and Gas Pains

    Science.gov (United States)

    ... Gas and gas pains Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  16. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars

    Science.gov (United States)

    Parfrey, Kyle; Tchekhovskoy, Alexander

    2017-12-01

    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  17. A nonlinear Klein-Gordon equation for relativistic superfluidity

    Science.gov (United States)

    Waldron, Oliver; Van Gorder, Robert A.

    2017-10-01

    Many neutron star features can be accurately modeled only if one assumes that a significant portion of the neutron star interior is in a superfluid state and if relativitic effects are considered, and possible solutions to the underlying mathematical models include vortex solutions. It was recently shown that vorticity in relativistic superfluids can be studied under the framework of a nonlinear Klein-Gordon (NLKG) model in general curvilinear coordinates where the phase dynamics of solutions to this equation give rise to superfluidity (Xiong et al 2014 Phys. Rev. D 90 125019), and some numerical solutions were obtained. The aim of this paper will be to extract asymptotic solutions to obtain a better qualitative understanding of the possible relativistic superfluid dynamics possible under the NLKG model. We obtain asymptotic results for both spherically symmetric and cylindrically symmetric solutions, demonstrating that the solutions actually appear more regular in the relativistic regime compared to the non-relativistic limit. In fact, the asymptotic and numerical solutions actually show the best agreement in the relativistic case. We demonstrate that the relativistic effects actually tend to regularize or stabilize the solutions, relative to the non-relativistic solutions, which is an interesting finding. We then obtain a Thomas-Fermi-like perturbation result in the very large-mass limit where the kinetics become negligible relative to the self-interaction term (at leading order). We finally extend the NLKG model by assuming a curved spacetime with a metric generally used to model the space surrounding a neutron star, which is a novel generalization of the NLKG model to curved spacetime. We again obtain solutions in the large-mass limit for this case, and find that for such a spacetime non-stationary states (rather than simply stationary states) are possible in the large-mass limit.

  18. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  19. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  20. The relativistic statistical theory and Kaniadakis entropy: an approach through a molecular chaos hypothesis

    Science.gov (United States)

    Silva, R.

    2006-12-01

    We have investigated the proof of the H theorem within a manifestly covariant approach by considering the relativistic statistical theory developed in [G. Kaniadakis, Phys. Rev. E 66, 056125 (2002); G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)]. As it happens in the nonrelativistic limit, the molecular chaos hypothesis is slightly extended within the Kaniadakis formalism. It is shown that the collisional equilibrium states (null entropy source term) are described by a κ power law generalization of the exponential Juttner distribution, e.g., f(x,p)∝ (sqrt{1+ kappa^2θ^2}+kappaθ)^{1/kappa}equivexp_kappaθ, with θ=α(x)+βμpμ, where α(x) is a scalar, βμ is a four-vector, and pμ is the four-momentum. As a simple example, we calculate the relativistic κ power law for a dilute charged gas under the action of an electromagnetic field Fμν. All standard results are readly recovered in the particular limit κ→0.

  1. Adsorption of the astatine species on a gold surface: A relativistic density functional theory study

    Science.gov (United States)

    Demidov, Yuriy; Zaitsevskii, Andréi

    2018-01-01

    We report first-principle based studies of the adsorption interaction of astatine species on a gold surface. These studies are aimed primarily at the support and interpretation of gas chromatographic experiments with superheavy elements, tennessine (Ts, Z = 117), a heavier homologue of At, and possibly its pseudo-homologue nihonium (Nh, Z = 113). We use gold clusters with up to 69 atoms to simulate the adsorption sites and estimate the desorption energies of At & AtOH from a stable gold (1 1 1) surface. To describe the electronic structure of At -Aun and AtOH -Aun complexes, we combine accurate shape-consistent relativistic pseudopotentials and non-collinear two-component relativistic density functional theory. The predicted desorption energies of At and AtOH on gold are 130 ± 10 kJ/mol and 90 ± 10 kJ/mol, respectively. These results confirm the validity of the estimates derived from chromatographic data (147 ± 15 kJ/mol for At, and 100-10+20 kJ/mol for AtOH).

  2. Relativistic effects on galaxy redshift samples due to target selection

    Science.gov (United States)

    Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Zhu, Hongyu; Giusarma, Elena

    2017-10-01

    In a galaxy redshift survey, the objects to be targeted for spectra are selected from a photometrically observed sample. The observed magnitudes and colours of galaxies in this parent sample will be affected by their peculiar velocities, through relativistic Doppler and relativistic beaming effects. In this paper, we compute the resulting expected changes in galaxy photometry. The magnitudes of the relativistic effects are a function of redshift, stellar mass, galaxy velocity and velocity direction. We focus on the CMASS sample from the Sloan Digital Sky Survey (SDSS) and Baryon Oscillation Spectroscopic Survey (BOSS), which is selected on the basis of colour and magnitude. We find that 0.10 per cent of the sample (∼585 galaxies) has been scattered into the targeted region of colour-magnitude space by relativistic effects, and conversely 0.09 per cent of the sample (∼532 galaxies) has been scattered out. Observational consequences of these effects include an asymmetry in clustering statistics, which we explore in a companion paper. Here, we compute a set of weights that can be used to remove the effect of modulations introduced into the density field inferred from a galaxy sample. We conclude by investigating the possible effects of these relativistic modulation on large-scale clustering of the galaxy sample.

  3. Analytic study of 1D diffusive relativistic shock acceleration

    Science.gov (United States)

    Keshet, Uri

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN/dEpropto E-p spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p-1=1-ln[γd(1+βd)]/ ln;[γu(1+βu)], where βu (βd) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a Jüttner-Synge equation of state) noticeably hardens with increasing 1<γu<57, before logarithmically converging back to p(γu→∞)=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  4. Conjugate Observations of EMIC Waves and Precipitation of Relativistic Electrons

    Science.gov (United States)

    Wang, Dedong; Shprits, Yuri; Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong

    2017-04-01

    Utilizing data from NOAA Geostationary Operational Environmental Satellite (GOES)-12 and low-altitude Polar Orbiting Environmental Satellites (POES)-15, a well-conjugate observation of Electromagnetic Ion Cyclotron (EMIC) waves and precipitation of ring current ions and relativistic electrons is reported. This event took place in periods without geomagnetic storms at near 21:30 on June 19, 2008. During this interval, GOES-12 observed EMIC waves at geosynchronous orbit in dusk Magnetic Local Time (MLT) sector. Conjugately, low-altitude NOAA POES-15 observed precipitation of ring current ions and relativistic electrons. To our knowledge, this is the best conjugated observation from satellites to illustrate EMIC wave-driven Relativistic Electron Precipitation (REP) in the MLT dusk sector during non-storm periods. The REP was observed by POES-15 at the same L (the radial distance in the equatorial plane under dipolar geomagnetic model) and MLT as where EMIC waves were observed by GOES-12, and the projections along the geomagnetic field line of NOAA GOES-12 and POES-15 at the altitude of 100 km above the Earth are nearly at the same geomagnetic latitude and longitude (△MLAT 0.7°, △MLong 0.6°). The diffusion coefficients of relativistic electrons by the EMIC waves are also calculated. This event suggests that, during the periods without geomagnetic storms, EMIC waves can also cause the loss of ring current ions and relativistic electrons through pitch-angle scattering in the dusk sector.

  5. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  6. Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves

    Science.gov (United States)

    Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Wygant, J. R.

    2017-10-01

    How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the prediction of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.

  7. Frontiers in Relativistic Celestial Mechanics, Vol. 1. Theory

    Science.gov (United States)

    Kopeikin, Sergei

    2014-10-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields

  8. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  9. Relativistic corrections to the Cooperon mass: BCS versus BEC picture

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz

    2017-02-15

    Highlights: • Tate's measurement of relativistic effects on the Cooper pair mass show the increase while a decrease was expected. • This disagreement raised a question whether it has fundamental significance or is due to the details of the particular physical system being studied. • The most fundamental were speculations about gravitomagnetic forces enhanced by the Higgs mechanism. • These were recently disproved experimentally. • This paper shows that the relativistic mass corrections might be sensitive to the pairing scenario: the predicted mass decrease corresponds to the Bose–Einstein condensation of preformed Cooper pairs, while the pairing in the Bardeen–Cooper–Schrieffer condensate leads to an increase of experimentally observed magnitude. - Abstract: Relativistic corrections to the Cooperon mass are discussed for preformed Cooper pairs that become superconductive via the Bose–Einstein condensation (BEC) and for Cooperons in the Bardeen–Copper–Schrieffer (BCS) condensate. The distinction explains experimental results of Tate et al. (1989).

  10. The relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here are of s......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here...... are of semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains...

  11. Back to epicycles - relativistic Coulomb systems in velocity space

    Science.gov (United States)

    Ben-Ya'acov, Uri

    2017-05-01

    The study of relativistic Coulomb systems in velocity space is prompted by the fact that the study of Newtonian Kepler/Coulomb systems in velocity space, although less familiar than the analytic solutions in ordinary space, provides a much simpler (also more elegant) method. The simplicity and elegance of the velocity-space method derives from the linearity of the velocity equation, which is the unique feature of 1/r interactions for Newtonian and relativistic systems alike. The various types of possible trajectories are presented, their properties deduced from the orbits in velocity space, accompanied with illustrations. In particular, it is found that the orbits traversed in the relativistic velocity space (which is hyperbolic (H 3) rather than Euclidean) are epicyclic - circles whose centres also rotate - thus the title. Dedicated to the memory of J. D. Bekenstein - physicist, teacher and human

  12. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum

    Science.gov (United States)

    Li, Lu-Lu; Meng, Jie; Ring, P.; Zhao, En-Guang; Zhou, Shan-Gui

    2012-04-01

    In order to describe the exotic nuclear structure in unstable odd-A or odd-odd nuclei, the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon. For a microscopic and self-consistent description of pairing correlations, continuum, deformation, blocking effects, and the extended spatial density distribution in exotic nuclei, the deformed relativistic Hartree Bogoliubov equations are solved in a Woods—Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r. The formalism and numerical details are provided. The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O. The prolate deformed nucleus 15C is studied by examining the neutron levels and density distributions.

  13. Relativistic models for quasielastic electron and neutrino-nucleus scattering

    Directory of Open Access Journals (Sweden)

    Meucci Andrea

    2012-12-01

    Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.

  14. Relativistic Effects on Reflection X-ray Spectra of AGN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khee-Gan; /University Coll. London; Fuerst, Steven V.; /KIPAC, Menlo Park; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  15. Tartarus: A relativistic Green's function quantum average atom code

    Science.gov (United States)

    Gill, N. M.; Starrett, C. E.

    2017-09-01

    A relativistic Green's Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green's Function average atom model described by Starrett [1]. The Green's Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparison to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. We also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.

  16. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: juagar@yllera.tel.uva.e [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)

    2010-11-12

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  17. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  18. On the time delay between ultra-relativistic particles

    Directory of Open Access Journals (Sweden)

    Pierre Fleury

    2016-09-01

    Full Text Available The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  19. Emission versus Fermi coordinates: applications to relativistic positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Bini, D [Istituto per le Applicazioni del Calcolo ' M. Picone' , CNR I-00161 Rome (Italy); Geralico, A [ICRA, University of Rome ' La Sapienza' , I-00185 Rome (Italy); Ruggiero, M L; Tartaglia, A [Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy)

    2008-10-21

    A four-dimensional relativistic positioning system for a general spacetime is constructed by using the so-called emission coordinates. The results apply in a small region around the world line of an accelerated observer carrying a Fermi triad, as described by the Fermi metric. In the case of a Schwarzschild spacetime modeling the gravitational field around the Earth and an observer at rest at a fixed spacetime point, these coordinates realize a relativistic positioning system alternative to the current GPS system. The latter is indeed essentially conceived as Newtonian, so that it necessarily needs taking into account at least the most important relativistic effects through post-Newtonian corrections to work properly. Previous results concerning emission coordinates in flat spacetime are thus extended to this more general situation. Furthermore, the mapping between spacetime coordinates and emission coordinates is completely determined by means of the world function, which in the case of a Fermi metric can be explicitly obtained.

  20. Non-relativistic conformal symmetries and Newton-Cartan structures

    Energy Technology Data Exchange (ETDEWEB)

    Duval, C [Centre de Physique Theorique, CNRS, Luminy, Case 907 F-13288 Marseille Cedex 9 (France); Horvathy, P A [Laboratoire de Mathematiques et de Physique Theorique Universite de Tours, Parc de Grandmont F-37200 Tours (France)], E-mail: duval@cpt.univ-mrs.fr, E-mail: horvathy@lmpt.univ-tours.fr

    2009-11-20

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  1. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  2. Relativistic Hartree-Bogoliubov description of the halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Ring, P. [Universitaet Muenchen, Garching (Germany)

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  3. Resonant enhancement of relativistic electron fluxes during geomagnetically active periods

    Directory of Open Access Journals (Sweden)

    I. Roth

    Full Text Available The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10-100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10-100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.

    Key words. Magnetospheric physics (energetic particles · trapped; plasma waves and instabilities; storms and substorms

  4. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  5. The Post-Newtonian Approximation for Relativistic Compact Binaries

    Directory of Open Access Journals (Sweden)

    Futamase Toshifumi

    2007-03-01

    Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.

  6. Relativistic Corrections for Time and Frequency Transfer in Optical Fibres

    CERN Document Server

    Geršl, J; Wolf, P

    2016-01-01

    We derive relativistic corrections for one-way and two-way time and frequency transfer over optical fibres neglecting no terms that exceed 1 ps in time and $10^{-18}$ in fractional frequency, and estimate their magnitude in typical fibre links. We also provide estimates of the uncertainties in the evaluation of the relativistic corrections due to imperfect knowledge of parameters like the coordinates of the fibre and stations, Earth rotation, or thermal effects of the fibre index and length. The links between Teddington(UK) and Paris(F) as well as Braunschweig(D) and Paris(F), that are currently under construction, are studied as specific examples.

  7. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  8. Quasielastic Scattering from Relativistic Bound Nucleons: Transverse-Longitudinal Response

    Energy Technology Data Exchange (ETDEWEB)

    Udias, J. M. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, (Spain); Caballero, J. A. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla, (Spain); Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC Serrano 123, E-28006 Madrid, (Spain); Amaro, J. E. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, (Spain); Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1999-12-27

    Predictions for electron induced proton knockout from p{sub 1/2} and p{sub 3/2} shells in {sup 16}O are presented using various approximations for the relativistic nucleonic current. Results for differential cross section, transverse-longitudinal response (R{sub TL} ), and left-right asymmetry A{sub TL} are compared at |Q{sup 2}|=0.8(GeV/c){sup 2} . We show that there are important dynamical and kinematical relativistic effects which can be tested by experiment. (c) 1999 The American Physical Society.

  9. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING.

    Energy Technology Data Exchange (ETDEWEB)

    POGORELSKY,I.V.; BEN ZVI,I.; HIROSE,T.; KASHIWAGI,S.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; ET AL

    2001-11-29

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO{sub 2} laser. We observed the record 1.7 x 10{sup 8} x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO{sub 2} laser and 60 MeV electron beam.

  10. Treatment of the classical relativistic string in any orthornomal gauge

    CERN Document Server

    Marnelius, R

    1976-01-01

    It is shown that a certain set of gauge invariant functions are, for an appropriate choice of a parameter on which they depend, equal to the Fourier components of the classical relativistic string in any orthonormal gauge. These variables are natural generalizations of the classical DDF operators recently introduced by Goddard, Hanson and Ponzano (see ibid., vol.B89, p.76 (1975)). The Poisson algebra of the relativistic string in any orthonormal gauge (including the proper time gauge) is written down. Application to quantization is briefly discussed. (12 refs).

  11. Weyl consistency conditions in non-relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Grinstein, Benjamín [Department of Physics, University of California,San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2+1 dimensions with anisotropic scaling exponent z=2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem in higher dimensions.

  12. Quantum signaling in relativistic motion and across acceleration horizons

    Science.gov (United States)

    Jonsson, Robert H.

    2017-09-01

    The quantum channel between two particle detectors provides a prototype framework for the study of wireless quantum communication via relativistic quantum fields. In this article we calculate the classical channel capacity between two Unruh-DeWitt detectors arising from couplings within the perturbative regime. To this end, we identify the detector states which achieve maximal signal strength. We use these results to investigate the impact of relativistic effects on signaling between detectors in inertial and uniformly accelerated motion which communicate via a massless field in Minkowski spacetime.

  13. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  14. Galilean covariance and non-relativistic Bhabha equations

    Energy Technology Data Exchange (ETDEWEB)

    Montigny, M. de [Faculte Saint-Jean, University of Alberta, Edmonton, AB (Canada) and Theoretical Physics Institute, University of Alberta, Edmonton, AB (Canada)]. E-mail: montigny@phys.ualberta.ca; Khanna, F.C. [Theoretical Physics Institute, University of Alberta, Edmonton, AB (CA) and TRIUMF, Vancouver, BC (Canada)]. E-mail: khanna@phys.ualberta.ca; Santana, A.E. [Theoretical Physics Institute, University of Alberta, Edmonton, AB (CA) and Instituto de Fisica, Universidade Federal da Bahia, Salvador, Bahia (Brazil)]. E-mail: santana@fis.ufba.br; Santos, E.S. [Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, SP (Brazil)]. E-mail: esdras@ift.unesp.br

    2001-10-26

    We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4+1 dimensions, SO(5,1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator. (author)

  15. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star.

    Science.gov (United States)

    Bloom, Joshua S; Giannios, Dimitrios; Metzger, Brian D; Cenko, S Bradley; Perley, Daniel A; Butler, Nathaniel R; Tanvir, Nial R; Levan, Andrew J; O'Brien, Paul T; Strubbe, Linda E; De Colle, Fabio; Ramirez-Ruiz, Enrico; Lee, William H; Nayakshin, Sergei; Quataert, Eliot; King, Andrew R; Cucchiara, Antonino; Guillochon, James; Bower, Geoffrey C; Fruchter, Andrew S; Morgan, Adam N; van der Horst, Alexander J

    2011-07-08

    Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 10(6) to 10(7) solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.

  16. Semiclassical treatment of asymmetric semi-infinite nuclear matter: surface and curvature properties in relativistic and non-relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Del Estal, M.; Vinas, X. [Barcelona Univ. (Spain). Facultad de Fisica

    1998-05-25

    Surface and curvature properties of asymmetric semi-infinite nuclear matter are studied to beyond the proton drip. Using the semiclassical extended Thomas-Fermi method with corrections of order {Dirac_h}{sup 2}, the calculations are performed in the non-relativistic and relativistic mean field theories (Skyrme forces and non-linear {sigma}-{omega} parametrizations). First we discuss the bulk equilibrium between the nuclear and drip phases. Next we analyse the asymmetric surface as a function of the bulk neutron excess. We examine local quantities related to the density profiles and, for two definitions of the bulk reference energy, the surface and curvature energy coefficients. The calculation of the curvature energy is carefully treated. The sensitivity of the nuclear surface to the relativistic effects is investigated. Mass formulae useful for arbitrary neutron excess are discussed, and their limit at small asymmetries is compared with the liquid droplet model mass formula. (orig.) 64 refs.

  17. Different Paths to Some Fundamental Physical Laws: Relativistic Polarization of a Moving Magnetic Dipole

    Science.gov (United States)

    Kholmetskii, Alexander L.; Yarman, T.

    2010-01-01

    In this paper we consider the relativistic polarization of a moving magnetic dipole and show that this effect can be understood via the relativistic generalization of Kirchhoff's first law to a moving closed circuit with a steady current. This approach allows us to better understand the law of relativistic transformation of four-current density…

  18. Non-relativistic limits of rarefaction wave to the 1-D piston problem for the isentropic relativistic Euler equations

    Science.gov (United States)

    Ding, Min; Li, Yachun

    2017-08-01

    We consider the 1-D piston problem for the isentropic relativistic Euler equations when the total variations of the initial data and the speed of the piston are both sufficiently small. By a modified wave front tracking method, we establish the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength. Meanwhile, we study the convergence of the entropy solutions to the corresponding entropy solutions of the classical non-relativistic isentropic Euler equations as the light speed c →+∞ .

  19. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  20. Relativistic star solutions in higher-dimensional pseudospheroidal ...

    Indian Academy of Sciences (India)

    Abstract. We obtain relativistic solutions of a class of compact stars in hydrostatic equilibrium in higher dimensions by assuming a pseudospheroidal geometry for the space- time. The space-time geometry is assumed to be (D − 1) pseudospheroid immersed in a. D-dimensional Euclidean space. The spheroidicity parameter ...

  1. Linear response at the 4-component relativistic level

    DEFF Research Database (Denmark)

    Saue, T.; Jensen, Hans Jørgen Aagaard

    2003-01-01

    The theory, implementation, and application of linear response at the 4-component relativistic closed-shell Hartree-Fock level based on the concept of quasienergy and time averaging are reported. As such, an efficient AO-driven algorithm is obtained by assigning specific Hermiticity and time reve...

  2. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  3. On the Relativistic Beaming and Orientation Effects in Core ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    rest frame of the source) and the projected linear size as an indicator of rela- tivistic beaming and source orientation. Based on the orientation-dependent relativistic .... samples is still unclear (see Singal 1993; Nilsson et al. 1993; Ubachukwu & Ogwo. 1998). Nevertheless, this effect if present, should be accounted for before ...

  4. Einstein was here: Introducing relativistic chemistry in a basic ...

    African Journals Online (AJOL)

    The presented work reports a study performed to introduce relativistic chemistry in basic (introductory) college chemistry classrooms. The study involved fifty students. It was verified that exploring the previous (high school) knowledge on special relativity, and introducing a simple equation, it is possible to explain the ...

  5. Quarkonium and hydrogen spectra with spin-dependent relativistic ...

    Indian Academy of Sciences (India)

    2 . (3.11). The boundary condition that R(ρ) be finite at ρ = 0 requires that we choose upper sign for s. It is to be noted here that, both Schrödinger's relativistic theory as well as Dirac's theory allow value of s which is slightly lesser than the ...

  6. Apparent paradoxes in classical electrodynamics: relativistic transformation of force

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4, F Skorina Avenue, 220080 Minsk (Belarus); Yarman, T [Department of Engineering, Okan University Istanbul, Turkey and Savronik, Eskisehir, Turkey (Turkey)

    2007-05-15

    In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time.

  7. Nucleon self-energy in the relativistic Brueckner theory

    Energy Technology Data Exchange (ETDEWEB)

    Waindzoch, T.; Fuchs, C.; Faessler, A. [Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany)

    1998-06-01

    The self-energy of the nucleon in nuclear matter is calculated in the relativistic Brueckner theory. We solve the Thompson equation for the two nucleon scattering in the medium using different Bonn potentials. The self-energy has a rather strong momentum dependence while the equation of state compares well with previous calculations. (orig.)

  8. Relativistic nonlinearity and wave-guide propagation of rippled laser ...

    Indian Academy of Sciences (India)

    In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, ...

  9. Proof of the Spin Statistics Connection 2: Relativistic Theory

    Science.gov (United States)

    Santamato, Enrico; De Martini, Francesco

    2017-09-01

    The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

  10. Relativistic star solutions in higher-dimensional pseudospheroidal ...

    Indian Academy of Sciences (India)

    We obtain relativistic solutions of a class of compact stars in hydrostatic equilibrium in higher dimensions by assuming a pseudospheroidal geometry for the space-time. The space-time geometry is assumed to be ( - 1) pseudospheroid immersed in a -dimensional Euclidean space. The spheroidicity parameter () plays ...

  11. Proton-proton virtual bremsstrahlung in a relativistic covariant model

    NARCIS (Netherlands)

    Martinus, GH; Scholten, O; Tjon, J

    1999-01-01

    Lepton-pair production (virtual bremsstrahlung) in proton-proton scattering is investigated using a relativistic covariant model. The effects of negative-energy slates and two-body currents are studied. These are shown to have large effects in some particular structure functions, even at the

  12. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...

  13. Relativistic beaming and orientation effects in core-dominated quasars

    CERN Document Server

    Ubachukwu, A A

    2002-01-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and coredominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these coredominated quasars are highly relativistic, with optimum bulk Lorentz factor, $\\gamma_{opt}\\sim6-16$, and also highly anisotropic, with an average viewing angle, $\\sim9^0-16^0$. Furthermore, the largest boosting occurs within a critical cone...

  14. Stochastic Oscillations of General Relativistic Disks Described by a ...

    Indian Academy of Sciences (India)

    A generalized Langevin equation driven by fractional Brownian motion is used to describe the vertical oscillations of general relativistic disks. By means of numerical calculation method, the displacements, velocities and luminosities of oscillating disks are explicitly obtained for different Hurst exponent H . The results show ...

  15. Relativistic Velocity Addition Law from Machine Gun Analogy

    Science.gov (United States)

    Rothenstein, Bernhard; Popescu, Stefan

    2009-01-01

    Many derivations of the relativistic addition law of parallel velocities without use of the Lorentz transformations (LT) are known. Some of them are based on thought experiments that require knowledge of the time dilation and the length contraction effects. Other derivations involve the Doppler effect in the optic domain considered from three…

  16. Fields and fluids on curved non-relativistic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M. [Kadanoff Center for Theoretical Physics,Enrico Fermi Institute and Department of Physics,University of Chicago, Chicago, IL 60637 (United States)

    2015-08-11

    We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional “boost connection” which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example we write down the most general theory of dissipative fluids consistent with the second law in curved non-relativistic geometries and find significant differences in the allowed transport coefficients from those found previously. Kubo formulas for all response coefficients are presented. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its relation to non-relativistic limits may be found in a companion paper.

  17. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the Υ suppression in central nucleus-nucleus collisions which has been discovered ...

  18. COMPRESSIBILITY OF NUCLEI IN RELATIVISTIC MEAN FIELD-THEORY

    NARCIS (Netherlands)

    BOERSMA, HF; MALFLIET, R; SCHOLTEN, O

    1991-01-01

    Using the relativistic Hartree approximation in the sigma-omega model we study the isoscalar giant monopole resonance. It is shown that the ISGMR of lighter nuclei has non-negligible anharmonic terms. The compressibility of nuclear matter is determined using a leptodermous expansion.

  19. Variational Wigner-Kirkwood approach to relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Del Estal, M.; Centelles, M.; Vinas, X. [Departament d`Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    1997-10-01

    The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory and the fully quantal approach. {copyright} {ital 1997} {ital The American Physical Society}

  20. Unification of Gravitation and Electromagnetism in a Relativistic ...

    African Journals Online (AJOL)

    A theory of gravitation is considered in a relativistic version of Finslerian geometry. It is found that both the geodesic equations and the Finslerian analogue of the Einstein\\'s field equations have terms that involve the electromagnetic field tensor, thereby pointing out to the geometrization of electrodynamics and hence to a ...

  1. A comparative study between all-electron scalar relativistic ...

    Indian Academy of Sciences (India)

    effect on the adsorption behaviour of other small molecules onto gold clusters are necessary in the future. Keywords. Small gold cluster; hydrogen molecule; adsorption; scalar relativistic effect. 1. Introduction. Small gold clusters have attracted much attention from both industrial and scientific areas due to their unique.

  2. Paraboloidal Space-Times and Relativistic Models of Strange Stars

    Science.gov (United States)

    Jotania, Kanti; Tikekar, Ramesh

    The objective of this paper is to find out the suitability of an ansatz similar to that suggested by Vaidya-Tikekar, but prescribing paraboloidal geometry for the 3-space of the interior space-time of a relativistic spherical star in describing a family of physically viable models of superdense stars like Her X-1, SAX, and X-ray brust.

  3. Near-Relativistic Electron c/v Onset Plots

    National Research Council Canada - National Science Library

    Kahler, S; Ragot, B. R

    2006-01-01

    It is often assumed that the first arriving electrons of a near-relativistic (E> 30 keV) electron event are injected at the Sun impulsively and simultaneously at all observed energies and propagate scatter-free to 1 AU...

  4. Kinematic arguments against single relativistic shell models for GRBs

    Science.gov (United States)

    Fenimore, Edward E.; Ramirez, E.; Sumner, M. C.

    1997-01-01

    Two main types of models have been suggested to explain the long durations and multiple peaks of Gamma Ray Bursts (GRBs). In one, there is a very quick release of energy at a central site resulting in a single relativistic shell that produces peaks in the time history through its interactions with the ambient material. In the other, the central site sporadically releases energy over hundreds of seconds forming a peak with each burst of energy. The authors show that the average envelope of emission and the presence of gaps in GRBs are inconsistent with a single relativistic shell. They estimate that the maximum fraction of a single shell that can produce gamma-rays in a GRB with multiple peaks is 10(exp (minus)3), implying that single relativistic shells require 10(exp 3) times more energy than previously thought. They conclude that either the central site of a GRB must produce (approx)10(exp 51) erg/s(exp (minus)1) for hundreds of seconds, or the relativistic shell must have structure on a scales the order of (radical)(epsilon)(Gamma)(exp (minus)1), where (Gamma) is the bulk Lorentz factor ((approximately)10(exp 2) to 10(exp 3)) and (epsilon) is the efficiency.

  5. Relativistic Models for a GAIA-Like Astrometry Mission

    Science.gov (United States)

    2000-03-01

    the cosine 12 of the angle between a star pair is given by ( Brumberg , 1991): cos 12 = h k 1 k 2p hk 1k 1 q hk 2k 2 ; (1) where k1 and...Models 319 References Brumberg , V.A., 1991, Essential Relativistic Celestial Mechanics, Adam Hilger. de Felice, F., Lattanzi, M.G., Vecchiato, A

  6. Proof of the Spin Statistics Connection 2: Relativistic Theory

    Science.gov (United States)

    Santamato, Enrico; De Martini, Francesco

    2017-12-01

    The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

  7. Workshop on foundations of the relativistic theory of atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    The conference is an attempt to gather state-of-the-art information to understand the theory of relativistic atomic structure beyond the framework of the original Dirac theory. Abstracts of twenty articles from the conference were prepared separately for the data base. (GHT)

  8. Relativistic Beaming and Orientation Effects in BL Lacertae Objects

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We use the correlation between the core-to-lobe radio luminosity ratio () and the linear size () of a sample of BL Lacertae objects to investigate the relativistic beaming and radio source orientation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected BL Lacs respectively) and to ...

  9. A relativistic quark–diquark model for the nucleon

    Indian Academy of Sciences (India)

    E-mail: Maurizio.DeSanctis@roma1.infn.it. MS received 3 September 2008; accepted 14 October 2008. Abstract. We developed a constituent quark–diquark model for the nucleon and its resonances using a harmonic oscillator potential for the interaction. The effects due to relativistic kinetic energy correction are studied.

  10. Predicting Mercury's Precession using Simple Relativistic Newtonian Dynamics

    CERN Document Server

    Friedman, Y

    2016-01-01

    We present a new simple relativistic model for planetary motion describing accurately the anomalous precession of the perihelion of Mercury and its origin. The model is based on transforming Newton's classical equation for planetary motion from absolute to real spacetime influenced by the gravitational potential and introducing the concept of influenced direction.

  11. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  12. The Controlling Parameters for EMIC Wave Scattering of Relativistic Electrons

    Science.gov (United States)

    Zhang, X.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.

    2016-12-01

    Although there is growing support for relativistic electron losses due to precipitation from electromagnetic ion cyclotron (EMIC) wave scattering, this mechanism is yet to be quantified. Such a quantification has been difficult in the past, because equatorial electron measurements simultaneous with EMIC waves have been limited, due to the highly localized presence of EMIC waves in the magnetosphere. In this study, we examine parameters controlling characteristics of EMIC wave induced relativistic (0.3-6 MeV) electron scattering, directly based on simultaneous wave and particle measurements from Van Allen Probes. We first present a case study when relativistic electrons respond differently during two intervals of intense ( 1 nT) EMIC wave observations: one with no scattering signature and one with efficient electron losses at >1.8 MeV. Based on the observed EMIC wave spectra and background plasma conditions, we calculate the wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing the modeled results with local observations of pitch angle distributions, we demonstrate that fpe/fce is critical in controlling the effectiveness of EMIC waves in scattering multi-MeV electrons. We then expand our analysis to explore the conditions (such as fpe/fce, wave frequency spectra, and ring current ion temperature and anisotropy levels) favorable for EMIC wave scattering multi-MeV electrons through multi-event analyses. Our study is important for accurately modeling relativistic electron loss processes in radiation belt electron forecasts.

  13. Ion waves driven by shear flow in a relativistic degenerate ...

    Indian Academy of Sciences (India)

    Abstract. We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical mag- netoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier ...

  14. Kinematical Diagrams for Conical Relativistic Jets Gopal-Krishna ...

    Indian Academy of Sciences (India)

    2007-02-28

    Feb 28, 2007 ... Kinematical Diagrams for Conical Relativistic Jets. Gopal-Krishna. 1. , Pronoy Sircar. 2. & Samir Dhurde. 3. 1National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune. University Campus, Post Bag No. 3, Pune 411 007, India. e-mail: krishna@ncra.tifr.res.in. 2Department of ...

  15. On spherically symmetric singularity-free models in relativistic ...

    Indian Academy of Sciences (India)

    These observations led to the search of spherically symmetric singularity-free cosmo- logical models with a perfect fluid source characterized by isotropic pressure This search resulted in construction of two spherically symmetric singularity-free relativistic cosmo- logical models, describing universes filled with non-adiabatic ...

  16. From Galilean-invariant to relativistic wave equations

    OpenAIRE

    Elizalde, E. (Emili), 1950-; Lobo Gutiérrez, José Alberto

    1980-01-01

    Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.

  17. Recent relativistic heavy ion collider results on photon, dilepton and ...

    Indian Academy of Sciences (India)

    large baryon density, the so-called quark gluon plasma. We focus on a specific category of observables: the electromagnetic probes which cover a large spectrum of experimental studies. Keywords. Quark gluon plasma; relativistic heavy ion collider; photon; vector meson; thermal dilepton; heavy quarks. PACS No. 25.75.Cj.

  18. Derivation of relativistic wave equation from the Poisson process

    Indian Academy of Sciences (India)

    Abstract. A Poisson process is one of the fundamental descriptions for relativistic particles: both fermions and bosons. A generalized linear photon wave equation in dispersive and homogeneous medium with dissipation is derived using the formulation of the Poisson process. This formulation provides a possible ...

  19. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  20. Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R; Valderrama, M Pavon; Arriola, E Ruiz

    2007-06-14

    The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.

  1. Non-relativistic supergravity in three space-time dimensions

    NARCIS (Netherlands)

    Zojer, Thomas

    2016-01-01

    This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary

  2. Ion waves driven by shear flow in a relativistic degenerate ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 5. Ion waves driven by shear flow in a relativistic degenerate ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  3. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  4. Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments

    Science.gov (United States)

    Kopeikin, Sergei

    2014-08-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review

  5. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  6. Test of relativistic gravity using microlensing of relativistically broadened lines in gravitationally lensed quasars

    CERN Document Server

    Neronov, A

    2015-01-01

    We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe Kalpha line in X-rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of red / blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution the full line spectrum). Measurement of the temporal evolution of the red / blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could...

  7. Abell 115: It Takes Two to Tango - The interaction of Relativistic and Thermal Plasma in a Merging Subcluster

    Science.gov (United States)

    Forman, William

    2011-09-01

    We propose a 310 ks ACIS-I observation of the merging cluster A115 whose northern subcluster, A115-N, hosts 3C28 which shows two wispy "tails" pointing in the direction of subcluster motion! With 360 ks (310 ks new, plus 50 ks archival), we can study the hydrodynamics of the gas flow in and around A115-N to determine flow velocities that are traced by the radio plasma. We will measure and compare the circulation time of the gas to the aging time of the radio emitting electrons, understand the structure of the relativistic plasma (i.e., thin sheath or filled cavity) by measuring distortions in the X-ray surface brightness, investigate magnetic draping, and develop a 3D model for the merger using extensive optical spectroscopy with the velocity of A115-N measured from the X-ray analysis.

  8. Real gas effects on receptivity to kinetic fluctuations

    Science.gov (United States)

    Tumin, Anatoli; Edwards, Luke

    2016-11-01

    Receptivity of high-speed boundary layers is considered within the framework of fluctuating hydrodynamics where stochastic forcing is introduced through fluctuating shear stress and heat flux stemming from kinetic fluctuations (thermal noise). The forcing generates unstable modes whose amplification downstream and may lead to transition. An example of high-enthalpy (16 . 53 MJ / kg) boundary layer at relatively low wall temperatures (Tw = 1000 K - 3000 K), free stream temperature (Te = 834 K), and low pressure (0 . 0433 atm) is considered. Dissociation at the chosen flow parameters is still insignificant. The stability and receptivity analyses are carried out using a solver for calorically perfect gas with effective Prandtl number and specific heats ratio. The receptivity phenomenon is unchanged by the inclusion of real gas effects in the mean flow profiles. This is attributed to the fact that the mechanism for receptivity to kinetic fluctuations is localized near the upper edge of the boundary layer. Amplitudes of the generated wave packets are larger downstream in the case including real gas effects. It was found that spectra in both cases include supersonic second Mack unstable modes despite the temperature ratio Tw /Te > 1 . Supported by AFOSR.

  9. Real-Gas Effects on Binary Mixing Layers

    Science.gov (United States)

    Okong'o, Nora; Bellan, Josette

    2003-01-01

    This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles

  10. Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events

    Science.gov (United States)

    Lu, Wenbin; Krolik, Julian; Crumley, Patrick; Kumar, Pawan

    2017-10-01

    Reverberation observations yielding a lag spectrum have uncovered an Fe K α fluorescence line in the tidal disruption event (TDE) Swift J1644+57. The discovery paper used the lag spectrum to argue that the source of the X-ray continuum was located very close to the black hole (˜30 gravitational radii) and moved subrelativistically. We reanalyse the lag spectrum, pointing out that dilution effects cause it to indicate a geometric scale an order of magnitude larger than inferred by Kara et al. If the X-ray continuum is produced by a relativistic jet, as suggested by the rapid variability, high luminosity and hard spectrum, this larger scale predicts an Fe ionization state consistent with efficient K α photon production. Moreover, the momentum of the jet X-rays impinging on the surrounding accretion flow on this large scale accelerates a layer of gas to speeds ˜0.1-0.2c, consistent with the blueshifted line profile. Implications of our results on the global picture of jetted TDEs are discussed. A power-law γ/X-ray spectrum may be produced by external ultraviolet (UV)-optical photons being repetitively inverse-Compton scattered by cold electrons in the jet, although our model for the K α reverberation does not depend on the jet radiation mechanism (magnetic reconnection in a Poynting jet is still a viable mechanism). The non-relativistic wind driven by jet radiation may explain the late-time radio rebrightening in Swift J1644+57. This energy injection may also cause the thermal UV-optical emission from jetted TDEs to be systematically brighter than in non-jetted ones.

  11. Implications of dark matter free streaming in the early Universe

    NARCIS (Netherlands)

    Diamanti, R.

    2017-01-01

    In this thesis, we link astrophysics and particle physics aspects in order to study the implications of the nature and properties of different types of dark matter candidates on the observable Universe. The main property which connects the different works on which this manuscript is based is

  12. The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics

    CERN Document Server

    Löffler, Frank; Bentivegna, Eloisa; Bode, Tanja; Diener, Peter; Haas, Roland; Hinder, Ian; Mundim, Bruno C; Ott, Christian D; Schnetter, Erik; Allen, Gabrielle; Campanelli, Manuela; Laguna, Pablo

    2011-01-01

    We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The Toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus Framework for high-performance computing and the Carpet adaptive mesh refinement driver. It implements spacetime evolution via the BSSN evolution system and general-relativistic hydrodynamics in a finite-volume discretization. The toolkit is under continuous development and contains many new code components that have been publicly released for the first time and are described in this article. We discuss the motivation behind the release of the toolkit, the philosophy underlying its de...

  13. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  14. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that $Z \\alpha .../3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self-generated...... constant. We are interested in the ground state energy in the simultaneous limit $Z \\rightarrow \\infty$, $\\alpha \\rightarrow 0$ such that $\\kappa=Z \\alpha$ is fixed. The leading term in the energy asymptotics is independent of $\\kappa$, it is given by the Thomas-Fermi energy of order $Z^{7...

  15. Relativistic quantum Darwinism in Dirac fermion and graphene systems

    Science.gov (United States)

    Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis

    2012-02-01

    We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.

  16. General relativistic white dwarfs and their astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Boshkayev, Kuantay [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Rueda, Jorge A.; Ruffini, Remo [Sapienza University of Rome, Rome (Italy); Siutsou, Ivan [ICRANet, Square of Republic, Pescara (Italy)

    2014-09-15

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  17. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  18. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  19. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  20. Experimental considerations for quantum-entanglement studies with relativistic fermions

    Energy Technology Data Exchange (ETDEWEB)

    Schlemme, Steffen; Peck, Marius; Enders, Joachim [TU Darmstadt (Germany); Bodek, Kazimierz; Rozpedzik, Dagmara; Zejma, Jacek [Jagiellonian University, Cracow (Poland); Caban, Pawel; Rembielinski, Jakub [University of Lodz, Lodz (Poland); Ciborowski, Jacek; Dragowski, Michal; Wlodarczyk, Marta [Warsaw University, Warsaw (Poland); Kozela, Adam [Institute of Nuclear Physics, PAS, Cracow (Poland)

    2015-07-01

    The QUEST (Quantum entanglement of Ultra-relativistic Electrons in Singlet and Triplet states) project is aimed at the determination of the electron spin correlation function at relativistic energies. Electron pairs are created through Moeller scattering, and polarization observables are planned to be measured in Mott scattering. The predicted spin correlation function is energy dependent with values of several per cent at energies of 10-20 MeV. The results of a first test experiment at the S-DALINAC were not sensitive enough to detect entangled and Mott-scattered electron pairs at the expected energies. Further steps are either to improve the former setup or design a new polarimeter for lower energies to improve statistics due to the higher scattering cross sections. This contribution presents general considerations, test results, and an outlook.

  1. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy...... electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations...... are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level...

  2. MATHEMATICAL MODELLING OF TWO-SPECIES RELATIVISTIC FLUIDS

    Directory of Open Access Journals (Sweden)

    Sebastiano Giambo

    2012-07-01

    Full Text Available An interface-capturing method is used to deduce equations governingfluid motion in a relativistic two-species flow. These kind of methodscombine simple fluid flow equations, which are the balance law forparticle number and energy-momentum tensor conservation equationfor global fluid, the balance laws for particle number density of eachspecies, with extra equations. Since equations of multi-species relativistic fluid are not closed assigning laws of the state of each species, closure equations are necessarily introduced. A model based on the axiom of existence of a temperature and an entropy for the global fluid, which verify an equation analogous to that holding in the case of a simple fluid, is formulated. Weak discontinuities compatible with such kind of mixture are also studied.

  3. Nonlinear collisionless damping of Weibel turbulence in relativistic blast waves

    Science.gov (United States)

    Lemoine, Martin

    2015-01-01

    The Weibel/filamentation instability is known to play a key role in the physics of weakly magnetized collisionless shock waves. From the point of view of high energy astrophysics, this instability also plays a crucial role because its development in the shock precursor populates the downstream with a small-scale magneto-static turbulence which shapes the acceleration and radiative processes of suprathermal particles. The present work discusses the physics of the dissipation of this Weibel-generated turbulence downstream of relativistic collisionless shock waves. It calculates explicitly the first-order nonlinear terms associated to the diffusive nature of the particle trajectories. These corrections are found to systematically increase the damping rate, assuming that the scattering length remains larger than the coherence length of the magnetic fluctuations. The relevance of such corrections is discussed in a broader astrophysical perspective, in particular regarding the physics of the external relativistic shock wave of a gamma-ray burst.

  4. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  5. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  6. A Conic Section Approach to the Relativistic Reflection Law

    CERN Document Server

    Maesumi, Mohsen

    2016-01-01

    We consider the reflection of light, from a stationary source, off of a uniformly moving flat mirror, and derive the relativistic reflection law using well-known properties of conic sections. The effective surface of reflection (ESR) is defined as the loci of intersection of all beams, emanating from the source at a given time, with the moving mirror. Fermat principle of least time is then applied to ESR and it is shown that, assuming the independence of speed of light, the result is identical with the relativistic reflection law. For a uniformly moving mirror ESR is a conic and the reflection law becomes a case of bi-angular equation of the conic, with the incident and reflected beams coinciding with the focal rays of the conic. A short calculus-based proof for accelerating mirrors is also given.

  7. Cherenkov wakefield excitation by relativistic electron beams in plasma channels

    Science.gov (United States)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennday

    2017-10-01

    We report on our theoretical investigations of Cherenkov radiation excited by relativistic electron bunches propagating in plasma channels and in polaritonic channels. Two surface plasmons (SPs) modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. We show that the Cherenkov field profile change dramatically depending on the driver velocity and the channel size, and the longitudinal mode forms a reversed Cherenkov radiation cone due to the negative group velocity for sufficiently small air gaps. In addition, we find that when the channel surface is corrugated, a strong deflecting wake is excited by a relativistic electron bunch. A trailing electron bunch experiencing this wake is forced to undergo betatron oscillations and thus to emit radiation. Numerical simulation showed that intense x-ray radiation can be generated.

  8. Relativistic Bose-Einstein condensates thin-shell wormholes

    Science.gov (United States)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  9. f-Mode instability in relativistic neutron stars.

    Science.gov (United States)

    Gaertig, E; Glampedakis, K; Kokkotas, K D; Zink, B

    2011-09-02

    We present the first calculation of the basic properties of the f-mode instability in rapidly rotating relativistic neutron stars, adopting the Cowling approximation. By accounting for dissipation in neutron star matter, i.e., shear or bulk viscosity and superfluid mutual friction, we calculate the associated instability window. For our specific stellar model, a relativistic polytrope, we obtain a minimum gravitational growth time scale (for the dominant ℓ=m=4 mode) of the order of 10(3)-10(4)  s near the Kepler frequency Ω(K) while the instability is active above ∼0.92  Ω(K) and for temperatures ∼(10(9)-2×10(10))  K, characteristic of newborn neutron stars.

  10. Relativistic energies for the SiC radical

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chun-Sheng [Southwest Petroleum University, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu (China); Shui, Zheng-Wei [Southwest Petroleum University, School of Vocational and Technical Education, Nanchong (China)

    2015-11-15

    The analytical solutions of the Dirac equation with the modified Rosen-Morse potential energy model have been explored. Under the condition of the spin symmetry, we present the bound state energy equation. In the nonrelativistic limit, the relativistic energy equation becomes the nonrelativistic energy form deduced within the framework of the Schroedinger equation. We find that the relativistic effect of the relative motion of the ions leads to a little decrease in the vibrational energies when the vector potential is equal to the scalar potential for the electronic ground state of the SiC radical, while to an increase in those if the vector potential is greater than the scalar potential. (orig.)

  11. Radiation of relativistic electrons in a periodic wire structure

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, V.V., E-mail: sobolevaveronica@mail.ru; Naumenko, G.A.; Bleko, V.V.

    2015-07-15

    We present in this work the experimental investigation of the interaction of relativistic electron field with periodic wire structures. We used two types of the targets in experiments: flat wire target and sandwich wire target that represent the right triangular prism. The measurements were done in millimeter wavelength region (10–40 mm) on the relativistic electron beam with energy of 6.2 MeV in far-field zone. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. The experiments with flat wire target were carried out in two geometries. In the first geometry the electron beam passed close to the flat wire target surface. In the second case the electron beam passed through the flat wire structure with generation of a coherent backward transition radiation (CBTR). The comparison of the Cherenkov radiation intensity and BTR intensity from the flat wire target and from the flat conductive target (conventional BTR) was made.

  12. Channeling of ultra-relativistic positrons in bent diamond crystals

    Directory of Open Access Journals (Sweden)

    R.G. Polozkov

    2015-06-01

    Full Text Available Results of numerical simulations of channeling of ultra-relativistic positrons are reported for straight and uniformly bent diamond crystals. The projectile trajectories in a crystal are computed using a newly developed module of the MBN Explorer package which simulates classical trajectories in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and the crystal atoms. The Monte Carlo method is employed to sample the incoming positrons and to account for thermal vibrations of the crystal atoms. The channeling parameters and emission spectra of incident positrons with a projecti le energy of 855 MeV along C(110 crystallographic planes are calculated for different bending radii of the crystal. Two features of the emission spectrum associated with positron oscillations in a channel and synchrotron radiation are studied as a function of crystal curvature.

  13. The ‘twin paradox’ in relativistic rigid motion

    Science.gov (United States)

    Ben-Ya'acov, Uri

    2016-09-01

    Relativistic rigid motion suggests a new version for the so-called ‘twin paradox’, comparing the ages of two astronauts on a very long spaceship. Although there is always an instantaneous inertial frame in which the whole spaceship, being rigid, is simultaneously at rest, the twins’ ages, measured as the proper-times along their individual world lines, are different when they are located at remote parts of the spaceship. The age, or proper-time, difference depends on the distance at rest between the astronauts and the rapidity difference between start to end. The relation of the age difference with the relative Doppler shift of light signals transmitted between the astronauts and implications for the possibility to assign a common age (proper-time) to complex, spatially extended, relativistic systems are also discussed.

  14. Relativistic Band Calculation and the Optical Properties of Gold

    DEFF Research Database (Denmark)

    Christensen, N Egede; Seraphin, B. O.

    1971-01-01

    The energy band structure of gold is calculated by the relativistic augmented-plane-wave (RAPW) method. A nonrelativistic calculation is also presented, and a comparison between this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects are of the same order...... of magnitude as the gaps (approximately 1 eV). Various integrated functions, density of states, joint density of states, and energy distributions of joint density of states are derived from the RAPW calculation. These functions are used in an interpretation of photoemission and static reflectance measurements...... and comparison to the observed temperature shifts of the elements of structure in the experimental ε2 function. Such structure may originate in extended rather than localized regions of k→ space. In contrast, critical-point transitions show up clearly in modulated reflectance spectra, and all elements...

  15. Synchrotron Radiation Maps from Relativistic MHD Jet Simulations

    Directory of Open Access Journals (Sweden)

    Dimitrios Millas

    2017-11-01

    Full Text Available Relativistic jets from active galactic nuclei (AGN often display a non-uniform structure and are, under certain conditions, susceptible to a number of instabilities. An interesting example is the development of non-axisymmetric, Rayleigh-Taylor type instabilities in the case of differentially rotating two-component jets, with the toroidal component of the magnetic field playing a key role in the development or suppression of these instabilities. We have shown that higher magnetization leads to stability against these non-axisymmetric instabilities. Using ray-casting on data from relativistic MHD simulations of two-component jets, we now investigate the effect of these instabilities on the synchrotron emission pattern from the jets. We recover many well known trends from actual observations, e.g., regarding the polarization fraction and the distribution of the position angle of the electric field, in addition to a different emitting region, depending on the stability of the jet.

  16. Relativistic Warning to Space Missions Aimed to Reach Phobos

    CERN Document Server

    Yefremov, Alexander P

    2012-01-01

    Disagreement in estimations of the observed acceleration of Phobos yields several theories empirically modifying classical description of motion of the satellite, but its orbital positions detected by Mars-aimed spacecraft differ from predictions. It is shown that the satellite's orbital perturbations can be explained as manifestations of the relativistic time-delay effect ignored in classical models. So computed limits of Phobos' acceleration essentially exceed the experimental values. The satellite's expected orbital shift is calculated for the moment of contact with a landing module of the Phobos-Grunt project; the shift assessed in kilometers may prevent the mission success. Limits of the apparent relativistic accelerations are predicted for fast satellites of Jupiter.

  17. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  18. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    Science.gov (United States)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; hide

    2010-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection behind the shock. We calculate the radiation from deflected electrons in the turbulent magnetic fields. The properties of this radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.

  19. Efficient two-component relativistic method for large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

  20. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the

  1. Relativistic protons for image-guided stereotactic radiosurgery

    Science.gov (United States)

    Durante, M.; Stöcker, H.

    2012-07-01

    Bragg-peak radiosurgery and proton radiography have been used in radiotherapy over the past few years. Non-Bragg-peak (plateau) relativistic protons (E>1 GeV) can offer advantages both in terms of precision and target margin reduction, and especially thanks to the possible simultaneous use of high-resolution online proton radiography. Here we will present initial simulations and experiments toward image-guided stereotactic radiosurgery using GeV protons.

  2. A quantum relativistic battle of the sexes cellular automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2017-02-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.

  3. The relativistic Boltzmann equation on a spherically symmetric gravitational field

    Science.gov (United States)

    Takou, Etienne; Ciake Ciake, Fidèle L.

    2017-10-01

    In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. We consider this equation on a spherically symmetric gravitational field spacetime. The collision kernel considered here is for the hard potentials case. We prove the existence of a unique global (in time) mild solution in a suitable weighted space.

  4. Thermodynamic interpretation of multiparticle emission in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, A.M.; Raha, S.

    1980-02-01

    The scattering of the heavy ion Ne from NaF is analyzed at relativistic energy. The spectra of the emission fragments are studied for evidence of a thermodynamic-hydrodynamic collective motion. The spectra of pion, deuteron, and proton emission are fitted for fixed beam and target. The fit is consistent with an interpretation of an expanding hot fluid of interacting nucleons. 2 figures.

  5. Relativistic Quasiparticle Random Phase Approximation in Deformed Nuclei

    OpenAIRE

    Pena Arteaga, Daniel

    2008-01-01

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogoliubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of th...

  6. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves

    Science.gov (United States)

    Chesler, Paul M.; Loeb, Abraham

    2017-07-01

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  7. Constraining Relativistic Generalizations of Modified Newtonian Dynamics with Gravitational Waves.

    Science.gov (United States)

    Chesler, Paul M; Loeb, Abraham

    2017-07-21

    In the weak-field limit of general relativity, gravitational waves obey linear equations and propagate at the speed of light. These properties of general relativity are supported by the observation of ultrahigh-energy cosmic rays as well as by LIGO's recent detection of gravitation waves. We argue that two existing relativistic generalizations of modified Newtonian dynamics, namely, the generalized Einstein-aether theory and bimetric modified Newtonian dynamics, display fatal inconsistencies with these observations.

  8. Interacting relativistic quantum dynamics for multi-time wave functions

    Directory of Open Access Journals (Sweden)

    Lienert Matthias

    2016-01-01

    Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  9. A new formulation of non-relativistic diffeomorphism invariance

    Directory of Open Access Journals (Sweden)

    Rabin Banerjee

    2014-10-01

    Full Text Available We provide a new formulation of non-relativistic diffeomorphism invariance. It is generated by localising the usual global Galilean symmetry. The correspondence with the type of diffeomorphism invariant models currently in vogue in the theory of fractional quantum Hall effect has been discussed. Our construction is shown to open up a general approach of model building in theoretical condensed matter physics. Also, this formulation has the capacity of obtaining Newton–Cartan geometry from the gauge procedure.

  10. A new formulation of non-relativistic diffeomorphism invariance

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Rabin, E-mail: rabin@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mitra, Arpita, E-mail: arpita12t@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mukherjee, Pradip, E-mail: mukhpradip@gmail.com [Department of Physics, Barasat Government College, Barasat, West Bengal (India)

    2014-10-07

    We provide a new formulation of non-relativistic diffeomorphism invariance. It is generated by localising the usual global Galilean symmetry. The correspondence with the type of diffeomorphism invariant models currently in vogue in the theory of fractional quantum Hall effect has been discussed. Our construction is shown to open up a general approach of model building in theoretical condensed matter physics. Also, this formulation has the capacity of obtaining Newton–Cartan geometry from the gauge procedure.

  11. The Mesozoic Era of relativistic heavy ion physics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  12. Electron injection by relativistic protons in active galactic nuclei

    Science.gov (United States)

    Sikora, Marek; Kirk, John G.; Begelman, Mitchell C.; Schneider, Peter

    1987-01-01

    It is shown that protons with Lorentz factors larger than about 1,000,000 are cooled very rapidly by collisions with soft photons in the environment of an AGN. If the energy distribution of accelerated protons is sufficiently flat, then most of the energy contained in relativistic protons will be transformed to pairs, and then to radiation. Under these conditions, proton cooling due to p-gamma interactions is much more important than energy losses due to inelastic proton-proton collisions.

  13. Semiclassical description of the relativistic nuclear mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, X. [Barcelona Univ. (Spain). Facultad de Fisica

    1995-11-01

    Semiclassical relativistic particle and energy densities for a set of fermions submitted to a scalar field and to the time-like component of a four-vector field are presented in the Wigner-Kirkwood and extended Thomas-Fermi mean field theories. The semiclassical approach is then applied to the non-linear {sigma} - {omega} model and the resulting variational equations are solved for finite nuclei and semi-infinite symmetric nuclear matter. (orig.)

  14. Relativistic extended Thomas-Fermi calculations of finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X.; Barranco, M. (Barcelona Univ. (Spain). Facultat de Fisica); Ohtsuka, N.; Faessler, Amand; Khoa, D.T.; Muether, H. (Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik)

    1991-11-01

    We have used for the first time a relativistic extended Thomas-Fermi method which includes up to (h/2{pi}){sup 2}-corrective terms to study the structure of finite nuclei. The potential part has been obtained from a local density approximation to Dirac-Brueckner calculations carried out with a realistic nucleon-nucleon potential. Some applications to fission barriers and optical potentials for heavy ion scattering are presented. (author).

  15. Kinematical Relativistic Corrections for Earth’s Rotation Parameters

    Science.gov (United States)

    2000-03-01

    Kinematical Relativistic Corrections for Earth’s Rotation Parameters V.A. Brumberg Institute of Applied Astronomy, 191187 St. Petersburg, Russia...1998) are to be considered in a DGRS (dynamically nonrotating geocentric reference system) ( Brumberg et al., 1996). Such a theory gives the explicit... Brumberg et al.(1996) and Brumberg (1997a). Using the VSOP87 series for the motion of the major planets (Bretagnon and Francou, 1988) this work was started

  16. On relativistic particle creation in Bose-Einstein condensates

    OpenAIRE

    Sabín, Carlos; Fuentes, Ivette

    2014-01-01

    We show that particle creation of Bogoliubov modes in a Bose-Einstein condensate due to the accelerated motion of the trap is a genuinely relativistic effect. To this end we show that Bogoliubov modes can be described by a time rescaling of the Minkowski metric. A consequence of this is that Rindler transformations are perceived by the phonons as generalised Rindler transformations where the speed of light is replaced by the speed of sound, enhancing particle creation at small velocities. Sin...

  17. Chemistry of the 5g elements. Relativistic calculations on hexafluorides

    Energy Technology Data Exchange (ETDEWEB)

    Dognon, Jean-Pierre [NIMBE, CEA, CNRS, Universite Paris-Saclay, CEA Saclay, Gif-sur-Yvette (France); Pyykkoe, Pekka [Department of Chemistry, University of Helsinki (Finland)

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkoe on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.

    Science.gov (United States)

    Dognon, Jean-Pierre; Pyykkö, Pekka

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relativistic N-body simulations with massive neutrinos

    Science.gov (United States)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  20. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  1. Symmetries and couplings of non-relativistic electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)

    2016-11-08

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.

  2. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  3. Relativistic elliptic matrix tops and finite Fourier transformations

    Science.gov (United States)

    Zotov, A.

    2017-10-01

    We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.

  4. Finite Element Method for Capturing Ultra-relativistic Shocks

    Science.gov (United States)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  5. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  6. A long time span relativistic precession model of the Earth

    Science.gov (United States)

    Tang, Kai; Soffel, Michael H.; Tao, Jin-He; Han, Wen-Biao; Tang, Zheng-Hong

    2015-04-01

    A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic integrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with corresponding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ±1 Myr around J2000.0 are provided. In the interval ±2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. Supported by the National Natural Science Foundation of China.

  7. Relativistic hydrodynamics in the presence of puncture black holes

    Science.gov (United States)

    Faber, Joshua A.; Baumgarte, Thomas W.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke

    2007-11-01

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole neutron star problem using conformal thin-sandwich initial data.

  8. Curved non-relativistic spacetimes, Newtonian gravitation and massive matter

    Energy Technology Data Exchange (ETDEWEB)

    Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu [Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-15

    There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.

  9. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  10. Forecasting the relativistic electron flux at geosynchronous orbit

    Science.gov (United States)

    Gorney, David J.; Koons, Harry C.

    1992-04-01

    A neural network, developed to model the temporal variations of relativistic (greater than 3 MeV) electrons at geosynchronous orbit, has been used to make reasonably accurate day-ahead forecasts of the relativistic electron flux at geosynchronous orbit. This model can be used to forecast days when internal discharges might occur on geosynchronous satellites or satellites operating within the outer Van Allen radiation belt. The neural network (in essence, a nonlinear prediction filter) consists of three layers of neurons, containing 10 neurons in the input layer, 6 neurons in a hidden layer, and 1 output neuron. The network inputs consist of ten consecutive days of the daily sum of the planetary magnetic index, Sigma Kp. The output is a prediction of the daily averaged electron flux for the tenth day. The neural network model, together with projections of Sigma Kp based on its historical behavior, can be used to make the day-ahead forecasts of the relativistic electron flux at geosynchronous orbit. A significantly better forecast is obtained by modifying the network to include one additional input, the measured daily averaged electron flux for the day prior to the forecast day, and one more neuron in the hidden layer. Both models are described in this report.

  11. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    Science.gov (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  12. Towards laboratory produced relativistic electron–positron pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  13. Demonstration of light reflection from the relativistic mirror

    Energy Technology Data Exchange (ETDEWEB)

    Pirozhkov, A S; Esirkepov, T Z; Kando, M; Fukuda, Y; Ma, J; Chen, L-M; Daito, I; Ogura, K; Homma, T; Hayashi, Y; Kotaki, H; Sagisaka, A; Mori, M; Koga, J K; Kawachi, T; Daido, H; Bulanov, S V; Kimura, T; Kato, Y; Tajima, T [Advanced Photon Research Center, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)], E-mail: pirozhkov.alexander@jaea.go.jp

    2008-05-01

    Electromagnetic wave frequency upshifting upon reflection from a relativistic mirror (the double Doppler effect) can be used for the generation of coherent high-frequency radiation. The reflected high-frequency pulse inherits the coherence, polarization, and temporal shape from the original laser pulse. A partly reflecting relativistic mirror (flying mirror) can be formed by a breaking wake wave created by a strong laser pulse propagating in underdense plasma [Bulanov S V et al. 2003 Phys. Rev. Lett. 91, 085001]. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the flying mirror. In the experiment, the breaking wake wave is created by a Ti:S laser pulse (2 TW, 76 fs) in helium plasma with the electron density of {approx}5x10{sup 19} cm{sup -3}. The incidence angle of the second laser pulse on the flying mirror is 45 deg. The reflected signal is observed in 24 shots, with the wavelength from 7 to 14 nm, which corresponds to the frequency upshifting factors from 55 to 114 and the relativistic gamma-factors from 4 to 6. The reflected signal contains at least 3x10{sup 7} photons/sr. The new source promises the generation of coherent ultrashort XUV and x-ray pulses with tunable wavelength and duration, with the possibility of focusing to record intensities.

  14. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  15. Self-focusing of Gaussian laser beam in weakly relativistic and ponderomotive cold quantum plasma

    Science.gov (United States)

    Aggarwal, Munish; Kumar, Harish; Richa, Gill, Tarsem Singh

    2017-01-01

    The paper presents investigation on self-focusing and self-phase modulation of Gaussian laser beam in a weakly relativistic and ponderomotive regime by taking into account the quantum effects. We have reported additional self-focusing for reduced value of beam width parameter on account of nonlinear dielectric contribution of relativistic ponderomotive plasma. Moreover, the significant contribution of the quantum effects to enhance the self-focusing and minimize the longitudinal phase shift has been noticed. A comparison has also been attempted with relativistic and ponderomotive, relativistic cold quantum and classical relativistic regimes. In the present investigation, we have observed that for the case of relativistic ponderomotive cold quantum plasma, the focusing is found to be earlier and strongest. Also, the minimum amount of phase shift is obtained. We have setup the nonlinear differential equations for the beam-width parameter and self-phase modulation by using variational approach and solved them numerically by the Runge-Kutta method.

  16. Measurements of ϕ φ meson production in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC)

    NARCIS (Netherlands)

    Abelev, B.I.; Bai, Y.; Botje, M.A.J.; Braidot, E; Snellings, R.J.M.; Mischke, A.; van Leeuwen, M.; Russcher, M.J.; Peitzmann, T.; Benedosso, F.

    2009-01-01

    We present results for the measurement of ϕ meson production via its charged kaon decay channel ϕ→K+K- in Au+Au collisions at √sNN=62.4,130, and 200 GeV, and in p+p and d+Au collisions at √sNN=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y|

  17. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  18. Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation

    OpenAIRE

    Dunkel, Jörn; Hänggi, Peter (Prof. Dr. Dr. h.c. mult.)

    2006-01-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy point-like Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, non-relativistic LE is deduced from this model, by taking into account the non-relativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativi...

  19. A Relativistic Motion Integrator: Numerical accuracy and illustration with BepiColombo and Mars-NEXT

    OpenAIRE

    Hees, A. van; Pireaux, S.

    2009-01-01

    Today, the motion of spacecraft is still described by the classical Newtonian equations of motion plus some relativistic corrections. This approach might become cumbersome due to the increasing precision required. We use the Relativistic Motion Integrator (RMI) approach to numerically integrate the native relativistic equations of motion for a spacecraft. The principle of RMI is presented. We compare the results obtained with the RMI method with those from the usual Newton plus correction app...

  20. Can van Hove singularities be observed in relativistic heavy-ion ...

    Indian Academy of Sciences (India)

    Keywords. Perturbative quantum chromodynamics; hard thermal loop; gluon condensate; quark–gluon plasma; dispersion relation; collective modes; van Hove singularity; relativistic heavy-ion collisions.