Special-relativistic model flows of viscous fluid
Rogava, A D
1996-01-01
Two, the most simple cases of special-relativistic flows of a viscous, incompressible fluid are considered: plane Couette flow and plane Poiseuille flow. Considering only the regular motion of the fluid we found the distribution of velocity in the fluid (velocity profiles) and the friction force, acting on immovable wall. The results are expressed through simple analytical functions for the Couette flow, while for the Poiseiulle flow they are expressed by higher transcendental functions (Jacobi's elliptic functions).
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P. [Dept. of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest, Konkoly Thege Miklós út 29-33, Hungary and Dept. of Energy Engineering, Budapest Univ. of Technology and Econ (Hungary); Biró, T. S. [Dept. of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest, Konkoly Thege Miklós út 29-33 (Hungary)
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
Numerical Construction of Magnetosphere with Relativistic Two-fluid Plasma Flows
Kojima, Yasufumi
2009-01-01
We present a numerical model in which a cold pair plasma is ejected with relativistic speed through a polar cap region and flows almost radially outside the light cylinder. Stationary axisymmetric structures of electromagnetic fields and plasma flows are self-consistently calculated. In our model, motions of positively and negatively charged particles are assumed to be determined by electromagnetic forces and inertial terms, without pair creation and annihilation or radiation loss. The global electromagnetic fields are calculated by the Maxwell's equations for the plasma density and velocity, without using ideal MHD condition. Numerical result demonstrates the acceleration and deceleration of plasma due to parallel component of the electric fields. Numerical model is successfully constructed for weak magnetic fields or highly relativistic fluid velocity, i.e, kinetic energy dominated outflow. It is found that appropriate choices of boundary conditions and plasma injection model at the polar cap should be expl...
A Shock-Patching Code for Ultra-Relativistic Fluid Flows
Wen, L; Laguna, P
1996-01-01
We have developed a one-dimensional code to solve ultra-relativistic hydrodynamic problems, using the Glimm method for an accurate treatment of shocks and contact discontinuities. The implementation of the Glimm method is based on an exact Riemann solver and van der Corput sampling sequence. In order to improve computational efficiency, the Glimm method is replaced by a finite differencing scheme in those regions where the fluid flow is sufficiently smooth. The accuracy and convergence of this hybrid method is investigated in tests involving planar, cylindrically and spherically symmetric flows that exhibit strong shocks and Lorentz factors of up to $\\sim 2000$. This hybrid code has proven to be successful in simulating the interaction between a thin, ultra-relativistic, spherical shell and a low density stationary medium, a situation likely to appear in Gamma-Ray Bursts, supernovae explosions, pulsar winds and AGNs.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Simple waves in relativistic fluids.
Lyutikov, Maxim
2010-11-01
We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Galilean relativistic fluid mechanics
Ván, P.
2017-01-01
Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Non-Newtonian Properties of Relativistic Fluids
Koide, Tomoi
2010-01-01
We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.
Relativistic fluid dynamics in heavy ion collisions
Pu, Shi
2011-01-01
This dissertation is about the study of three important issues in the theory of relativistic fluid dynamics: the stability of dissipative fluid dynamics, the shear viscosity, and fluid dynamics with triangle anomaly.(1)The second order theory of fluid dynamics is necessary for causality. However the causality cannot be guaranteed for all parameters. The constraints for parameters are then given. We also point out that the causality and the stability are inter-correlated. It is found that a causal system must be stable, but an acausal system in the boost frame at high speed must be unstable. (2)The transport coefficients can be determined in kinetic theory. We will firstly discuss about derivation of the shear viscosity via variational method in the Boltzmann equation. Secondly, we will compute the shear viscosity via AdS/CFT duality in a Bjorken boost invariant fluid with radial flow. It is found that the ratio of the shear viscosity to entropy density is consistent with the work of Policastro, Son and Starin...
Benedicks effect in a relativistic simple fluid
Garcia-Perciante, A L; Garcia-Colin, L S
2013-01-01
According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Relabeling symmetry in relativistic fluids and plasmas
Kawazura, Yohei; Fukumoto, Yasuhide
2014-01-01
The conservation of the recently formulated relativistic canonical helicity [Yoshida Z, Kawazura Y, and Yokoyama T 2014 J. Math. Phys. 55 043101] is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the "conventional helicity" is no longer a constant of motion. We have...
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Instabilities in a Relativistic Viscous Fluid
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
General relativistic aspects of ferromagneto-fluid
Asgekar, G.G.; Patwardhan, C.G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
General relativistic aspects of ferromagneto-fluid.
Asgekar, G. G.; Patwardhan, C. G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
Relativistic perfect fluids in local thermal equilibrium
Coll, Bartolomé; Sáez, Juan Antonio
2016-01-01
The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...
Acoustic perturbations in special-relativistic parallel flows
Rogava, A D; Mahajan, S M
1996-01-01
Acoustic perturbations in a parallel relativistic flow of an inviscid fluid are considered. The general expression for the frequency of the sound waves in a uniformly (with zero shear) moving medium is derived. It is shown that relativity evokes a difference in the frequencies of the sound-type perturbations propagating along and against the current. Besides, it is shown that the perturbations are not purely irrotational as they are in nonrelativistic case. For a non-uniformly (with nonzero shear) moving fluid a general set of equations, describing the evolution of the acoustic perturbations in relativistic sheared flows, is obtained and analysed when the temperature is nonrelativistic. It is shown that, like the nonrelativistic case, in the new system: (a) the excitation of vortical, transiently growing perturbations, and (b) the excitation of sound-type perturbations, extracting the kinetic energy of the background flow, are possible. It is demonstrated that the relativistic character of the motion signific...
Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows
Bernstein, J. P.; Hughes, P. A.
2009-09-01
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
New interior solution describing relativistic fluid sphere
KSH NEWTON SINGH; NARENDRA PRADHAN; NEERAJ PANT
2017-08-01
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two compact stars, namely, XTE J1739-289 (strange star 1.51$M_{\\odot}$, 10.9 km) and PSR J1614-2230 (neutron star 1.97$M_{\\odot}$, 14 km). The solution also satisfies all energy conditions with the compactness parameter lying within the Buchdahl limit.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Effective actions for relativistic fluids from holography
de Boer, Jan; Pinzani-Fokeeva, Natalia
2015-01-01
Motivated by recent progress in developing action formulations of relativistic hydrodynamics, we use holography to derive the low energy dissipationless effective action for strongly coupled conformal fluids. Our analysis is based on the study of novel double Dirichlet problems for the gravitational field, in which the boundary conditions are set on two codimension one timelike hypersurfaces (branes). We provide a geometric interpretation of the Goldstone bosons appearing in such constructions in terms of a family of spatial geodesics extending between the ultraviolet and the infrared brane. Furthermore, we discuss supplementing double Dirichlet problems with information about the near-horizon geometry. We show that upon coupling to a membrane paradigm boundary condition, our approach reproduces correctly the complex dispersion relation for both sound and shear waves. We also demonstrate that upon a Wick rotation, our formulation reproduces the equilibrium partition function formalism, provided the near-horiz...
grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories
Chandra, Mani; Foucart, Francois; Gammie, Charles F.
2017-03-01
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.
Time-dependent closure relations for relativistic collisionless fluid equations.
Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed
2010-11-01
Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.
An HLLC Solver for Relativistic Flows
Mignone, A
2005-01-01
We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores the missing contact wave in the solution of the Riemann problem. The resulting numerical scheme is computationally efficient, robust and positively conservative. The performance of the new solver is evaluated through numerical testing in one and two dimensions.
The case for hyperbolic theories of dissipation in relativistic fluids
Anile, A M; Romano, V; Anile, Angelo Marcello; Pavon, Diego; Romano, Vittorio
1998-01-01
In this paper we higlight the fact that the physical content of hyperbolic theories of relativistic dissipative fluids is, in general, much broader than that of the hyperbolic ones. This is substantiated by presenting an ample range of dissipative fluids whose behavior noticeably departs from Navier-Stokes.
Geophysical fluid flow experiment
Broome, B. G.; Fichtl, G.; Fowlis, W.
1979-01-01
The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.
Relativistic Fluid Dynamics: Physics for Many Different Scales
Comer Gregory L.
2007-01-01
Full Text Available The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion interesting and relevant applications of the general theory.
Instabilities in relativistic two-component (super)fluids
Haber, Alexander; Stetina, Stephan
2016-01-01
We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
Bazow, Dennis; Strickland, Michael
2016-01-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3+1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Basniev, Kaplan S; Chilingar, George V 0
2012-01-01
The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry. This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike. It is a must-have for any engineer working in the oil and gas industry.
Relativistic elasticity of stationary fluid branes
Armas, J.; Obers, N.A.
2013-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show...... under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...... of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations....
Relativistic Elasticity of Stationary Fluid Branes
Armas, Jay
2012-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Relativistic Flows at the Hotspots of Radio Galaxies and Quasars?
Georganopoulos, M; Georganopoulos, Markos; Kazanas, Demosthenes
2003-01-01
We review the broad band properties of X-ray detected hotspots in radio galaxies and quasars. We show that their collective properties can be unified in a framework involving frequency dependent relativistic beaming and varying orientations to the observer's line of sight. The simplest dynamic model consistent with this picture is a slowing-down relativistic flow downstream from the hotspot shock, suggesting that the jet flow remains relativistic to the hotspot distances.
Similarity solutions for radiation in time-dependent relativistic flows
Lucy, L B
2004-01-01
Exact analytic solutions are derived for radiation in time-dependent relativistic flows. The flows are spherically-symmetric homologous explosions or implosions of matter with a grey extinction coefficient. The solutions are suitable for testing numerical transfer codes, and this is illustrated for a fully relativistic Monte Carlo code.
Composite self-similar solutions for relativistic shocks: The transition to cold fluid temperatures
Pan, Margaret [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Sari, Re' em [California Institute of Technology, MS 130-33, Pasadena, California 91125 (United States) and Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)
2009-11-15
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytropelike density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the postbreakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through p/n of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are important only for extremely fast ejecta originating in a region very close to the stellar surface. This region grows if the shock becomes relativistic deeper in the star.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be build up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coars...
J Ghanbari
2009-12-01
Full Text Available Dynamics of stationary axisymmetric configuration of the viscous accreting fluids surrounding a non-rotating compact object in final stages of accretion flow is presented here. For the special case of thin disk approximation, the relativistic fluid equations ignoring self-gravity of the disk are derived in Schwarzschild geometry. For two different state equations, two sets of self-consistent analytical solutions of fully relativistic fluid equations are obtained separately. The effect of bulk viscosity coefficient on the physical functions are investigated for each state equation, as well as the bounds that exert on the free parameters due to the condition of accretion flow in the last stages. The solutions found show that the radial and azimuthal velocities, density and pressure of the fluid increase inwards for both state equations. Also, viscosity has no effect on the velocities and density distributions in both state equations. Two state equations show different types of behavior with respect to the bulk viscosity coefficient. For p=K state equation, if there is no bulk viscosity, the pressure remains constant throughout the disk, whereas with increasing bulk viscosity the pressure falls off in the inner regions but soon stabilizes at an almost constant value. However, for p=ρc2 state equation, the pressure is never constant, even in the absence of bulk viscosity. The larger the value of ηb, the higher the value of pressure in the inner regions.
Relativistic vortex dynamics in axisymmetric stationary perfect fluid configuration
Prasad, G.
2017-06-01
Relativistic formulation of Helmholtz's vorticity transport equation is presented on the basis of Maxwell-like version of Euler's equation of motion. Entangled characteristics associated with vorticity flux conservation in a vortex tube and in a stream tube are displayed on basis of Greenberg's theory of spacelike congruence of vortex lines and 1+1+(2) decomposition of the gradient of fluid's 4-velocity. Vorticity flux surfaces are surfaces of revolution about the rotation axis and are rotating with fluid's angular velocity due to gravitational isorotation in a stationary axisymmetric perfect fluid configuration. Fluid's angular velocity, angular momentum per baryon, injection energy, and invariant rotational potential are constant on such vorticity flux surfaces. Gravitation causes distortion of coaxial cylindrical vorticity flux surfaces in the limit of post-Newtonian approximation. The rotation of the fluid with angular velocity relative to vorticity flux surfaces generates swirl which causes the stretching of material vortex lines being wrapped on vorticity flux surfaces. Fluid helicity which is conserved in the fluid's rest frame does not remain conserved in a locally nonrotating frame because of the existence of swirl. Vortex lines are twist free in the absence of meridional circulations, but the twisting of spacetime due to dragging effect leads to the increase in vorticity flux in a vortex tube.
Composite self-similar solutions for relativistic shocks: the transition to cold fluid temperatures
Pan, Margaret
2008-01-01
The flow resulting from a strong ultrarelativistic shock moving through a stellar envelope with a polytrope-like density profile has been studied analytically and numerically at early times while the fluid temperature is relativistic--that is, just before and just after the shock breaks out of the star. Such a flow should expand and accelerate as its internal energy is converted to bulk kinetic energy; at late enough times, the assumption of relativistic temperatures becomes invalid. Here we present a new self-similar solution for the post-breakout flow when the accelerating fluid has bulk kinetic Lorentz factors much larger than unity but is cooling through $p/n$ of order unity to subrelativistic temperatures. This solution gives a relation between a fluid element's terminal Lorentz factor and that element's Lorentz factor just after it is shocked. Our numerical integrations agree well with the solution. While our solution assumes a planar flow, we show that corrections due to spherical geometry are importan...
Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime
Becattini, F
2015-01-01
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killing vector field in Riemann normal coordinates about the same spacetime point and we derive corrections with respect to the flat spacetime expressions. Thereby, we clarify the origin of the terms proportional to Riemann and Ricci tensors introduced in general hydrodynamic expansion of the stress-energy tensor.
Modelling general relativistic perfect fluids in field theoretic language
Mitskievich, N V
1999-01-01
Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Acoustic concentration of particles in fluid flow
Ward, Michael W.; Kaduchak, Gregory
2017-08-15
Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo
2015-01-01
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse tem...
The regular conducting fluid model for relativistic thermodynamics
Carter, Brandon
2012-01-01
The "regular" model presented here can be considered to be the most natural solution to the problem of constructing the simplest possible relativistic analogue of the category of classical Fourier--Euler thermally conducting fluid models as characterised by a pair of equations of state for just two dependent variables (an equilibrium density and a conducting scalar). The historically established but causally unsatisfactory solution to this problem due to Eckart is shown to be based on an ansatz that is interpretable as postulating a most unnatural relation between the (particle and entropy) velocities and their associated momenta, which accounts for the well known bad behaviour of that model which has recently been shown to have very pathological mixed-elliptic-hyperbolic comportments. The newer (and more elegant) solution of Landau and Lifshitz has a more mathematically respectable parabolic-hyperbolic comportment, but is still compatible with a well posed initial value problem only in such a restricted limi...
Ideal relativistic fluid limit for a medium with polarization
Montenegro, David; Tinti, Leonardo; Torrieri, Giorgio
2017-09-01
We use Lagrangian effective field theory techniques to construct the equations of motion for an ideal relativistic fluid of which the constituent degrees of freedom have microscopic polarization. We discuss the meaning of such a system and argue that it is the first term in the Effective Field Theory (EFT) appropriate for describing polarization observables in heavy ion collisions, such as final-state particle polarization and chiral magnetic and vortaic effects. We show that this system will generally require nondissipative dynamics at higher order in the gradient than second order, leading to potential stability issues known with such systems. We comment on the significance of this in the light of conjectured lower limits on viscosity.
Hot self-similar relativistic MHD flows
Zakamska, Nadia L; Blandford, Roger D
2008-01-01
We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan, E-mail: stefan.floerchinger@cern.ch; Wiedemann, Urs Achim, E-mail: urs.wiedemann@cern.ch
2014-01-20
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel–Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Mode-by-mode fluid dynamics for relativistic heavy ion collisions
Floerchinger, Stefan; Wiedemann, Urs Achim
2014-01-01
We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Swati Mukhopadhyay
2013-12-01
Full Text Available The unsteady two-dimensional flow of a non-Newtonian fluid over a stretching surface having a prescribed surface temperature is investigated. The Casson fluid model is used to characterise the non-Newtonian fluid behaviour. Similarity transformations are employed to transform the governing partial differential equations into ordinary differential equations. The transformed equations are then solved numerically by shooting method. Exact solution corresponding to momentum equation for steady case is obtained. The flow features and heat transfer characteristics for different values of the governing parameters viz. unsteadiness parameter, Casson parameter and Prandtl number are analysed and discussed in detail. Fluid velocity initially decreases with increasing unsteadiness parameter and temperature decreases significantly due to unsteadiness. The effect of increasing values of the Casson parameter is to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter.
Dissipation process of binary mixture gas in thermally relativistic flow
Yano, Ryosuke
2016-01-01
In this paper, we discuss dissipation process of the binary mixture gas in the thermally relativistic flow \\textcolor{red}{by focusing on the characteristics of the diffusion flux}. As an analytical object, we consider the relativistic rarefied-shock layer problem around the triangle prism. Numerical results of the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox \\textit{et al}. [Physica A, 84, 1, pp.165-174 (1976)]. In the case of the uniform flow with the small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of the wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is simil...
Unsteady unidirectional micropolar fluid flow
无
2011-01-01
This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particula...
New shear-free relativistic models with heat flow
Msomi, A M; Maharaj, S D
2013-01-01
We study shear-free spherically symmetric relativistic models with heat flow. Our analysis is based on Lie's theory of extended groups applied to the governing field equations. In particular, we generate a five-parameter family of transformations which enables us to map existing solutions to new solutions. All known solutions of Einstein equations with heat flow can therefore produce infinite families of new solutions. In addition, we provide two new classes of solutions utilising the Lie infinitesimal generators. These solutions generate an infinite class of solutions given any one of the two unknown metric functions.
Muronga, A
2007-01-01
In the causal theory of relativistic dissipative fluid dynamics, there are conditions on the equation of state and other thermodynamic properties such as the second-order coefficients of a fluid that need to be satisfied to guarantee that the fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the causal theory, which are the relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation (relaxation lengths), are presented for partonic and hadronic systems. These coefficients involves relativistic thermodynamic integrals. The integrals are presented for general case and also for different regimes in the temperature--chemical potential plane. It is shown that for a given equation of state these second-order coefficients are not additional parameters but they are determined by the equation of state. We also present the prescription on the calculation of the freeze-out particle spectra from the dynamics of r...
Formulation of relativistic dissipative fluid dynamics and its applications in heavy-ion collisions
Jaiswal, Amaresh
2014-01-01
Relativistic fluid dynamics finds application in astrophysics, cosmology and the physics of high-energy heavy-ion collisions. In this thesis, we present our work on the formulation of relativistic dissipative fluid dynamics within the framework of relativistic kinetic theory. We employ the second law of thermodynamics as well as the relativistic Boltzmann equation to obtain the dissipative evolution equations. We present a new derivation of the dissipative hydrodynamic equations using the second law of thermodynamics wherein all the second-order transport coefficients get determined uniquely within a single theoretical framework. An alternate derivation of the dissipative equations which does not make use of the two major approximations/assumptions namely, Grad's 14-moment approximation and second moment of Boltzmann equation, inherent in the Israel-Stewart theory, is also presented. Moreover, by solving the Boltzmann equation iteratively in a Chapman-Enskog like expansion, we have derived the form of second-...
Kaluza-Klein reduction of relativistic fluids and their gravity duals
Di Dato, Adriana
2013-01-01
We study the hydrodynamics of relativistic fluids with several conserved global charges (i.e., several species of particles) by performing a Kaluza-Klein dimensional reduction of a neutral fluid on a N-torus. Via fluid/gravity correspondence, this allows us to describe the long-wavelength dynamics of black branes with several Kaluza-Klein charges. We obtain the equation of state and transport coefficients of the charged fluid directly from those of the higher-dimensional neutral fluid. We specialize these results for the fluids dual to Kaluza-Klein black branes.
The effect of a two-fluid atmosphere on relativistic stars
Govender, Gabriel; Maharaj, Sunil D
2015-01-01
We model the physical behaviour at the surface of a relativistic radiating star in the strong gravity limit. The spacetime in the interior is taken to be spherically symmetrical and shear-free. The heat conduction in the interior of the star is governed by the geodesic motion of fluid particles and a nonvanishing radially directed heat flux. The local atmosphere in the exterior region is a two-component system consisting of standard pressureless (null) radiation and an additional null fluid with nonzero pressure and constant energy density. We analyse the generalised junction condition for the matter and gravitational variables on the stellar surface and generate an exact solution. We investigate the effect of the exterior energy density on the temporal evolution of the radiating fluid pressure, luminosty, gravitational redshift and mass flow at the boundary of the star. The influence of the density on the rate of gravitational collapse is also probed and the strong, dominant and weak energy conditions are al...
Waves in General Relativistic Two-fluid Plasma around a Schwarzschild Black Hole
Rahman, M Atiqur
2010-01-01
Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation
Viscous Flow with Large Fluid-Fluid Interface Displacement
Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild
1998-01-01
The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...
Thermophoretic Flow in Relativistic Heavy-Ion Collisions
Thoma, M H
2001-01-01
If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there might be a mixed phase of quarks and gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase thermophoresis leads to a strong flow.
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
Flow of polymer fluids through porous media
Zami-Pierre, Frédéric; Davit, Yohan; Loubens, Romain de; Quintard, Michel
2016-01-01
Non-Newtonian fluids are extensively used in enhanced oil recovery. However, understanding the flow of such fluids in complex porous media remains a challenging problem. In the presented study, we use computational fluid dynamics to investigate the creeping flow of a particular non-Newtonian fluid through porous media, namely a power-law fluid with a newtonian behavior below a critical shear rate. We show that the nonlinear effects induced by the rheology only weakly impact the topological st...
INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID
Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)
2014-10-20
The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.
Resistive relativistic magnetohydrodynamics from a charged multi-fluids perspective
Andersson, N
2012-01-01
We consider general relativistic magnetohydrodynamics from a charged multifluids point-of-view, taking a variational approach as our starting point. We develop the case of two charged components in detail, accounting for a phenomenological resistivity, providing specific examples for pair plasmas and proton-electron systems. We discuss both cold, low velocity, plasmas and hot systems where we account for a dynamical entropy component. The results for the cold case (which accord with recent work in the literature) provide a complete model for resistive relativistic magnetohydrodynamics, clarifying the assumptions that lead to various models that have been used in astrophysical applications. The analysis of the hot case is (as far as we are aware) novel, accounting for the relaxation times that are required to ensure causality and demonstrating the explicit coupling between fluxes of heat and charge.
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Grossi, Eduardo [Universita di Firenze, Florence (Italy); INFN, Florence (Italy); Bucciantini, Leda [Dipartimento di Fisica, Universita di Pisa (Italy); INFN, Pisa (Italy); Tinti, Leonardo [Jan Kochanowski University, Kielce (Poland)
2015-05-15
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ. (orig.)
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco, E-mail: becattini@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Bucciantini, Leda, E-mail: leda.bucciantini@df.unipi.it [Dipartimento di Fisica dell’Università di Pisa and INFN, 56127, Pisa (Italy); Grossi, Eduardo, E-mail: grossi@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Tinti, Leonardo, E-mail: dr.leonardo.tinti@gmail.com [Jan Kochanowski University, Kielce (Poland)
2015-05-05
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ.
On the relative importance of second-order terms in relativistic dissipative fluid dynamics
Molnár, E; Denicol, G S; Rischke, D H
2013-01-01
In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen number, in inverse Reynolds number, or their product. Terms of second order in Knudsen number give rise to non-hyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massless Boltzmann gas. Terms of second order in inverse Reynolds number arise from the collision term in the Boltzmann equation, upon expansion to second order in deviations from the single-particle distribution function in local thermodynamical equilibrium. In this work, we compute these second-order terms for a massless Boltzmann gas with constant scatt...
Steady laminar flow of fractal fluids
Balankin, Alexander S.; Mena, Baltasar; Susarrey, Orlando; Samayoa, Didier
2017-02-01
We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived.
A Dynamical Approach to the Exterior Geometry of a Perfect Fluid as a Relativistic Star
Fathi, Mohsen
2011-01-01
The aim of this article is to compare some of the solution classes, which were presented for a perfect charged fluid in Ref. [8], through studying the motion of a test charged particle on a relativistic charged star. We will show that how the interior solutions of such star, can affect its exterior geometry, by illustrating the corresponding effective potentials.
Fluid Flow Experiment for Undergraduate Laboratory.
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Steady laminar flow of fractal fluids
Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)
2017-02-12
We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.
Open/closed string duality and relativistic fluids
Niarchos, Vasilis
2016-07-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.
Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...
EXACT SOLUTIONS OF A DIPOLAR FLUID FLOW
T. HAYAT
2003-01-01
Exact solutions for three canonical flow problems of a dipolar fluid are obtained: (i)The flow of a dipolar fluid due to a suddenly accelerated plate, (ii) The flow generated by periodic oscillation of a plate, (iii) The flow due to plate oscillation in the presence of a transverse magnetic field. The solutions of some interesting flows caused by an arbitrary velocity of the plate and of certain special oscillations are also obtained.
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
Transverse electron-scale instability in relativistic shear flows
Alves, E P; Fonseca, R A; Silva, L O
2015-01-01
Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic ($\\gg c/\\omega_{pe}$) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales.
Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics
Prasad, G.
2017-10-01
The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid's motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid's vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz's flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid's motion obeying Euler's equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.
Solutions of Conformal Israel-Stewart Relativistic Viscous Fluid Dynamics
Marrochio, Hugo; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2013-01-01
We use symmetry arguments developed by Gubser to construct the first radially-expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultra-relativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the MUSIC viscous hydrodynamics simulation code.
Relativistic transport theory for simple fluids at first order in the gradients: a stable picture
Sandoval-Villalbazo, A; García-Colin, L S
2008-01-01
In this paper we show how using a relativistic kinetic equation. The ensuing expression for the heat flux can be casted in the form required by Classical Irreversible Thermodynamics. Indeed, it is linearly related to the temperature and number density gradients and not to the acceleration as the so called first order in the gradients theories contend. Since the specific expressions for the transport coefficients are irrelevant for our purposes, the BGK form of the kinetic equation is used. Moreover, from the resulting hydrodynamic equations it is readily seen that no instabilities are present in the transverse hydrodynamic velocity mode of the simple relativistic fluid.
Introduction to compressible fluid flow
Oosthuizen, Patrick H
2013-01-01
IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
Hydromagnetic rotating flow of third grade fluid
T. HAYAT; R. NAZ; A. ALSAEDI; M. M. RASHIDI
2013-01-01
This work investigates the flow of a third grade fluid in a rotating frame of reference. The fluid is incompressible and magnetohydrodynamic (MHD). The flow is bounded between two porous plates, the lower of which is shrinking linearly. Mathematical modelling of the considered flow leads to a nonlinear problem. The solution of this nonlinear problem is computed by the homotopy analysis method (HAM). Graphs are presented to demonstrate the effect of several emerging parameters, which clearly describe the flow characteristics.
Hamlin, Nathaniel D; Newman, William I
2013-04-01
We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence
Open/closed string duality and relativistic fluids
Niarchos, Vasilis
2015-01-01
We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N, large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2+1)-di...
Mathematical theory of compressible fluid flow
Von Mises, Richard
2012-01-01
Mathematical Theory of Compressible Fluid Flow covers the conceptual and mathematical aspects of theory of compressible fluid flow. This five-chapter book specifically tackles the role of thermodynamics in the mechanics of compressible fluids. This text begins with a discussion on the general theory of characteristics of compressible fluid with its application. This topic is followed by a presentation of equations delineating the role of thermodynamics in compressible fluid mechanics. The discussion then shifts to the theory of shocks as asymptotic phenomena, which is set within the context of
Polko, Peter; Markoff, Sera
2012-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube. These solutions are applicable to jets launched from a small region (e.g., near the inner edge of an accretion disk). As implied by earlier work, the flow can converge onto the rotation axis, potentially creating a collimation shock. In this first version of the method, we derive the gravitational contribution to the relativistic equations by analogy with non-relativistic flow. This approach captures the relativistic kinetic gravitational mass of the flowing plasma, but not that due to internal thermal and magnetic energies. A more sophisticated treatment, derived from the basic general relativistic magnetohydrodynamical equations, is currently being developed. Here we present an initial exploration of parameter space...
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Shusu Shi
2016-01-01
Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Bifurcated SEN with Fluid Flow Conditioners
F. Rivera-Perez
2014-01-01
Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.
A two-fluid model for black-hole accretion flows: particle acceleration and disc structure
Lee, Jason P.; Becker, Peter A.
2017-02-01
Hot, tenuous advection-dominated accretion flows around black holes are ideal sites for the Fermi acceleration of relativistic particles at standing shock waves in the accretion disc. Previous work has demonstrated that the shock-acceleration process can be efficient enough to power the observed, strong outflows in radio-loud active galaxies such as M87. However, the dynamical effect (back-reaction) on the flow, exerted by the pressure of the relativistic particles, has not been previously considered, and this effect can have a significant influence on the disc structure. We reexamine the problem by developing a new, two-fluid model for the structure of the accretion disc that includes the dynamical effect of the relativistic particle pressure, combined with the pressure of the background (thermal) gas. The new model is analogous to the two-fluid model of cosmic ray acceleration in supernova-driven shock waves. As part of the model, we also develop a new set of shock jump conditions, which are solved along with the hydrodynamic conservation equations to determine the structure of the accretion disc. The solutions include the formation of a mildly relativistic outflow (jet) at the shock radius, driven by the relativistic particles accelerated in the disc. One of our main conclusions is that in the context of the new two-fluid accretion model, global smooth (shock-free) solutions do not exist, and the disc must always contain a standing shock wave, at least in the inviscid case considered here.
Grassi, A.; Grech, M.; Amiranoff, F.; Pegoraro, F.; Macchi, A.; Riconda, C.
2017-02-01
The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.
Magnetic Field Generation and Particle Energization in Relativistic Shear Flows
Liang, Edison; Boettcher, Markus; Smith, Ian
2012-10-01
We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.
Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids
Brauer, Uwe; Karp, Lavi
2014-01-01
This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein-Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a C ∞ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. In Brauer and Karp (J Diff Eqs 251:1428-1446, 2011) we constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as Hughes et al. (Arch Ratl Mech Anal 63(3):273-294, 1977) got for the vacuum Einstein equations. However, due to the presence of an equation of state with fractional power, the regularity is bounded from above.
Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids
Brauer, Uwe
2011-01-01
This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein--Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove a local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a $C^\\infty$ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. Previously the authors constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as the one of the classical result of Hughes, Kato and Marsden for the vacuum Einstein equations. However, due to the presence of an equation o...
Computation of two-fluid, flowing equilibria
Steinhauer, Loren; Kanki, Takashi; Ishida, Akio
2006-10-01
Equilibria of flowing two-fluid plasmas are computed for realistic compact-toroid and spherical-tokamak parameters. In these examples the two-fluid parameter ɛ (ratio of ion inertial length to overall plasma size) is small, ɛ ˜ 0.03 -- 0.2, but hardly negligible. The algorithm is based on the nearby-fluids model [1] which avoids a singularity that otherwise occurs for small ɛ. These representative equilibria exhibit significant flows, both toroidal and poloidal. Further, the flow patterns display notable flow shear. The importance of two-fluid effects is demonstrated by comparing with analogous equilibria (e.g. fixed toroidal and poloidal current) for a static plasma (Grad-Shafranov solution) and a flowing single-fluid plasma. Differences between the two-fluid, single-fluid, and static equilibria are highlighted: in particular with respect to safety factor profile, flow patterns, and electrical potential. These equilibria are computed using an iterative algorithm: it employs a successive-over-relaxation procedure for updating the magnetic flux function and a Newton-Raphson procedure for updating the density. The algorithm is coded in Visual Basic in an Excel platform on a personal computer. The computational time is essentially instantaneous (seconds). [1] L.C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).
Entropy production for a relativistic simple fluid in a weak electromagnetic field
García-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.
2016-11-01
Thermal dissipation in plasmas includes a variety of effects, most of them arising from the fact that these gases are usually composed of at least two species. In the case of a mild temperature single component charged fluid kinetic theory indicates that the temperature gradient is the only source of vector-type dissipation. However, if the temperature increases to a point in which the molecule's velocities approach the speed of light, electrothermal dissipation is possible even for the single component charged gas. The modification to the structure of the entropy production introduced by this effect is established in order to address the second law of thermodynamics for such a system. The entropy balance equation is obtained from the relativistic Boltzmann equation and the vector contribution to the entropy production is calculated in terms of the thermodynamic forces and the electromagnetic field using Chapman-Enskog's expansion. It is shown that the structure is consistent with the constitutive equation previously reported, in which a thermoelectric effect was found for a single component relativistic fluid. This effect does not have a non-relativistic counterpart and presents no ambiguity regarding the frame chosen as the comoving frame, which is an issue in the mixture case.
Fluid Mechanics An Introduction to the Theory of Fluid Flows
Durst, Franz
2008-01-01
Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.
Muronga, A
2007-01-01
Relativistic non-ideal fluid dynamics is formulated in 3+1 space--time dimensions. The equations governing dissipative relativistic hydrodynamics are given in terms of the time and the 3-space quantities which correspond to those familiar from non-relativistic physics. Dissipation is accounted for by applying the causal theory of relativistic dissipative fluid dynamics. As a special case we consider a fluid without viscous/heat couplings in the causal system of transport/relaxation equations. For the study of physical systems we consider pure (1+1)-dimensional expansion in planar geometry, (1+1)-dimensional spherically symmetric ({\\em fireball}) expansion, (1+1)-dimensional cylindrically symmetric expansion and a (2+1)-dimensional expansion with cylindrical symmetry in the transverse plane ({\\em firebarell} expansion). The transport/relaxation equations are given in terms of the spatial components of the dissipative fluxes, since these are not independent. The choice for the independent components is analogou...
Fluid flow control with transformation media
Urzhumov, Yaroslav A
2011-01-01
We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations, and physically implemented with anisotropic porous media permeable to the flow of fluids. In two different situations - for an impermeable object situated either in a free-flowing fluid or in a fluid-filled porous medium - we show that the object can be coated with a properly chosen inhomogeneous, anisotropic permeable medium, such as to preserve the streamlines of flow and the pressure distribution that would have existed in the absence of the object. The proposed fluid flow cloak completely eliminates any disturbance of the flow by the object, including the downstream wake. Consequently, the structure helps prevent the onset of turbulence by keeping the flow laminar even above the typical critical Reynolds number for the object of the same shape and size. The cloak also cancels the viscous drag force. This...
Mechanics of coupled granular/fluid flows
Vinningland, J.; Toussaint, R.; Johnsen, O.; Flekkoy, E. G.; Maloy, K. J.
2006-12-01
We introduce a hybrid numerical model for coupled flow of solid grains and intersticial fluid, which renders for complex hydrodynamic interactions between mobile grains. This model treats the solid phase as discrete particles, interacting mechanically with the other particles and with the intersticial flowing fluid. The fluid is described by continuum equations rendering for its advection by the local grains, superposed to a pressure diffusion ruled by a Darcy flow with a permeability depending on the local solid fraction. This model is aimed at describing accurately such coupled flow. This model is tested for two model situations, where it is compared to experimental results: 1/ Injection of a localized overpressure in a grain/fluid filled cell lying horizontally, where gravity is unimportant. 2/ Sedimentation of heavy grains falling into an initially grain-free fluid region. The development of pattern-forming instabilities is obtained in these two situations, corresponding to granular/fluid equivalents of the two-fluids Saffman-Taylor and Rayleigh-Taylor instabilities. Numerical and experimental results are shown to be consistent with each other.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Simulation based engineering in fluid flow design
Rao, J S
2017-01-01
This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models. Worked examples and exercises are given in each chapter. Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Engineering was developed in the form o...
Tracer technology modeling the flow of fluids
Levenspiel, Octave
2012-01-01
A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel. In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel. However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more. The result of this unreliable figure produced ineffective products in multiple reaction systems. Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data. First, the tracer method measured the actual flow of fluid through a vessel. Second, it developed a suitable model to represent the flow in question. Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures. In medicine, the tracer method is used to study the flow of chemicals—harmful and harmless—in the...
Fluid flow in carbon nanotubes and nanopipes
Whitby, M.; Quirke, N.
2007-02-01
Nanoscale carbon tubes and pipes can be readily fabricated using self-assembly techniques and they have useful electrical, optical and mechanical properties. The transport of liquids along their central pores is now of considerable interest both for testing classical theories of fluid flow at the nanoscale and for potential nanofluidic device applications. In this review we consider evidence for novel fluid flow in carbon nanotubes and pipes that approaches frictionless transport. Methods for controlling such flow and for creating functional device architectures are described and possible applications are discussed.
On a Singular Solution in Higgs Field (3) - Relativistical Energy Flow towards Higgs boson
Kitazawa, Kazuyoshi
2012-03-01
The mass of SM Higgs boson (H^0) is re-examined under fluid mechanical consideration of micro (femt-scale) Reynolds number in Higgs boson sea for the process of Higgs mechanism. In this analysis, two gauge particles (W and Z bosons) are adopted as representatives to describe the process through their each mass acquisition. The mass value of fluid mechanical H^0 (f.m.-H^0) is calculated relativistically at 128.6 GeV/c^2, which is a little (6.6 per-cent) larger than our mass value of the asymptotic solution (theoretical mass: 120.611 GeV/c^2) of Higgs field.footnotetextK. Kitazawa, DPF MEETING 2011: 166. This difference of mass value shows that there would be some extent of excess in sectional area's evaluation for f.m.-H^0. Because, in this numerical calculation we assumed that f.m.-H^0 in Higgs boson sea is sphere. While theoretical mass of H^0 had a shape of truncated-Octahedron which inscribes to the sectional circle of f.m.-H^0. So we may reduce this excess of mass since the drag force against the flow, which is proportional to sectional area of f.m.-H^0, corresponds to acquired mass by Higgs mechanism. It is noteworthy that theoretical mass above is almost at center of the most like range of latest LHC's result for SM Higgs boson mass.
High order numerical simulations of the Richtmyer Meshkov instability in a relativistic fluid
Zanotti, Olindo
2014-01-01
We study the Richtmyer--Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme adopts a finite volume Weighted Essentially Non-Oscillatory (WENO) reconstruction to increase accuracy in space, a local space-time discontinuous Galerkin predictor method to obtain high order of accuracy in time and a high order one-step time update scheme together with a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number $A>0$), and for the case in which a heavy fluid penetrates into a lower density one (Atwood number $A<0$). We find that, for large Lorentz factors \\gamma_s of the incident shock wave, the relativistic RM instability is...
Mathematical theory of compressible fluid flow
von Mises, Richard
2004-01-01
A pioneer in the fields of statistics and probability theory, Richard von Mises (1883-1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students - as well as a reference for professionals - Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with
Topology of helical fluid flow
Andersen, Morten; Brøns, Morten
2014-01-01
the zeroes of a single real function of one variable, and we show that three different flow topologies can occur, depending on a single dimensionless parameter. By including the self-induced velocity on the vortex filament by a localised induction approximation, the stream function is slightly modified...
Unsteady fluid flow in smart material actuated fluid pumps
John, Shaju; Cadou, Christopher
2005-05-01
Smart materials' ability to deliver large block forces in a small package while operating at high frequencies makes them extremely attractive for converting electrical to mechanical power. This has led to the development of hybrid actuators consisting of co-located smart material actuated pumps and hydraulic cylinders that are connected by a set of fast-acting valves. The overall success of the hybrid concept hinges on the effectiveness of the coupling between the smart material and the fluid. This, in turn, is strongly dependent on the resistance to fluid flow in the device. This paper presents results from three-dimensional unsteady simulations of fluid flow in the pumping chamber of a prototype hybrid actuator powered by a piezo-electric stack. The results show that the forces associated with moving the fluid into and out of the pumping chamber already exceed 10% of the piezo stack blocked force at relatively low frequencies ~120 Hz and approach 40% of the blocked force at 800 Hz. This reduces the amplitude of the piston motion in such a way that the volume flow rate remains approximately constant above operating frequencies of 500 Hz while the efficiency of the pump decreases rapidly.
Spatial variation of the magnetic field inside laminar flows of a perfect conductive fluid
Duka, Bejo; Boçi, Sonila
2017-01-01
The steady state of a perfect conductive fluid in laminar flow resulting from the ‘Hall effect’ is studied. Using the Maxwell equations, the spatial variation of the magnetic field in the steady state is calculated for three cases of different fluid flow geometries: flow between two infinite parallel planes, flow between two coaxial infinite-long cylinders and flow between two concentric spheres. According to our calculation of the three cases, the spatial variation of the magnetic field depends on the flow velocity. The magnetic field is strengthened in layers where the velocity is greater, but this dependency is negligible for non relativistic flows. Our approach in this study provides an example of how to receive interesting results using only basic knowledge of physics and mathematics.
Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation
Frønsdal, Christian
Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.
Singh, Ashok
2015-01-01
The present book provides guidance to understanding complicated coupled processes based on the experimental data available and implementation of developed algorithms in numerical codes. Results of selected test cases in the fields of closed-form solutions (e.g., deformation processes), single...... processes (such as groundwater flow) as well as coupled processes are presented. It is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation with the community....
Propagation of an ultra-short, intense laser in a relativistic fluid
Ritchie, A.B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.
Strong electron-scale instability in relativistic shear flows
Alves, Eduardo Paulo; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis
2013-10-01
Collisionless shear-driven plasma instabilities have recently been shown to be capable of generating strong and large-scale magnetic fields and may therefore play an important role in relativistic astrophysical outflows. We present a new collisionless shear-driven plasma instability, which operates in the plane transverse to the Kelvin Helmholtz instability (KHI). We develop the linear stability analysis of electromagnetic modes in the transverse plane and find that the growth rate of this instability is greater than the competing KHI in relativistic shears. The analytical results are confirmed with 2D particle-in-cell (PIC) simulations. Simulations also reveal the nonlinear evolution of the instability which leads to the development of mushroom-like electron-density structures, similar to the Rayleigh Taylor instability. Finally, the interplay between the competing instabilities is investigated in 3D PIC simulations.
FLUID FLOW IN ROTATING HELICAL SQUARE DUCTS
Chen Hua-jun; Zhang Ben-zhao; Zhang Jin-suo
2003-01-01
A numerical study is made for a fully developed laminar flow in rotating helical pipes.Due to the rotation, the Coriolis force can also contribute to the secondary flow.The interaction between rotation, torsion, and curvature complicates the flow characteristics.The effects of rotation and torsion on the flow transitions are studied in details.The results show that there are obvious differences between the flow in rotating ducts and in helical ducts without rotation.Certain hitherto unknown flow patterns are found.The effects of rotation and torsion on the friction factor are also examined.Present results show the characteristics of the fluid flow in rotating helical square ducts.
Yuen, Po Ki
2013-05-07
This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.
Topological fluid dynamics of interfacial flows
Brøns, Morten
1994-01-01
The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....
Fluid Flows driven by Oscillating Body Force
Vladimirov, V A
2016-01-01
In this note we consider general formulation of Euler's equations for an inviscid incompressible homogeneous fluid with an oscillating body force. Our aim is to derive the averaged equations for these flows with the help of two-timing method. Our main result is the general and simple form of the equation describing the averaged flows, which are derived without making any additional assumptions. The presented results can have many interesting applications.
Corner Flow of Power Law Fluids
Henriksen, P.; Hassager, Ole
1989-01-01
A local analysis of the flow of power law fluids near corners is performed. The equation for the stream function is shown to allow separated solutions in plane polar coordinates. The radial behavior is shown to be algebraic and results are given for the exponent for different values of corner ang...
Topological fluid mechanics of Axisymmetric Flow
Brøns, Morten
1998-01-01
to the authors knowledge has not been used systematically to high orders in topological fluid mechanics. We compare the general results with experimental and computational results on the Vogel-Ronneberg flow. We show that the topology changes observed when recirculating bubbles on the vortex axis are created...
Hodograph method in MHD orthogonal fluid flows
P. V. Nguyen
1992-01-01
Full Text Available Equations for steady plane MHD orthogonal flows of a viscous incompressible fluid of finite electrical conductivity are recast in the hodograph plane by using the Legendre transform function of the streamfunction. Three examples are studied to illustrate the developed theory. Solutions and geometries for these examples are determined.
Fluid flow for chemical and process engineers
Holland, F
1995-01-01
This major new edition of a popular undergraduate text covers topics of interest to chemical engineers taking courses on fluid flow. These topics include non-Newtonian flow, gas-liquid two-phase flow, pumping and mixing. It expands on the explanations of principles given in the first edition and is more self-contained. Two strong features of the first edition were the extensive derivation of equations and worked examples to illustrate calculation procedures. These have been retained. A new extended introductory chapter has been provided to give the student a thorough basis to understand the methods covered in subsequent chapters.
Oscillatory Couette flow of rotating Sisko fluid
T.HAYAT; S.ABELMAN; M.HAMESE
2014-01-01
The oscillatory Couette flow of a magnetohydrodynamic (MHD) Sisko fluid between two infinite non-conducting parallel plates is explored in a rotating frame. The lower plate is fixed, and the upper plate is oscillating in its own plane. Using MATLAB, a numerical solution to the resulting nonlinear system is presented. The influence of the physical parameters on the velocity components is analyzed. It is found that the effect of rotation on the primary velocity is more significant than that on the secondary velocity. Further, the oscillatory character in the flow is also induced by rotation. The considered flow situation behaves inertialess when the Reynolds number is small.
Cerebrospinal fluid flow. Pt. 3; Pathological cerebrospinal fluid pulsations
Schroth, G. (Dept. of Neuradiology, Tuebingen Univ. (Germany)); Klose, U. (Dept. of Neuradiology, Tuebingen Univ. (Germany))
1992-12-01
Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)
LAMINAR FLUID FLOW IN HELICAL ELLIPTICAL PIPE
无
2000-01-01
In this paper, using an orthogonal curvilinear coordinate system and solving the complete N-S equations, we analyzed the flow in a helical elliptical duct by the perturbation method. The first-order solutions of the stream function Ψ, axial velocity w and the velocity of secondary flow (u, v) were obtained. The effects of torsion, curvature and the axial pressure gradient on the secondary flow were discussed in detail. The study indicates that the torsion has first-order effect on the secondary flow in a helical elliptical pipe, the secondary flow is dominated by torsion when the axial pressure gradient is small and for increasing gradient the secondary flow is eventually dominated by the effect due to curvature. The fact that the torsion has no effect on fluid flow in a helical pipe with a circular cross section was also confirmed. The most important conclusion is that the flow in a helical elliptical pipe to the first-order can be obtained as a combination of the flow in a toroidal pipe and the flow in a twisted pipe.
Weakly regular fluid flows with bounded variation on a Schwarzschild background
LeFloch, Philippe G
2015-01-01
We study the global dynamics of isothermal fluids evolving in the domain of outer communication of a Schwarzschild black hole. We first formulate the initial value problem within a class of weak solutions with bounded variation (BV), possibly containing shock waves. We then introduce a version of the random choice method and establish a global-in-time existence theory for the initial value problem within the proposed class of weakly regular fluid flows. The initial data may have arbitrary large bounded variation and can possibly blow up near the horizon of the black hole. Furthermore, we study the class of possibly discontinuous, equilibrium solutions and design a version of the random choice method in which these fluid equilibria are exactly preserved. This leads us to a nonlinear stability property for fluid equilibria under small perturbations with bounded variation. Furthermore, we can also encompass several limiting regimes (stiff matter, non-relativistic flows, extremal black hole) by letting the physic...
Modeling Tools Predict Flow in Fluid Dynamics
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Simulation of relativistically colliding laser-generated electron flows
Yang, Xiaohu; Sarri, Gianluca; Borghesi, Marco
2012-01-01
The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell (PIC) simulations. The simulations show that electrons accelerated to relativistic speeds, cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of ...
Visualization of working fluid flow in gravity assisted heat pipe
Nemec Patrik
2015-01-01
Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.
Visualization of working fluid flow in gravity assisted heat pipe
Nemec, Patrik; Malcho, Milan
2015-05-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Rezzolla, Luciano; Rischke, Dirk H
2016-01-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work [1], we consider the fluid to have a non-zero magnetization. First, we assume a constant magnetic susceptibility $\\chi_{m}$ and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with $\\chi_{m}>0$), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with $\\chi_{m}<0$), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time $\\tau$ with a power law $\\sim\\tau^{-a}$, two distinct solutions can be found depending on the values of $a$ and $\\chi_m$. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional...
Piezoelectric Energy Harvesting in Internal Fluid Flow
Hyeong Jae Lee
2015-10-01
Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.
Thermodynamics of Fluids Under Flow Second Edition
Jou, David; Criado-Sancho, Manuel
2011-01-01
This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources
Lacombe, Olivier; Rolland, Yann
2016-11-01
Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.
Quantitative evaluation fo cerebrospinal fluid shunt flow
Chervu, S.; Chervu, L.R.; Vallabhajosyula, B.; Milstein, D.M.; Shapiro, K.M.; Shulman, K.; Blaufox, M.D.
1984-01-01
The authors describe a rigorous method for measuring the flow of cerebrospinal fluid (CSF) in shunt circuits implanted for the relief of obstructive hydrocephalus. Clearance of radioactivity for several calibrated flow rates was determined with a Harvard infusion pump by injecting the Rickham reservoir of a Rickham-Holter valve system with 100 ..mu..Ci of Tc-99m as pertechnetate. The elliptical and the cylindrical Holter valves used as adjunct valves with the Rickham reservoir yielded two different regression lines when the clearances were plotted against flow rats. The experimental regression lines were used to determine the in vivo flow rates from clearances calculated after injecting the Rickham reservoirs of the patients. The unique clearance characteristics of the individual shunt systems available requires that calibration curves be derived for an entire system identical to one implanted in the patient being evaluated, rather than just the injected chamber. Excellent correlation between flow rates and the clinical findings supports the reliability of this method of quantification of CSF shunt flow, and the results are fully accepted by neurosurgeons.
Sdowski, Aleksander; Tchekhovskoy, Alexander; Zhu, Yucong
2012-01-01
A numerical scheme is described for including radiation in multi-dimensional general-relativistic conservative fluid dynamics codes. In this method, a covariant form of the M1 closure scheme is used to close the radiation moments, and the radiative source terms are treated semi-implicitly in order to handle both optically thin and optically thick regimes. The scheme has been implemented in a conservative general relativistic radiation hydrodynamics code KORAL. The robustness of the code is demonstrated on a number of test problems, including radiative relativistic shock tubes, static radiation pressure supported atmosphere, shadows, beams of light in curved spacetime, and radiative Bondi accretion. The advantages of M1 closure relative to other approaches such as Eddington closure and flux-limited diffusion are discussed, and its limitations are also highlighted.
Flow acoustics in solid-fluid structures
Willatzen, Morten; Mads, Mikhail Vladimirovich Deryabin
2008-01-01
along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton's equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers....... A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.......The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion...
Flow of viscoplastic fluids in a rotating concentric annulus
Hassager, Ole; Bittleston, Simon H.
1992-01-01
A difficulty in any flow calculation with viscoplastic fluids such as Bingham fluids is the determination of possible plug zones in which no deformation occurs. This paper investigates the flow in a concentric annulus when there is both an axial and tangential flow, the tangent flow arising from ...
Visualization of working fluid flow in gravity assisted heat pipe
Nemec Patrik; Malcho Milan
2015-01-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fl...
Modeling Fluid Flow in Faulted Basins
Faille I.
2014-07-01
Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
Statistic fluid dynamic of multiphase flow
Lim, Hyunkyung; Glimm, James; Zhou, Yijie; Jiao, Xiangmin
2012-11-01
We study a turbulent two-phase fluid mixing problem from a statistical point of view. The test problem is high speed turbulent two-phase Taylor-Couette flow. We find extensive mixing in a transient state between an initial unstable and a final stable configuration. With chemical processing as a motivation, we estimate statistically surface area, droplet size distribution and transient droplet duration. This work is supported in part by the Nuclear Energy University Program of the Department of Energy, Battelle Energy Alliance LLC 00088495.
Relativistic and slowing down: the flow in the hotspots of powerful radio galaxies and quasars
Kazanas, M G D
2003-01-01
Pairs of radio emitting jets with lengths up to several hundred kiloparsecs emanate from the central region (the `core') of radio loud active galaxies. In the most powerful of them, these jets terminate in the `hotspots', compact high brightness regions, where the jet flow collides with the intergalactic medium (IGM). Although it has long been established that in their inner ($\\sim$parsec) regions these jet flows are relativistic, it is still not clear if they remain so at their largest (hundreds of kiloparsec) scales. We argue that the X-ray, optical and radio data of the hotspots, despite their at-first-sight disparate properties, can be unified in a scheme involving a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and viewed at different angles to its direction of motion. This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativ...
Murad, Mohammad Hassan
2014-01-01
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials, a suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for matter distribution obtained in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). These models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated numerically that the maximum compactness and mass increase in the presence of electric field and anisotropic pressures. Based on the a...
Helical flows of fractionalized Burgers' fluids
Muhammad Jamil
2012-03-01
Full Text Available The unsteady flows of Burgers’ fluid with fractional derivatives model, through a circular cylinder, is studied by means of the Laplace and finite Hankel transforms. The motion is produced by the cylinder that at the initial moment begins to rotate around its axis with an angular velocity Ωt, and to slide along the same axis with linear velocity Ut. The solutions that have been obtained, presented in series form in terms of the generalized Ga,b,c(•, t functions, satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for fractionalized Oldroyd-B, Maxwell and second grade fluids appear as special cases of the present results. Furthermore, the solutions for ordinary Burgers’, Oldroyd-B, Maxwell, second grade and Newtonian performing the same motion, are also obtained as special cases of general solutions by substituting fractional parameters α = β = 1. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison among models, is shown by graphical illustrations.
Optical density measurements in a multiphase cryogenic fluid flow system
Korman, Valentin; Wiley, John; Gregory, Don A.
2006-05-01
An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system...
Transport properties of the fluid produced at Relativistic Heavy-Ion Collider
Rajeev S Bhalerao
2010-08-01
It is by now well known that the relativistic heavy-ion collisions at RHIC, BNL have produced a strongly interacting fluid with remarkable properties, among them the lowest ever observed ratio of the coefficient of shear viscosity to entropy density. Arguments based on ideas from the string theory, in particular the AdS/CFT correspondence, led to the conjecture – now known to be violated – that there is an absolute lower limit 1/4 on the value of this ratio. Causal viscous hydrodynamics calculations together with the RHIC data have put an upper limit on this ratio, a small multiple of 1/4, in the relevant temperature regime. Less well-determined is the ratio of the coefficient of bulk viscosity to entropy density. These transport coefficients have also been studied non-perturbatively in the lattice QCD framework, and perturbatively in the limit of high-temperature QCD. Another interesting transport coefficient is the coefficient of diffusion which is also being studied in this context. In this paper some of these recent developments are reviewed and then the opportunities presented by the anticipated LHC data are discussed, for the general nuclear physics audience.
Numerical simulation of two-component flow fluid - fluid in the microchannel T- type
Shebeleva A.A.
2015-01-01
Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.
Harko, T
2016-01-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equa...
Heat transfer and fluid flow in microchannels
Mala, Ghulam Mohiuddin
Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the
Relativistic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics
Wang, Peng; Zhang, Weiqun
2007-01-01
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code {\\sl enzo}, which uses the Berger-Colella AMR algorithm and is parall...
Developments in the flow of complex fluids in tubes
Siginer, Dennis A
2015-01-01
This book is dedicated to the tube flow of viscoelastic fluids and Newtonian single and multi-phase particle-laden fluids. This succinct volume collects the most recent analytical developments and experimental findings, in particular in predicting the secondary field, highlighting the historical developments which led to the progress made. This book brings a fresh and unique perspective and covers and interprets efforts to model laminar flow of viscoelastic fluids in tubes and laminar and turbulent flow of single and multi-phase particle-laden flow of linear fluids in light of the latest findings. This book also: Presents a thorough account of successes and failures in modeling and predicting tube flow of viscoelastic fluids and concentrated particle-laden flow of Newtonian fluids with specific explanations throughout Emphasizes the most up-to-date challenges in the field without requiring the reader to wade through detailed treatment of various theories Bridges the latest research results and established kno...
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
Linear stability of plane creeping Couette flow for Burgers fluid
Hu, Kai-Xin; Peng, Jie; Zhu, Ke-Qin
2013-02-01
It is well known that plane creeping Couette flow of UCM and Oldroy-B fluids are linearly stable. However, for Burges fluid, which includes UCM and Oldroyd-B fluids as special cases, unstable modes are detected in the present work. The wave speed, critical parameters and perturbation mode are studied for neutral waves. Energy analysis shows that the sustaining of perturbation energy in Poiseuille flow and Couette flow is completely different. At low Reynolds number limit, analytical solutions are obtained for simplified perturbation equations. The essential difference between Burgers fluid and Oldroyd-B fluid is revealed to be the fact that neutral mode exists only in the former.
Perfect fluid flow from granular jet impact
Ellowitz, Jake; Zhang, Wendy W
2012-01-01
Experiments on the impact of a densely-packed jet of non-cohesive grains onto a fixed target show that the impact produces an ejecta sheet comprised of particles in collimated motion. The ejecta sheet leaves the target at a well-defined angle whose value agrees quantitatively with the sheet angle produced by water jet impact. Motivated by these experiments, we examine the idealized problem of dense granular jet impact onto a frictionless target in two dimensions. Numerical results for the velocity and pressure fields within the granular jet agree quantitatively with predictions from an exact solution for 2D perfect-fluid impact. This correspondence demonstrates that the continuum limit controlling the coherent collective motion in dense granular impact is Euler flow.
On stability and turbulence of fluid flows
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
Laminar flow of two miscible fluids in a simple network
Karst, Casey M; Geddes, John B
2012-01-01
When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by d...
Magnetic resonance imaging of cerebrospinal fluid flow in pediatrics
Heroux, R. [Children' s Hospital of Eastern Ontario, Magnetic Resonance Imaging Dept., Ottawa, Ontario (Canada)
2000-06-30
Magnetic Resonance Imaging of flowing protons in cerebrospinal fluid is useful for demonstrating areas of obstruction or stenosis of the ventricular system causing hydrocephalus. This is used in pediatric patients to assess the circulation of the cerebrospinal fluid. This article discusses two studies. In the first, the cerebrospinal fluid flow study helped the neurosurgeon assess the patency after a third ventriculocisternostomy. The second study evaluated the cerebrospinal fluid flowing through the foramen magnum in a patient with cerebellar tonsilar descent (Chiari malformation) and a syringomyelia. Different techniques to evaluate the flow studies are also discussed. (author)
Relay transport of relativistic flows in extreme magnetic fields of stars
Yao, W. P.; Qiao, B.; Xu, Z.; Zhang, H.; Chang, H. X.; Zhou, C. T.; Zhu, S. P.; Wang, X. G.; He, X. T.
2017-08-01
We find that the transport of relativistic flows in extreme magnetic fields can be achieved in a relay manner by considering the quantum electromagnetic cascade process, where photons play a key role as a medium. During the transport, the flow emits particle energy into photons via quantum synchrotron radiation, and then gains particles back by magnetic pair creation, forming a "particle-photon-particle" relay. Particle-in-cell simulations demonstrate that forward transport of the flow density is realized by a self-replenishment process with photon-pair cascades, while that of the flow energy is accomplished due to a new coupling path through radiation of photons. This novel transport mechanism is closely associated with jet generation and disk accretion around the neutron star of X-Ray Binaries, offering a potential explanation for the powerful jets observed there.
Fragile, P Chris
2008-01-01
(Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...
Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids
Bonn, D.; Rodts, S.; Groenink, M.; Rafaï, S.; Shahidzadeh-Bonn, N.; Coussot, P.
2008-01-01
The review deals with applications of magnetic resonance imaging (MRI) techniques to study flow. We first briefly discuss the principles of flow measurement by MRI and give examples of some applications, such as multiphase flows, the MRI rheology of complex fluid flows, and blood flows in the human
Relativistic Flows Using Spatial And Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics
Wang, Peng; Abel, Tom; Zhang, Weiqun; /KIPAC, Menlo Park
2007-04-02
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code enzo, which uses the Berger-Colella AMR algorithm and is parallel with dynamical load balancing using the widely available Message Passing Interface library. We discuss the coupling of the AMR framework with the relativistic solvers and show its performance on eleven test problems.
Exact solutions for steady flows of second-grade fluids
ZHANG Dao-xiang; FENG Su-xiao; LU Zhi-ming; LIU Yu-lu
2009-01-01
This paper aims to investigate exact solutions for a second-grade fluid flow with the inverse method.By assuming the relation between the vorticity field and the streamfunction,the exact solutions of the motion of plane second-grade fluids are investigated and obtained.The solutions obtained include simple Couette flows,slit jet flows and uniform flows over a series of distributed obstacles.
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
A "horizon adapted" approach to the study of relativistic accretion flows onto rotating black holes
Font, J A; Papadopoulos, P P; Font, José A.; Ibanez, José M.; Papadopoulos, Philippos
1998-01-01
We present a new geometrical approach to the study of accretion flows onto rotating (Kerr) black holes. Instead of Boyer-Lindquist coordinates, the standard choice in all existing numerical simulations in the literature, we employ the simplest example of a horizon adapted coordinate system, the Kerr-Schild coordinates. This choice eliminates boundary ambiguities and unphysical divergent behavior at the event horizon. Computations of Bondi-Hoyle accretion onto extreme Kerr black holes, performed here for the first time, demonstrate the key advantages of this procedure. We argue it offers the best approach to the numerical study of the, observationally, increasingly more accesible relativistic inner region around black holes.
Two-dimensional relativistic space charge limited current flow in the drift space
Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)
2014-04-15
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption
Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C
2015-01-01
We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...
Analyzing flow anisotropies with excursion sets in relativistic heavy-ion collisions
Mohapatra, Ranjita K; Srivastava, Ajit M
2011-01-01
We show that flow anisotropies in relativistic heavy-ion collisions can be analyzed using a certain technique of shape analysis of excursion sets recently proposed by us for CMBR fluctuations to investigate anisotropic expansion history of the universe. The technique analyzes shapes (sizes) of patches above (below) certain threshold value for transverse energy/particle number (the excursion sets) as a function of the azimuthal angle and rapidity. Modeling flow by imparting extra anisotropic momentum to the momentum distribution of particles from HIJING, we compare the resulting distributions for excursion sets at two different azimuthal angles. Angles with maximum difference in the two distributions identify the event plane, and the magnitude of difference in the two distributions relates to the magnitude of momentum anisotropy, i.e. elliptic flow.
Two-fluid oscillatory flow in a channel
C.Y.Wang
2011-01-01
The validity of Navier's partial slip condition is investigated by studying the oscillatory flow in a coated channel.The two-fluid model is used to solve the unsteady viscous equations exactly.Partial slip is experienced by the core fluid.It is found that Naviers condition does not hold for an unsteady core fluid.
New nodal methods for fluid flow equations
Michael, Edward-Pierre Edward
Several new highly accurate and highly efficient computational methods, called nodal integral methods (NIMs), for solving steady-state and time-dependent fluid flow equations have been developed. First, a new third order nodal integral method for solving the linear, two-dimensional, steady-state, convection-diffusion equation was developed without introducing Legendre moments of the dependent variable higher than the zeroth moment. Numerical comparisons of the new method with the second order NIM, the upwind difference scheme (UWDS) and the locally exact consistent upwind scheme of second order (LECUSSO) showed that, in the important 1% error range, the new method is more efficient than the UWDS, and the LECUSSO scheme, but, less efficient than the second order NIM. Also two new methods for solving the generic, two-dimensional, time-dependent, convection-diffusion equation were developed. One is a full space-time NIM in which both the spatial and temporal operators are discretized using the nodal integral approach. The other is a hybrid finite-difference/NIM method in which the temporal operator is discretized using a backward finite-difference approximation, and the spatial operator is discretized using the nodal integral approach. It was found, as expected, that the full space-time NIM is second order in both space and time while the hybrid finite-difference/NIM is second order in space but only first order in time. Finally, two new methods for solving the conservation of mass and the Navier-Stokes equations for incompressible fluid flow were developed. One is for the steady-state mass and Navier-Stokes equations while the other solves the time-dependent equations. The spatial stencils that result from these new formulations for the mass and the Navier-Stokes equations are similar to those obtained by traditional staggered-grid finite-difference methods. However, the new methods use second order approximations for both the velocities and the pressures. These
Herschel-Bulkley fluid flow through narrow tubes
Nallapu, Santhosh
2014-01-01
A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius.
Some specific features of the NMR study of fluid flows
Davydov, V. V.
2016-07-01
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times ( T 1 and T 2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T 1 and T 2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.
The friction control of magnetic fluid in the Couette flow
Labkovich, O. N.; Reks, A. G.; Chernobai, V. A.
2017-06-01
In the work characteristic areas of magnetic fluid flow are experimentally determined in the gap between the cylinders: the area of strong dipole-dipole interaction between magnetite particles 041,2. For areas with high flow losses in viscous friction is shown the possibility of reducing the introduction of magnetic fluid of carbon nanotubes and creating a rotating magnetic field.
Boundary control of fluid flow through porous media
Hasan, Agus; Foss, Bjarne; Sagatun, Svein Ivar
2010-01-01
The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper,......, some stabilizing controllers are constructed for various cases using Lyapunov design....
Simulations of flow induced ordering in viscoelastic fluids
Santos de Oliveira, I.S.
2012-01-01
In this thesis we report on simulations of colloidal ordering phenomena in shearthinning viscoelastic fluids under shear flow. Depending on the characteristics of the fluid, the colloids are observed to align in the direction of the flow. These string-like structures remain stable as long as the she
Working fluid flow visualization in gravity heat pipe
Nemec Patrik
2016-01-01
Full Text Available Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Working fluid flow visualization in gravity heat pipe
Nemec, Patrik; Malcho, Milan
2016-03-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Microfluidic flow switching design using volume of fluid model.
Chein, Reiyu; Tsai, S H
2004-03-01
In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good.
Relativistic reverberation in the accretion flow of a tidal disruption event.
Kara, Erin; Miller, Jon M; Reynolds, Chris; Dai, Lixin
2016-07-21
Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought.
Estakhr, Ahmad Reza
2016-10-01
DJ̲μ/Dτ =J̲ν ∂νU̲μ + ∂νT̲μν +Γαβμ J̲αU̲β ︷ Steady Component + ∂νRμν +Γαβμ Rαβ ︷ Perturbations EAMG equations are proper time-averaged equations of relativistic motion for fluid flow and used to describe Relativistic Turbulent Flows. The EAMG equations are used to describe Relativistic Jet.
Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Noble, Scott C. [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2012-01-10
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 Multiplication-Sign 96 Multiplication-Sign 64 to 384 Multiplication-Sign 384 Multiplication-Sign 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma {beta}; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma {beta} decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ({sup s}hearing box{sup )} calculations and with the recent non-relativistic global convergence studies of Hawley et al.
Vanishing condition for the heat flux of a relativistic fluid in a moving frame
Romero-Muñoz, Martín; Dagdug, Leonardo; Chacón-Acosta, Guillermo
2014-11-01
It has been asked if is appropriate to introduce the heat flow in the energy- momentum tensor, due to the non-mechanical nature of heat [1]. Although this could be answered by both kinetic and symmetry arguments, we address the problem by checking the validity of the second law of thermodynamics in a fluid that is boosted by a Lorentz transformation to a non comoving frame. In this contribution we found that this only can happen under certain conditions. Indeed, we found that there are a family of reference frames that satisfies these conditions, where Landau-Lifshitz frame is one of those. Additionally we relate such conditions with the null energy condition and the entropy production.
Instability criteria for steady flows of a perfect fluid.
Friedlander, Susan; Vishik, Misha M.
1992-07-01
An instability criterion based on the positivity of a Lyapunov-type exponent is used to study the stability of the Euler equations governing the motion of an inviscid incompressible fluid. It is proved that any flow with exponential stretching of the fluid particles is unstable. In the case of an arbitrary axisymmetric steady integrable flow, a sufficient condition for instability is exhibited in terms of the curvature and the geodesic torsion of a stream line and the helicity of the flow.
Elliptic flow as a probe for $\\psi(2S)$ production mechanism in relativistic heavy ion collisions
Chen, Baoyi
2016-01-01
I discuss the elliptic flows of $\\psi(2S)$ with different production mechanisms in the middle $p_T$ bin in $\\sqrt{s_{NN}}=2.76$ TeV Pb-Pb collisions. If the final $\\psi(2S)$s are mainly from the recombination of uncorrelated charm and anticharm quarks at $T\\approx T_c$, charm and anticharm quarks will carry large collective flows of the bulk medium, which will be inherited to the regenerated $\\psi(2S)$s. This indicates a larger elliptic flow of $\\psi(2S)$ than that of $J/\\psi$ which can be regenerated at $T\\ge T_c$, $v_2^{\\psi(2S)}>v_2^{J/\\psi}$. However, if the final $\\psi(2S)$s are mainly from the transitions of $J/\\psi\\rightarrow \\psi(2S)$ caused by the color screening of QGP, its elliptic flow should be close to the elliptic flow of $J/\\psi$, $v_2^{\\psi(2S)}\\lesssim v_2^{J/\\psi}$. Therefore, $\\psi(2S)$ elliptic flow is a sensitive probe for its production mechanisms in relativistic heavy ion collisions.
Lattice Boltzmann implementation for Fluids Flow Simulation in Porous Media
Xinming Zhang
2011-06-01
Full Text Available In this paper, the lattice-Boltzmann method is developed to investigate the behavior of isothermal two-phase fluid flow in porous media. The method is based on the Shan–Chen multiphase model of nonideal fluids that allow coexistence of two phases of a single substance. We reproduce some different idealized situations (phase separation, surface tension, contact angle, pipe flow, and fluid droplet motion, et al in which the results are already known from theory or laboratory measurements and show the validity of the implementation for the physical two-phase flow in porous media. Application of the method to fluid intrusion in porous media is discussed and shows the effect of wettability on the fluid flow. The capability of reproducing critical flooding phenomena under strong wettability conditions is also proved.
Flow of viscoplastic fluids in a rotating concentric annulus
Hassager, Ole; Bittleston, Simon H.
1992-01-01
pressure gradient is small compared to the yield stress of the fluid then the full solution predicts the existence of plugs attached to the outer wall of the annulus. The slot approximation fails to predict this feature. For larger pressure gradients the two solutions are in good agreement. The analytical......A difficulty in any flow calculation with viscoplastic fluids such as Bingham fluids is the determination of possible plug zones in which no deformation occurs. This paper investigates the flow in a concentric annulus when there is both an axial and tangential flow, the tangent flow arising from...... rotation of the inner cylinder of the annulus. The flow is analyzed by considering flow in a slot, for which an analytical solution is given, and by solving the full problem numerically. It is shown that when the boundary is set in motion an applied pressure gradient will always cause flow. If the applied...
Flow and Diffusion Equations for Fluid Flow in Porous Rocks for the Multiphase Flow Phenomena
Mohammad Miyan
2015-07-01
Full Text Available The multiphase flow in porous media is a subject of great complexities with a long rich history in the field of fluid mechanics. This is a subject with important technical applications, most notably in oil recovery from petroleum reservoirs and so on. The single-phase fluid flow through a porous medium is well characterized by Darcy’s law. In the petroleum industry and in other technical applications, transport is modeled by postulating a multiphase generalization of the Darcy’s law. In this connection, distinct pressures are defined for each constituent phase with the difference known as capillary pressure, determined by the interfacial tension, micro pore geometry and surface chemistry of the solid medium. For flow rates, relative permeability is defined that relates the volume flow rate of each fluid to its pressure gradient. In the present paper, there is a derivation and analysis about the diffusion equation for the fluid flow in porous rocks and some important results have been founded. The permeability is a function of rock type that varies with stress, temperature etc., and does not depend on the fluid. The effect of the fluid on the flow rate is accounted for by the term of viscosity. The numerical value of permeability for a given rock depends on the size of the pores in the rock as well as on the degree of interconnectivity of the void space. The pressure pulses obey the diffusion equation not the wave equation. Then they travel at a speed which continually decreases with time rather than travelling at a constant speed. The results shown in this paper are much useful in earth sciences and petroleum industry.
Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Fatema, Saba [Daffodil International University, Department of Natural Sciences, Dhaka (Bangladesh)
2015-11-15
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving the Einstein-Maxwell field equations with a preferred form of one of the metric potentials, and suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for the matter distribution considered in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g., electrically charged bare strange stars). Furthermore these models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated, numerically, that the maximum compactness and mass increase in the presence of an electric field and anisotropic pressures. Based on the analytic models developed in this present work, the values of some relevant physical quantities have been calculated by assuming the estimated masses and radii of some well-known potential strange star candidates like PSR J1614-2230, PSR J1903+327, Vela X-1, and 4U 1820-30. (orig.)
Estimation of fluid flow fields and their stagnation points
Larsen, Rasmus
Given a temporal sequence of images of fluids we will use local polynomials to regularise obser-vations of normal flows into smooth flow fields. This technique furthermore allows us to give a qualitative local description of the flow field and to estimate the position of stagnation points...
Streamline topology: Patterns in fluid flows and their bifurcations
Brøns, Morten
2007-01-01
Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fixed...
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
Instability of Taylor-Couette Flow of Electrorheological Fluid
PENG Jie; ZHU Ke-Qin
2004-01-01
A linearized instability analysis of Taylor-Couette flow between two rotating concentric cylinders of an electrorheological (ER) fluid is carried out. The ER fluid exhibits a yield stress in addition to the plastic viscosity when an extra electric-field is applied. It can be found that the yield stress plays a dual role in the flow instability.The possibility of the yield surface falling between the cylinders is analysed. Although small waves appeared on the yielded surface is considered, the yielded surface, which has been treated as a free surface, has little effect on the flow instability. The effects of axisymmetric perturbation on the flow instability are presented due to the axisymmetric of the basic flow. The parameterβ in the yield stress formula of the ER fluid is shown to have distinct effects on the flow instability characteristics.
Linear stability of plane creeping Couette flow for Burgers fluid
Kai-Xin Hu; Jie Peng; Ke-Qin Zhu
2013-01-01
It is well known that plane creeping Couette flow of UCM and Oldroy-B fluids are linearly stable.However,for Burges fluid,which includes UCM and Oldroyd-B fluids as special cases,unstable modes are detected in the present work.The wave speed,critical parameters and perturbation mode are studied for neutral waves.Energy analysis shows that the sustaining of perturbation energy in Poiseuille flow and Couette flow is completely different.At low Reynolds number limit,analytical solutions are obtained for simplified perturbation equations.The essential difference between Burgers fluid and Oldroyd-B fluid is revealed to be the fact that neutral mode exists only in the former.
Simulation of uncompressible fluid flow through a porous media
Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)
2009-02-28
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.
Destabilization of confined granular packings due to fluid flow
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Drag flow analysis of Oldroyd eight constant fluid
A.M. Siddiqui
2016-09-01
Full Text Available This article presents the steady drag flow problems. The incompressible Oldroyd eight constant fluid flow is considered between two infinite parallel plates. Three flow problems including the Couette flow, Poiseuille flow and Couette–Poiseuille flow are modeled. The source term appearing in the nonlinear differential equation for each case is simplified with the application of modified homotopy perturbation method, and thus the general solution is obtained. The validity of second order approximate analytic solutions is tested with the aid of a numerical technique. The order of accuracy has been obtained in tabular form and the graphs are presented to demonstrate the difference between the three flow regimes.
Two-Fluid Equilibrium for Transonic Poloidal Flows
Guazzotto, Luca; Betti, Riccardo
2012-03-01
Much analytical and numerical work has been done in the past on ideal MHD equilibrium in the presence of macroscopic flow. In recent years, several authors have worked on equilibrium formulations for a two-fluid system, in which inertial ions and massless electrons are treated as distinct fluids. In this work, we present our approach to the formulation of the two-fluid equilibrium problem. Particular attention is given to the relation between the two-fluid equations and the equilibrium equations for the single-fluid ideal MHD system. Our purpose is to reconsider the results of one-fluid calculation with the more accurate two-fluid model, referring in particular to the so-called transonic discontinuities, which occur when the poloidal velocity spans a range crossing the poloidal sound speed (i.e., the sound speed reduced by a factor Bp/B). It is expected that the one-fluid discontinuity will be resolved into a sharp gradient region by the two-fluid model. Also, contrary to the ideal MHD case, in the two-fluid model the equations governing the equilibrium are elliptic in the whole range of interest for transonic equilibria. The numerical solution of the two-fluid system of equations is going to be based on a code built on the structure of the existing ideal-MHD code FLOW.
Hunt, J. C. R.
1981-05-01
The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.
Superconfinement tailors fluid flow at microscales.
Setu, Siti Aminah
2015-06-15
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems.
Ultrasonic Doppler Velocity Profiler for Fluid Flow
2012-01-01
The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...
Superconfinement tailors fluid flow at microscales
Setu, Siti Aminah; Dullens, Roel P.A.; Hernández-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G.A.L.; Ledesma-Aguilar, Rodrigo
2015-01-01
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems. PMID:26073752
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.
Flow of viscoplastic fluids in eccentric annular geometries
Szabo, Peter; Hassager, Ole
1992-01-01
A classification of flowfields for the flow of a Bingham fluid in general eccentric annular geometries is presented. Simple arguments show that a singularity can exist in the stress gradient on boundaries between zones with yielded and un-yielded fluid respectively. A Finite Element code is used...... to verify this property of the Bingham fluid. An analytical solution for the flowfield in case of small eccentricities is derived....
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Generation of zonal flows in rotating fluids and magnetized plasmas
Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.
2006-01-01
contribution the generation of zonal flows will be illustrated in a simple fluid experiment performed in a rotating container with radial symmetric bottom topography. An effective mixing that homogenizes the potential vorticity in the fluid layer will lead to the replacement of the high-potential vorticity...
A variational approach to estimate incompressible fluid flows
2017-02-01
A variational approach is used to recover fluid motion governed by Stokes and Navier–Stokes equations. Unlike previous approaches where optical flow method is used to track rigid body motion, this new framework aims at investigating incompressible flows using optical flow techniques. We formulate a minimization problem and determine conditions under which unique solution exists. Numerical results using finite element method not only support theoretical results but also show that Stokes flow forced by a potential are recovered almost exactly.
EXACT SOLUTIONS FOR MAGNETOHYDRODYNAMIC FLOW IN A ROTATING FLUID
S.Asghar; Masood Khan; A.M.Siddiqui; T.Hayat
2002-01-01
An analytical solution is obtained for the flow due to solid-body rotations of an oscillating porous disk and of a fluid at infinity. Neglecting the induced magnetic field, the effects of the transversely applied magnetic field on the flow are studied. Further, the flow confined between two disks is also discussed. It is found that an infinite number of solutions exist for the flow confined between two disks.
Near critical swirling flow of a viscoelastic fluid
Ly, Nguyen; Rusak, Zvi; Tichy, John; Wang, Shixiao
2016-11-01
The interaction between flow inertia and elasticity in high Re, axisymmetric, and near-critical swirling flows of a viscoelastic fluid in a finite-length straight circular pipe is studied. The viscous stresses are described by the Giesekus constitutive model. The application of this model to columnar streamwise vortices is first investigated. Then, a nonlinear small-disturbance analysis is developed from the governing equations of motion. It explores the complicated interactions between flow inertia, swirl, and fluid viscosity and elasticity. An effective Re that links between steady states of swirling flows of a viscoelastic fluid and those of a Newtonian fluid is revealed. The effects of the fluid viscosity, relaxation time, retardation time and mobility parameter on the flow development and on the critical swirl for the appearance of vortex breakdown are explored. Decreasing the ratio of the viscoelastic characteristic times from one increases the critical swirl for breakdown. Increasing the Weissenberg number from zero or increasing the fluid mobility parameter from zero cause a similar effect. Results may explain changes in the appearance of breakdown zones as a function of swirl level that were observed in Stokes et al. (2001) experiments, where Boger fluids were used.
Effects of Rotation and Relativistic Charge Flow on Pulsar Magnetospheric Structure
Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.
2005-01-01
We propose an analytical 3-D model of the open field-line region of a neutron star (NS) magnetosphere. We construct an explicit analytic solution for arbitrary obliquity (angle between the rotation and magnetic axes) incorporating the effects of magnetospheric rotation, relativistic flow of charges (e.g. primary electron beam) along the open field lines, and E X B drift of these charges. Our solution employs the space-charge-limited longitudinal current calculated in the electrodynamic model of Muslimov & Tsygan (1992) and is valid up to very high altitudes nearly approaching the light cylinder. We assume that in the innermost magnetosphere, the NS magnetic field can be well represented by a static magnetic dipole configuration. At high altitudes the open magnetic field lines significantly deviate from those of a static dipole and tend to focus into a cylindrical bundle, swept back in the direction opposite to the rotation, and also bent towards the rotational equator. We briefly discuss some implications...
Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows
Nishikawa, K -I; Dutan, I; Zhang, B; Meli, A; Choi, E J; Min, K; Niemiec, J; Mizuno, Y; Medvedev, M; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D
2014-01-01
We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{\\pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{\\pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jet's initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing "Global" jet simulations containing shocks and velocity shears will ...
Viscoelastic fluid-structure interaction between a non-Newtonian fluid flow and flexible cylinder
Dey, Anita; Modarres-Sadeghi, Yahya; Rothstein, Jonathan
2016-11-01
It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will present a series of experiments investigating the response of a flexible cylinder placed in the cross flow of a viscoelastic fluid. The elastic flow instabilities occurring at high Weissenberg numbers can exert fluctuating forces on the flexible cylinder thus leading to nonlinear periodic oscillations of the flexible structure. These oscillations are found to be coupled to the time-dependent state of viscoelastic stresses in the wake of the flexible cylinder. The static and dynamic responses of the flexible cylinder will be presented over a range of flow velocities, along with measurements of velocity profiles and flow-induced birefringence, in order to quantify the time variation of the flow field and the state of stress in the fluid.
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Optimum solar collector fluid flow rates
Furbo, Simon; Shah, Louise Jivan
1996-01-01
the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...... to the temperature difference between the solar collector and the bottom of the mantle - an increase of about 1% of the thermal performance is possible.Finally, calculations showed that the highest thermal performance for large SDHW systems with constant volume flow rates in the solar collector loops are achieved....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...
Surface tension driven flow in glass melts and model fluids
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
Progress in modeling of fluid flows in crystal growth processes
Qisheng Chen; Yanni Jiang; Junyi Yan; Ming Qin
2008-01-01
Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics.Most crystal growth processes involve fluid flows,such as flows in the melt,solution or vapor.Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices.The application of devices requires large diameter crystals with a high degree of crystallographic perfection,low defect density and uniform dopant distribution.In this article,the flow models developed in modeling of the crystal growth processes such as Czochralski,ammono-thermal and physical vapor transport methods are reviewed.In the Czochralski growth modeling,the flow models for thermocapillary flow,turbulent flow and MHD flow have been developed.In the ammonothermal growth modeling,the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems.In the physical vapor transport growth modeling,the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth.In addition,perspectives for future studies on crystal growth modeling are proposed.
Relativistic gravity fields and electromagnetic fields generated by flows of matter
Bogdan, Victor M
2009-01-01
One of the highlight of this note is that the author presents the relativistic gravity field that Einstein was looking for. The field is a byproduct of the matter in motion. This field can include both the discrete and continuous components. In free space the waves produced in this field propagate with velocity of light. Another highlight is the proof of amended Feynman's formulas for electromagnetic potentials. This makes the formulas mathematically complete and precise. The main result can be stated as follows. In a fixed Lorentzian frame given is a trajectory $r_2(t,r_0)$ of flow of matter. The parameter $r_0$ changes in a compact set $F$ representing the position of the matter at some initial time $t_0.$ The flow must satisfy certain conditions of regularity. Given any signed measure $q(Q)$ of finite variation defined on Borel subsets of $F,$ representing total charge contained in the set $Q\\subset F,$ such a flow determines the scalar $\\phi$ and the vector $A$ potentials for a pair $(E,B)$ of fields sati...
Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.
2011-10-01
Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.
Numerical modeling of fluid flow with rafts: An application to lava flows
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
Distributed thermal micro sensors for fluid flow
Baar, van John Joannes Jacobus
2002-01-01
In this thesis the framework of thermal sensor-actuator structures is proposed for measuring the parameters pressure p, dynamic viscosity μ, thermal conductivity , specific heat c, density and fluid velocity v. All structures are based on simple resistive elements that can be used as actuator and s
Fluid flows in a librating cylinder
Sauret, Alban; Bars, Michael Le; Dizès, Stéphane Le; 10.1063/1.3680874
2012-01-01
The flow in a cylinder driven by time harmonic oscillations of the rotation rate, called longitudinal librations, is investigated. Using a theoretical approach and axisymmetric numerical simulations, we study two distinct phenomena appearing in this librating flow. First, we investigate the occurrence of a centrifugal instability near the oscillating boundary, leading to the so-called Taylor-G\\"ortler vortices. A viscous stability criterion is derived and compared to numerical results obtained for various libration frequencies and Ekman numbers. The strongly nonlinear regime well above the instability threshold is also documented. We show that a new mechanism of spontaneous generation of inertial waves in the bulk could exist when the sidewall boundary layer becomes turbulent. Then, we analyse the librating flow below the instability threshold and characterize the mean zonal flow correction induced by the nonlinear interaction of the boundary layer flow with itself. In the frequency regime where inertial mode...
Flow networks: A characterization of geophysical fluid transport
Ser-Giacomi, Enrico; Lopez, Cristobal; Hernandez-Garcia, Emilio
2014-01-01
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with lit...
Characterization and Low-Dimensional Modeling of Urban Fluid Flow
2014-10-06
dimensional description of this urban flow. On the computational side, a new spectral -element code was developed that was demonstrated to produce accurate...contaminant transport. 15. SUBJECT TERMS Urban fluid flow, Spectral element method, Particle Image Velocitmetry 16. SECURITY CLASSIFICATION OF: 17...number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a. CONTRACT NUMBER. Enter all
System proportions fluid-flow in response to demand signals
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Multiphase flow of immiscible fluids on unstructured moving meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam
2012-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...
Hydromechanical Modeling of Fluid Flow in the Lower Crust
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
Fluid migration in the subduction zone: a coupled fluid flow approach
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
A numerical model for dynamic crustal-scale fluid flow
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Modelling fluid flow in a reciprocating compressor
Tuhovcak Jan
2015-01-01
Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.
Modelling fluid flow in a reciprocating compressor
Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav
2015-05-01
Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.
Fluid dynamics: Water flows out of touch
Hof, Björn
2017-01-01
Superhydrophobic surfaces reduce the frictional drag between water and solid materials, but this effect is often temporary. The realization of sustained drag reduction has applications for water vehicles and pipeline flows.
Direct numerical simulation of solidification microstructures affected by fluid flow
Juric, D.
1997-12-01
The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow.
Heat transfer and fluid flow in minichannels and microchannels
Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R
2013-01-01
Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan
Harko, T.; Mak, M. K.
2016-09-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Velocity statistics in holographic fluids: magnetized quark-gluon plasma and superfluid flow
Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,450 Church Street, Ann Arbor, MI 48109 (United States); Patiño, Leonardo; Villasante, Mario [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México,A.P. 70-542, México D.F. 04510 (Mexico)
2016-10-28
We study the velocity statistics distribution of an external heavy particle in holographic fluids. We argue that when the dual supergravity background has a finite temperature horizon the velocity statistics goes generically as 1/v, compatible with the jet-quenching intuition from the quark-gluon plasma. A careful analysis of the behavior of the classical string whose apparent world sheet horizon deviates from the background horizon reveals that other regimes are possible. We numerically discuss two cases: the magnetized quark-gluon plasma and a model of superfluid flow. We explore a range of parameters in these top-down supergravity solutions including, respectively, the magnetic field and the superfluid velocity. We determine that the velocity statistics goes largely as 1/v, however, as we leave the non-relativistic regime we observe some deviations.
The fluid mechanics of continuous flow electrophoresis
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows
Brøns, Morten
1996-01-01
Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....
Network-Theoretic Modeling of Fluid Flow
2015-07-29
connections. Identifying such locations is especially critical when containment 3 measures are designed to control outbreaks of HIV [5], SARS [6...intuitive explanation that turbulent flows will be resilient against small-scale forcing while the global behavior can be easily modified by large-scale
On statistical equilibrium in helical fluid flows
M. V. Kurgansky
2006-01-01
Full Text Available The statistical mechanics of 3-D helical flows is re-examined for a continuum truncated at a top wavenumber. Based on the principle of equipartition of the flow enstrophy between helical modes, the emerging (i energy spectrum law '–2' and (ii formal mathematical analogy between the helicity and the thermodynamic entropy are discussed. It is noted that the '–2' scaling law is consistent with both spectral equilibrium and spectral cascade paradigms. In an attempt to apply the obtained results to a turbulent flow regime within the Earth's outer liquid core, where the net helicity of a turbulent flow component is presumably explained by Earth's rotation, it has been noticed that it is the energy spectral law '–1', but not '–2', which is likely realized there and within the logarithmic accuracy corresponds to the case of the velocity structure function [u(l]2 independency on the spatial scale l, the latter is consistent with observations. It is argued that the '–1' scaling law can also be interpreted in terms of the spectral equilibrium and it is emphasized that the causes of the likely dominance of the spectral law '–1' over the spectral law '–2' in this geophysical application deserve further investigation and clarification.
Optimization of micropillar sequences for fluid flow sculpting
Stoecklein, Daniel; Kim, Dongyuk; Di Carlo, Dino; Ganapathysubramanian, Baskar
2015-01-01
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross-section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new fo...
Fluid flow sensing with ionic polymer-metal composites
Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.
2016-04-01
Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C. (Terra Tek, Inc., Salt Lake City, UT (United States)); Springer, E.P. (Los Alamos National Lab., NM (United States))
1992-01-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Vertically aligned carbon nanotubes for sensing unidirectional fluid flow
Kiani, Keivan, E-mail: k_kiani@kntu.ac.ir
2015-05-15
From applied mechanics points of view, potential application of ensembles of single-walled carbon nanotubes (SWCNTs) as fluid flow sensors is aimed to be examined. To this end, useful nonlocal analytical and numerical models are developed. The deflection of the ensemble of SWCNTs at the tip is introduced as a measure of its sensitivity. The influences of the length and radius of the SWCNT, intertube distance, fluid flow velocity, and distance of the ensemble from the leading edge of the rigid base on the deflection field of the ensemble are comprehensively examined. The obtained results display how calibration of an ensemble of SWCNTs can be methodically carried out in accordance with the characteristics of the ensemble and the external fluid flow.
Fluid flow modeling in complex areas*, **
Poullet Pascal
2012-04-01
Full Text Available We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account the complexity of bathymetric data and allows us to work with regular meshes and thus preserves the efficiency essential for a 3D code. Dans cette étude, nous présentons les premiers résultats de simulation d’un écoulement d’un fluide incompressible visqueux dans un contexte environnemental réel. L’approche utilisée utilise une méthode de domaines fictifs pour une prise en compte d’un domaine physique tridimensionnel très irrégulier. Le schéma numérique combine un schéma de projection incrémentale et des volumes finis utilisant des volumes de contrôle adaptés à un maillage décalé. Les tests de validation sont menés pour les cas tests de la cavité double entraînée ainsi que l’écoulement dans un canal avec un obstacle placé de manière asymmétrique.
Taylor-Couette flow with radial fluid injection
Wilkinson, Nikolas; Dutcher, Cari S.
2017-08-01
Taylor-Couette cells have been shown to improve a number of industrial processes due to the wide variety of hydrodynamic flow states accessible. Traditional designs, however, limit the ability to introduce new fluids into the annulus during device operation due to geometric confinement and complexity. In this paper, a co- and counter-rotating Taylor-Couette cell with radial fluid injection has been constructed. The incorporation of 16 ports in the inner cylinder enables radial fluid injection during rotation of both cylinders. The design is also capable of continuous axial flow, enabling large injection volumes. The new inner cylinder design does not modify the critical Re for flow instabilities and can precisely inject a desired mass at a desired flow rate. A range of injection rates and masses were explored to quantify the effect of radial injection on the stability of the turbulent Taylor vortex structure. Only the highest injection rate and total mass studied (5.9 g/s, 100 g) modified the turbulent Taylor vortex structure after injection for a sustained period. The post-injection vortices remained larger than the pre-injection vortices, whereas at lower injection rates or masses, the vortex structure quickly returned to the pre-injection structure. This new system allows for in situ study of hydrodynamic effects on fluid-fluid (gas and liquid) mixing and multiphase complexation, growth, and structure. We demonstrated this new design's potential for studying the flocculation of bentonite using cationic polyacrylamide for enhancing water treatment operations.
FLUID FLOW INTERACTIONS IN OGUN RIVER, NIGERIA
Dr.Amartya Kumar Bhattacharya and G.Akin Bolaji
2010-02-01
Full Text Available Surface and groundwater interaction is an important aspect of the hydrologic cycle that borders on the watershed assessment, protection and restoration. In groundwater/surface water interactions, the groundwater component is much greater than the surface water but is much less visible and attracts less public interest. The mixing between surface and groundwater enables them to import their characteristics upon one another thereby counting a change in their parameters. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams to major river valleys. Many scientists have studied the physical aspects of groundwater/surface water interactions, but it is in recent times that these interactions have been looked upon in relation to their ecological implications. With the coming of a more holistic approach to environmental flows and environmental protection, surface water/groundwater (SW/GW interactions should receive heightened attention at multidisciplinary scale and more so, by policy makers and watershed managers. It is generally understood in conceptual form that surface water therefore has the ability to enhance or detract from groundwater quality and vice versa, yet little is known about the processes by which these two entities interact (Gardener, 1988. In the past, emphasis has been placed on studying the physical and chemical effects that groundwater has on surface water but it is also important to look at the ecological role surface water and groundwater interactions can play in maintenance of environmental flows in a river basin. In area where surface water and groundwater directly interacts, the important issue commonly raised in recent times are not only concern with water quality but related with ecology and biodiversity. Therefore, there is a need for thorough understanding of the surface water and groundwater interactions within catchments so as to enhance the sustainable development and management of
Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale
Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)
2007-02-15
Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
FLUID FLOW SEPARATION CHARACTER ON NOVEL HYBRID JOURNAL BEARING
CHEN Shujiang; LU Changhou; LI Lei
2006-01-01
The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design,the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.
Shogin, Dmitry; Amund Amundsen, Per
2016-10-01
We test the physical relevance of the full and the truncated versions of the Israel–Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.
Conformal anisotropic relativistic charged fluid spheres with a linear equation of state
Esculpi, M.; Alomá, E.
2010-06-01
We obtain two new families of compact solutions for a spherically symmetric distribution of matter consisting of an electrically charged anisotropic fluid sphere joined to the Reissner-Nordstrom static solution through a zero pressure surface. The static inner region also admits a one parameter group of conformal motions. First, to study the effect of the anisotropy in the sense of the pressures of the charged fluid, besides assuming a linear equation of state to hold for the fluid, we consider the tangential pressure p ⊥ to be proportional to the radial pressure p r , the proportionality factor C measuring the grade of anisotropy. We analyze the resulting charge distribution and the features of the obtained family of solutions. These families of solutions reproduce for the value C=1, the conformal isotropic solution for quark stars, previously obtained by Mak and Harko. The second family of solutions is obtained assuming the electrical charge inside the sphere to be a known function of the radial coordinate. The allowed values of the parameters pertained to these solutions are constrained by the physical conditions imposed. We study the effect of anisotropy in the allowed compactness ratios and in the values of the charge. The Glazer’s pulsation equation for isotropic charged spheres is extended to the case of anisotropic and charged fluid spheres in order to study the behavior of the solutions under linear adiabatic radial oscillations. These solutions could model some stage of the evolution of strange quark matter fluid stars.
Using artificial intelligence to control fluid flow computations
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Analytical heat and fluid flow in microchannels and microsystems
Cotta, Renato M; Naveira-Cotta, Carolina P
2016-01-01
This book focuses on the modeling and analysis of heat and fluid flow in microchannels and micro-systems, compiling a number of analytical and hybrid numerical-analytical solutions for models that account for the relevant micro-scale effects, with the corresponding experimental analysis validation when applicable. The volume stands as the only available compilation of easy to use analytically-based solutions for micro-scale heat and fluid flow problems, that systematically incorporates the most relevant micro-scale effects into the mathematical models, followed by their physical interpretation on the micro-system behavior.
Multiphase flow of immiscible fluids on unstructured moving meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;
2012-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization...... that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted...
Stochastic analysis of particle-fluid two-phase flows
无
2000-01-01
This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.
ZHANG Li-feng; ZHI Jian-jun; MOU Ji-ning; CUI Jian
2005-01-01
The κ-ε two-equation model is used to simulate the fluid flow in the continuous casting tundish coupling with the effect of thermal buoyancy. The natural convection induced by the thermal buoyancy generates an upward flow pattern especially at the outlet zone, and has little effect on the fluid flow in the inlet zone. The maximum viscosity is 700 times larger than the laminar viscosity, which indicates the strong turbulent flow in the tundish. The maximum temperature difference in the whole tundish is 8.2 K. The temperature near the stopper rod and the short wall is obviously lower than that in the inlet zone. The existence of the stopper rod has a big effect on the fluid flow entering the SEN and the mold. All the characteristics of the tundish geometry should be considered to accurately simulate the fluid flow in the tundish.
A thermal stack structure for measurement of fluid flow
Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.
2003-03-01
A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.
Beyond Poiseuille: Preservation Fluid Flow in an Experimental Model
Saurabh Singh
2013-01-01
Full Text Available Poiseuille’s equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD of 13 (12%. Marshall’s hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD flow rate increase of only 19 (13%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD of 43 (17% when compared to the same pressure applied initially only. Poiseuille’s equation was not followed; this is most likely due to “slipping” of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions.
Thomsen, C; Ståhlberg, F; Stubgaard, M;
1990-01-01
An interleaved pseudocinematographic FLASH (fast low-angle shot) sequence with additional pulsed gradients for flow encoding was used to quantify cerebrospinal fluid (CSF) flow velocities and CSF production. Flow-dependent phase information was obtained by subtracting two differently encoded phase...
Shogin, Dmitry
2015-01-01
We test the physical relevance of the full and truncated versions of the Israel-Stewart theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes filled with a viscous {\\gamma}-fluid, keeping track of the magnitude of relative dissipative fluxes, which determines the applicability of the Israel-Stewart theory. We consider the situations when the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. Also, we apply two different temperature models in the full version of the theory in order to compare the results. We demonstrate that the only case when the fluid asymptotically approaches local equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated Israel-Stewart equations for shear viscosity are found to produce solutions which manifest patholog...
Fluid flow near the surface of earth's outer core
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
Computational Fluid Dynamics Simulation of Multiphase Flow in Structured Packings
Saeed Shojaee
2012-01-01
Full Text Available A volume of fluid multiphase flow model was used to investigate the effective area and the created liquid film in the structured packings. The computational results revealed that the gas and liquid flow rates play significant roles in the effective interfacial area of the packing. In particular, the effective area increases as the flow rates of both phases increase. Numerical results were compared with the Brunazzi and SRP models, and a good agreement between them was found. Attention was given to the process of liquid film formation in both two-dimensional (2D and three-dimensional (3D models. The current study revealed that computational fluid dynamics (CFD can be used as an effective tool to provide information on the details of gas and liquid flows in complex packing geometries.
Fluid flow near the surface of earth's outer core
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Fluid flow in the juxtaglomerular interstitium visualized in vivo.
Rosivall, László; Mirzahosseini, Shahrokh; Toma, Ildikó; Sipos, Arnold; Peti-Peterdi, János
2006-12-01
Earlier electron microscopy studies demonstrated morphological signs of fluid flow in the juxtaglomerular apparatus (JGA), including fenestrations of the afferent arteriole (AA) endothelium facing renin granular cells. We aimed to directly visualize fluid flow in the JGA, the putative function of the fenestrated endothelium, using intravital multiphoton microscopy of Munich-Wistar rats and C57BL6 mice. Renin content of the AA correlated strongly with the length of the fenestrated, filtering AA segment. Fluorescence of the extracellular fluid marker lucifer yellow (LY) injected into the cannulated femoral vein in bolus was followed in the renal cortex by real-time imaging. LY was detected in the interstitium around the JG AA before the plasma LY filtered into Bowman's capsule and early proximal tubule. The fluorescence intensity of LY in the JGA interstitium was 17.9 +/- 3.5% of that in the AA plasma (n = 6). The JGA fluid flow was oscillatory, consisting of two components: a fast (one every 5-10 s) and a slow (one every 45-50 s) oscillation, most likely due to the rapid transmission of both the myogenic and tubuloglomerular feedback (TGF)-mediated hemodynamic changes. LY was also detected in the distal tubular lumen about 2-5 s later than in the AA, indicating the flow of JGA interstitial fluid through the macula densa. In the isolated microperfused JGA, blocking the early proximal tubule with a micropipette caused significant increases in MD cell volume by 62 +/- 4% (n = 4) and induced dilation of the intercellular lateral spaces. In summary, significant and dynamic fluid flow exists in the JGA which may help filter the released renin into the renal interstitium (endocrine function). It may also modulate TGF and renin signals in the JGA (hemodynamic function).
Two-Fluid Couette Flow between Concentric Cylinders.
1984-01-01
CONCENTRIC CYLINDERS Yuriko Renardy and Daniel D. Joseph* Technical Summary Report #2622 January 1984 ABSTRACT -1W considers,he flow of two immiscible...CYLINDERS Yuriko Renardy and Daniel D. Joseph* Introduction We consider linear stability of the flow of two immiscible fluids separated by an interface...AUTiOR(,) 8. CONTRACT OR GRANT NUMBER(@) Yuriko Renardy and Daniel D. Joseph DAAGZ9-80-C-0041 11. PERFORMING ORGANIZATION NAME AND ADDRESS 10
The Finiteness of vortices in steady incompressible viscous fluid flow
Kalita, Jiten C; Panda, Swapnendu
2016-01-01
In this work, we provide two novel approaches to show that incompressible fluid flow in a finite domain contains at most a finite number vortices. We use a recently developed geometric theory of incompressible viscous flows along with an existing mathematical analysis concept to establish the finiteness. We also offer a second proof of finiteness by roping in the Kolmogorov's length scale criterion in conjunction with the notion of diametric disks.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam;
2013-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...... complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization....
Wave front distortion based fluid flow imaging
Iffa, Emishaw; Heidrich, Wolfgang
2013-03-01
In this paper, a transparent flow surface reconstruction based on wave front distortion is investigated. A camera lens is used to focus the image formed by the micro-lens array to the camera imaging plane. The irradiance of the captured image is transformed to frequency spectrum and then the x and y spatial components are separated. A rigid spatial translation followed by low pass filtering yields a single frequency component of the image intensity. Index of refraction is estimated from the inverse Fourier transform of the spatial frequency spectrum of the irradiance. The proposed method is evaluated with synthetic data of a randomly generated index of refraction value and used to visualize a fuel injection volumetric data.
Roedig, C.; Zanotti, O.; Alic, D.
2012-10-01
We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi-Hoyle-Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ˜ 106 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γeff ˜ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL˜10-2; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Experimental study on fluid flow in arciform clearance
邵俊鹏; 汤卉; 贾慧娟
2002-01-01
The system damping and dynamic characteristics can be further improved by properly increasing thedamping coefficient ξh. For a special hydraulic damping structure, an arciform damping clearance often used inFCS, a mathematical model has been established for fluid flow using the theory of laminar flow in the clearanceof parallel plates. Analytical calculations are made for fluid flow in the arciform clearance and relational expres-sion is deduced for flow rate along the arciform cleaance height, pressure difference, maximum arciform clear-ance height, the flow rate for the fluid flow in arciform clearance as well, and its simplified formula is obtainedby using the theory of hydrodynamics and the curve - fitting method. This paper consists of two sections: the firstsection focuses on the theoretical analysis by using the simplified mathematical model and the second sectionmainly describes experimental analysis. The simplified formula is corrected with experimental results by consid-erig various boundary conditions of the damping clearance. Experimental results show that this study of arciformdamping clearance is reliable and practical.
A quantitative analysis of cerebrospinal fluid flow in posttraumatic syringomyelia
Tobimatsu, Yoshiko; Nihei, Ryuuichi; Kimura, Tetsuhiko; Suyama, Tetsuo; Tobimatsu, Haruki (National Rehabilitation Center for the Disabled Hospital, Tokorozawa, Saitama (Japan))
1991-08-01
Cerebrospinal fluid (CSF) flow within the spinal canal and syrinx in posttraumatic syringomyelia were studied by cardiac-gated phase images of magnetic resonance imaging in 12 normal volunteers and 8 patients with syringomyelia. The cardiac-gated phase method was simple and useful for detection of CSF flow. Phase modulation was in direct proportion to flow velocity. Phase modulation was not affected by the T1 or T2 relaxation time. In normal volunteers, CSF flows caudally during systole and cranially during diastole. The maximum caudal CSF flow velocity at C2 level was from 0.45 cm/sec to 1.71 cm/sec, average; 1.27 cm/sec. All of symptomatic posttraumatic syringomyelia patients had the flow in the syrinx. (author).
Experimental observation of fluid flow channels in a single fracture
Brown, Stephen; Caprihan, Arvind; Hardy, Robert
1998-03-01
A method for obtaining precise replicas of real fracture surfaces using transparent epoxy resins was developed, allowing detailed study of fluid flow paths within a fracture plane. A natural rock fracture was collected from the field and prepared for study. Silicon rubber molds of the fracture surfaces were used to make a transparent epoxy replica of the original fracture. Clear and dyed water were injected into the fracture pore space allowing examination of the flow field. Digitized optical images were used to observe wetting, saturated flow, and drying of the specimen. Nuclear magnetic resonance imaging was used for quantitative measurements of flow velocity. Both video imaging and nuclear magnetic resonance imaging techniques show distinct and strong channeling of the flow at the submillimeter to several-centimeter scale. Each phenomenon, including wetting, drying, dye transport, and velocity channeling, has its own distinct geometric structure and scale. We find that fluid velocities measured simultaneously at various locations in the fracture plane during steady state flow range over several orders of magnitude, with the maximum velocity a factor of 5 higher than the mean velocity. This suggests that flow channeling in fractured rock can cause the breakthrough velocity of contaminants to far exceed the mean flow.
Computational fluid dynamics analysis of a mixed flow pump impeller
ATHARVA
results of CFD analysis, the velocity and pressure in the outlet of the impeller is predicted. ... The numerical simulation can provide quite accurate information on the fluid ... of the computational domain the mass flow rate, the turbulence intensity, and a reference pressure are specified. .... Averaged velocity distribution.
Numerical analysis of complex fluid-flow systems
Holland, R. L.
1980-01-01
Very flexible computer-assisted numerical analysis is used to solve dynamic fluid-flow equations characterizing computer-controlled heat dissipation system developed for Space lab. Losses caused by bends, ties, fittings, valves, and like are easily included, and analysis can solve both steady-state and transient cases. It can also interact with parallel thermal analysis.
Numerical Modeling of Fluid Flow in the Tape Casting Process
Jabbari, Masoud; Hattel, Jesper Henri
2011-01-01
The flow behavior of the fluid in the tape casting process is analyzed. A simple geometry is assumed for running the numerical calculations in ANSYS Fluent and the main parameters are expressed in non-dimensional form. The effect of different values for substrate velocity and pressure force...
Eigenvalues of the time—dependent fluid flow problem I
El-Sayed M. Zayed
1990-01-01
Full Text Available The direct and inverse boundary value problems for the linear unsteady viscous fluid flow through a closed conduit of a circular annular cross-section Ω with arbitrary time-dependent pressure gradient under the third boundary conditions have been investigated.
Flow Curve Determination for Non-Newtonian Fluids.
Tjahjadi, Mahari; Gupta, Santosh K.
1986-01-01
Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)
Fluid Flow and Heat Transfer over a Permeable Stretching Cylinder
K Vajravelu
2014-01-01
Full Text Available In this paper, we analyze the effects of thermo-physical properties on the axisymmetric flow of a viscous fluid induced by a stretching cylinder in the presence of internal heat generation/absorption. It is assumed that the cylinder is stretched in the axial direction with a linear velocity and the surface temperature of the cylinder is subjected to vary linearly. Here, the temperature dependent thermo-physical properties namely, the fluid viscosity and the fluid thermal conductivity are respectively assumed to vary as an inverse function of the temperature and a linear function of the temperature. The governing system of partial differential equations is converted into a system of coupled non-linear ordinary differential equations with variable coefficients. The resulting system is solved numerically using a second order finite difference scheme known as the Keller-box method. The governing equations of the problem show that the flow and heat transfer characteristics depend on six parameters, namely the curvature parameter, fluid viscosity parameter, injection/suction parameter, variable thermal conductivity parameter, heat source/sink parameter and the Prandtl number. The numerical values obtained for the velocity, temperature, skin friction, and the Nusselt number are presented through graphs and tables for several sets of values of the pertinent parameters. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the axisymmetric flow phenomena. Comparisons with the available results in the literature are presented as special cases.
Analysis of fluid flow around a beating artificial cilium
Mojca Vilfan
2012-02-01
Full Text Available Biological cilia are found on surfaces of some microorganisms and on surfaces of many eukaryotic cells where they interact with the surrounding fluid. The periodic beating of the cilia is asymmetric, resulting in directed swimming of unicellular organisms or in generation of a fluid flow above a ciliated surface in multicellular ones. Following the biological example, externally driven artificial cilia have recently been successfully implemented as micropumps and mixers. However, biomimetic systems are useful not only in microfluidic applications, but can also serve as model systems for the study of fundamental hydrodynamic phenomena in biological samples. To gain insight into the basic principles governing propulsion and fluid pumping on a micron level, we investigated hydrodynamics around one beating artificial cilium. The cilium was composed of superparamagnetic particles and driven along a tilted cone by a varying external magnetic field. Nonmagnetic tracer particles were used for monitoring the fluid flow generated by the cilium. The average flow velocity in the pumping direction was obtained as a function of different parameters, such as the rotation frequency, the asymmetry of the beat pattern, and the cilium length. We also calculated the velocity field around the beating cilium by using the analytical far-field expansion. The measured average flow velocity and the theoretical prediction show an excellent agreement.
Control of Low Reynolds Number Flows with Fluid Structure Interactions
2014-02-02
public release; distribution is unlimited. 27 the direct numerical simulations of Andro and Jacquin [37] for a plunging NACA 0012 airfoil at Re...34Bifurcating Flows of Plunging Airfoils at High Strouhal Numbers," Journal of Fluid Mechanics, Vol. 708, 2012, pp. 349-376. [37] Andro , J.Y
Reduced order modeling of some fluid flows of industrial interest
Alonso, D; Terragni, F; Velazquez, A; Vega, J M, E-mail: josemanuel.vega@upm.es [E.T.S.I. Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain)
2012-06-01
Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor. (review)
Tracing fluid flow in geothermal reservoirs
Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)
1997-12-31
A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.
Fluid flow and dissipation in intersecting counter-flow pipes
Pekkan, Kerem
2005-11-01
Intersecting pipe junctions are common in industrial and biomedical flows. For the later application, standard surgical connections of vessel lumens results a ``+'' shaped topology through a side-to-side or end-to-side anastomosis. Our earlier experimental/computational studies have compared different geometries quantifying the hydrodynamic power loss through the junction where dominant coherent structures are identified. In this study we have calculated the contribution of these structures to the total energy dissipation and its spatial distribution in the connection. A large set of idealized models are studied in which the basic geometric configuration is parametrically varied (from side-to-side to end-to-side anastomosis) which quantified the strength of the secondary flows and coherent structures as a function of the geometric configuration. Steady-state, 3D, incompressible computations are performed using the commercial CFD code FIDAP with unstructured tetrahedral grids. Selected cases are compared with the in-house code results (in Cartesian and structured grids). Grid verification and experimental validation with flow-vis and PIV are presented. Identifying the dissipation hot-spots will enable a targeted inverse design of the junction by reducing the degree of optimization with a focused parameter space.
Steady State Stokes Flow Interpolation for Fluid Control
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...... — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures...... the rotational components and is suitable for controlling liquid animations where tangential motion is pronounced, such as in a breaking wave...
HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCOELASTIC ELECTRICALLY CONDUCTING FLUID
RITA CHOUDHURY
2011-10-01
Full Text Available A theoretical study for the two-dimensional boundary layer flow through a divergent channel of a visco-elastic electrically conducting fluid in presence of transverse magnetic field has been considered. Similarity solutions are obtained by considering a special form of magnetic field. The analytical expressions for velocity and skin friction at the wall have been obtained and numerically worked out for different values of the flow parametersinvolved in the solution. The velocity and the skin friction coefficient have been presented graphically to observe the visco-elastic effects for various values of the flow parameters across the boundary layer.
Review of coaxial flow gas core nuclear rocket fluid mechanics
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
Localized microstructures induced by fluid flow in directional solidification.
Jamgotchian, H; Bergeon, N; Benielli, D; Voge, P; Billia, B; Guérin, R
2001-10-15
The dynamical process of microstructure localization by multiscale interaction between instabilities is uncovered in directional solidification of transparent alloy. As predicted by Chen and Davis, morphological instability of the interface is observed at inward flow-stagnation regions of the cellular convective field. Depending on the driving force of fluid flow, focus-type and honeycomb-type localized patterns form in the initial transient of solidification, that then evolves with time. In the case of solute-driven flow, the analysis of the onset of thermosolutal convection in initial transient of solidification enables a complete understanding of the dynamics and of the localization of morphological instability.
3D couette flow of dusty fluid with transpiration cooling
GOVINDARAJAN A.; RAMAMURTHY V.; SUNDARAMMAL K.
2007-01-01
The couette dusty flow between two horizontal parallel porous flat plates with transverse sinusoidal injection of the dusty fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion was analyzed. Due to this type of injection velocity the dusty flow becomes 3D. Perturbation method is used to obtain the expressions for the velocity and temperature fields of both the fluid and dust. It was found that the velocity profiles of both the fluid and dust in the main flow direction decrease with the increase of the mass concentration of the dust panicles, and those in cross flow direction increase with an increase in the mass concentration of the dust particles up to the middle of the channel and thereafter decrease with increase in mass concentration of the dust particles. The skin friction components Tx and Tz in the main flow and transverse directions respectively increase with an increase in the mass concentration of the dust particles (or) injection parameter. The heat transfer coefficient decreases with the increase of the injection parameter and increases with the increase in the mass concentration of the dust particles.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.
2012-07-19
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
无
2001-01-01
The continuum approach in fluid flow modeling is generally applied to porous geological media,but has limitel applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales.Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REVand hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2-D or 3-D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.``
Neutron radigoraphy of fluid flow for geothermal energy research
Bingham, Philip R [ORNL; Polsky, Yarom [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Carmichael, Justin R [ORNL; Bilheux, Hassina Z [ORNL; Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Jacobson, David [National Institute of Standards and Technology (NIST)
2015-01-01
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the “particles” and imaging with 10 ms exposures.
Mathematical Modelling of Fluid Flow in Cone and Cavitation Formation
Milada KOZUBKOVÁ
2011-06-01
Full Text Available Problem of cavitation is the undesirable phenomena occuring in the fluid flow in many hydraulic application (pumps, turbines, valves, etc.. Therefore this is in the focus of interest using experimental and mathematical methods. Based on cavitation modelling in Laval nozzle results and experience [1], [2], [4], following problem described as the water flow at the outlet from turbine blade wheel was solved. Primarily the problem is simplified into modelling of water flow in cone. Profiles of axial, radial and tangential velocity are defined on inlet zone. The value of pressure is defined on the outlet. Boundary conditions were defined by main investigator of the grant project – Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The value of air volume was insignificant. Cavitation was solved by Singhal model of cavitation.
Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation
Ortiz de Zárate, José M.; Sengers, Jan V.
2013-02-01
We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.
An improved model for reduced-order physiological fluid flows
San, Omer; 10.1142/S0219519411004666
2012-01-01
An improved one-dimensional mathematical model based on Pulsed Flow Equations (PFE) is derived by integrating the axial component of the momentum equation over the transient Womersley velocity profile, providing a dynamic momentum equation whose coefficients are smoothly varying functions of the spatial variable. The resulting momentum equation along with the continuity equation and pressure-area relation form our reduced-order model for physiological fluid flows in one dimension, and are aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. The consequent nonlinear coupled system of equations is solved by the Lax-Wendroff scheme and is then applied to an open model arterial network of the human vascular system containing the largest fifty-five arteries. The proposed model with functional coefficients is compared with current classical one-dimensional theories which assume steady state Hagen-Poiseuille velocity pro...
FLUENT/BFC - A general purpose fluid flow modeling program for all flow speeds
Dvinsky, Arkady S.
FLUENT/BFC is a fluid flow modeling program for a variety of applications. Current capabilities of the program include laminar and turbulent flows, subsonic and supersonic viscous flows, incompressible flows, time-dependent and stationary flows, isothermal flows and flows with heat transfer, Newtonian and power-law fluids. The modeling equations in the program have been written in coordinate system invariant form to accommodate the use of boundary-conforming, generally nonorthogonal coordinate systems. The boundary-conforming coordinate system can be generated using both an internal grid generator, which is an integral part of the code, and external application-specific grid generators. The internal grid generator is based on a solution of a system of elliptic partial differential equations and can produce grids for a wide variety of two- and three-dimensional geometries.
Flow in the well: computational fluid dynamics is essential in flow chamber construction.
Vogel, Markus; Franke, Jörg; Frank, Wolfram; Schroten, Horst
2007-09-01
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish.
Computation of Internal Fluid Flows in Channels Using the CFD Software Tool FlowVision
Kochevsky, A N
2004-01-01
The article describes the CFD software tool FlowVision (OOO "Tesis", Moscow). The model equations used for this research are the set of Reynolds and continuity equations and equations of the standard k - e turbulence model. The aim of the paper was testing of FlowVision by comparing the computational results for a number of simple internal channel fluid flows with known experimental data. The test cases are non-swirling and swirling flows in pipes and diffusers, flows in stationary and rotating bends. Satisfactory correspondence of results was obtained both for flow patterns and respective quantitative values.
Crystal growth in fluid flow: Nonlinear response effects
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics
Meir Israelowitz
2012-01-01
Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Seafloor Geomorphology as a Possible Indicator to Fluid Flow.
Greene, H. G.; Paull, C. K.
2002-12-01
Multibeam bathymetric data collected by MBARI and the USGS show numerous features marking the seafloor along parts of the California continental margin that suggest they may have been generated by offshore groundwater discharge or would be logical sites for focused fluid venting. These features include pockmarks, carbonate build-ups, steep slide-scars, and depression-studded rills. In addition, the heads of submarine canyons located near the Outer Santa Cruz Basin (northwest of Santa Cruz) and the Santa Maria Basin (near Point Conception), exhibit collapsed features that could result from the flow and possible venting of gas-charged fluids that escaped from a hydrocarbon reservoir. These areas are all associated with either major hydrocarbon reservoirs or onshore groundwater basins and aquifers that may crop out on the seafloor. ROV observations using MBARI's Ventana and Tiburon vehicles were conducted in five areas (Ascension slope northwest of Santa Cruz, Monterey Bay, the Point Lobos pockmark field, northern Santa Barbara Channel and San Pedro-Long Beach slope) where these features occur. While little evidence of active fluid flow was found, some methane-derived carbonates consistent with past flow were discovered. Although some of the morphologic features suggestive of a fluid-induced origin lie on the continental shelf and may have formed during a low-stand of sea level, many features are located on the continental slope and most likely formed in the marine environment.
Numerical modelling of structural controls on fluid flow and mineralization
Yanhua Zhang
2011-07-01
Full Text Available This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia. Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu-veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling on the Hodgkinson Province generated a number of potential gold mineralization targets.
Deformation and Fluid Flow in the Etendeka Plateau, NW Namibia
Salomon, Eric; Koehn, Daniel; Passchier, Cees; Davis, Jennifer; Salvona, Aron; Chung, Peter
2014-05-01
We studied deformation bands in sandstone and breccia veins in overlying basalts of the Etendeka Plateau, NW Namibia, regarding their development and history of fluid flow within. The studied deformation bands can be divided into disaggregation bands and cataclastic bands. The former appear to develop in unsorted sandstone, whereas the latter form in well sorted sandstone. We estimated the porosity of the bands and host rock in thin sections using a simple image analysis software (ImageJ). Results show, that no or only a minor decrease in porosity occur in disaggregation bands, while the porosity in cataclastic bands is decreased by up to 82 % with respect to the host rock. These observations are in agreement with results of existing studies (e.g. Fossen et al., 2007). Hence the cataclastic bands form a seal to fluid flow in the host rock, yet it is observed in outcrops that deformation bands can develop into open fractures which in turn increase the permeability of the rock. Breccia veins in the overlying basalts show intense fracturing where the basalt is locally fractured into elongated chips. Mineral precipitation in these breccia veins indicates a hydrothermal origin of the fluids since the precipitates consist of extremely fine-grained quartz aggregates. Secondary mineralization with large crystals indicates that a long-lived fluid circulation through tubular networks was active at a later stage, which eventually sealed the veins completely. We propose that the Etendeka basalts on top of the sandstone formation produced a localized deformation along deformation bands and heated up fluid below the lavas. At a later stage fluid pressures were either high enough to break through the basalt or fracturing due to ongoing extension produced fluid pathways. References Fossen, H., Schultz, R., Shipton, Z. and Mair, K. (2007). Deformation bands in sandstone: a review. J. Geol. Soc., 164, 755-769.
Highly viscous fluid flow in a spinning and nutating cylinder
Herbert, T.
1985-02-01
Spin-stabilized projectiles with liquid payloads can experience a severe flight instability characterized by a rapid yaw angle growth and a simultaneous loss in spin rate. Laboratory experiments and field tests have shown that this instability originates from the internal fluid motion in the range of high viscosity. Evaluation of the experimental data and analysis of the equations for the fluid motion in a spinning and nutating cylinder suggest a theoretical approach in three major steps: (1) analysis of the steady viscous flow in an infinitely long cylinder, (2) hydrodynamic stability analysis of this basic flow, and (3) analysis of the end effects. The basic flow has been found in analytical form. At low Reynolds number, this flow agrees well with computational results for the center section of a cylinder of aspect ratio 4.3. The despin moment caused by this flow largely agrees with experimental data for a wide range of Reynolds numbers. Current work aims at the stability of this flow.
Laminar flow of micropolar fluid in rectangular microchannels
Shangjun Ye; Keqin Zhu; Wen Wang
2006-01-01
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.
Viscosity spectral function of a scale invariant non-relativistic fluid from holography
Schaefer, Thomas
2014-01-01
We study the viscosity spectral function of a holographic 2+1 dimensional fluid with Schroedinger symmetry. The model is based on a twisted compactification of $Ads_5\\times S_5$. We numerically compute the spectral function of the stress tensor correlator for all frequencies, and analytically study the limits of high and low frequency. We compute the shear viscosity, the viscous relaxation time, and the quasi-normal mode spectrum in the shear channel. We find a number of unexpected results: The high frequency behavior is governed by a fractional 1/3 power law, the viscous relaxation time is negative, and the quasi-normal mode spectrum in the shear channel is not doubled.
Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories
Spillane, Michael
In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T blackhole. We discuss the "phase diagram" associated with the steady state of the dual, dynamical black hole and its relation to the fluid/gravity correspondence.
A solution algorithm for fluid-particle flows across all flow regimes
Kong, Bo; Fox, Rodney O.
2017-09-01
Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.
Madlener, K.
2008-07-01
In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)
Magneto-polar fluid flow through a porous medium of variable permeability in slip flow regime
Gaur P.K.
2016-05-01
Full Text Available A theoretical study is carried out to obtain an analytical solution of free convective heat transfer for the flow of a polar fluid through a porous medium with variable permeability bounded by a semi-infinite vertical plate in a slip flow regime. A uniform magnetic field acts perpendicular to the porous surface. The free stream velocity follows an exponentially decreasing small perturbation law. Using the approximate method the expressions for the velocity, microrotation, and temperature are obtained. Further, the results of the skin friction coefficient, the couple stress coefficient and the rate of heat transfer at the wall are presented with various values of fluid properties and flow conditions.
Do seismic waves and fluid flow sense the same permeability in fluid-saturated porous rocks?
Rubino, J. G.; Monachesi, L. B.; Guarracino, L.; Müller, T. M.; Holliger, K.
2012-04-01
Wave-induced flow due to the the presence of mesoscopic heterogeneities, that is, heterogeneities that are larger than the pore size but smaller than the prevailing seismic wavelengths, represents an important seismic attenuation mechanism in fluid-saturated porous rocks. In this context, it is known that in the presence of strong permeability fluctuations, there is a discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow. While this subject has been analyzed for the case of random 1D media, the corresponding 2D and 3D cases remain unexplored, mainly due to the fact that, as opposed to the 1D case, there is no simple expression for the effective flow permeability. In this work we seek to address this problem through the numerical analysis of 2D rock samples having strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by homogeneous fields, with permeability values given by the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that the attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Selected topics on the topology of ideal fluid flows
Peralta-Salas, Daniel
2016-08-01
This is a survey of certain geometric aspects of inviscid and incompressible fluid flows, which are described by the solutions to the Euler equations. We will review Arnold’s theorem on the topological structure of stationary fluids in compact manifolds, and Moffatt’s theorem on the topological interpretation of helicity in terms of knot invariants. The recent realization theorem by Enciso and Peralta-Salas of vortex lines of arbitrarily complicated topology for stationary solutions to the Euler equations will also be introduced. The aim of this paper is not to provide detailed proofs of all the stated results but to introduce the main ideas and methods behind certain selected topics of the subject known as Topological Fluid Mechanics. This is the set of lecture notes, the author gave at the XXIV International Fall Workshop on Geometry and Physics held in Zaragoza (Spain) during September 2015.
Characteristics of Electrorheological Fluid Flow in Journal Bearings
张准; 朱克勤
2002-01-01
Under the influence of an applied electric field, the variation of apparent viscosity of electrorheological (ER) fluid flow causes ER effects. According to the Bingham model, which is widely used for describing the rheological properties of ER fluids, this variation should be very weak at high shear rates. To clarify the ER effects in ER journal bearings at high shear rate, a numerical study is presented. It is found that under the influence of the applied electric field, ER effects in ER journal bearings can be affected by not only the apparent viscosity of ER fluids but also the movement of yield surface in the clearance of ER journal bearing. In the case of low shear rate, both are effective on the lubricant film pressure of ER journal bearings. In the case of high shear rates, the main factor is the extension of non-yield region in the bearing clearance.
Vortex generated fluid flows in multiply connected domains
Zemlyanova, Anna; Handley, Demond
2016-01-01
A fluid flow in a multiply connected domain generated by an arbitrary number of point vortices is considered. A stream function for this flow is constructed as a limit of a certain functional sequence using the method of images. The convergence of this sequence is discussed, and the speed of convergence is determined explicitly. The presented formulas allow for the easy computation of the values of the stream function with arbitrary precision in the case of well-separated cylinders. The considered problem is important for applications such as eddy flows in the oceans. Moreover, since finding the stream function of the flow is essentially identical to finding the modified Green's function for Laplace's equation, the presented method can be applied to a more general class of applied problems which involve solving the Dirichlet problem for Laplace's equation.
Gérard J. Poitras; L.-Emmanuel Brizzi; Yves Gagnon
2001-01-01
The results of different numerical algorithms for the computation of unsteady fluid flows are used to visualize different variables of the flow. In particular, the instantaneous vorticity, velocity and pressure fields, along with streamline plots, are presented as a function of time inside a visualization window of the computational domain.The different forms of visualization are used to analyze the flow inside a two-dimensional channel incorporating an obstacle, which can represent several interesting flows such as the flow over electronic components, heat transfer devices and buildings.
Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows
Blonigan, Patrick; Wang, Qiqi
2014-01-01
Computational methods for sensitivity analysis are invaluable tools for aerodynamics research and engineering design. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in turbulent fluid flow fields, specifically those obtained using high-fidelity turbulence simulations. This is because of a number of dynamical properties of turbulent and chaotic fluid flows, most importantly high sensitivity of the initial value problem, popularly known as the "butterfly effect". The recently developed least squares shadowing (LSS) method avoids the issues encountered by traditional sensitivity analysis methods by approximating the "shadow trajectory" in phase space, avoiding the high sensitivity of the initial value problem. The following paper discusses how the least squares problem associated with LSS is solved. Two methods are presented and are demonstrated on a simulation of homogeneous isotropic turbulence and the Kuramoto-Sivashinsky (KS) equation, a 4th order c...
Buoy Relay Method for Instantaneous Fluid Flow with Free Surface
无
2000-01-01
Several methods have been used to approximate free surface boundaries in finite-difference numerical simulations. Each of these methods has its advantages and disadvantages. This paper presents a new technique for the numerical solution of transient incompressible free surface fluid flows. This powerful method, which is based on the concepts of "Buoy positioning" and "Buoy relaying", successfully represents the free surface using a Lagrangian method on a Eulerian grid by directly solving the free surface evolution equation. The Eulerian finite-difference forms of the full Navier-Stokes equations are solved by the Successive over Relaxation (SOR) method with a set of buoys to keep track of the free surface. The capabilities of the analysis procedure are demonstrated through viscous free surface fluid flow examples. The method is simpler and more efficient than other methods especially in treating complicated free boundary configurations.
Laminar boundary-layer flow of non-Newtonian fluid
Lin, F. N.; Chern, S. Y.
1979-01-01
A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.
Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma
KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR
2016-05-01
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.
Measuring fluid flow and heat output in seafloor hydrothermal environments
Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.
2015-12-01
We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development
Optimization of micropillar sequences for fluid flow sculpting
Stoecklein, Daniel; Ganapathysubramanian, Baskar [Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino [Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)
2016-01-15
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Optimization of micropillar sequences for fluid flow sculpting
Stoecklein, Daniel; Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino; Ganapathysubramanian, Baskar
2016-01-01
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Fluid dynamics in airway bifurcations: I. Primary flows.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
The subject of fluid dynamics within human airways is of great importance for the risk assessment of air pollutants (inhalation toxicology) and the targeted delivery of inhaled pharmacologic drugs (aerosol therapy). As cited herein, experimental investigations of flow patterns have been performed on airway models and casts by a number of investigators. We have simulated flow patterns in human lung bifurcations and compared the results with the experimental data of Schreck (1972). The theoretical analyses were performed using a third-party software package, FIDAP, on the Cray T90 supercomputer. This effort is part of a systematic investigation where the effects of inlet conditions, Reynolds numbers, and dimensions and orientations of airways were addressed. This article focuses on primary flows using convective motion and isovelocity contour formats to describe fluid dynamics; subsequent articles in this issue consider secondary currents (Part II) and localized conditions (Part III). The agreement between calculated and measured results, for laminar flows with either parabolic or blunt inlet conditions to the bifurcations, was very good. To our knowledge, this work is the first to present such detailed comparisons of theoretical and experimental flow patterns in airway bifurcations. The agreement suggests that the methodologies can be employed to study factors affecting airflow patterns and particle behavior in human lungs.
Yield Hardening of Electrorheological Fluids in Channel Flow
Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.
2016-06-01
Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.
Lagrangian analysis of fluid transport in empirical vortex ring flows
Shadden, Shawn C.; Dabiri, John O.; Marsden, Jerrold E.
2006-01-01
In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynami...
Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas
2010-04-01
We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.
Oscillatory fluid flow influences primary cilia and microtubule mechanics.
Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R
2014-07-01
Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.
Interfacial instabilities in a stratified flow of two superposed fluids
Schaflinger, Uwe
1994-06-01
Here we shall present a linear stability analysis of a laminar, stratified flow of two superposed fluids which are a clear liquid and a suspension of solid particles. The investigation is based upon the assumption that the concentration remains constant within the suspension layer. Even for moderate flow-rates the base-state results for a shear induced resuspension flow justify the latter assumption. The numerical solutions display the existence of two different branches that contribute to convective instability: long and short waves which coexist in a certain range of parameters. Also, a range exists where the flow is absolutely unstable. That means a convectively unstable resuspension flow can be only observed for Reynolds numbers larger than a lower, critical Reynolds number but still smaller than a second critical Reynolds number. For flow rates which give rise to a Reynolds number larger than the second critical Reynolds number, the flow is absolutely unstable. In some cases, however, there exists a third bound beyond that the flow is convectively unstable again. Experiments show the same phenomena: for small flow-rates short waves were usually observed but occasionally also the coexistence of short and long waves. These findings are qualitatively in good agreement with the linear stability analysis. Larger flow-rates in the range of the second critical Reynolds number yield strong interfacial waves with wave breaking and detached particles. In this range, the measured flow-parameters, like the resuspension height and the pressure drop are far beyond the theoretical results. Evidently, a further increase of the Reynolds number indicates the transition to a less wavy interface. Finally, the linear stability analysis also predicts interfacial waves in the case of relatively small suspension heights. These results are in accordance with measurements for ripple-type instabilities as they occur under laminar and viscous conditions for a mono-layer of particles.
Topographic instability of flow in a rotating fluid
K. I. Patarashvili
2006-01-01
Full Text Available Here are presented the results of experimental and theoretical studies on a stability of zonal geostrophic flows in the rotating layer of the shallow water. In the experiments, a special apparatus by Abastumani Astrophysical Observatory Georgian Academy of Science was used. This apparatus represents a paraboloid of rotation, which can be set in a regulable rotation around the vertical axis. Maximal diameter of the paraboloid is 1.2 m, radius of curvature in the pole is 0.698 m. In the paraboloid, water spreads on walls as a layer uniform on height under the period of rotation 1.677 s. Against a background of the rotating fluid, the zonal flows are formed by the source-sink system. It consists of two concentric circular perforations on the paraboloid bottom (width is 0.3 cm, radiuses are 8.4 and 57.3 cm, respectively; water can be pumped through them with various velocities and in all directions. It has been established that under constant vertical depth of the rotating fluid the zonal flows are stable. There are given the measurements of the radial profiles for the water level and velocity in the stationary regime. It has been found that zonal flows may lose stability under the presence of the radial gradient of full depth formed by a change of angular velocity of paraboloid rotation. An instability origin results in the loss of flow axial symmetry and in the appearance of self-excited oscillations in the zonal flow. At the given angular velocity of rotation, instability is observed only in the definite range of intensities of the source-sink system. The theoretical estimations are performed in the framework of the equations of the shallow water theory, including the terms describing the bottom friction. It has been shown that the instability of zonal flows found experimentally has a topographical nature and is related with non-monotone dependence of the potential vorticity on radius.
Traveling hairpin-shaped fluid vortices in plane Couette flow.
Deguchi, K; Nagata, M
2010-11-01
Traveling-wave solutions are discovered in plane Couette flow. They are obtained when the so-called steady hairpin vortex state found recently by Gibson [J. Fluid Mech. 638, 243 (2009)] and Itano and Generalis [Phys. Rev. Lett. 102, 114501 (2009)] is continued to sliding Couette flow geometry between two concentric cylinders by using the radius ratio as a homotopy parameter. It turns out that in the plane Couette flow geometry two traveling waves having the phase velocities with opposite signs are associated with their appearance from the steady hairpin vortex state, where the amplitude of the phase velocities increases gradually from zero as the Reynolds number is increased. The solutions obviously inherit the streaky structure of the hairpin vortex state, but shape preserving flow patterns propagate in the streamwise direction. Other striking features of the solution are asymmetric mean flow profiles and strong quasistreamwise vortices which occupy the vicinity of only the top or bottom moving boundary, depending on the sign of the phase velocity. Furthermore, we find that the pitchfork bifurcation associated with the appearance of the solution becomes imperfect when the flow is perturbed by a Poiseuille flow component.
Polko, P.; Meier, D.L.; Markoff, S.
2013-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube.
Energy amplification in channel flows of viscoelastic fluids
Hoda, Nazish; Jovanovi?, Mihailo R.; Kumar, Satish
Energy amplification in channel flows of Oldroyd-B fluids is studied from an input-output point of view by analysing the ensemble-average energy density associated with the velocity field of the linearized governing equations. The inputs consist of spatially distributed and temporally varying body forces that are harmonic in the streamwise and spanwise directions and stochastic in the wall-normal direction and in time. Such inputs enable the use of powerful tools from linear systems theory that have recently been applied to analyse Newtonian fluid flows. It is found that the energy density increases with a decrease in viscosity ratio (ratio of solvent viscosity to total viscosity) and an increase in Reynolds number and elasticity number. In most of the cases, streamwise-constant perturbations are most amplified and the location of maximum energy density shifts to higher spanwise wavenumbers with an increase in Reynolds number and elasticity number and a decrease in viscosity ratio. For similar parameter values, the maximum in the energy density occurs at a higher spanwise wavenumber for Poiseuille flow, whereas the maximum energy density achieves larger maxima for Couette flow. At low Reynolds numbers, the energy density decreases monotonically when the elasticity number is sufficiently small, but shows a maximum when the elasticity number becomes sufficiently large, suggesting that elasticity can amplify disturbances even when inertial effects are weak.
Human red blood cells deformed under thermal fluid flow.
Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang
2006-03-01
The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.
Molecular dynamics of fluid flow at solid surfaces
Koplik, Joel; Banavar, Jayanth R.; Willemsen, Jorge F.
1989-05-01
Molecular dynamics techniques are used to study the microscopic aspects of several slow viscous flows past a solid wall, where both fluid and wall have a molecular structure. Systems of several thousand molecules are found to exhibit reasonable continuum behavior, albeit with significant thermal fluctuations. In Couette and Poiseuille flow of liquids it is found that the no-slip boundary condition arises naturally as a consequence of molecular roughness, and that the velocity and stress fields agree with the solutions of the Stokes equations. At lower densities slip appears, which can be incorporated into a flow-independent slip-length boundary condition. The trajectories of individual molecules in Poiseuille flow are examined, and it is also found that their average behavior is given by Taylor-Aris hydrodynamic dispersion. An immiscible two-fluid system is simulated by a species-dependent intermolecular interaction. A static meniscus is observed whose contact angle agrees with simple estimates and, when motion occurs, velocity-dependent advancing and receding angles are observed. The local velocity field near a moving contact line shows a breakdown of the no-slip condition and, up to substantial statistical fluctuations, is consistent with earlier predictions of Dussan [AIChE J. 23, 131 (1977)].
Turbulent characteristics of shear-thinning fluids in recirculating flows
Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)
2000-03-01
A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)
Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics.
Tsumura, Kyosuke; Kunihiro, Teiji
2013-05-01
We show that the relativistic dissipative hydrodynamic equation derived from the relativistic Boltzmann equation by the renormalization-group method uniquely leads to the one in the energy frame proposed by Landau and Lifshitz, provided that the macroscopic-frame vector, which defines the local rest frame of the flow velocity, is independent of the momenta of constituent particles, as it should. We argue that the relativistic hydrodynamic equations for viscous fluids must be defined on the energy frame if consistent with the underlying relativistic kinetic equation.
Local mesh refinement for incompressible fluid flow with free surfaces
Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Convective flow of sisko fluid over a bidirectional stretching sheet
Munir, Asif; Khan, Masood
2014-01-01
The present investigation discusses the flow and heat transfer characteristics of a steady three dimensional Sisko fluid. The flow is induced due to bidirectional stretching sheet. The influence of power-law index and stretching ratio on flow and heat transfer is studied thoroughly. Governing partial differential equations are reduced to coupled ordinary differential equations by suitable similarity variable. The resulting equations are then solved numerically by shooting method using adaptive Runge Kutta algorithm in combination with Broyden's method in the domain . The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio are presented through tabulated data. The numerical results are verified with the results obtained by HAM. Additionally, the results are also validated with previously ...
Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.
Archambault-Léger, Véronique; Lynd, Lee R
2014-04-01
The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
Geyer, A. [CIMNE International Center for Numerical Models in Engineering, Barcelona (Spain); CSIC, Institute of Earth Sciences Jaume Almera, Barcelona (Spain); Phillips, J.C. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Mier-Torrecilla, M.; Idelsohn, S.R.; Onate, E. [CIMNE International Center for Numerical Models in Engineering, Barcelona (Spain)
2012-01-15
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 x 10{sup -4}
Brun-Battistini, D; Sandoval-Villalbazo, A
2016-01-01
Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman\\textquoteright s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by \\textquotedblleft suppressing\\textquotedblright{} the molecular acceleration in Boltzmann\\textquoteright s equation, that a gravitational field drives a heat flux. This procedure corresponds to the description of particle motion through geodesics, in which a Newtonian limit to the Schwarzschild metric is assumed. The effect vanishes in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
Estimation of flow velocity for a debris flow via the two-phase fluid model
S. Guo
2014-06-01
Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.
Effects of fluid thermophysical properties on cavitating flows
Chen, Tairan; Huang, Biao; Wang, Guoyu; Wang, Kun [Beijing Institute of Technology, Beijing (China)
2015-10-15
We studied the thermo-fluid cavitating flows and evaluated the effects of physical properties on cavitation behaviors. The thermo-fluid (including liquid nitrogen, liquid hydrogen and hot water) cavitating flows around a 2D hydrofoil were numerically investigated. The Favre-averaged Navier-Stokes equations with the enthalpy-based energy equation, transport equation-based cavitation model, and the k- ω SST turbulence model were applied. The thermodynamic parameter ∑, defined as ∑=(P{sub v}{sup 2}L{sup 2})/(P{sub l}{sup 2}C{sub v}T{sub ∞} √ε{sub I}) was used to assess the thermodynamic effects on cavitating flows. The results manifest that the thermal energy solution case yields a substantially shorter and mushier cavity attached on the hydrofoil due to the thermodynamic effects, which shows better agreement with the experimental data. The temperature drop inside the cavity decreases the local saturated vapor pressure and hence increases the local cavitation number; it could delay or suppress the occurrence and development of the cavitation behavior. The thermodynamic effects can be evaluated by thermophysical properties under the same free-stream conditions; the thermodynamic parameter ∑ is shown to be critical in accurately predicting the thermodynamic effects on cavitating flows. The surrogate-based global sensitivity analysis of liquid nitrogen cavitating flow suggests that ρ{sub v}, C{sub l} and L could significantly influence temperature drop and cavity structure in the existing numerical framework, while ρv plays the dominant role on temperature drop when properties vary with changing temperature. The liquid viscosity ml slightly affects the flow structure but hardly affects the temperature distribution.
Visualization periodic flows in a continuously stratified fluid.
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Fluid Flow Prediction with Development System Interwell Connectivity Influence
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
Fluid flow in nanopores: An examination of hydrodynamic boundary conditions
Sokhan, V. P.; Nicholson, D.; Quirke, N.
2001-08-01
Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.
Microscopic and continuum descriptions of Janus motor fluid flow fields
Reigh, Shang Yik; Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond
2016-11-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Modeling of dilute and dense dispersed fluid-particle flow
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
Observing Behavior of Fluid Flow through Carbon Nanotube Arrays
Jensen, Anna T.
This work establishes a platform technique for visualizing fluid transport through Anoidisc Alumina Oxide (AAO) membranes, which can be applied to Carbon Nanotube (CNT) arrays, and allow for the testing of the effects of other parameters on flow. Arrays of CNTs have shown significant promise for delivering biomolecules into cells with high efficiency while maintaining cell viability. In these applications, biomolecules flow through CNT arrays manufactured in our lab using Template-Based Chemical Vapor Deposition. By culturing cells on the opposite side of the array, they can be used to transfect biomolecules into cells. In this research, it was discovered that the transfection rate was dependent on the type of biomolecule being delivered into the cells. It was also inferred that the number of CNTs the cells covered would affect the transfection rate. In order to characterize flow through the CNT arrays, an experiment was designed and conducted to test the effect of changing the number of active CNTs. Preliminary testing showed the occurrence of an unknown error in the CNT array manufacturing process which prevented material from flowing through the CNT arrays. As a result, the study was modified to characterize flow through AAO membranes, which serve as the template for the CNTs. To accomplish this, a flow device was developed which restricted flow to a predefined circular area. Three different diameters were tested 6 mm, 4 mm, and 2 mm. Flow data was taken using fluorescent dye, as it diffused through the AAO into a volume of water on the opposite side, fluorescent intensity would increase. This data was plotted against time and used to model flow for the three tested diameters. The results indicated that the total time for diffusion increased as the diameters decreased. However, the relationship between the number of exposed pores and the flow time were not directly related, meaning the amount of flow through one pore changes with the total number of exposed
Flow of a viscous nematic fluid around a sphere
Gómez-González, Manuel
2013-01-01
We analyze the creeping flow generated by a spherical particle moving through a viscous fluid with nematic directional order, in which momentum diffusivity is anisotropic and which opposes resistance to bending. Specifically, we provide closed-form analytical expressions for the response function, i.e. the equivalent to Stokes's drag formula for nematic fluids. Particular attention is given to the rotationally pseudo-isotropic condition defined by zero resistance to bending, and to the strain pseudo-isotropic condition defined by isotropic momentum diffusivity. We find the former to be consistent with the rheology of biopolymer networks and the latter to be closer to the rheology of nematic liquid crystals. These "pure" anisotropic conditions are used to benchmark existing particle tracking microrheology methods that provide effective directional viscosities by applying Stokes's drag law separately in different directions. We find that the effective viscosity approach is phenomenologically justified in rotati...
Thermodynamic optimization of fluid flow over an isothermal moving plate
A. Malvandi
2013-09-01
Full Text Available In this paper, entropy generation minimization (EGM was employed in order to achieve a thermodynamic optimization of fluid flow and heat transfer over a flat plate. The basic boundary layer equations including continuity, momentum, energy, and entropy generation have been reduced to a two-point boundary value problem via similarity variables and solved numerically via Runge–Kutta–Fehlberg scheme. The novelty of this study was to consider the effects of velocity ratio λ – which represents the ratio of the wall velocity to the free stream fluid velocity – in a thermodynamic system. Focusing on the velocity ratio as a pivotal parameter, in view of minimizing the entropy generation, the optimum value of λ=λo was achieved. Moreover, considering Bejan number, it was shown that the region, in which the maximum entropy generates, gets closer to the plate as λ increases.
Fluid flow and permeabilities in basement fault zones
Hollinsworth, Allan; Koehn, Daniel
2017-04-01
Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault
Langevin and diffusion equation of turbulent fluid flow
Brouwers, J. J. H.
2010-08-01
A derivation of the Langevin and diffusion equations describing the statistics of fluid particle displacement and passive admixture in turbulent flow is presented. Use is made of perturbation expansions. The small parameter is the inverse of the Kolmogorov constant C 0 , which arises from Lagrangian similarity theory. The value of C 0 in high Reynolds number turbulence is 5-6. To achieve sufficient accuracy, formulations are not limited to terms of leading order in C0 - 1 including terms next to leading order in C0 - 1 as well. Results of turbulence theory and statistical mechanics are invoked to arrive at the descriptions of the Langevin and diffusion equations, which are unique up to truncated terms of O ( C0 - 2 ) in displacement statistics. Errors due to truncation are indicated to amount to a few percent. The coefficients of the presented Langevin and diffusion equations are specified by fixed-point averages of the Eulerian velocity field. The equations apply to general turbulent flow in which fixed-point Eulerian velocity statistics are non-Gaussian to a degree of O ( C0 - 1 ) . The equations provide the means to calculate and analyze turbulent dispersion of passive or almost passive admixture such as fumes, smoke, and aerosols in areas ranging from atmospheric fluid motion to flows in engineering devices.
SPH numerical simulation of fluid flow through a porous media
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
Combining multiblock and detailed fluid flow models (LOVI) - MASIT17
Alopaeus, V.; Moilanen, P.; Visuri, O.; Laakkonen, M.; Aittamaa, J. (Helsinki University of Technology, Faculty of Chemistry and Materials Sciences, Department of Biotechnology and Chemical Technology, Espoo (Finland)); Heiskanen, K.; Wierink, G. (Helsinki University of Technology, Faculty of Chemistry and Materials Sciences, Department of Materials Science and Engineering, Espoo (Finland)); Manninen, M.; Seppaelae, M. (VTT Technical Research Centre of Finland, Espoo (Finland))
2008-07-01
The goal of this research project is to develop models for scale-up, design and operation of heterogeneous reactors. By computing a detailed fluid flow field and using it in a multiblock-model the computing times can be kept reasonable. Our modelling is based on phenomenological models verified on experimental results. Several experimental apparatuses have been used to study gas-liquid flow (tapered channel, 14/200dm3 stirred vessels and the 'giraffe') and bubble-particle interactions. A particle imaging velocimetry (PIV) apparatus is being purchased during 2008 to study fluid flow fields. There has been extensive experimental activity. During this project phenomenological models have been verified, numerical methods for the calculation of population balances have been improved, a novel local mixing time analysis method has been developed and automated multiblock generation algorithms have been developed. A method of evaluating CFD results with a single glance with a two-block model has been introduced. Fermentation process of Galilaeus and the flotation cell of Outotec have been modelled. (orig.)
Beyond ideal magnetohydrodynamics: Resistive, reactive and relativistic plasmas
Andersson, N; Hawke, I; Comer, G L
2016-01-01
We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid model for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing i) an Ohm's law for resistive charged flows, ii) a relativistic heat equation, and iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. This framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should ...
Elliptical flow in relativistic ion collisions at \\sqrt{s}= 200 GeV
Kahana, D. E.; Kahana, S. H.
2008-07-01
A consistent picture of the Au + Au and D + Au, \\sqrt{s}= 200 A GeV measurements at RHIC obtained with the PHENIX, STAR, PHOBOS and BRAHMS detectors including both the rapidity and transverse momentum spectra was previously developed with the simulation LUCIFER. The approach was modelled on the early production of a fluid of pre-hadrons after the completion of an initial phase of high-energy interactions. The formation of pre-hadrons is discussed here, in a perturbative QCD approach as advocated by Kopeliovich, Nemchik and Schmidt. In the second phase of LUCIFER, a considerably lower energy hadron-like cascade ensues. Since the dominant collisions occurring in this latter phase are meson-meson in character while the initial collisions are between baryons, i.e. both involve hadron-sized interaction cross-sections, there is good reason to suspect that the observed elliptical flow will be produced naturally, and this is indeed found to be the case.
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
An annotation system for 3D fluid flow visualization
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Fluid flow and solute segregation in EFG crystal growth process
Bunoiu, O.; Nicoara, I.; Santailler, J. L.; Duffar, T.
2005-02-01
The influence of the die geometry and various growth conditions on the fluid flow and on the solute distribution in EFG method has been studied using numerical simulation. The commercial FIDAP software has been used in order to solve the momentum and mass transfer equations in the capillary channel and in the melt meniscus. Two types of shaper design are studied and the results are in good agreement with the void distribution observed in rod-shaped sapphire crystals grown by the EFG method in the various configurations.
Characteristics of Electrorheological Fluid Flow Between Two Concentric Cylinders
PENG Jie; ZHU Ke-Qin; XI Bao-Shu
2000-01-01
The characteristics of Couette flow of electrorheological fluid (ERF) between concentric cylinders is dependent on the parameter β, which is in the yield stress formula of ERF. In the case of β ＞ 2, the yield region locates between the yield surface and the outer cylinder. In the case of β ＜ 2, the yield region locates between the yield surface and the inner cylinder. When β=2, there is no yield surface. Steady and time dependent numerical results in relation to different β are presented and discussed.
Linear Inviscid Damping for Couette Flow in Stratified Fluid
Yang, Jincheng
2016-01-01
We study the inviscid damping of Coutte flow with an exponentially stratified density. The optimal decay rates of the velocity field and density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the inviscid damping of perturbations due to the exponential stratification when there is no shear.
k Spectrum of Passive Scalars in Lagrangian Chaotic Fluid Flows
Antonsen, Thomas M., Jr.; Fan, Zhencan Frank; Ott, Edward
1995-08-01
An eikonal-type description for the evolution of k spectra of passive scalars convected in a Lagrangian chaotic fluid flow is shown to accurately reproduce results from orders of magnitude more time consuming computations based on the full passive scalar partial differential equation. Furthermore, the validity of the reduced description, combined with concepts from chaotic dynamics, allows new theoretical results on passive scalar k spectra to be obtained. Illustrative applications are presented to long-time passive scalar decay, and to Batchelor's law k spectrum and its diffusive cutoff.
Heat transfer and fluid flow in nuclear systems
Fenech, Henri
1982-01-01
Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto
A Study on Viscoelastic Fluid Flow in a Square-Section 90-Degrees Bend
Mizue Munekata; Kazuyoshi Matsuzaki; Hideki Ohba
2003-01-01
It is well known that the drag-reducing effect is obtained in a surfactant solution flow in a straight pipe. We investigate about a viscoelastic fluid flow such as a surfactant solution flow in a square-section 90° bend. In the experimental study, drag-reducing effect and velocity field in a surfactant solution flow are investigated by measurements of wall pressure loss and LDV measurements. For the numerical method, LES with FENE-P model is used in the viscoelastic fluid flow in the bend. The flow characteristics of viscoelastic fluid are discussed compared with that of a Newtonian fluid.
Fluid flow of incompressible viscous fluid through a non-linear elastic tube
Lazopoulos, A.; Tsangaris, S. [National Technical University of Athens, Fluids Section, School of Mechanical Engineering, Zografou, Athens (Greece)
2008-11-15
The study of viscous flow in tubes with deformable walls is of specific interest in industry and biomedical technology and in understanding various phenomena in medicine and biology (atherosclerosis, artery replacement by a graft, etc) as well. The present work describes numerically the behavior of a viscous incompressible fluid through a tube with a non-linear elastic membrane insertion. The membrane insertion in the solid tube is composed by non-linear elastic material, following Fung's (Biomechanics: mechanical properties of living tissue, 2nd edn. Springer, New York, 1993) type strain-energy density function. The fluid is described through a Navier-Stokes code coupled with a system of non linear equations, governing the interaction with the membrane deformation. The objective of this work is the study of the deformation of a non-linear elastic membrane insertion interacting with the fluid flow. The case of the linear elastic material of the membrane is also considered. These two cases are compared and the results are evaluated. The advantages of considering membrane nonlinear elastic material are well established. Finally, the case of an axisymmetric elastic tube with variable stiffness along the tube and membrane sections is studied, trying to substitute the solid tube with a membrane of high stiffness, exhibiting more realistic response. (orig.)
Complex fluid flow modeling with SPH on GPU
Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro; Russo, Giovanni; Vicari, Annamaria
2010-05-01
We describe an implementation of the Smoothed Particle Hydrodynamics (SPH) method for the simulation of complex fluid flows. The algorithm is entirely executed on Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) developed by NVIDIA and fully exploiting their computational power. An increase of one to two orders of magnitude in simulation speed over equivalent CPU code is achieved. A complete modeling of the flow of a complex fluid such as lava is challenging from the modelistic, numerical and computational points of view. The natural topography irregularities, the dynamic free boundaries and phenomena such as solidification, presence of floating solid bodies or other obstacles and their eventual fragmentation make the problem difficult to solve using traditional numerical methods (finite volumes, finite elements): the need to refine the discretization grid in correspondence of high gradients, when possible, is computationally expensive and with an often inadequate control of the error; for real-world applications, moreover, the information needed by the grid refinement may not be available (e.g. because the Digital Elevation Models are too coarse); boundary tracking is also problematic with Eulerian discretizations, more so with complex fluids due to the presence of internal boundaries given by fluid inhomogeneity and presence of solidification fronts. An alternative approach is offered by mesh-free particle methods, that solve most of the problems connected to the dynamics of complex fluids in a natural way. Particle methods discretize the fluid using nodes which are not forced on a given topological structure: boundary treatment is therefore implicit and automatic; the movement freedom of the particles also permits the treatment of deformations without incurring in any significant penalty; finally, the accuracy is easily controlled by the insertion of new particles where needed. Our team has developed a new model based on the
Timing of Fluid Flow During Exhumation of Deeply Subducted Continent
Zheng, Y.; Gao, T.; Wu, Y.; Gong, B.
2005-12-01
Quartz veins are common within UHP eclogites in the Dabie-Sulu orogenic belt of China. While their formation has been linked to dehydration reactions, time of veining has been uncertain during either subduction or exhumation. SHRIMP U-Pb dating for zircons from kyanite-quartz vein and its host eclogite in the Dabie orogen yields two groups of age at 212±7 Ma and 181±13 Ma, respectively. They are significant younger not only than SHRIMP zircon U-Pb ages of 243±4 and 224±3 Ma for host eclogite, but also than known UHP metamorphic ages of 234±4 to 227±2 Ma as dated by the SHRIMP U-Pb technique for coesite-bearing domains of zircon. The U-Pb age of 224±3 Ma for the eclogite dates zircon growth at the onset of HP eclogite-facies recrystallization during exhumation. Corresponding temperatures may be about 670°C as estimated for both eclogite-facies recrystallization and veining from a petrological study. The second group of zircon U-Pb age at 181±13 Ma is much later than the HP-UHP-HP metamorphic events during the orogenic cycle and thus may not be relevant to post-collisional exhumation. Therefore, the two groups of vein age date the two episodes of fluid flow, respectively, due to decompression dehydration during exhumation and heating dehydration in response to breakup of supercontinent Pangea. This provides for the first time the radiometric dates for timing of fracture fluid flow that transports both mass and heat during plate collision. Laser fluorination O isotope analyses show the almost same δ18O values for the minerals of both vein and eclogite, indicating the same origin of fluid and material for them and thus internally derived fluid for veining. High O isotope temperatures of 695±20 to 715±35°C are obtained for Qz-Ky and Qz-Gt pairs, suggesting the attainment of O isotope reequilibration during the HP eclogite-facies recrystallization. On the other hand, low O isotope temperatures of 490±10 to 510±15°C occur in Qz-Rt and Qz-Zo pairs
Characterization of Fluid Flow in Paper-Based Microfluidic Systems
Walji, Noosheen; MacDonald, Brendan
2014-11-01
Paper-based microfluidic devices have been presented as a viable low-cost alternative with the versatility to accommodate many applications in disease diagnosis and environmental monitoring. Current microfluidic designs focus on the use of silicone and PDMS structures, and several models have been developed to describe these systems; however, the design process for paper-based devices is hindered by a lack of prediction capability. In this work we simplify the complex underlying physics of the capillary-driven flow mechanism in a porous medium and generate a practical numerical model capable of predicting the flow behaviour. We present our key insights regarding the properties that dictate the behaviour of fluid wicking in paper-based microfluidic devices. We compare the results from our model to experiments and discuss the application of our model to design of paper-based microfluidic devices for arsenic detection in drinking water in Bangladesh.
Fluid Flow in Continuous Casting Mold with a Configured Nozzle
王镭; 沈厚发; 柳百成
2004-01-01
The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.
Fluid dynamics in airway bifurcations: III. Localized flow conditions.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.
Mapping flow distortion on oceanographic platforms using computational fluid dynamics
N. O'Sullivan
2013-10-01
Full Text Available Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from −60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s−1 in increments of 0.5 m s−1. The numerical analysis showed close agreement to experimental measurements.
Extensional bundle waveguide techniques for measuring flow of hot fluids.
Lynnworth, Lawrence C; Liu, Yi; Umina, John A
2005-04-01
A bundle of acoustically slender metal rods, each thin compared to wavelength, tightly packed within a sheath, and welded closed at each end, provides a dispersion-free waveguide assembly that acts as a thermal buffer between a transducer and the hot fluid medium the flow of which is to be measured. Gas and steam flow applications have ranged up to 600 degrees C. Liquid applications have ranged from cryogenic (-160 degrees C) to 500 degrees C and include intermittent two-phase flows. The individual rods comprising the bundle usually are approximately one millimeter in diameter. The sheath, made of a pipe or tube, typically has an outside diameter of 12.7 to about 33 mm and usually is about 300 mm long. Materials for the sheath and bundle are selected to satisfy requirements of compatibility with the fluid as well as for acoustic properties. Corrosion-resistant alloys such as 316SS and titanium are commonly used. The buffers are used with transducers that are metal-encapsulated and certified for use in hazardous areas. They operate at a frequency in the range of 0.1 to 1 MHz. The radiating end of the buffer is usually flat and perpendicular to the buffer's main axis. In some cases the end of the buffer is stepped or angled. Angling the radiating faces at approximately 2 degrees to overcome beam drift at Mach 0.1 recently contributed to solving a high-temperature high-velocity flow measurement problem. The temperature in this situation was 300 degrees C, and the gas molecular weight was about 95, with pressure 0.9 to 1.1 bar.
Fluid mechanics experiments in oscillatory flow. Volume 1: Report
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).
Fluid Flow Phenomenon in a Three-Bladed Power-Generating Archimedes Screw Turbine
Tineke Saroinsong; Rudy Soenoko; Slamet Wahyudi; Mega N Sasongko
2016-01-01
Experimental studies of the Archimedes screw turbine are applied as a micro hydro power plant for low head focused on the fluid flow. Fluid flow on a screw turbine is not completely filled water flow there is still a free surface between the water fluid and atmospheric air. Except the screw geometry, the turbine screw free surface allows the flow phenomena that are important in the process of turbine screw power generation. The Archimedes screw turbine main driving force is the fl...
Fluid Flow Phenomenon in a Three-Bladed Power-Generating Archimedes Screw Turbine
2016-01-01
Experimental studies of the Archimedes screw turbine are applied as a micro hydro power plant for low head focused on the fluid flow. Fluid flow on a screw turbine is not completely filled water flow there is still a free surface between the water fluid and atmospheric air. Except the screw geometry, the turbine screw free surface allows the flow phenomena that are important in the process of turbine screw power generation. The Archimedes screw turbine main driving force is the fl...
Modeling of dilute and dense dispersed fluid-particle flow
Laux, Harald
1998-08-01
A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a
Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study
Sankar DS
2009-01-01
Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.
Flow of fluids from matrix to fractures in rock
Lupo, M.J.
1987-01-01
The flow of a single-phase compressible fluid from the rock matrix to fractures was modeled using the pressure diffusion equation. Pressure histories are presented for homogeneous isotropic blocks bounded by planar fractures. The case of an infinite slab bounded by planes of constant pore pressure was studied. The slab was divided by a planar fracture perpendicular to the planes. Lateral flow was found to cease once equilibrium is reached between the fracture and the matrix. Disequilibrium is found to be short-lived for laboratory-sized specimens of typical reservoir rock. The most-important parameter in cross-flow is the distance l between the two planes of constan pore pressure. When a second fracture was added, parallel to the first, the cross-flow behavior was nearly identical to the one fracture case if the spacing of the fractures is greater than l. The pressure history of the blocks of the continuum model of naturally fractured reservoirs was examined with a discrete mathematical model. An analytical solution to the pressure diffusion equation with time dependent boundary conditions is presented for blocks in both a finite and infinite reservoir.
Meshless lattice Boltzmann method for the simulation of fluid flows.
Musavi, S Hossein; Ashrafizaadeh, Mahmud
2015-02-01
A meshless lattice Boltzmann numerical method is proposed. The collision and streaming operators of the lattice Boltzmann equation are separated, as in the usual lattice Boltzmann models. While the purely local collision equation remains the same, we rewrite the streaming equation as a pure advection equation and discretize the resulting partial differential equation using the Lax-Wendroff scheme in time and the meshless local Petrov-Galerkin scheme based on augmented radial basis functions in space. The meshless feature of the proposed method makes it a more powerful lattice Boltzmann solver, especially for cases in which using meshes introduces significant numerical errors into the solution, or when improving the mesh quality is a complex and time-consuming process. Three well-known benchmark fluid flow problems, namely the plane Couette flow, the circular Couette flow, and the impulsively started cylinder flow, are simulated for the validation of the proposed method. Excellent agreement with analytical solutions or with previous experimental and numerical results in the literature is observed in all the simulations. Although the computational resources required for the meshless method per node are higher compared to that of the standard lattice Boltzmann method, it is shown that for cases in which the total number of nodes is significantly reduced, the present method actually outperforms the standard lattice Boltzmann method.
Computational fluid flow and heat transfer. An engineering tool
Salcudean, Martha
1991-05-01
The purpose, method, and potential of computational fluid dynamics (CFD) are discussed. Some examples of CFD and heat transfer applied to engineering problems are described. Simulation of casting in a permanent mold, gallium arsenide crystal growth, and the computation of discharge coefficients in film cooling of turbine blades are briefly described. It is shown the the CFD methods help to improve the understanding of the physics involved. They allow the influence of various parameters on the product or process to be investigated in a relatively inexpensive way. CFD constitutes a predictive tool which allows for product or process optimization. Discretization and solution methods used in the present examples are briefly described. Some limitations of the CFD methods are illustrated. The error introduced by false diffusion is shown for laminar flow around a bluff body. The improvement obtained by a higher order scheme is discussed. Some difficulties related to turbulence modelling are illustrated for the flow and heat transfer around the same bluff body. Turbulent swirling flow between concentric annuli is also discussed. Problems related to the slow convergence rate and major improvements obtained through applying multigrid convergence acceleration methods are shown for two and three dimensional opposing jets penetrating into a main flow.
Geothermal heat exchanger with coaxial flow of fluids
Pejić Dragan M.
2005-01-01
Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.
Vibrational shear flow of anisotropic viscoelastic fluid with small amplitudes
韩式方
2008-01-01
Using the constitutive equation of co-rotational derivative type for anisotropic viscoelastic fluid-liquid crystalline(LC),polymer liquids was developed.Two relaxation times are introduced in the equation:λn represents relaxation of the normal-symmetric stress components;λs represents relaxation of the shear-unsymmetric stress components.A vibrational rotating flow in gap between cylinders with small amplitudes is studied for the anisotropic viscoelastic fluid-liquid crystalline polymer.The time-dependent constitutive equation are linearized with respect to parameter of small amplitude.For the normal-symmetric part of stress tensor analytical expression of the shear stress is obtained by the constitutive equation.The complex viscosity,complex shear modulus,dynamic and imaginary viscosities,storage modulus and loss modulus are obtained for the normal-symmetric stress case which are defined by the common shear rate.For the shear-unsymmetric stress part,two shear stresses are obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) are given by the constitutive equation which are defined by rotating shear rate introduced by author.The dynamic and imaginary viscosities,storage modulus and loss modulus are given for each complex viscosities and complex shear modulus.Using the constituive equation the rotating flow with small amplitudes in gap between two coaxial cylinders is studied.
A review of interaction mechanisms in fluid-solid flows
Johnson, G.; Rajagopal, K.R. (Pittsburgh Univ., PA (USA). Dept. of Mechanical Engineering); Massoudi, M. (USDOE Pittsburgh Energy Technology Center, PA (USA))
1990-09-01
Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.
Variational formulation of ideal fluid flows according to gauge principle
Kambe, Tsutomu [IDS, Higashi-yama 2-11-3, Meguro-ku, Tokyo 153-0043 (Japan)], E-mail: kambe@ruby.dti.ne.jp
2008-06-30
On the basis of the gauge principle of field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. The rotational transformations are regarded as gauge transformations as well as the translational ones. In addition to the Lagrangians representing the translation symmetry, a structure of rotation symmetry is equipped with a Lagrangian {lambda}{sub A} including the vorticity and a vector potential bilinearly. Euler's equation of motion is derived from variations according to the action principle. In addition, the equations of continuity and entropy are derived from the variations. Equations of conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate a. Without {lambda}{sub A}, the action principle results in the Clebsch solution with vanishing helicity. The Lagrangian {lambda}{sub A} yields non-vanishing vorticity and provides a source term of non-vanishing helicity. The vorticity equation is derived as an equation of the gauge field, and the {lambda}{sub A} characterizes topology of the field. The present formulation is comprehensive and provides a consistent basis for a unique transformation between the Lagrangian a space and the Eulerian x space. In contrast, with translation symmetry alone, there is an arbitrariness in the transformation between these spaces.
On numerical modelling of contact lines in fluid flows
Pelinovsky, Dmitry E
2013-01-01
We study numerically a reduced model proposed by Benilov and Vynnycky (J. Fluid Mech. 718 (2013), 481), who examined the behavior of a contact line with a 180-degree contact angle between liquid and a moving plate, in the context of a two-dimensional Couette flow. The model is given by a linear fourth-order advection-diffusion equation with an unknown velocity, which is to be determined dynamically from an additional boundary condition at the contact line. The main claim of Benilov and Vynnycky is that for any physically relevant initial condition, there is a finite positive time at which the velocity of the contact line tends to negative infinity, whereas the profile of the fluid flow remains regular. Additionally, it is claimed that the velocity behaves as the logarithmic function of time near the blow-up time. We simulate dynamics of this model under different initial conditions and confirm the first claim. However, we also show that the blow-up behavior is better approximated by a power function, compared...
Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).
Bridges, Craig; Rajagopal, K R
2010-01-01
We study the flow of a shear-thinning, chemically-reacting fluid that could be used to model the flow of the synovial fluid. The actual geometry where the flow of the synovial fluid takes place is very complicated, and therefore the governing equations are not amenable to simple mathematical analysis. In order to understand the response of the model, we choose to study the flow in a simple geometry. While the flow domain is not a geometry relevant to the flow of the synovial fluid in the human body it yet provides a flow which can be used to assess the efficacy of different models that have been proposed to describe synovial fluids. We study the flow in the annular region between two cylinders, one of which is undergoing unsteady oscillations about their common axis, in order to understand the quintessential behavioral characteristics of the synovial fluid. We use the three models suggested by Hron et al. [ J. Hron, J. M\\'{a}lek, P. Pust\\v{e}jovsk\\'{a}, K. R. Rajagopal, On concentration dependent shear-thinni...
Large-eddy simulation of supercritical fluid flow and combustion
Huo, Hongfa
The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The
Occurrence of turbulent flow conditions in supercritical fluid chromatography.
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-09-26
Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going
Magnetic collimation of meridional-self-similar general relativistic MHD flows
Globus, Noemie; Sauty, Christophe; Cayatte, Véronique; Celnikier, Ludwik M.
2014-06-01
We present a model for the spine of relativistic Magnetohydrodynamics outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semianalytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.
Magnetic collimation of meridional-self-similar general relativistic MHD flows
Globus, Noemie; Cayatte, Véronique; Celnikier, Ludwik M
2014-01-01
We present a model for the spine of relativistic MHD outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semi-analytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Sylolites in carbonate rock: barriers to fluid flow?
Heap, M. J.; Baud, P.; Meredith, P. G.; Reuschlé, T.
2012-04-01
Stylolites, products of intergranular pressure-solution, form laterally-extensive, clay-enriched, planar features in porous sedimentary rocks. While mechanical strain localisation has been shown to dramatically decrease permeability in sedimentary rock (Baud et al., 2012), little attention has focused on the impact of chemical strain localisation. Potentially, stylolites could significantly influence regional fluid flow, an important consideration in, for example, geotechnical engineering and petroleum geoscience. To this end, we have performed a systematic study of the influence of stylolites (both parallel and perpendicular to the imposed flow direction) on the water and gas permeability of three oolitic limestones with porosities ranging from 6 to 16 %. Our experimental data show that the presence of stylolites increased the permeability of our limestone samples by about a factor of two (when compared to the adjacent stylolite-free material). However, the magnitude of the permeability increase was found to be independent of stylolite orientation and number. Porosity measurements demonstrated that core samples containing stylolites were consistently more porous than the adjacent stylolite-free material. We therefore suggest that it is the increase in porosity (or "stylolitic porosity", as a result of the presence of a stylolite) that is responsible for the observed modest increase in permeability. This conclusion is supported by x-ray computed tomographic images of the samples that show that sample density is unperturbed by the presence of a stylolite. We can further conclude that the impact of mechanical strain localisation (e.g., compaction bands, see Baud et al., 2012) has a much greater impact on fluid flow than chemical strain localisation (e.g., stylolites, this study).
Metamorphic fluid flow - a question of scale, crustal depth and bulk rock composition
Tracy, R.J.; Rye, D.M.
1985-01-01
Recent studies have indicated that certain metamorphic rocks interacted with significant volumes of aqueous fluid during their time-integrated mineral reaction history. Rather than demonstrating that pervasive fluid flow is general in metamorphic rocks, these documented cases instead suggest the likelihood of pronounced to extreme channelization of through-going in fluids in deep-seated metamorphic terranes (P>3 kbar). In rocks more shallowly buried, and therefore under low lithostatic stress, pervasive flow along grain boundaries and open microfractures probably occurred, as at Skye and the Skaergaard Complex. In higher pressure metamorphic environments, documented cases of high fluid/rock ratio make a strong case for flow channelized in veins or in impure marble aquifers where pore space and permeability were created by decarbonation reactions driven by infiltration of aqueous fluid. The source of this fluid may commonly be traced to a nearby wet granitic intrusion or quartz vein. As long as the pressurized source of aqueous fluid continued, outward flow was possible as fluid held open the intergranular pore space which was created only at the infiltration/reaction front where a reduction in solid volume accompanied reaction. Cessation or interruption of fluid flow would allow the pore space to close due to porous-rock strength being exceeded by lithostatic stress. Pervasive flow or aqueous fluid in deepseated metamorphic terranes is therefore probably limited to carbonate-bearing lithologies adjacent to sources of major volumes of fluid; otherwise, fluid flow is likely to be localized in fractures or veins.
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
Stagnation-point flow of the Walters' B' fluid with slip
Labropulu, F.; Husain, I; Chinichian, M.
2004-01-01
The steady two-dimensional stagnation point flow of a non-Newtonian Walters' B' fluid with slip is studied. The fluid impinges on the wall either orthogonally or obliquely. A finite difference technique is employed to obtain solutions.
Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
Spatial and temporal resolution of fluid flows: LDRD final report
Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.
1998-02-01
This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Ayala, Alejandro; Castaño-Yepes, Jorge David; Dominguez, C. A.; Hernández, L. A.; Hernández-Ortiz, Saúl; Tejeda-Yeomans, María Elena
2017-07-01
We compute photon production at early times in semicentral relativistic heavy-ion collisions from nonequilibrium gluon fusion induced by a magnetic field. The calculation accounts for the main features of the collision at these early times, namely, the intense magnetic field and the high gluon occupation number. The gluon fusion channel is made possible by the magnetic field and would otherwise be forbidden due to charge conjugation invariance. Thus, the photon yield from this process is an excess over calculations without magnetic field effects. We compare this excess to the difference between PHENIX data and recent hydrodynamic calculations for the photon transverse momentum distribution and elliptic flow coefficient v2 . We show that with reasonable values for the saturation scale and magnetic field strength, the calculation helps us better describe the experimental results obtained at RHIC energies for the lowest part of the transverse photon momentum.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research
THE FLOW PROBLEM OF FLUIDS FLOW IN A FRACTAL RESERVOIR WITH DOUBLE POROSITY
同登科; 张鸿庆
2001-01-01
The effective radius of oil well is introduced in the inner boundary in the problem of fluids flow through fractal reservoir with double porosity, and thus a new model is established. Taking the wellbore storage and steady-state skin effect into consideration, the exact solutions of the pressure distribution of fluids flow in fractal reservoirs with double porosity are given for the cases of an infinite outer boundary, a finite closed outer boundary and a bounded domain with the constant pressure outer boundary conditions. The pressure behavior of fractal reservoir with double porosity is analyzed by using a numerical inversion of the Laplace transform solution. The pressure responses of changing various parameters are discussed.
Experimental stand for investigation of fluid flow in heat exchangers with cross-flow arrangement
Łopata Stanisław
2017-01-01
Full Text Available The operation analysis of high-performance heat exchanger with tubes elliptical indicated that the heat exchangers can be subject to damage. The reason for this is probably improper distribution of working fluid in tubular space of heat exchanger. Therefore, a part of the tubes may be improperly cooled and subject to compressible stresses. The paper presents an experimental stand allowing to confirm the given assumption. The experimental investigation enables to examine the mass flow rate in heat exchanger tubes. Also, it is possible to assess the impact of the construction of inlet, intermediate and outlet chambers on the flow distribution within the heat exchanger tubes.
Biosensor Arrays for Estimating Molecular Concentration in Fluid Flows
Abolfath-Beygi, Maryam
2011-01-01
This paper constructs dynamical models and estimation algorithms for the concentration of target molecules in a fluid flow using an array of novel biosensors. Each biosensor is constructed out of protein molecules embedded in a synthetic cell membrane. The concentration evolves according to an advection-diffusion partial differential equation which is coupled with chemical reaction equations on the biosensor surface. By using averaging theory methods and the divergence theorem, an approximate model is constructed that describes the asymptotic behaviour of the concentration as a system of ordinary differential equations. The estimate of target molecules is then obtained by solving a nonlinear least squares problem. It is shown that the estimator is strongly consistent and asymptotically normal. An explicit expression is obtained for the asymptotic variance of the estimation error. As an example, the results are illustrated for a novel biosensor built out of protein molecules.
Fluid-plasma interaction in compressible unstable flows
Massa, Luca
2014-11-01
The receptivity of the boundary layer discrete modes to dielectric barrier discharge (DBD) actuation is studied to improve the understanding of the interaction between non-equilibrium plasma and fluid in convectively amplified vortical layers. The momentum transfer induced by a DBD patch at various Reynolds numbers is evaluated using an adaptive mesh refinement computational solver in the Mach number regime 0.8-2.0. The energy of the induced modal perturbation is determined by weighting such a source term with the corresponding adjoint eigenfunctions. Conditions of maximum overlapping between the adjoint and the source term define the regimes of maximum receptivity and the locations of optimal placement of the DBD patch at different Mach and Reynolds numbers. The interaction between non-equilibrium plasma and the jet in cross flow is also being studied to determine the ability of DBD patches to influence mixing in the compressible regime, thus improving flame-holding in plasma assisted ignition and combustion.
Analytical methods for heat transfer and fluid flow problems
Weigand, Bernhard
2015-01-01
This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out exam...
THE HEAT AND FLUID FLOW ANALYSIS FOR WATER HEATER
Chien-Nan Lin
2011-01-01
Full Text Available In this paper, the heat transfer and fluid flow are studied for the water heater of RV cars, in which the hot water is heated by the combustion energy of liquefied petroleum gases. Three types of combustion tubes are performed in this investigation, which are circular tube, elliptic tube and elliptic tube with screwed wire inserted. The heat transfer performances of numerical simulation results are compared with those of the experimental works; they are in good trend agreement. The elliptic combustion tube performs better than the circular one, which indicates the average 7% energy saving for the elliptic combustion tube and 12% energy saving for the elliptic combustion tube with screwed wire under static heating.
Viscoelastic Multicomponent Fluids in confined Flow-Focusing Devices
Gupta, Anupam
2015-01-01
The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the "lattice Boltzmann models" (LBM). Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) and droplet formation downstream of the cross-junction (DC) (Liu & Zhang, ${\\it Phys. Fluids.}$ ${\\bf 23}$, 082101 (2011)). Viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel.
The transient behavior of electrorheological fluid in tensile flow
Tian, Yu; Zhang, Minliang; Zhu, Xuli; Jiang, Jile; Meng, Yonggang; Wen, Shizhu
2009-12-01
Transient behaviors of (ER) fluids in tensile flow and applied stepwise voltages were experimentally studied. The transient tensile stress rises exponentially with time. The characteristic rising time of tensile stress is independent of the amplitude of the applied voltage and the tensile velocity, while the amplitude of tensile yield stress is significantly affected by the two factors. The transient tension applied as a stepwise voltage is different from a stable tension pre-applied at constant voltage in different particle chain structure forming processes. Because of the chain aggregation during an intermittent voltage on-off test, the achieved tensile yield stress showed an exponent of 2.75 to the applied electric field at low separation velocities (0.2 mm s-1), higher than the square relationship predicted by traditional polarization models, and the exponent of 1.5 predicted by the conduction model. The results achieved in this study show that the mechanical properties of ER fluids are greatly affected by the method of applying the electric field, the strain rate, and the gap geometry between electrodes. These factors should be properly considered in the design and control of ER actuators.
A two-fluid model for violent aerated flows
Dias, Frédéric; Ghidaglia, Jean-Michel
2008-01-01
In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities and analyze some of its properties. It is shown that this model can successfully mimic water wave impacts on coastal structures. The governing equations are discretized by a second-order finite volume method. Numerical results are presented for two examples: the dam break problem and the drop test problem. It is shown that this basic model can be used to study violent aerated flows, especially by providing fast qualitative estimates.
Studies of Tracer Dispersion and Fluid Flow in Porous Media
Rage, T.
1996-12-31
This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table
Flow Field of Metallic Fluid Acted by Electromagnetic and Centrifugal Force
QIU Yi-qing; LUO Zong-an; JIA Guang-lin; LIU Xiang-hua; WANG Guo-dong
2004-01-01
According to the principle of electromagnetism and hydrodynamics, a mathematical model of flow field for metallic fluid acted by electromagnetic and centrifugal forces was established. The calculation results showed that the relative velocity between metallic fluid layers rises and the absolute rotational velocity of metallic fluid falls with the increase of magnetic induction intensity. The increase of centrifugal revolution hardly affects the relative velocity between metallic fluid layers, but can enhance the absolute rotational velocity of metallic fluid.
Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish
2016-03-01
OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
NUMERICAL ANALYSIS OF FLUID FLOW AND ADDED MASS INDUCED BY VIBRATION OF STRUCTURE
SU Li; LI Shu-juan; TANG Guo-an
2005-01-01
The fluid flow induced by light-density, low-stiffness structures was treated as inviscid, incompressible irrotational and steady plane flow. On the basis of the dipole configuration method, a singularity distribution method of distributing sources/sinks and dipoles on interfaces of the structure and fluid was developed to solve the problem of fluid flow induced by the vibration of common structures, such as columns and columns with fins,deduce the expression of kinetic energy of the fluid flow, and obtain the added mass finally.The calculational instances with analytical solutions prove the reliability of this method.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Grabski, Jakub Krzysztof; Kołodziej, Jan Adam
2016-06-01
In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.
Collective Flow in Heavy Ion Collisions at Low to Relativistic Energies
Lisa, M. A.
1997-04-01
Recently, the phenomenon of collective flow in heavy ion collisions has been the subject of intense study. First observed at the Bevalac more than a decade ago, flow is now recognized as a universal feature of heavy ion collisions at all bombarding energies. Recent developments in three identified forms of flow-- sidewards flow, radial flow, and squeeze-out-- will be reviewed. At low energies (EOS and FOPI collaborations have considerably extended the work begun by the Plastic Ball group; here, studies of the flow of nucleons, fragments, and pions lead to a better understanding of the Equation of State of nuclear matter, momentum dependent interactions, and pion shadowing. The squeeze-out effect at Bevalac energies may be the most sensitive form of flow to the equation of state. Recent studies suggest that squeeze-out may be considered as an azimuthal modulation of the radial flow. The E895 collaboration is continuing the flow excitation function of the EOS/FOPI groups for 2-10 A GeV bombarding energies, with the aim of increasing the sensitivity to Equation of State parameters, as well as searching for flow signatures of Quark Gluon Plasma creation. Sidewards flow at the highest AGS energy for Au beams(11 A GeV) has been reported by the E877 collaboration, which has correlated the effect with pion interferometry measurements to identify possible dynamical correlations in the collision. Finally, at the highest energies currently available, the NA49 collaboration has found sidewards flow at SPS energies (160 A GeV); preliminary comparisons to RQMD calculations indicate that the model reproduces the flow well. At all of these bombarding energies (over 3 orders of magnitude!), the particle spectra show a strong non-thermal component which has been identified as largely isotropic or "radial" flow. While the sidewards flow accounts for only ~5% of emitted particles' energy, roughly 30-50% of the energy of emitted particles is found in radial flow. Several groups are
S. A. El-Wakil
2012-01-01
Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.
Momentum and charge transport in non-relativistic holographic fluids from Ho\\v{r}ava gravity
Davison, Richard A; Janiszewski, Stefan; Kaminski, Matthias
2016-01-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Ho\\v{r}ava gravity with Lifshitz exponent $z=1$. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Ho\\v{r}ava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Ho\\v{r}ava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
Effect of asynchrony on numerical simulations of fluid flow phenomena
Konduri, Aditya; Mahoney, Bryan; Donzis, Diego
2015-11-01
Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.
Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion
Mikel-Stites, Maxwell; Staples, Anne
2014-11-01
While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).
Transverse momentum-flow correlations in relativistic heavy-ion collisions
Bozek, Piotr
2016-01-01
The correlation between the transverse momentum and the azimuthal asymmetry the flow is studied. A correlation coefficient is defined between the average transverse momentum of hadrons emitted in an event and the square of the elliptic or triangular flow coefficient. The hydrodynamic model predicts a positive correlation of the transverse momentum with the elliptic flow, and almost no correlation with the triangular flow in Pb-Pb collisions at LHC energies. In p-Pb collisions the new correlation observable is very sensitive to the mechanism of energy deposition in the first stage of the collision.
Modeling study on fluid flow and inclusion motion in 6-strand bloom caster tundishes
Guanghua Wen; Lifeng Zhang; Ping Tang; Zhenjiang Su; Mingmei Zhu; Wuan Gu; Kewen Zhao
2004-01-01
The behavior of fluid flow and particle motion in a 6-strand bloom caster tundish was investigated by a water model and numerical simulation. Compared with a device without flow control, the tundish with flow control has an important effect on the fluid flow pattern and inclusion removal. It is revealed that by non-isothermal process, which is real production condition, the fluid flow in tundish shows a strong buoyancy pattem, which drives particles to move upwards. The particle removal was quantitatively studied by mathematical and physical simulations.
Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits
Sochi, Taha
2015-01-01
In this paper, analytical expressions correlating the volumetric flow rate to the pressure drop are derived for the flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin slits. The derivation is based on the application of Weissenberg-Rabinowitsch-Mooney-Schofield method to obtain flow solutions for generalized Newtonian fluids through pipes and our adaptation of this method to the flow through slits. The derived expressions are validated by comparing th...
Roedig, Constanze; Alic, Daniela
2012-01-01
We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic hydrodynamics coupled to an optically thick radiation field in two existing GR-hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several 1D tests we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in 1D, we compute a luminosity versus accretion rate diagram for the setup of spherical accretion onto a Schwarzschild black hole and find good agreement with previous work. Lastly, we revisit the supersonic Bondi Hoyle Lyttleton (BHL) accretion in 2D where we can now present simulations of realistic temperatures, down to T~10^6 K. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicabil...
Liang, Edison; Fu, Wen; Böttcher, Markus
2017-10-01
We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.
Interstitial fluid flow:simulation of mechanical environment of cells in the interosseous membrane
Wei Yao; Guang-Hong Ding
2011-01-01
In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues,while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array,we set up a porous media model simulating the flow field with FLUENT software,studied the shear stress on interstitial cells' surface due to the interstitial fluid flow,and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells,up to 30 Pa or so,which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries,blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion,numerical simulation provides an effective way for in vivo dynamic interstitial velocity research,helps to set up the vivid subtle interstitial flow environment of cells,and is beneficial to understanding the physiological functions of interstitial fluid flow.
Mathematical modeling for laminar flow of power law fluid in porous media
Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao
2010-07-01
In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
Abolhasani, Milad
Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a
Lacroix, Brice; Travé, Anna; Buatier, Martine; Labaume, Pierre
2013-04-01
During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faults emplacement and related fold growth. In such a structure, thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. However, most of recent studies suggest that fluid flow through such discontinuities is not so evident and depends on the structural levels of the thrust inside the fold-and-thrust belt. In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) we focus our study on different thrust faults located at different structural levels. The microstructures observed in the different studied fault zones are similar and consist of pervasive cleavage, calcite shear and extension veins and late dilatation veins. In order to constrain the nature and the source of fluids involved in fluid-rock interactions in fault zones, a geochemical approach, based on oxygen and carbon stable isotopes and trace elements on calcite, was adopted on the different vein generations and host rocks. The results suggest a high complexity in the paleo-hydrological behaviors of thrust faults evidencing a fluid-flow compartmentalization of the basin. North of the Jaca basin, previous studies in the southern part of the Axial Zones showed the contribution of deep metamorphic water, probably derived from the Paleozoic basement, along along fault zones related the major Gavarnie thrust. Contrarily, in the northern part of the Jaca basin, we evidence the contribution of formation water during the Monte Perdido thrust fault activity. These data suggest a closed hydrological fluid system where distance of fluid flow did not exceeded 70 m. On the other hand, the Jaca and Cotiella thrust faults, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotopes and trace elements compositions of the first generation of
Heat Transfer and Fluid Flow of Nanofluids in Laminar Radial Flow Cooling Systems
Gilles ROY; Samy Joseph PALM; Cong Tam NGUYEN
2005-01-01
Nanofluids are considered as interesting alternatives to conventional coolants. It is well known that traditional fluids have limited heat transfer capabilities when compared to common metals. It is therefore quite conceivable that a small amount of extremely fine metallic particles placed in suspension in traditional fluids will considerably increase their heat transfer performances. A numerical investigation into the heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside a radial, laminar flow cooling configuration is presented. Temperature dependant nanofluid properties are evaluated from experimental data available in recent literature. Results indicate that considerable heat transfer increases are possible with the use of relatively small volume fractions of nanoparticles. Generally, however, these are accompanied by considerable increases in wall shear-stress. Results also show that predictions obtained with temperature variable nanofluid properties yield greater heat transfer capabilities and lower wall shear stresses when compared to predictions using constant properties.
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Free surface flow of a suspension of rigid particles in a non-Newtonian fluid
Svec, Oldrich; Skocek, Jan; Stang, Henrik
2012-01-01
A numerical framework capable of predicting the free surface flow of a suspension of rigid particles in a non-Newtonian fluid is described. The framework is a combination of the lattice Boltzmann method for fluid flow, the mass tracking algorithm for free surface representation, the immersed...
Space-time discontinuous Galerkin finite element method for two-fluid flows
Sollie, Warnerius Egbert Hendrikus
2010-01-01
The aim of this research project was to develop a discontinuous Galerkin method for two-fluid flows, which is accurate, versatile and can alleviate some of the problems commonly encountered with existing methods. A novel numerical method for two-fluid flow computations is presented, which combines t
A New Numerical Solution of Fluid Flow in Stratigraphic Porous Media
XU You-Sheng; LI Hua-Mei; GUO Shang-Ping; HUANG Guo-Xiang
2004-01-01
A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosity, pressure,and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the evolution of fluid flow in stratigraphic media.
A physical five-equation model for compressible two-fluid flow, and its numerical treatment
Kreeft, J.J.; Koren, B.
2009-01-01
A novel five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow is derived, together with an appropriate numerical method. The model uses flow equations based on conservation laws and exchange laws only. The two fluids exchange momentum and energy, for which source terms a
On specific features of investigation of fluid flows by photometric techniques
Vologdin, V. A.; Davydov, V. V.; Velichko, E. N.
2016-08-01
Specific features of investigation of the fluid flow structure in a pipeline by photometric techniques are considered. The applicability of the photometric techniques based on the Doppler effect to such studies is discussed. A new method for detecting defects on inner walls of a pipeline that involves the use of the laser radiation scattered from particles in a flowing fluid is suggested.
Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes
Ole M. Aamo
2002-07-01
Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.
Advanced Fluid Reduced Order Models for Compressible Flow.
Tezaur, Irina Kalashnikova; Fike, Jeffrey A.; Carlberg, Kevin Thomas; Barone, Matthew F.; Maddix, Danielle; Mussoni, Erin E.; Balajewicz, Maciej (UIUC)
2017-09-01
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.
Exact Solution of Unsteady Flow of Viscoelastic Fluid in a Pipe with Fractional Maxwell Model
无
2007-01-01
The unsteady flow of viscoelastic fluid in a cylindrical pipe was investigated using the fractional Maxwell model. Two special cases of unsteady pipe flow were expressed. The first is start-up flow, and the second is oscillating flow. The exact solution of start-up flow under a constant pressure gradient was obtained by using the theories of Laplace transform and Fourier-Bessel series for fractional derivatives. The exact solution of oscillating flow was obtained by utilizing the separation of variables.
Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial
无
2005-01-01
A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.
Flow study in channel with the use computational fluid dynamics (CFD)
Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.
2016-08-01
The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.
Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid
Sufian Munawar
2014-01-01
Full Text Available This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0≤τ<∞. Flow properties of the viscoelastic fluid are discussed through graphs.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research
Mathematical Model of Fluid Flow and Solidification in Mold Region of Continuous Slab Casting
谭利坚; 沈厚发; 柳百成
2003-01-01
To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developedbased on the K-ε turbulence equations and the SIMPLER algorithm. A pseudo source term was introduced into the energy equation to account for the latent heat and kinetic energy. The fluid flow in the mushy zone was calculated by defining the fluid viscosity as a function of the solid fraction in the mushy zone. Fine meshes in the solid region improve convergence and reduce iteration time. Comparison of the fluid flow and temperature distribution with and without solidification shows that although the solid shell in the mold is thin, it still greatly affects the flow pattern. The numerical results obtained provide details of the fluid flow and solidification phenomena which can be used to optimize the nozzle structure and other process parameters in continuous casting.
Heat transfer and fluid flow in biological processes advances and applications
Becker, Sid
2015-01-01
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...
Separation mechanisms and fluid flow in oil/water separation
Celius, H.K.; Knudsen, B. [IKU Petroleumsforskning A/S, Trondheim (Norway); Hafskjold, B.; Hansen, E.W. [Selskapet for Industriell og Teknisk Forskning, Trondheim (Norway)
1996-12-31
This paper describes work aimed at physical and numerical modeling of separation rates of oil/water systems in order to establish better tools for design and operation of offshore operators. This work aims to integrate the chemical and physical phenomena behind coalescence and settling with those of fluid flow in the system, in order to develop tools for design and operational analysis of separation equipment. The work includes the development of a high pressure, bench-scale test rig to perform separation tests on live oil and water samples, and a rationale in the form of a computer code that can be used to interpret the test results and transform them to a form siutable for operational purposes. This involves a formulation of a mathematical description of the chemical and physical mechanisms behind the emulsification and separation process, and to establish a link to the hydrdynamic properties of the separator vessel. The Emucol computer program is used in the analysis. 12 refs., 5 figs.
Sankar, D. S. [Universiti Teknologi Brunei, Bandar Seri Begawan (Brunei Darussalam); Lee, U Sik [Inha University, Incheon (Korea, Republic of)
2016-07-15
This theoretical study investigates three types of basic flows of viscous incompressible Herschel-Bulkley fluid such as (i) plane Couette flow, (ii) Poiseuille flow and (iii) generalized Couette flow with slip velocity at the boundary. The analytic solutions to the nonlinear boundary value problems have been obtained. The effects of various physical parameters on the velocity, flow rate, wall shear stress and frictional resistance to flow are analyzed through appropriate graphs. It is observed that in plane Poiseuille flow and generalized Couette flow, the velocity and flow rate of the fluid increase considerably with the increase of the slip parameter, power law index, pressure gradient. The fluid velocity is significantly higher in plane Poiseuille flow than in plane Couette flow. The wall shear stress and frictional resistance to flow decrease considerably with the increase of the power law index and increase significantly with the increase of the yield stress of the fluid. The wall shear stress and frictional resistance to flow are considerably higher in plane Poiseuille flow than in generalized Couette flow.
Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet
Masood Khan; Hashim
2015-01-01
This article studies the Carreau viscosity model (which is a generalized Newtonian model) and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical ...
Flow of a non-Newtonian fluid through channels with permeable wall
Martins-Costa, Maria Laura [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Lab. de Matematica Teorica e Aplicada]. E-mail: laura@mec.uff.br; Gama, Rogerio M. Saldanha da [Laboratorio Nacional de Computacao Cientifica (LNCC), Petropolis, RJ (Brazil)]. E-mail: rsgama@domain.com.br; Frey, Sergio [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica. Grupo de Estudos Termicos e Energeticos
2000-07-01
In the present work the momentum transport in two adjacent flow regions is described by means of a continuum theory of mixtures, specially developed to model multiphase phenomena. A generalized Newtonian fluid flows through the permeable wall channel, originating a pure fluid region and a mixture region - where the fluid saturates the porous matrix. The fluid and the porous matrix are treated as continuous constituents of a binary mixture coexisting superposed, each of them occupying simultaneously the whole volume of the mixture. An Ostwald-de Waele behavior is assumed for both the fluid constituent (in the mixture region) and the fluid (in the so-called pure fluid region), while the porous matrix, represented by the solid constituent, is assumed rigid, homogeneous, isotropic and at rest. Compatibility conditions at the interface (pure fluid-mixture) for momentum transfer are proposed and discussed. Assuming no flow across the interface, the velocity should be zero on the solid parts of the boundary and should match the fluid diffusing velocity on the fluid parts of the boundary. Also the shear stress at the pure fluid region is to be balanced by a multiple of the partial shear stress at the mixture region. A minimum principle for the above-described problem, assuming fully developed flow in both regions, is presented, providing an easy and reliable way for carrying out numerical simulations. (author)
Intermittent flow in yield-stress fluids slows down chaotic mixing.
Wendell, D M; Pigeonneau, F; Gouillart, E; Jop, P
2013-08-01
We present experimental results of chaotic mixing of Newtonian fluids and yield-stress fluids using a rod-stirring protocol with a rotating vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This finding is confirmed via numerical simulations. Anomalously slow mixing is observed when the synchronization of different stirring elements leads to the repetition of slow stretching for the same fluid particles.
Numerical simulation of fluid flow in a reheating furnace with multi-swirling-burners
Baowei Li; Zengwu Zhao; Yike Li; Wenfei Wu; Daqiang Cang
2003-01-01
A general numerical simulating program for three-dimensional (3-D) and time-dependent fluid flow for a reheating furnace with multi-swirling-burners has been developed based upon an arbitrary Lagrangian-Eulerian scheme (ALE) with the finite volume method. The parameters of fluid flow in a reheating furnace with multi-swirling-burners was calculated and the 3-D velocity distributions were obtained. The design of the burners was optimized for forming better swirling flow. The simulation shows that the fluid flow in the reheating furnace with the optimized burners is reasonable.
Mean-field effects on flows in relativistic heavy-ion collisions
Isse, M.; Ohnishi, A. [Hokkaido Univ., Graduate School of Science, Sapporo, Hokkaido (Japan); Otuka, N. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (Japan); Sahu, P.K. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Nara, Y. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
At RHIC experiments, started in 2000, the data obtained recently seem to exhibit QGP formation, but the conclusion is not drawn yet. Here, we pay out attention to the collective flows at hadronic freeze-out as an evidence of QGP formation. To discuss it, the mean-field effect on the flows is not negligible. It is dominant at SIS or AGS energy, and our conjecture is that it is negligible at SPS or RHIC energy. We formed a model to investigate our assumption, and some simulated results are shown. (author)
Sentman, L.H.; Nayfeh, M.H.
1983-12-01
This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
Shuqing HAO; Hongwei HUANG; Kun YIN
2007-01-01
By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply.
Exact solutions for MHD flow of couple stress fluid with heat transfer
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
A Tightly Coupled Particle-Fluid Model for DNA-Laden Flows in Complex Microscale Geometries
Trebotich, D; Miller, G H; Colella, P; Graves, D T; Martin, D F; Schwartz, P O
2004-11-18
We present a stable and convergent method for the computation of flows of DNA-laden fluids in microchannels with complex geometry. The numerical strategy combines a ball-rod model representation for polymers tightly coupled with a projection method for incompressible viscous flow. We use Cartesian grid embedded boundary methods to discretize the fluid equations in the presence of complex domain boundaries. A sample calculation is presented showing flow through a packed array microchannel in 2D.
Simulating Cerebrospinal Fluid Flow and Spinal Cord Movement Associated with Syringomyelia
Vinje, Vegard
2016-01-01
Syringomyelia is a progressive disease where fluid filled cavities develop inside the spinal cord, and is frequently seen together with Chiari Malformation I (CMI). CMI is characterized by downwards displacements of the Cerebellar Tonsils obstructing flow in the Subarachnoid space, (SAS) which causes abnormal Cerebrospinal fluid (CSF) flow. Many theories on the pathogenesis of syringomyelia have been proposed, many related to abnormal CSF flow, but a full explanation has not yet been given. I...
Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe
Hongjun Zhu; Hongnan Zhao; Qian Pan; Xue Li
2014-01-01
A numerical simulation has been conducted to investigate flow erosion and pipe deformation of elbow in gas-solid two-phase flow. The motion of the continuous fluid phase is captured based on calculating three-dimensional Reynolds-averaged-Navier-Stokes (RANS) equations, while the kinematics and trajectory of the discrete particles are evaluated by discrete phase model (DPM), and a fluid-structure interaction (FSI) computational model is adopted to calculate the pipe deformation. The effects o...
Shahmansouri, M.; Misra, A. P.
2016-12-01
The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived, which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k - θ plane, where k is the wave number and θ ( 0 ≤ θ ≤ π ) the angle of modulation. It is also found that as the electron thermal velocity or θ increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effect of the thermal pressure or the relativistic flow is slightly relaxed. The present results may be useful to the MI and the formation of localized LW envelopes in cosmic plasmas with a relativistic flow of electrons.
Film Flow Dominated Simultaneous Flow of Two Viscous Incompressible Fluids Through a Porous Medium
Olav eAursjø
2014-11-01
Full Text Available We present an experimental study of two-phase flow in a quasi-two-dimensional porous medium. The two phases, a water-glycerol solution and a commercial food grade rapeseed/canola oil, having an oil to water-glycerol viscosity ratio of 1.3, are injected simultaneously into a Hele-Shaw cell with a mono-layer of randomly distributed glass beads. The two liquids are injected into the model from alternating point inlets. Initially, the porous model is filled with the water-glycerol solution. We observe that after an initial transient state, an overall static cluster configuration is obtained. While the oil is found to create a connected system spanning cluster, a large part of the water-glycerol clusters left behind the initial invasion front is observed to remain immobile throughout the rest of the experiment. This could suggest that the water-glycerol flow-dynamics is largely dominated by film flow. The flow pathways are thus given through the dynamics of the initial invasion. This behavior is quite different from that observed in systems with large viscosity differences between the two fluids, and where compressibility plays an important part of the process.
Fluid flow and mineralization of Youjiang Basin in the Yunnan-Guizhou-Guangxi area, China
王国芝; 胡瑞忠; 苏文超; 朱赖民
2003-01-01
Comprehensive studies, based on isotope geochemistry of C, H, O, S and Sr, chronology, common element and trace element geochemistry of fluid inclusions for the epithermal Au, As, Sb and Hg deposits in the Youjiang Basin and its peripheral areas, suggested that the ore fluid was the basin fluid with abundant metallic elements and the large-scale fluid flow of the same source in the late Yenshan stage was responsible for huge epithermal mineralization and silicification. The ore fluid flowed from the basin to the platform between the basin and the platform and migrated from the inter-platform basin to the isolated platform in the Youjiang Basin. The synsedimentary faults and paleokast surface acted respectively as main conduits for vertical and lateral fluid flow.
Distribution of flowing fluids in a confined porous medium under microgravity conditions
Guo, Boyun; Holder, Donald W.; Carter, Layne
2004-08-01
Predicting distribution of flowing fluids in confined porous media under microgravity conditions is vitally important for optimal design of packed bubble column reactors in space stations. Existing correlations have been found inaccurate when applied to microgravity conditions. On the basis of Darcy's law for two-phase flow, a simple mathematical model has been developed in this study. Sensitivity analyses with the model indicate that for a given combination of wetting and nonwetting fluid flow rates, fluid holdups are controlled by relative permeabilities. The effect of gravity on fluid holdup is influenced by the absolute permeability of the porous medium. Fluid distribution is affected by the temperature-dependent fluid properties and wall effect.
Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections
Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels
2009-01-01
Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation. This is......Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation....... This is relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe...
Animation of interactive fluid flow visualization tools on a data parallel machine
Sethian, J.A. (California Univ., Berkeley, CA (USA). Dept. of Mathematics); Salem, J.B. (Thinking Machines Corp., Cambridge, MA (USA))
1989-01-01
The authors describe a new graphics environment for essentially real-time interactive visualization of computational fluid mechanics. The researcher may interactively examine fluid data on a graphics display using animated flow visualization diagnostics that mimic those in the experimental laboratory. These tools include display of moving color contours for scalar fields, smoke or dye injection of passive particles to identify coherent flow structures, and bubble wire tracers for velocity profiles, as well as three-dimensional interactive rotation and zoom and pan. The system is implemented on a data parallel supercomputer attached to a framebuffer. Since most fluid visualization techniques are highly parallel in nature, this allows rapid animation of fluid motion. The authors demonstrate our interactive graphics fluid flow system by analyzing data generated by numerical simulations of viscous, incompressible, laminar and turbulent flow over a backward-facing step and in a closed cavity. Input parameters are menu-driven, and images are updated at nine frames per second.
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
Lim, C. P.; Lam, Y. C., E-mail: myclam@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 (Singapore); BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Han, J. [BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 138602 (Singapore); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2015-07-15
Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO) and another immiscible fluid (silicone oil). A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D{sub 2}) and the largest Lyapunov exponent (λ{sub 1}), with D{sub 2} being fractional and λ{sub 1} being positive. Contour maps of D{sub 2} and λ{sub 1} of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D{sub 2} and λ{sub 1} maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Chaos analysis of viscoelastic chaotic flows of polymeric fluids in a micro-channel
C. P. Lim
2015-07-01
Full Text Available Many fluids, including biological fluids such as mucus and blood, are viscoelastic. Through the introduction of chaotic flows in a micro-channel and the construction of maps of characteristic chaos parameters, differences in viscoelastic properties of these fluids can be measured. This is demonstrated by creating viscoelastic chaotic flows induced in an H-shaped micro-channel through the steady infusion of a polymeric fluid of polyethylene oxide (PEO and another immiscible fluid (silicone oil. A protocol for chaos analysis was established and demonstrated for the analysis of the chaotic flows generated by two polymeric fluids of different molecular weight but with similar relaxation times. The flows were shown to be chaotic through the computation of their correlation dimension (D2 and the largest Lyapunov exponent (λ1, with D2 being fractional and λ1 being positive. Contour maps of D2 and λ1 of the respective fluids in the operating space, which is defined by the combination of polymeric fluids and silicone oil flow rates, were constructed to represent the characteristic of the chaotic flows generated. It was observed that, albeit being similar, the fluids have generally distinct characteristic maps with some similar trends. The differences in the D2 and λ1 maps are indicative of the difference in the molecular weight of the polymers in the fluids because the driving force of the viscoelastic chaotic flows is of molecular origin. This approach in constructing the characteristic maps of chaos parameters can be employed as a diagnostic tool for biological fluids and, more generally, chaotic signals.
Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates
Siddiqui, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States); Zeb, A. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan)], E-mail: amtaz56@yahoo.co.uk; Ghori, Q.K. [COMSATS Institute of Information Technology, 30 H-8/1, Islamabad (Pakistan); Benharbit, A.M. [Pennsylvania State University, York Campus, York, PA 17403 (United States)
2008-04-15
The present paper studies the heat transfer flow of a third grade fluid between two heated parallel plates for the constant viscosity model. Three flow problems, namely plane Couette flow, plane Poiseuille flow and plane Couette-Poiseuille flow have been considered. In each case the non-linear momentum equation and the energy equation have been solved using the homotopy perturbation method. Explicit analytical expressions for the velocity field and the temperature distribution have been derived.
Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei
Contopoulos, John; Kazanas, D.
1995-01-01
We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.
Some analytical solutions for flows of Casson fluid with slip boundary conditions
K. Ramesh
2015-09-01
Full Text Available In the present paper, we have studied three fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible Casson fluid between parallel plates using slip boundary conditions. The equations governing the flow of Casson fluid are non-linear in nature. Analytical solutions of the non-linear governing equations with non-linear boundary conditions are obtained for each case. The effect of the various parameters on the velocity and volume flow rate for each problem is studied and the results are presented through graphs. It is observed that, the presence of Casson number decreases the velocity and volume flow rate of the fluid. Increasing of slip parameter increases the velocity and volume flow rate in both Poiseuille and generalized Couette flows.
Chen, Yong; Huang, Yiyong; Chen, Xiaoqian
2013-02-01
Ultrasonic flow meter with non-invasive no-moving-parts construction has good prospective application for space on-orbit fluid gauging. In traditional pulse transit time flow meter, inconsistency of ultrasonic transducers leads to measurement error and plane wave theory, bases of transit time flow meter, is valuable only for low-frequency wave propagation in inviscid fluid and will lose feasibility when fluid viscosity is considered. In this paper, based on the hydrodynamics of viscous fluid, wave propagation with uniform flow profile is mathematically formulated and a novel solution for viscous fluid using potential theory is firstly presented. Then a novel design methodology of continuous ultrasonic flow meter is proposed, where high measurement rangeability and accuracy are guaranteed individually by solving the integral ambiguity using multi-tone wide laning strategy and the fractional phase shift using phase lock loop tracking method. A comparison with transit time ultrasonic flow meter shows the advantage of proposed methodology. In the end, parametric analysis of viscosity on wave propagation and ultrasonic flow meter is compressively investigated.
Weinstein, H.; Lavan, Z.
1975-01-01
Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.
MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses
Masood Khan; Zeeshan
2011-01-01
@@ We investigate the unsteady magnetohydrodynamic (MHD) flow of an Oldroyd-B fluid through a porous space inducedby sawtooth pulses.The fluid is assumed to be electrically conducting in the presence of a transverse uniform magnetic field.The porous space is taken into account using modified Darcy's law for the Oldroyd-B fluid.Exact solutions of the governing problem are obtained by using the Laplace transform method.The effects of the magnetic parameter, the permeability of the porous space and the elasticity parameter of the fluid are studied on the flow characteristics.
Analysis of general second-order fluid flow in double cylinder rheometer
黄军旗; 何光渝; 刘慈群
1997-01-01
The fractional calculus approach in the constitutive relationship model of second-order fluid is introduced and the flow characteristics of the viscoelastic fluid in double cylinder rheometer are studied. First, the analytical solution of which the derivative order is 1/2 is derived with the analytical solution and the reliability of Laplace numerical inversion based on Crump algorithm for the problem is verified, then the characteristics of second-order fluid flow in the rheometer by using Crump method is analyzed. The results indicate that the more obvious the viscoelastic properties of fluid are, the more sensitive the dependence of velocity and stress on fractional derivative order is.