Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment
International Nuclear Information System (INIS)
Comer, G.L.
2004-01-01
Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit
Relativistic mean field model for entrainment in general relativistic superfluid neutron stars
International Nuclear Information System (INIS)
Comer, G.L.; Joynt, R.
2003-01-01
General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons
Relativistic elliptic matrix tops and finite Fourier transformations
Zotov, A.
2017-10-01
We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.
Matrix elements of the relativistic electron-transition operators
International Nuclear Information System (INIS)
Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.
1976-01-01
The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given
Hadron matrix elements of quark operators in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1979-07-01
General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.
Relativistic density matrix in the diagonal momentum representation. Bose-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed
Cosmic matrix in the jubilee of relativistic astrophysics
Energy Technology Data Exchange (ETDEWEB)
Ruffini, R., E-mail: ruffini@icra.it [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290–180 (Brazil); Aimuratov, Y.; Enderli, M.; Kovacevic, M. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Mathews, G. J. [ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Center for Astrophysics, University of Notre Dame, US (United States); Penacchioni, A. V. [INPE - Av. dos Astronautas, 1758 - Sao Jose dos Campos - Sao Paulo – Brazil (Brazil); Pisani, G. B. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy)
2015-12-17
Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure{sub i}cranet{sub p}t.pdf.
Cosmic matrix in the jubilee of relativistic astrophysics
International Nuclear Information System (INIS)
Ruffini, R.; Aimuratov, Y.; Enderli, M.; Kovacevic, M.; Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S.; Mathews, G. J.; Penacchioni, A. V.; Pisani, G. B.
2015-01-01
Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure_icranet_pt.pdf
Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods
Alexander, Steven; Coldwell, R. L.
2015-03-01
The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.
Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation
Energy Technology Data Exchange (ETDEWEB)
Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H
1979-11-01
Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.
Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics
International Nuclear Information System (INIS)
Molotkov, V.V.; Todorov, I.T.
1980-07-01
The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)
Relativistic atomic matrix elements of rq for arbitrary states in the quantum-defect approximation
International Nuclear Information System (INIS)
Owono Owono, L.C.; Owona Angue, M.L.C.; Kwato Njock, M.G.; Oumarou, B.
2004-01-01
Recurrence relations used in the calculation of matrix elements of r q for arbitrary q and states of the relativistic one-electron atom with a point-like ionic core are obtained with Dirac and quasirelativistic effective radial Hamiltonians. The phenomenological and supersymmetry-inspired quantum-defect approaches introduced in previous works to model the electron-core interactions are employed. The formulas worked out on the basis of a hypervirial inspired method may be viewed as a generalization to off-diagonal cases of our recently reported results on the evaluation of expectation values of r q
Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1-dimensions
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1981-01-01
The quantum S-matrix theory of straight-strings (infinite one-dimensioanl objects like straight domain walls) in 2 + 1-dimensions is considered. The S-matrix is supposed to be purely elastic and factorized. The tetrahedron equations (which are the factorization conditions) are investigated for the special two-colour model. The relativistic three-string S-matrix, which apparently satisfies this tetrahedron equation, is proposed. (orig.)
Relativistic density matrix in the diagonal momentum representation. Fermi-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistically invariant theory of ideal Fermi-gas is built in the framework of the quantum field theory. The average occupation numbers and correlation functions of statistical systems are found on the equal-time surfaces of arbitrary inertial frames. The effects of anisotropy in their behaviour are pointed out. The partition function method is developed to calculate the thermodynamic quantities of Fermi-gases moving as a whole
International Nuclear Information System (INIS)
Soldatov, A.; Seke, J.; Adam, G.; Polak, M.
2008-01-01
Full text: A closed analytic form for relativistic transition matrix elements between bound-bound, bound-unbound and unbound-unbound relativistic eigenstates of hydrogenic atoms by using the plane-wave expansion for the electromagnetic-field vector potential was derived in a form convenient for large-scale numerical calculations in QED. By applying the obtained formulae, these transition matrix elements can be evaluated analytically and numerically. These exact matrix elements, which to our knowledge have not been calculated as yet, are of great importance in the analysis of various atom-field interaction processes where retardation effects cannot be ignored. The ultimate goal of the ongoing research is to develop a general universal calculation technique for Seke's approximation and renormalization method in QED, for which the usage of the plane vector expansion for the vector potential is a preferable choice. However, our primary interest lies in the Lamb-shift calculation. Our nearest objective is to carry out the plain-style relativistic calculations of the Lamb shift of the energy levels of hydrogen-like atoms and ions from first principles in the second and higher perturbative orders, using the corresponding convenient as well as novel expressions for the magnitude in question as they stand, i.e. without any additional approximations. Due to that there is no way to achieve all the above-declared goals without recourse to large-scale laborious and time-consuming high-precision numerical calculations, having the transition matrix elements of all possible types in an analytic, convenient for their efficient numerical evaluation form, would be highly advantageous and even unavoidable, especially for calculations of various QED effects in higher perturbative orders be it, equally, in traditional or novel approach. (author)
Entrainment separator performance
International Nuclear Information System (INIS)
First, M.W.; Leith, D.
1976-01-01
Clean and dust-loaded ACS entrainment separators mounted upstream of HEPA filters were exposed to a combination of fine water mist and steam at about 70 0 C from one to four hours. In every trial, the ACS entrainment separator prevented measurable deterioration of performance in the following HEPA filter. Droplet size-efficiency evaluation of the ACS entrainment separators showed that, within the accuracy of the measurements, they meet all service requirements and are fully equal to the best separator units available for service on pressurized water reactors
International Nuclear Information System (INIS)
Kanyauskas, Yu.M.; Rudzikas, Z.B.
1976-01-01
Operators and their submatrix elements are studied in the framework of the electric multipole transitions of complex atoms with account of relativistic corrections of the order of the square of the fine structure constant. The analysis is performed by means of irreducible tensor operators and genealogical coefficients. It has been assumed that angular momenta of individual shells are coupled with each other according to ls, lk, jk and jj coupling. Formulas are given for the operator which causes the relativistic corrections for the single-electron multipole transition and for its submatrix element in the case of configurations with two unfilled shells. A possibility is discussed of using the formulas suggested for calculation. As follows from analysis, the relativistic correction operators even with the pure ls coupling allow intercombination transitions with ΔS equals +-1. The expressions obtained may turn out to be useful for performing calculations in the case of the intermediate type of coupling
Entrainment by turbulent plumes
Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul
2017-11-01
Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.
DEFF Research Database (Denmark)
Jensen, Ole Mejlhede; Hansen, Per Freiesleben
This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Entrained Flow Gasification of Biomass
DEFF Research Database (Denmark)
Qin, Ke
The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...
International Nuclear Information System (INIS)
Repisky, Michal; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.
2009-01-01
The relativistic four-component density functional approach based on the use of restricted magnetically balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for calculations of NMR indirect nuclear spin-spin coupling constants. The unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component while to solve the second-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small component was applied. Benchmark relativistic calculations have been carried out for the X-H and H-H spin-spin coupling constants in the XH 4 series (X = C, Si, Ge, Sn and Pb). The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in our method for property calculations
Relativistic neoclassical transport coefficients with momentum correction
International Nuclear Information System (INIS)
Marushchenko, I.; Azarenkov, N.A.
2016-01-01
The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.
Timescales of Massive Human Entrainment
DEFF Research Database (Denmark)
Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan
2014-01-01
of distinct scales, in an exquisitely time locked fashion. Using a large scale database of human communication data, we analyze and describe three different time scales of human entrainment in electronic media. We sought a distinct shared experience that provided a test bed for quantifying large scale human...
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Price, R H
1993-01-01
Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two speciﬁc areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
Viscous entrainment on hairy surfaces
Nasto, Alice; Brun, P.-T.; Hosoi, A. E.
2018-02-01
Nectar-drinking bats and honeybees have tongues covered with hairlike structures, enhancing their ability to take up viscous nectar by dipping. Using a combination of model experiments and theory, we explore the physical mechanisms that govern viscous entrainment in a hairy texture. Hairy surfaces are fabricated using laser cut molds and casting samples with polydimethylsiloxane (PDMS) elastomer. We model the liquid trapped within the texture using a Darcy-Brinkmann-like approach and derive the drainage flow solution. The amount of fluid that is entrained is dependent on the viscosity of the fluid, the density of the hairs, and the withdrawal speed. Both experiments and theory reveal an optimal hair density to maximize fluid uptake.
International Nuclear Information System (INIS)
Allen, M.A.; Azuma, O.; Callin, R.S.
1989-03-01
Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
International Nuclear Information System (INIS)
Marks, R.
1985-09-01
Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs
Relativistic description of directly interacting pions and nucleons
International Nuclear Information System (INIS)
Heller, L.
1976-01-01
The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix
Crustal entrainment and pulsar glitches.
Chamel, N
2013-01-04
Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.
Entrainment in the inner crust of a neutron star
International Nuclear Information System (INIS)
Chamel, N.
2004-01-01
The inner crust of a neutron star, which is composed of a solid Coulomb lattice of nuclei immersed in a neutron super-fluid, is studied from both a macroscopic and a microscopic level. In the first part, we develop a non-relativistic but 4-dimensionally covariant formulation of the hydrodynamics of a perfect fluid mixture based on a variational principle. This formalism is applied to the description of neutron star crust as 2-fluid model, a neutron super-fluid and a plasma of nuclei and electrons coupled via non dissipative entrainment effects, whose microscopic evaluation is studied in a second part. Applying mean field methods beyond the Wigner-Seitz approximation, the Bragg scattering of dripped neutrons upon crustal nuclei lead to a 'mesoscopic' effective neutron mass, which unlike the 'microscopic' effective mass, takes very large values compared to the bare mass in the middle layers of the crust. (author)
Entrainer selection for the synthesis of fatty acid esters by entrainer-based reactive distillation
Jong, de M.C.; Zondervan, E.; Dimian, A.C.; Haan, de A.B.
2010-01-01
In this research it is demonstrated that, due to the similarities between Entrainer-based Reactive Distillation and azeotropic distillation, the same selection rules can be applied to select a suitable entrainer. From a list of suitable entrainers for the azeotropic distillation of isopropanol and
Visual cortex entrains to sign language.
Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel
2017-06-13
Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.
Neural Entrainment to Speech Modulates Speech Intelligibility
Riecke, Lars; Formisano, Elia; Sorger, Bettina; Baskent, Deniz; Gaudrain, Etienne
2018-01-01
Speech is crucial for communication in everyday life. Speech-brain entrainment, the alignment of neural activity to the slow temporal fluctuations (envelope) of acoustic speech input, is a ubiquitous element of current theories of speech processing. Associations between speech-brain entrainment and
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
International Nuclear Information System (INIS)
March, N.H.
2009-08-01
In this Journal, March and Suhai have earlier set up a first-order Dirac idempotent density matrix theory for one- and two-level occupancy in which the only input required is the nonrelativistic ground-state electron density. Here, an analytic generalization is provided for the case of spherical electron densities for arbitrary level occupancy. Be-like atomic ions are referred to as an example, but 'almost spherical' molecules like SiH 4 and GeH 4 also become accessible. (author)
Temperature compensation and entrainment in circadian rhythms
International Nuclear Information System (INIS)
Bodenstein, C; Heiland, I; Schuster, S
2012-01-01
To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles. (paper)
A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2
International Nuclear Information System (INIS)
Swainson, R.A.; Drake, G.W.F.
1991-01-01
This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)
Relativistic quantum mechanics and introduction to field theory
Energy Technology Data Exchange (ETDEWEB)
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Relativistic quantum mechanics and introduction to field theory
International Nuclear Information System (INIS)
Yndurain, F.J.
1996-01-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources
Entraining the Brain: Applications to Language Research and Links to Musical Entrainment
Directory of Open Access Journals (Sweden)
Usha Goswami
2012-09-01
Full Text Available Clayton’s paper provides a clear and accessible summary of the significance of entrainment for music making, and for human behaviour in general. He notes the central role of metrical structure in musical entrainment, the possible role of oscillatory neural activity, and the core notion of phase alignment. Here I show how these same factors are central to speech processing by the human brain. I argue that entrainment to metrical structure is core to linguistic as well as musical human behaviour. I illustrate this view using entrainment data from developmental dyslexia. The core role of entrainment in efficient speech processing suggests that language difficulties in childhood may benefit from music-based remediation that focuses on multi-modal rhythmic entrainment. Alignment of linguistic and musical metrical structure seems likely to be fundamental to successful remediation.
Cloud-Top Entrainment in Stratocumulus Clouds
Mellado, Juan Pedro
2017-01-01
Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.
Investigations of gas entrainment in KNK II
International Nuclear Information System (INIS)
Hoppe, P.; Massier, H.; Mitzel, F.; Vaeth, W.
1979-08-01
During commissioning of KNK II operational difficulties were encountered due to gas entrainment in the coolant. This gas entrainment caused negative reactivity fluctuations which tripped the reactor repeatedly. Since first investigations indicated one main cause of the gas entrainment and the existence of an accumulation process, a technical modification (installation of a throttle valve) for remedy was performed. This report describes the investigations made after the plant modification. The main objective was to test the effectiveness of the modifications and to look into the following still open problems: Localization of the gas storage, detection and estimation of a permanent gas entrainment and the analysis of positive power overshoots being observed in connection with the gas bubbles
Entrainment: an annotated bibliography. Interim report
International Nuclear Information System (INIS)
Carrier, R.F.; Hannon, E.H.
1979-04-01
The 604 annotated references in this bibliography on the effects of pumped entrainment of aquatic organisms through the cooling systems of thermal power plants were compiled from published and unpublished literature and cover the years 1947 through 1977. References to published literature were obtained by searching large-scale commercial data bases, ORNL in-house-generated data bases, relevant journals, and periodical bibliographies. The unpublished literature is a compilation of Sections 316(a) and 316(b) demonstrations, environmental impact statements, and environmental reports prepared by the utilities in compliance with Federal Water Pollution Control Administration regulations. The bibliography includes references on monitoring studies at power plant sites, laboratory studies of physical and biological effects on entrained organisms, engineering strategies for the mitigation of entrainment effects, and selected theoretical studies concerned with the methodology for determining entrainment effects
The relativistic virial theorem
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-11-01
The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)
The relativistic electron wave equation
International Nuclear Information System (INIS)
Dirac, P.A.M.
1977-08-01
The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)
2012-03-01
Malinowski , J. L. Brenguier, and F. Burnet, 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443–459. Glickman, T. S...of the Entrainment Zone in Cloud-topped Boundary Layers. Department of Meteorology, NPS, 93 pp. Krzysztof, Haman E., S. P. Malinowski , M. J
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
Detection of gas entrainment into liquid metals
Energy Technology Data Exchange (ETDEWEB)
Vogt, T., E-mail: t.vogt@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Boden, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany); Andruszkiewicz, A. [Faculty of Mechanical and Power Engineering, Wroclaw University of Technology (Poland); Eckert, K. [Technische Universität Dresden, Institute of Fluid Mechanics, 01062 Dresden (Germany); Eckert, S.; Gerbeth, G. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, 01328 Dresden (Germany)
2015-12-01
Highlights: • We present liquid metal experiments dedicated to gas entrainment on the free surface. • Ultrasonic and X-ray attenuation techniques have been used to study the mechanisms of gas entrainment. • A comparison between bubbly flow in water and GaInSn showed substantial differences. • Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation. - Abstract: Entrainment of cover gas into the liquid metal coolant is one of the principal safety issues in the design of innovative liquid metal-cooled fast reactors. We present generic experimental studies of this phenomenon in low-melting metals. Ultrasonic and X-ray diagnostic tools were considered for a visualization of gas entrainment at the free surface of the melt. Laboratory experiments were conducted using the eutectic alloy GaInSn, which is liquid at room temperature. Vortex-activated entrainment of air at the free surface of a rotating flow was revealed by ultrasonic techniques. X-ray radioscopy was used to visualize the behavior of argon bubbles inside a slit geometry. The measurements reveal distinct differences between water and GaInSn, especially with respect to the process of bubble formation and the coalescence and breakup of bubbles. Our results emphasize the importance of liquid metal experiments which are able to provide a suitable data base for numerical code validation.
Characteristics of Air Entrainment in Hydraulic Jump
Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.
2018-04-01
The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.
Is the relativistic approach really useful to nuclear reactions?
Miyazaki, K
2003-01-01
We have reconsidered the non-relativistic distorted-wave t-matrix approximation (NR-DWTA) for proton knockout (p,2p) reaction using modern high-quality phenomenological optical potentials and NN t-matrix. We have calculated 40Ca(p,2p) reactions at T_LAB=200MeV and compared the results with the relativistic distorted-wave impulse approximation (RDWIA) calculations. It is found that the NR-DWTA is superior to the RDWIA in consistent description of the cross section and the analyzing power. An immediate relativistic extension of the DWIA to the nuclear reaction has a problem.
Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason
Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.
Liouville equation of relativistic charged fermion
International Nuclear Information System (INIS)
Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming
1991-01-01
As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Air entrainment by plunging water jets
Van de Sande, E.
1974-01-01
Gas entrainment caused by the impact of liquid jets upon liquid pool surfaces is a subject which has received too little attention. This well-known phenomenon,which occurs In nature and in numerous industrial operations, has only recently received interest from scientific workers. The influence on
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Speech Entrainment Compensates for Broca's Area Damage
Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris
2015-01-01
Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Measurement of air entrainment in plasma jets
International Nuclear Information System (INIS)
Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.
1990-01-01
The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab
AW-101 entrained solids - Solubility versus temperature
International Nuclear Information System (INIS)
GJ Lumetta; RC Lettau; GF Piepel
2000-01-01
This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan
Exploring Entrainment Patterns of Human Emotion in Social Media
Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692
Alignment strategies for the entrainment of music and movement rhythms.
Moens, Bart; Leman, Marc
2015-03-01
Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music. © 2014 New York Academy of Sciences.
Exploring Entrainment Patterns of Human Emotion in Social Media.
He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
Exploring Entrainment Patterns of Human Emotion in Social Media.
Directory of Open Access Journals (Sweden)
Saike He
Full Text Available Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
Fluid Dynamics of Pressurized, Entrained Coal Gasifiers
International Nuclear Information System (INIS)
1997-01-01
Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements
Sediment particle entrainment in an obstructed annular
Energy Technology Data Exchange (ETDEWEB)
Loureiro, Bruno Venturini; Siqueira, Renato do Nascimento [Faculdade do Centro Leste (UCL), Serra, ES (Brazil). Lab. de Fenomenos de Transporte], e-mail: brunovl@ucl.br, e-mail: renatons@ucl.br
2006-07-01
Flow in an annular region with internal cylinder rotation is a classic problem in fluid mechanics and has been widely studied. Besides its importance as a fundamental problem, flow in annular regions has several practical applications. This project was motivated by an application of this kind of flow to the drilling of oil and gas wells. In this work, an erosion apparatus was constructed in order to study the effect of the internal cylinder rotation on particle entrainment in an obstructed annular space and bed package as well. The study also analyzed the influence of height of the particles bed on the process performance. The experiment was designed so that the internal cylinder rotation could be measured by an encoder. The fluid temperature was measured by a thermocouple and the experiments were carried out at the temperature of 25 deg C. The study revealed that the particle entrainment for the height of the bed that is close to the center of the cylinders is negligible and the internal cylinder rotation provokes the movement and packing of the bed. For lower height of the bed, with same dimension of the annular gap, the particle entrainment process was satisfactory and the bed compaction was smaller than in the previous case, leading to a more efficient cleaning process in the annular space. (author)
Tuning Neural Phase Entrainment to Speech.
Falk, Simone; Lanzilotti, Cosima; Schön, Daniele
2017-08-01
Musical rhythm positively impacts on subsequent speech processing. However, the neural mechanisms underlying this phenomenon are so far unclear. We investigated whether carryover effects from a preceding musical cue to a speech stimulus result from a continuation of neural phase entrainment to periodicities that are present in both music and speech. Participants listened and memorized French metrical sentences that contained (quasi-)periodic recurrences of accents and syllables. Speech stimuli were preceded by a rhythmically regular or irregular musical cue. Our results show that the presence of a regular cue modulates neural response as estimated by EEG power spectral density, intertrial coherence, and source analyses at critical frequencies during speech processing compared with the irregular condition. Importantly, intertrial coherences for regular cues were indicative of the participants' success in memorizing the subsequent speech stimuli. These findings underscore the highly adaptive nature of neural phase entrainment across fundamentally different auditory stimuli. They also support current models of neural phase entrainment as a tool of predictive timing and attentional selection across cognitive domains.
The effect of acceleration on turbulent entrainment
International Nuclear Information System (INIS)
Breidenthal, Robert E
2008-01-01
A new class of self-similar turbulent flows is proposed, which exhibits dramatically reduced entrainment rates. Under strong acceleration, the rotation period of the large-scale vortices is forced to decrease linearly in time. In ordinary unforced turbulence, the rotation period always increases linearly with time, at least in the mean. However, by imposing an exponential acceleration on the flow, the vortex rotation period is forced to become the e-folding timescale of the acceleration. If the e-folding timescale itself decreases linearly in time, the forcing is 'super-exponential', characterized by an acceleration parameter α. Based on dimensional and heuristic arguments, a model suggests that the dissipation rate is an exponential function of α and the dimensions of the conserved quantity of the flow. Acceleration decreases the dissipation and entrainment rates in all canonical laboratory flows except for Rayleigh-Taylor. Experiments of exponential jets and super-exponential transverse jets are in accord with the model. As noted by Johari, acceleration is the only known means of affecting the entrainment rate of the far-field jet. Numerical simulations of Rayleigh-Taylor flow by Cook and Greenough are also consistent. In the limit of large acceleration, vortices do not move far before their rotation period changes substantially. In this sense, extreme acceleration corresponds to stationary vortices.
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
Chaos of the Relativistic Forced van der Pol Oscillator
International Nuclear Information System (INIS)
Ashkenazya, Y.; Gorma, C; Horwitz, L. P.
1998-01-01
A manifestly relativistically covariant form of the van der Pol oscillator in 1 + 1 dimensions is studied. We show that the driven relativistic equations, for which z and t are coupled, relax very quickly to a pair of identical decoupled equations, due to a rapid vanishing of the angular momentum (the boost in 1 + 1 dimensions). A similar effect occurs in the damped driven covariant Duffing oscillator previously treated. This effect is an example of entrainment, or synchronization (phase locking) , of coupled chaotic systems. The Lyapunov exponents are calculated using the very efficient method of Habib and Ryne. We show a Poincare map that demonstrates this effect and maintains remarkable stability in spite of the inevitable accumulation of computer error in the chaotic region. For our choice of parameters, the positive Lyapunov exponent is about 0.242 almost independently of the integration method
Energy Technology Data Exchange (ETDEWEB)
Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)
2009-05-15
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
International Nuclear Information System (INIS)
Strange, P.
2010-01-01
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
On-line ultrasonic gas entrainment monitor
International Nuclear Information System (INIS)
Day, C.K.; Pedersen, H.N.
1978-01-01
Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes is described. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose
Assessment of impact due to entrainment of ichthyoplankton
International Nuclear Information System (INIS)
Horst, T.J.
1975-01-01
Three approaches to the assessment of impact associated with the entrainment of ichthyoplankton into power stations are discussed. The first is the estimation of the probability of mortality for those organisms entrained. The second is the assessment to the fish populations which have the egg and larvae life stages entrained. The third approach is the assessment of impact to the community or ecosystem. Some models are presented as examples for each of the three approaches. (U.S.)
Three-field modeling with droplet entrainment and de-entrainment models for TRAC-M
International Nuclear Information System (INIS)
Lee, Sang Ik
2005-02-01
A three-field modeling has been developed and implemented to the basic one-dimensional components of TRAC-M/F90 (Modernized Transient Reactor Analysis Code, Fortran90) to improve the estimation of the behavior of droplet entrainment. the divide and conquer algorithmic technique is adjusted for the implementation after considering the verifications. The governing equations are composed of the conservation equations of each field with thermal-equilibrium assumption between the two liquid fields. As a result, three momentum equations, four mass equations including noncondensable gas mass equation and two energy equations are used. In the development of the momentum equation for an entrained droplet, two different kinds of approaches are tested: the simple force balance on a single droplet and the field-type equation based on the continuum assumption. The first showed unstable nature and the latter was chosen. All of the necessary empirical correlations were obtained from literatures, in particular, the physical models of COBRA-TF. The sensitivities of each empirical correlation were investigated where the effect of droplet diameter and droplet drag was found to be negligible. The advantages of the SETS numerical scheme in comparison with the semi-implicit nimerical scheme were addressed in the simulation time and the maximum allowed time-step size. Finally, the simulations of Collier and Hewitt's experiment were performed and it is concluded that the three-field model developed in the present study is reasonable. The predictions by the present code agree with the measured values within the RMS errors of 16.5% and 9.6% in the entrained liquid mass flow rates and the pressure gradients, respectively. Assessment on the physical models is performed. The wall and interfacial drag models were determined at first. After that, the assessments of entrainment model were performed. Wurtz's entrainment model, which was used in COBRA-TF and Kataoka and Ishii's model, were mainly
Entrainment in vertical annular two-phase flow
International Nuclear Information System (INIS)
Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu
2009-01-01
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)
Aerosol entrainment from a sparged non-Newtonian slurry.
Fritz, Brad G
2006-08-01
Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model.
Relativistic and non-relativistic studies of nuclear matter
Banerjee, MK; Tjon, JA
2002-01-01
We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Biquaternions and relativistic kinematics
International Nuclear Information System (INIS)
Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.
1979-01-01
The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
Liquid entrainment through orifices by sparging gas
International Nuclear Information System (INIS)
Bonnet, J.M.; Malara, M.; Amblard, M.; Seiler, J.M.
2001-01-01
Corium Coolability by water flood during an MCCI (Molten Corium Concrete Interaction) is still an open problem. Several physical mechanisms have been identified which may reduce significantly and finally stop the ablation of concrete. Among these mechanisms, corium ejection by sparging gas into the overlying water may represent an important contribution. This mechanism was at the origin of a large and coolable debris bed and volcano formation in the MACE M3B test. This mechanism has also been observed in simulant material tests performed at UCSB and at FZK. The objective of the work, which is described in the present paper, is to model this mechanism and to quantify the liquid entrainment rate by sparging gas. (author)
Relativistic particle in a box
Alberto, P.; Fiolhais, Carlos; Gil, Victor
1996-01-01
The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case
Projected entrainment of fish resulting from aggregate dredging
International Nuclear Information System (INIS)
Drabble, Ray
2012-01-01
Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005–2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005–2008 (). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging.
Relativistic calculations of one-photon bound-free transition amplitudes in hydrogenic atoms
International Nuclear Information System (INIS)
Simo, E.; Kwato Njock, M.G.
2005-04-01
Photoionization transition matrix of hydrogenic systems are investigated theoretically within the framework of the tensorial formalism with relativistic arguments. Calculations are carried out exactly, without approximation. We derive continuum second-order Dirac-Coulomb Sturmian functions. The numerical simulation of our results is performed in the dipole approximation. We test our theory on selected nucleus from the Periodic Table. The results of the fully relativistic calculations are compared with those of the quasi-relativistic calculations. A conclusion is drawn about the level of reliability of the quite simplified quasi-relativistic approach. (author)
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Non-relativistic supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1984-01-01
The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.
1983-01-01
In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic few body calculations
International Nuclear Information System (INIS)
Gross, F.
1988-01-01
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Relativistic Polarizable Embedding
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob
2017-01-01
Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Experimental study of gas entrainment from surface swirl
Energy Technology Data Exchange (ETDEWEB)
Moudjed, B., E-mail: brahim.moudjed@cea.fr; Excoffon, J.; Riva, R.; Rossi, L., E-mail: lionel.rossi@cea.fr
2016-12-15
Gas entrainment from surface swirls is characterized using water experiments. A free surface shear flow is generated in an open channel flow. A suction nozzle is set at the bottom of the test section to induce a downward flow and provoke gas entrainment. An important originality of these experiments is the possibility to change the inlet condition so as to generate different turbulent shear flows. This is done by adding obstacles of different sizes and shapes at the end of a flat plate separating the inlet flow from a “stagnant” water area. Velocity fields and profiles, measured with the PIV technique, are provided both to describe the inlet conditions corresponding to various geometries and flow rates, and to characterize the temporal average shear flow generated within the centre part of the channel. Gas entrainment mappings are established from direct observations of the different flow configurations. These new results show that the threshold for the suction velocities required to entrain gas are similar for the configurations with small obstacles and the flat plate configuration triggering a standard shear flow. Increasing the size of the obstacles promotes gas entrainment and reduces the threshold values of the suction velocity to trigger gas entrainment. Shadowgraphy with image processing is used to present new results characterizing the geometrical properties of surface swirls and the quantity of gas entrained. Inlet configurations with obstacles generate larger surface swirls which move upstream from the suction nozzle centre whereas they are situated downstream with the flat plate configuration. Moreover, dimensionless power laws are found to be good approximations for the surface swirl width and the quantity of gas entrained. In addition to provide new insights about gas entrainment in analytical configurations relevant to Sodium cooled fast nuclear reactor, these results should provide different test cases for the validation of MCFD codes.
Relativistic scattering theory of charged spinless particles
International Nuclear Information System (INIS)
Alt, E.O.; Hannemann, M.
1986-01-01
In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)
Microphysical imprint of entrainment in warm cumulus
Directory of Open Access Journals (Sweden)
Jennifer D. Small
2013-07-01
Full Text Available We analyse the cloud microphysical response to entrainment mixing in warm cumulus clouds observed from the CIRPAS Twin Otter during the GoMACCS field campaign near Houston, Texas, in summer 2006. Cloud drop size distributions and cloud liquid water contents from the Artium Flight phase-Doppler interferometer in conjunction with meteorological observations are used to investigate the degree to which inhomogeneous versus homogeneous mixing is preferred as a function of height above cloud base, distance from cloud edge and aerosol concentration. Using four complete days of data with 101 cloud penetrations (minimum 300 m in length, we find that inhomogeneous mixing primarily explains liquid water variability in these clouds. Furthermore, we show that there is a tendency for mixing to be more homogeneous towards the cloud top, which we attribute to the combination of increased turbulent kinetic energy and cloud drop size with altitude which together cause the Damköhler number to increase by a factor of between 10 and 30 from cloud base to cloud top. We also find that cloud edges appear to be air from cloud centres that have been diluted solely through inhomogeneous mixing. Theory predicts the potential for aerosol to affect mixing type via changes in drop size over the range of aerosol concentrations experienced (moderately polluted rural sites to highly polluted urban sites. However, the observations, while consistent with this hypothesis, do not show a statistically significant effect of aerosol on mixing type.
Particle Entrainment under Turbulent Flow Conditions
Diplas, Panayiotis
2009-11-01
Erosion, transportation and deposition of sediments and pollutants influence the hydrosphere, pedosphere, biosphere and atmosphere in profound ways. The global amount of sediment eroded annually over the continental surface of the earth via the action of water and wind is estimated to be around 80 billion metric tons, with 20 of them delivered by rivers to the oceans. This redistribution of material over the surface of the earth affects most of its physical, chemical and biological processes in ways that are exceedingly difficult to comprehend. The criterion currently in use for predicting particle entrainment, originally proposed by Shields in 1936, emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. A new criterion that was developed recently in an effort to overcome the limitations of the previous approach will be presented. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions suitable for particle dislodgement. Analytical formulation of the problem and experimental data are used to examine the validity of the new criterion.
Music and emotions: from enchantment to entrainment.
Vuilleumier, Patrik; Trost, Wiebke
2015-03-01
Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. © 2015 New York Academy of Sciences.
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Relativistic studies in actinides
International Nuclear Information System (INIS)
Weinberger, P.; Gonis, A.
1987-01-01
In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs
Knowles, Richard Thomas
This exploratory study compared the efficacy of a novel brainwave electromagnetic (EM) entrainment technology against a more conventional technology utilizing the photic-driving technique. Both experimental conditions were also compared with a 7-minute control session that took place immediately before each stimulation session. The Schumann Resonance (SR) frequency was selected as the delivery signal and was chosen because of previous findings suggesting that entrainment to this frequency can often produce transpersonal if not paranormal, experiences in the entrainee, which sometimes resemble remote viewing or out-of-body experiences. A pilot study determined which of two novel entrainment modalities (a copper coil or a 16-solenoid headset) worked most effectively for use with the rest of the study. In the main study, an artificial SR signal at 7.8Hz was delivered during the photic-driving sessions, but a recording of the real-time SR was used to deliver the entrainment signal during sessions devoted to the electromagnetic entrainment modality. Sixteen participants were recruited from the local area, and EEG recordings were acquired via a 32-channel Deymed electroencephalography system. Comparative analyses were performed between the control and experimental portions of each session to assess for efficacy of the novel entrainment modality used, and, in the main study, between the electromagnetic and photic-driving sessions, to assess for differential entrainment efficacy between these groups. A follow-up study was additionally performed primarily to determine whether responders could replicate their entrainment effect from the main study. Results showed that EM entrainment appeared to be possible but is not nearly as robust or reliable as photic driving. Additionally, no profound transpersonal or paranormal experiences were elicited during the course of the study, and, when asked, participants were not able to determine with any degree of success, when the
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Bratek, Łukasz
2015-01-01
Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Aerosol entrainment from a sparged non-Newtonian slurry
International Nuclear Information System (INIS)
Fritz, Brad G.
2006-01-01
Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties
Differential entrainment of neuroelectric delta oscillations in developmental dyslexia.
Directory of Open Access Journals (Sweden)
Fruzsina Soltész
Full Text Available Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language, has been associated with behavioural entrainment deficits. It has been proposed that the phonological 'deficit' that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, 'temporal sampling theory'. Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz, relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, 'phase locking' and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time for control participants only.
Electronic structure of molecules using relativistic effective core potentials
International Nuclear Information System (INIS)
Hay, P.J.
1983-01-01
In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis
Cortical entrainment to music and its modulation by expertise.
Doelling, Keith B; Poeppel, David
2015-11-10
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.
International Nuclear Information System (INIS)
Sokolov, S.N.
1977-01-01
The point, instant and front forms of the relativistic Hamiltonian theory are shown to be S-matrix equivalent in the general case (of many channels and particles with spin). The corresponding transformations are found. The problem of relativistic addition of the direct interactions is solved for the front and instant forms of dynamics
Musical Entrainment Subsumes Bodily Gestures – Its Definition Needs a Spatiotemporal Dimension
Directory of Open Access Journals (Sweden)
Marc Leman
2012-09-01
Full Text Available In his paper “What is entrainment? Definition and applications in musical research” (this issue, M. Clayton offers a definition of entrainment that is based on a timing dimension (relative phase relationships. However, this definition may be too limited when applied to musical entrainment. Based on the idea that human engagement with music is embodied and that gestures may condition entrainment, I suggest that the definition of entrainment be broadened so as to include a spatiotemporal dimension.
Relativistic Outflows from ADAFs
Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes
2001-04-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Relativistic twins or sextuplets?
International Nuclear Information System (INIS)
Sheldon, Eric
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum cryptography
Kaniewski, Jedrzej
Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Localization of relativistic particles
International Nuclear Information System (INIS)
Omnes, R.
1997-01-01
In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Relativistic quarkonium dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1985-06-01
We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters
International Nuclear Information System (INIS)
Araujo, Wilson Roberto Barbosa de
1995-01-01
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)
Relativistic nuclear collisions: theory
International Nuclear Information System (INIS)
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
Quasi-relativistic fermions and dynamical flavour oscillations
Alexandre, Jean; Mavromatos, Nick E.
2014-01-01
We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-01-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit
Relativistic differential-difference momentum operators and noncommutative differential calculus
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
2011-01-01
Full text: (author)The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics in the relativistic configuration space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated from the total Hamiltonian. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generation function for the matrix elements of the unitary irreps of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the non-commutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS
A droplet entrainment model for horizontal segregated flows
Energy Technology Data Exchange (ETDEWEB)
Höhne, Thomas, E-mail: T.Hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hänsch, Susann [Imperial College, Department of Mechanical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom)
2015-05-15
Highlights: • We further developed the flow morphology detection model AIAD. • An advanced droplet entrainment model was introduced. • The new approach is applied against HAWAC experiments. - Abstract: One limitation in simulating horizontal segregated flows is that there is no treatment of droplet formation mechanisms at wavy surfaces. For self-generating waves and slugs, the interfacial momentum exchange and the turbulence parameters have to be modeled correctly. Furthermore, understanding the mechanism of droplet entrainment for heat and mass transfer processes is of great importance in the chemical and nuclear industry. The development of general computational fluid dynamics models is an essential precondition for the application of CFD codes to the modeling of flow related phenomena. The new formulation for the interfacial drag at the free surface and turbulence parameters within the algebraic interfacial area density model (AIAD) represents one step toward a more physical description of free surface flows including less empiricism. The AIAD approach allows the use of different physical models depending on the local fluid morphology inside a macro-scale multi-fluid framework. A further step of improving the modeling of free interfaces lies within the consideration of droplet entrainment mechanisms. In this paper a new sub-grid entrainment model is proposed, which assumes that due to liquid turbulence the interface gets rough and wavy leading to the formation of droplets. Therefore, the droplet entrainment model requires the consideration of an additional droplet phase, which is described with an own set of balance equations in the spirit of the particle model. Two local key factors determine the rate of droplet entrainment: the liquid turbulent kinetic energy as well as the outward velocity gradient of the liquid relative to the interface motion. The new droplet entrainment approach is included into CFD simulations for attempting to reproduce existing
Nonassociative learning promotes respiratory entrainment to mechanical ventilation.
Directory of Open Access Journals (Sweden)
Shawna M MacDonald
Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in
Relativistic approach to nuclear structure
International Nuclear Information System (INIS)
Nguyen Van Giai; Bouyssy, A.
1987-03-01
Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Relativistic Multichannel Treatment of Krypton Spectra across the First Ionization Threshold
Institute of Scientific and Technical Information of China (English)
QU Yi-Zhi; PENG Yong-Lun
2005-01-01
@@ The relativistic multichannel theory has been extended to calculate both the eigen quantum defects μα, transformation matrix Uiα, and the eigen dipole matrix elements Dα of krypton. The Rydberg and autoionizationspectra of krypton across the first ionization threshold are calculated within the framework of multichannel quantum defect theory. Our calculated spectra are in agreement with the absolute measurement data.
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1992-01-01
In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198
Relativistic ''potential model'' for N-particle systems
International Nuclear Information System (INIS)
Noyes, H.P.
1986-08-01
Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs
Mixing and entrainment in hydraulically driven stratified sill flows
DEFF Research Database (Denmark)
Nielsen, Morten Holtegaard; Pratt, Larry; Helfrich, Karl
2004-01-01
The investigation involves the hydraulic behaviour of a dense layer of fluid flowing over an obstacle and subject to entrainment of mass and momentum from a dynamically inactive (but possibly moving) overlying fluid. An approach based on the use of reduced gravity, shallow-water theory with a cross......-interface entrainment velocity is compared with numerical simulations based on a model with continuously varying stratification and velocity. The locations of critical flow (hydraulic control) in the continuous model are estimated by observing the direction of propagation of small-amplitude long-wave disturbances...... that the reduced gravity model systematically underestimates inertia and overestimates buoyancy. These differences are quantified by shape coefficients that measure the vertical non-uniformities of the density and horizontal velocity that arise, in part, by incomplete mixing of entrained mass and momentum over...
Entrainment of ichthyoplankton and larval fishes during cooling water withdrawal
International Nuclear Information System (INIS)
McFarlane, R.W.
1978-01-01
Plantonic fish eggs and larvae are entrained into the Savannah River Plant (SRP) pumping system as Savannah River water is withdrawn for cooling purposes. The American shad contributed 96% of the planktonic fish eggs collected in the Savannah River. Eggs were rare in plankton samples from the intake canals and were assumed to have settled to the bottom as current velocity was reduced in the canal entrance. An estimated 72 million fish eggs were transported past the intake canals. Assuming ''worst case conditions,'' 6.8 million eggs (9.5%) could have been lost due to entrainment. Blueback herring comprised nearly one-half of the 216 million fish larvae susceptible to impact. Spotted sucker and black crappie were also common among the 22 species of fish larvae collected. An estimated 19.6 million (9.1%) fish larvae could have been entrained under ''worst case conditions''
Sulfate reduction in an entrained-flow black liquor gasifier
Energy Technology Data Exchange (ETDEWEB)
Kymaelaeinen, M.; Janka, K. [Tampella Power, Tampere (Finland); Frederick, W.J.; Littau, M.; Sricharoenchaikul, V.; Jivakanun, N.; Waag, K. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemical Engineering
1995-12-31
Sulfate reduction and carbon conversion during pyrolysis and gasification of black liquor particles were experimentally studied in a laminar entrained-flow reactor. A model was also developed to simulate an entrained-flow black liquor gasifier. Experimental results were then compared to model calculations. Results indicated that carbon must be present to get a high degree of sulfate reduction during gasification. It is therefore important to balance the rates of carbon conversion and sulfate reduction. High local temperatures in the reactor should be avoided so that carbon does not convert too rapidly, but temperatures of nearly 1000 degrees C are required to achieve good sulfate reduction. It was suggested that a new equation was needed to adequately predict sulfate reduction in an entrained-flow black liquor gasifier. 12 refs., 8 figs., 5 tabs.
Rewetting and liquid entrainment during reflooding: state of the art
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1977-05-01
Considerable interest has recently been generated in the problems of surface rewetting and the physics of liquid droplet entrainment due to their role in light water nuclear reactor safety. Published models of the rewetting process include simple one-dimensional solutions in two axial regions, one-dimensional solutions in three axial regions with or without precursory cooling, one- and two-dimensional numerical-difference techniques using temperature dependent heat transfer coefficients, and analytical two-dimensional solutions. The basic assumptions of these models and the numerical values assigned to the various parameters, as well as empirical rewetting correlations, are discussed. The various mechanisms for liquid droplet entrainment and analytical formulations of the critical gas velocity and of the droplet diameter at the onset of entrainment are reviewed
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum
Directory of Open Access Journals (Sweden)
Ольга Юрьевна Хецелиус
2014-11-01
Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Photoionization at relativistic energies
International Nuclear Information System (INIS)
Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.
2000-11-01
At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1993-01-01
This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given
Relativistic plasma dispersion functions
International Nuclear Information System (INIS)
Robinson, P.A.
1986-01-01
The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived
Wind profiler mixing depth and entrainment measurements with chemical applications
Energy Technology Data Exchange (ETDEWEB)
Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C. [NOAA Aeronomy Lab., Boulder, CO (United States); Kok, G.L. [NCAR Research Aviation Facility, Boulder, CO (United States)
1994-12-31
Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.
Energy Technology Data Exchange (ETDEWEB)
Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
International Nuclear Information System (INIS)
Kipping, David
2017-01-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
Some problems in relativistic thermodynamics
International Nuclear Information System (INIS)
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
Relativistic scattering theory of two charged spinless particles
International Nuclear Information System (INIS)
Alt, E.O.; Hannemann
1985-01-01
In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation
An Ada environment for relativistic cross section calculations
International Nuclear Information System (INIS)
Nilsson, E.
1990-01-01
We have developed an Ada environment adapted to relativistic cross section calculations. Objects such as four-vectors, γ- matrices and propagators are defined as well as operations between these objects. In this environment matrix elements can be expressed in a compact and readable way as Ada code. Unpolarized cross sections are calculated numerically by explicitly summing and averaging over spins and polarizations. A short presentation of the technique is given
Quantum mechanics in matrix form
Ludyk, Günter
2018-01-01
This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.
International Nuclear Information System (INIS)
LaJohn, L. A.
2010-01-01
The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.
Conductivity of a relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Conductivity of a relativistic plasma
International Nuclear Information System (INIS)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
Entrained Flow Reactor Test of Potassium Capture by Kaolin
DEFF Research Database (Denmark)
Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao
2015-01-01
In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured...
On the entrainment of solid particles from a fluidized bed
Energy Technology Data Exchange (ETDEWEB)
Sciazko, M. (Institute of Chemical Processing of Coal, Zabrze (Poland)); Bandrowski, J.; Raczek, J. (Politechnika Slaska, Gliwice (Poland). Inst. of Chemical Engineering and Apparatus Construction)
1991-04-01
This paper presents a generalized approach to the phenomenon of entrainment of solids from a fluidized bed. Starting with the discussion of the transport disengaging height (TDH) and of the elutriation of particles above the TDH, one arrives finally at the relationship between the elutriation rate constant, saturation carrying capacity and choking parameters of pneumatic transport. (orig.).
Entrainment at a sediment concentration interface in turbulent channel flow
Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.
2016-11-01
In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.
Development and entrainment of the colonic circadian clock during ontogenesis
Czech Academy of Sciences Publication Activity Database
Polidarová, Lenka; Olejníková, Lucie; Paušlyová, Lucia; Sládek, Martin; Soták, Matúš; Pácha, Jiří; Sumová, Alena
2014-01-01
Roč. 306, č. 4 (2014), G346-G356 ISSN 0193-1857 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * ontogenesis * circadian entrainment Subject RIV: ED - Physiology Impact factor: 3.798, year: 2014
Historical development of entrainment models for Hudson River striped bass
International Nuclear Information System (INIS)
Christensen, S.W.; Englert, T.L.
1988-01-01
In the mid-1960s, concerns surfaced regarding entrainment and impingement of young-of-the-year (age-0) striped bass by electric power generating facilities on the Hudson River. These concerns stimulated the development of increasingly complex models to evaluate the impacts of these facilities. The earliest simplistic formulas, based on empirical data, proved inadequate because of conceptual shortcomings, incomplete development, and lack of data. By 1972, complex transport models based on biological and hydrodynamic principles had been developed and applied by scientists representing both the utilities and the government. Disagreements about the acceptability of these models spurred the development of even more complex models. The entrainment models stimulated the collection of substantial amounts of field data to define the spatial distributions and entrainment survival of early life stages. As the difficulties of accounting for the movement of early life stages from hydrodynamic principles became more evident and as more field data became available, simpler empirical modeling approaches became both practical and defensible. Both empirical and hydrodynamic modeling approaches were applied during the US Environmental Protection Agency's hearings on the Hudson River power case (1977-1980). The main lessons learned from the experience with entrainment-impingement modeling are that complex mechanistic models are not necessarily better than simpler empirical models for young fish, and that care must be taken to construct even the simple models correctly. 29 refs., 4 figs., 1 tab
Entrainment to an auditory signal: Is attention involved?
Kunert, R.; Jongman, S.R.
2017-01-01
Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators
Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis
Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.
Efficiency of brainwave entrainment by binaural beats in reducing anxiety
Directory of Open Access Journals (Sweden)
Ahmad Alipoor
2014-04-01
Full Text Available Background: Anxiety is a fundamental phenomenon that is a common symptom in all mental disorders. The aim of the present study was to assess the effect of brainwave entrainment on anxiety reduction using binaural beats. Methods: In this experimental double-blind study, 30 employees were selected from an engineering research firm through random sampling and replacement and divided into two groups: control group and experimental group. All participants completed the Spielberger’s State-Trait Anxiety Inventory (STAI. Then, the experimental group listened to binaural beats which was recorded on a non-vocal piece of music for 4 weeks, 3 sessions each week. Each session lasted about 20 minutes. At the same time, the control group listened to the background music without any entrainment sound. At the end, both groups completed the anxiety questionnaire and the anxiety scores of both groups obtained before and after intervention were analyzed by ANCOVA. Results: The findings showed that the brainwave entrainment using binaural beats led to the significant reduction of state anxiety (P<0.001 and trait anxiety (P<0.018. Conclusion: Brainwave entrainment using binaural beats is an effective factor in decreasing state and trait anxiety; so, it can be used to reduce anxiety in mental health centers.
Characterization of Residual Particulates from Biomass Entrained Flow Gasification
DEFF Research Database (Denmark)
Qin, Ke; Lin, Weigang; Fæster, Søren
2013-01-01
Biomass gasification experiments were carried out in a bench scale entrained flow reactor, and the produced solid particles were collected by a cyclone and a metal filter for subsequent characterization. During wood gasification, the major part of the solid material collected in the filter is soot...
Conversational quality is affected by and reflected in prosodic entrainment
DEFF Research Database (Denmark)
Michalsky, Jan; Niebuhr, Oliver; Schoormann, Heike
2018-01-01
Prosodic entrainment is connected to various forms of communicative success. One possibility to assess successful communication in non-task-oriented everyday conversations is through the participants’ perception of conversational quality. In this study we investigate whether a speaker’s degree of...
An introduction to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Radiation dominated relativistic current sheets
International Nuclear Information System (INIS)
Jaroschek, C.H.
2008-01-01
Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)
Simulating the impact of the entrainment of winter flounder larvae
International Nuclear Information System (INIS)
Hess, K.W.; Sissenwine, M.P.; Saila, S.B.
1975-01-01
The transport of winter flounder larvae around the Millstone Point, Conn. Area by the action of tidal currents and diffusion was simulated by computer to predict the numbers which could be entrained during the operation of a local nuclear power station. A tidal hydrodynamic model with variable depth was employed to simulate currents and water levels. These techniques provided input to a transport model which simulated the concentration of larvae. A larval source in a tributary river was simulated for twenty tidal cycles, with and without entrainment. The results indicated that the reduction in winter flounder larvae near Millstone Point at the end of the pelagic stage (period during which larvae are likely to be entrained) was less than 1 percent when it was assumed that larvae have little chance of returning once lost from Millstone bight. In order to assess the effect of a 1 percent reduction in recruitment of winter flounder larvae to the benthic phase of their life cycle, the local population was simulated by a model in which year-classes and the total egg production were represented by compartments. Each year-class grew, produced eggs, suffered natural and fishing mortality according to information derived from the literature. The effect of power plant entrainment was incorporated by reducing the number of recruits to year-class I that would normally result from a specific level of egg production. For a 1 percent reduction in recruitment due to power plant entrainment, a potential 6 percent decrease in total population size following 35 years of operation was indicated. (U.S.)
Relativistic few quark dynamics for hadrons
International Nuclear Information System (INIS)
Mitra, A.N.
1983-07-01
A microscopic confinement approach is presented to a few quarks systems through an effective (harmonic) kernel inserted at the level of q-q-bar and q-q pairs, using the vehicle of the Bethe-Salpeter equation for each such system. The formalism, which is realistic for light quark systems (which require an intrinsically relativistic treatment), has been developed in a simple enough form so as to be applicable in practice to a large class of phenomena amenable to experimental test. The comparison over a wide range of hadronic properties (from mass spectra to current matrix elements), all within a single integrated framework, would seem to strongly support the ansatz of universality of the reduced spring constant (ω-tilde) which plays a role analogous to the bag radius, but at a far more microscopic level
Relativistic transport theory for hadronic matter
International Nuclear Information System (INIS)
Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.
1991-01-01
We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc
Assessment of ichthyoplankton entrainment at Pickering 'A' NGS using a pump/net in lake system
International Nuclear Information System (INIS)
McKinley, R.S.
1985-03-01
Annual entrainment at Pickering 'A' NGS was estimated for alewife as 13.6 X 10 6 larvae and 409 X 10 6 eggs. A substantial portion of eggs and larvae entering the intake were dead due to natural mortality (41%-81%) prior to entrainment. Viable eggs and larvae, immediately following entrainment showed mortalities of 54% and 44% respectively. The latent mortality of entrained eggs was 100% (48 h)
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Collision strengths from ground levels of Ti XIII using relativistic-Breit-Pauli approximation
International Nuclear Information System (INIS)
Mohan, M.; Hibbert, H.; Burke, P.G.; Keenan, F.
1998-09-01
The R-matrix method is used to calculate collision strengths from ground state to the first twenty-six fine structure levels of neon-like titanium by including the relativistic term coupling coefficients in the semi-Breit-Pauli approximation. Configuration interaction wave-functions are used to represent the first fifteen lowest LS-coupled target states in the R-matrix expansion. Results obtained are compared with other calculations. This is the first detailed calculation on this ion in which relativistic, exchange, channel couplings and short-range correlation effects are taken into account. (author)
Relativistic positioning systems: perspectives and prospects
Coll Bartolomé
2013-11-01
Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).
OPE convergence in non-relativistic conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)
2015-12-09
Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Radiatively driven relativistic spherical winds under relativistic radiative transfer
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
Scattering in relativistic particle mechanics
International Nuclear Information System (INIS)
De Bievre, S.
1986-01-01
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed
Measurements of air entrainment by vertical plunging liquid jets
El Hammoumi, M.; Achard, J. L.; Davoust, L.
2002-06-01
This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.
Measurements of air entrainment by vertical plunging liquid jets
Energy Technology Data Exchange (ETDEWEB)
El Hammoumi, M. [Faculte des Sciences et Techniques, Departement de Physique, Laboratoire de Mecanique Appliquee, Fes (Morocco); Achard, J.L.; Davoust, L. [Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), Grenoble (France)
2002-06-01
This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We{sub n} to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. (orig.)
Universal entrainment mechanism controls contact times with motile cells
Mathijssen, Arnold J. T. M.; Jeanneret, Raphaël; Polin, Marco
2018-03-01
Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding to grazing, viral infection, and cell-cell communication. The window of opportunity for these interactions depends on the basic mechanism determining contact time, which is currently unknown. By combining experiments on three different species—Chlamydomonas reinhardtii, Tetraselmis subcordiforms, and Oxyrrhis marina—with simulations and analytical modeling, we show that the fundamental physical process regulating proximity to a swimming microorganism is hydrodynamic particle entrainment. The resulting distribution of contact times is derived within the framework of Taylor dispersion as a competition between advection by the cell surface and microparticle diffusion, and predicts the existence of an optimal tracer size that is also observed experimentally. Spatial organization of flagella, swimming speed, and swimmer and tracer size influence entrainment features and provide tradeoffs that may be tuned to optimize the estimated probabilities for microbial interactions like predation and infection.
Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows
Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.
2011-12-01
Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.
Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows
International Nuclear Information System (INIS)
Diwan, Sourabh S; Narasimha, Roddam; Sreenivas, K R; Bhat, G S
2011-01-01
Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.
A new technology for air-entrainment of concrete
DEFF Research Database (Denmark)
Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede
2008-01-01
This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...
Experimental research of liquid entrainment through ADS-4 in AP1000
International Nuclear Information System (INIS)
Meng, Zhaoming; Dong, Bo; Wang, Laishun; Fu, Xiaoliang; Tian, Wenxi; Yang, Yanhua; Su, Guanghui
2014-01-01
Highlights: • We performed experimental research of liquid entrainment through ADS-4 in AP1000. • Effect of various factors on entrainment at T-junction was conducted. • Visualization research was conducted to make entrainment mechanism clear. - Abstract: In this study, based on a T-junction that consists of Automatic Depressurization System Stage Four (ADS-4) and hot leg in an AP1000 plant, a small-scale experimental research on entrainment at a T-junction was performed. This study mainly focused on the effect of various factors on entrainment, such as the effect of branch size, branch shape and liquid crossflow. The flow pattern map was plotted from the experimental data, and the visualization research indicated that the entrainment phenomena through a large size branch were apparently different from that through a small branch. Three entrainment phenomena were observed in the studies, two entrainment mechanisms could be found in the stratified flow regime entrainment area, the existence of branch contributed to generating intermittent flow in the horizontal main pipe, and the backflow region was observable in the vicinity of a large size branch inlet. Also, experimental research showed that downstream of the branch of T-junction had an important effect on the onset entrainment, and liquid crossflow did not seem to affect the onset entrainment
Large Eddy Simulation of Heat Entrainment Under Arctic Sea Ice
Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand
2018-01-01
Arctic sea ice has declined rapidly in recent decades. The faster than projected retreat suggests that free-running large-scale climate models may not be accurately representing some key processes. The small-scale turbulent entrainment of heat from the mixed layer could be one such process. To better understand this mechanism, we model the Arctic Ocean's Canada Basin, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) within the mixed layer trapping heat from solar radiation. We use large eddy simulation (LES) to investigate heat entrainment for different ice-drift velocities and different initial temperature profiles. The value of LES is that the resolved turbulent fluxes are greater than the subgrid-scale fluxes for most of our parameter space. The results show that the presence of the NSTM enhances heat entrainment from the mixed layer. Additionally there is no PSW heat entrained under the parameter space considered. We propose a scaling law for the ocean-to-ice heat flux which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of "The Great Arctic Cyclone of 2012" gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer.
Neural entrainment to the rhythmic structure of music.
Tierney, Adam; Kraus, Nina
2015-02-01
The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.
Free-surface entrainment into a rimming flow containing surfactants
Thoroddsen, S. T.; Tan, Y.-K.
2004-02-01
We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.
Freeze-Thaw Durability of Air-Entrained Concrete
Directory of Open Access Journals (Sweden)
Huai-Shuai Shang
2013-01-01
Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.
Freeze-thaw durability of air-entrained concrete.
Shang, Huai-Shuai; Yi, Ting-Hua
2013-01-01
One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.
Presence of strong harmonics during visual entrainment: a magnetoencephalography study.
Heinrichs-Graham, Elizabeth; Wilson, Tony W
2012-09-01
Visual neurons are known to synchronize their firing with stimuli that flicker at a constant rate (e.g. 12Hz). These so-called visual steady-state responses (VSSR) are a well-studied phenomenon, yet the underlying mechanisms are widely disagreed upon. Furthermore, there is limited evidence that visual neurons may simultaneously synchronize at harmonics of the stimulation frequency. We utilized magnetoencephalography (MEG) to examine synchronization at harmonics of the visual stimulation frequency (18Hz). MEG data were analyzed for event-related-synchronization (ERS) at the fundamental frequency, 36, 54, and 72Hz. We found strong ERS in all bands. Only 31% of participants showed maximum entrainment at the fundamental; others showed stronger entrainment at either 36 or 54Hz. The cortical foci of these responses indicated that the harmonics involved cortices that were partially distinct from the fundamental. These findings suggest that spatially-overlapping subpopulations of neurons are simultaneously entrained at different harmonics of the stimulus frequency. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Methods in relativistic nuclear physics
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.; Cauvin, M.
1984-01-01
This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Directory of Open Access Journals (Sweden)
Richard Anantua
2018-03-01
Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.
Apparent unambiguousness of relativistic time dilation
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs
Relativistic generalization of strong plasma turbulence
International Nuclear Information System (INIS)
Chian, A.C.-L.
1982-01-01
Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt
Quantum gates via relativistic remote control
Energy Technology Data Exchange (ETDEWEB)
Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)
2014-12-12
We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.
Relativistic energy-dispersion relations of 2D rectangular lattices
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Entrainment, transport and deposition of sediment by saline gravity currents
Zordan, Jessica; Juez, Carmelo; Schleiss, Anton J.; Franca, Mário J.
2018-05-01
Few studies have addressed simultaneously the feedback between the hydrodynamics of a gravity current and the geomorphological changes of a mobile bed. Hydrodynamic quantities such as turbulent and mean velocities, bed shear stress and turbulent stresses undoubtedly govern the processes of entrainment, transport and deposition. On the other hand, the incorporation of entrained sediment in the current may change its momentum by introducing extra internal stresses, introducing thus a feedback process. These two main questions are here investigated. Laboratory experiments of saline gravity currents, produced by lock-exchange, flowing over a mobile bed channel reach, are here reported. Different initial buoyancies of the current in the lock are tested together with three different grain sizes of the non-coherent sediment that form the erodible bed. Results from velocity measurements are combined with the visualization of the sediment movement in the mobile reach and with post-test topographic and photo surveys of the geomorphology modifications of the channel bed. Mean and turbulent velocities are measured and bed shear stress and Reynolds stresses are estimated. We show that the mean vertical component of the velocity and bed shear stress are highly correlated with the first instants of sediment entrainment. Vertical turbulent velocity is similarly related to entrainment, although with lower correlation values, contributing as well to the sediment movement. Bed shear stress and Reynolds shear stress measured near the bed are correlated with sediment entrainment for longer periods, indicating that these quantities are associated to distal transport as well. Geomorphological changes in the mobile bed are strongly related to the impulse caused by the bed shear stress on the sediment. On the other hand, we show that the nature of the grain of the mobile bed reach influences the hydrodynamics of the current which means that a feedback mechanisms between both occurs during
Relativistic electron kinetic effects on laser diagnostics in burning plasmas
Mirnov, V. V.; Den Hartog, D. J.
2018-02-01
Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
Relativistic instant-form approach to the structure of two-body composite systems
International Nuclear Information System (INIS)
Krutov, A.F.; Troitsky, V.E.
2002-01-01
An approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is the method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for the lepton decay constant of pions
Instability in relativistic nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1979-11-01
The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)
Cyberinfrastructure for Computational Relativistic Astrophysics
Ott, Christian
2012-01-01
Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.
Future relativistic heavy ion experiments
International Nuclear Information System (INIS)
Pugh, H.G.
1980-12-01
Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned
A relativistic radiation transfer benchmark
International Nuclear Information System (INIS)
Munier, A.
1988-01-01
We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame
Relativistic models of nuclear structure
International Nuclear Information System (INIS)
Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.
1991-01-01
The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Entrainment and deposition rates of droplets in annular two-phase flow
International Nuclear Information System (INIS)
Kataoka, I.; Ishii, M.
1986-01-01
The droplet entrainment from a liquid film is important to the mass, momentum, and energy transfer process in annular two-phase flow. For example, the amount of entrainment as well as the rate of entrainment significantly affect the occurrences of the dryout, whereas the post-CHF heat transfer depends strongly on the entrainment and droplet sizes. Despite the importance of the entrainment rate, there have been no satisfactory correlations available in the literature. In view of these, correlations for entrainment rate covering both entrance region and equilibrium region were developed from a simple model in collaboration with data. Results show that the entrainment rate varies considerably in the entrainment-development region. However, at a certain distance from an inlet it attains an equilibrium value. A simple approximate correlation was obtained for the equilibrium state where entrainment rate and deposition rate becomes equal. The result indicates that the equilibrium entrainment rate is proportional to Weber number based on the hydraulic diameter of a tube. 34 references, 14 figures
Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow
Dey, Subhasish; Ali, Sk Zeeshan
2018-06-01
Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.
Doing Duo – a Case Study of Entrainment in William Forsythe’s Choreography Duo
Directory of Open Access Journals (Sweden)
Elizabeth eWaterhouse
2014-10-01
Full Text Available Entrainment theory focuses on processes in which interacting (i.e. coupled rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and a propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all to examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment as a potential aspect to be incorporated into other models.
Radial focusing of a relativistic electron beam in a bipotential electrostatic lens
International Nuclear Information System (INIS)
Genoni, T.C.
1994-01-01
The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation
A quantum relativistic integrable model as the continuous limit of the six-vertex model
International Nuclear Information System (INIS)
Zhou, Y.K.
1992-01-01
The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)
Relativistic Descriptions of Few-Body Systems
International Nuclear Information System (INIS)
Karmanov, V. A.
2011-01-01
A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)
Recent development of relativistic molecular theory
International Nuclear Information System (INIS)
Takahito, Nakajima; Kimihiko, Hirao
2005-01-01
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
Franklin, Joel N
2003-01-01
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Spontaneous Entrainment of Running Cadence to Music Tempo.
Van Dyck, Edith; Moens, Bart; Buhmann, Jeska; Demey, Michiel; Coorevits, Esther; Dalla Bella, Simone; Leman, Marc
Since accumulating evidence suggests that step rate is strongly associated with running-related injuries, it is important for runners to exercise at an appropriate running cadence. As music tempo has been shown to be capable of impacting exercise performance of repetitive endurance activities, it might also serve as a means to (re)shape running cadence. The aim of this study was to validate the impact of music tempo on running cadence. Sixteen recreational runners ran four laps of 200 m (i.e. 800 m in total); this task was repeated 11 times with a short break in between each four-lap sequence. During the first lap of a sequence, participants ran at a self-paced tempo without musical accompaniment. Running cadence of the first lap was registered, and during the second lap, music with a tempo matching the assessed cadence was played. In the final two laps, the music tempo was either increased/decreased by 3.00, 2.50, 2.00, 1.50, or 1.00 % or was kept stable. This range was chosen since the aim of this study was to test spontaneous entrainment (an average person can distinguish tempo variations of about 4 %). Each participant performed all conditions. Imperceptible shifts in musical tempi in proportion to the runner's self-paced running tempo significantly influenced running cadence ( p tempo conditions and adaptation in running cadence ( p effect of condition on the level of entrainment was revealed ( p effects of music tempo on running cadence can only be obtained up to a certain level of tempo modification. Finally, significantly higher levels of tempo entrainment were found for female participants compared to their male counterparts ( p music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining. Music tempo
The effects of chronic marijuana use on circadian entrainment.
Whitehurst, Lauren N; Fogler, Kethera; Hall, Kate; Hartmann, Matthew; Dyche, Jeff
2015-05-01
Animal literature suggests a connection between marijuana use and altered circadian rhythms. However, the effect has not yet been demonstrated in humans. The present study examined the effect of chronic marijuana use on human circadian function. Participants consisted of current users who reported smoking marijuana daily for at least a year and non-marijuana user controls. Participants took a neurocognitive assessment, wore actigraphs and maintained sleep diaries for three weeks. While no significant cognitive changes were found between groups, data revealed that chronic marijuana use may act as an additional zeitgeber and lead to increased entrainment in human users.
Relativistic quantum mechanics an introduction to relativistic quantum fields
Maiani, Luciano
2016-01-01
Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.
International Nuclear Information System (INIS)
Boreman, J.; Barnthouse, L.W.; Vaughn, D.S.; Goodyear, C.P.; Christensen, S.W.; Kumar, K.D.; Kirk, B.L.; Van Winkle, W.
1982-01-01
This volume is concerned with the estimation of the direct (or annual) entrainment impact of power plants on populations of striped bass, white perch, Alosa spp. (blueback herring and alewife), American shad, Atlantic tomcod, and bay anchovy in the Hudson River estuary. Entrainment impact results from the killing of fish eggs, larvae, and young juveniles that are contained in the cooling water cycled through a power plant. An Empirical Transport Model (ETM) is presented as the means of estimating a conditional entrainment mortality rate (defined as the fraction of a year class which would be killed due to entrainment in the absence of any other source of mortality). Most of this volume is concerned with the estimation of several parameters required by the ETM: physical input parameters (e.g., power-plant withdrawal flow rates); the longitudinal distribution of ichthyoplankton in time and space; the duration of susceptibility of the vulnerable organisms; the W-factors, which express the ratios of densities of organisms in power plant intakes to densities of organisms in the river; and the entrainment mortality factors (f-factors), which express the probability that an organism will be killed if it is entrained. Once these values are obtained, the ETM is used to estimate entrainment impact for both historical and projected conditions
Spinor and isospinor structure of relativistic particle propagators
International Nuclear Information System (INIS)
Gitman, D.M.; Shvartsman, Sh.M.
1993-07-01
Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs
International Nuclear Information System (INIS)
Kuti, Olawole Abiola; Nishida, Keiya; Zhu, Jingyu
2013-01-01
Experiments were performed inside the constant volume vessel to simulate the real diesel engine conditions. The LIF–PIV (Laser Induced Florescence – Particulate Image Velocimetry) technique was used to characterize the spray and gas entrainment characteristics of the fuels while the OH-chemiluminescence and two color pyrometry were applied to obtain information about the combustion processes. Biodiesel from palm oil (BDF (Biodiesel Fuel)) and the JIS #2 diesel fuel were utilized. It was observed that the SMD (Sauter mean diameter) obtained through an empirical equation decreased by increasing the injection pressure from 100 to 300 MPa and reducing the nozzle diameter from 0.16 to 0.08 mm. BDF has higher SMD values compared to diesel thus signifying inferior atomization. By increasing the injection pressure up to 300 MPa and reducing the nozzle diameter to 0.08 mm, the normal velocity and total mass flow rate of the entrained gas by the fuels increased. Due to higher viscosity and density properties, BDF possessed inferior atomization characteristics which made the normal velocity and total mass flow rate of the entrained gas lower compared to diesel. Due to inferior atomization which led to less gas being entrained upstream of the lift-off flame, the fuel oxygen content in BDF played a significant role in soot formation processes. - Highlights: • Spray and gas entrainment characteristics of biodiesel (BDF (Biodiesel Fuel)) and fuel were investigated. • Effect of injector parameters on BDF spray and gas entrainment characteristics was identified. • Higher viscosity and density of BDF yielded inferior spray atomization processes. • Gas entrainment velocity and mass flow rate of gas entrained by BDF lower. • Gas entrained had less effect on BDF's soot formation
Sameiro-Barbosa, Catia M; Geiser, Eveline
2016-01-01
The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.
Sameiro-Barbosa, Catia M.; Geiser, Eveline
2016-01-01
The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306
Relativistic quantum mechanics of bosons
International Nuclear Information System (INIS)
Ghose, P.; Home, D.; Sinha Roy, M.N.
1993-01-01
We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)
Kinetic approach to relativistic dissipation
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
2017-08-01
Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.
Relativistic electron beams above thunderclouds
DEFF Research Database (Denmark)
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Diffraction radiation from relativistic particles
Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Volatility smile as relativistic effect
Kakushadze, Zura
2017-06-01
We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.
Double Relativistic Electron Accelerating Mirror
Directory of Open Access Journals (Sweden)
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Relativistic shocks and particle acceleration
International Nuclear Information System (INIS)
Heavens, A.F.
1988-01-01
In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)
Diffraction radiation from relativistic particles
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
Analytic approaches to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hatta, Yoshitaka
2016-12-15
I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
Characteristic manifolds in relativistic hypoelasticity
Energy Technology Data Exchange (ETDEWEB)
Giambo, S [Messina Univ. (Italy). Istituto di Matematica
1978-10-02
The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.
A relativistic quarkonium potential model
International Nuclear Information System (INIS)
Klima, B.; Maor, U.
1984-04-01
We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)
Coordinates in relativistic Hamiltonian mechanics
International Nuclear Information System (INIS)
Sokolov, S.N.
1984-01-01
The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field
Relativistic mechanics with reduced fields
International Nuclear Information System (INIS)
Sokolov, S.N.
1996-01-01
A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru
Theory of a relativistic peniotron
International Nuclear Information System (INIS)
Zhurakhovskii, V.A.
1986-01-01
A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented
Mattagami River Lake sturgeon entrainment : Little Long generating station facilities
International Nuclear Information System (INIS)
Seyler, J.; Evers, J.; McKinley, S.; Evans, R.R.; Prevost, G.; Carson, R.; Phoenix, D.
1996-01-01
This project and publication is the result of a collaborative effort by other Large River Ecosystem Unit of Northeast Science (NEST), Ontario Hydro in Kapuskasing, and the New Post First Nation in Cochrane, Ontario, designed to investigate potential solutions to minimize or eliminate the problem of trapped lake sturgeon in the Adam Creek Diversion. The Adam Creek Dam is used to divert excess water from the Mattagami River hydroelectric complex which consists of the Little Long, Smoky Falls, Harmon and Kipling generating stations. The lake sturgeon entrainment problem in the area was discovered in 1990. Potential solutions to the problem include the redirection of flows to mainstream, the placement of a rope barrier, electrical deterrents, physical/electrical guidance systems, sound deterrents, gate modifications, and the continued relocation of fish. The advantages and disadvantages of each of these potential solutions are discussed. Results of the analysis indicated that perceptual and physical barriers have the greatest potential to minimize lake sturgeon entrainment in Adam Creek. 25 refs., 2 tabs., 3 figs., 6 appendices
Relativistic beaming and quasar statistics
International Nuclear Information System (INIS)
Orr, M.J.L.; Browne, I.W.A.
1982-01-01
The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Nonlinear dynamics of the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-04-01
Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Two-body relativistic scattering with an O(1,1)-symmetric square-well potential
International Nuclear Information System (INIS)
Arshansky, R.; Horwitz, L.P.
1984-01-01
Scattering theory in the framework of a relativistic manifestly covariant quantum mechanics is applied to the relativistic analog of the nonrelativistic one-dimensional square-well potential, a two-body O(1,1)-symmetric hyperbolic square well in one space and one time dimension. The unitary S matrix is explicitly obtained. For well sizes large compared to the de Broglie wavelength of the reduced motion system, simple formulas are obtained for the associated sequence of resonances. This sequence has equally spaced levels and constant widths for higher resonances, and linearly increasing widths for lower-lying levels
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
Ilias, Miroslav; Saue, Trond
2007-02-14
The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.
Frame dependence of world lines for directly interacting classical relativistic particles
International Nuclear Information System (INIS)
Molotkov, V.V.; Todorov, I.T.
1979-06-01
The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)
Loading relativistic Maxwell distributions in particle simulations
International Nuclear Information System (INIS)
Zenitani, Seiji
2015-01-01
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms
Loading relativistic Maxwell distributions in particle simulations
Energy Technology Data Exchange (ETDEWEB)
Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2015-04-15
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Relativistic quantum theory of composite systems
International Nuclear Information System (INIS)
Sogami, I.
1978-01-01
A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Relativistic ion acceleration by ultraintense laser interactions
International Nuclear Information System (INIS)
Nakajima, K.; Koga, J.K.; Nakagawa, K.
2001-01-01
There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Pathik, Bhupesh; Lee, Geoffrey; Nalliah, Chrishan; Joseph, Stephen; Morton, Joseph B; Sparks, Paul B; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M
2017-10-01
With the recent advent of high-density (HD) 3-dimensional (3D) mapping, the utility of entrainment is uncertain. However, the limitations of visual representation and interpretation of these high-resolution 3D maps are unclear. The purpose of this study was to determine the strengths and limitations of both HD 3D mapping and entrainment mapping during mapping of right atrial macroreentry. Fifteen patients were studied. The number and type of circuits accounting for ≥90% of the tachycardia cycle length using HD 3D mapping were verified using systematic entrainment mapping. Entrainment sites with an unexpectedly long postpacing interval despite proximity to the active circuit were evaluated. Based on HD 3D mapping, 27 circuits were observed: 12 peritricuspid, 2 upper loop reentry, 10 lower loop reentry, and 3 lateral wall circuits. With entrainment, 17 of the 27 circuits were active: all 12 peritricuspid and 2 upper loop reentry. However, lower loop reentry was confirmed in only 3 of 10, and none of the 3 lateral wall circuits were present. Mean percentage of tachycardia cycle length covered by active circuits was 98% ± 1% vs 97% ± 2% for passive circuits (P = .09). None of the 345 entrainment runs terminated tachycardia or changed tachycardia mechanism. In 8 of 15 patients, 13 examples of unexpectedly long postpacing interval were observed at entrainment sites located distal to localized zones of slow conduction seen on HD 3D mapping. Using HD 3D mapping, "visual reentry" may be due to passive circuitous propagation rather than a critical reentrant circuit. HD 3D mapping provides new insights into regional conduction and helps explain unusual entrainment phenomena. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Luis J. Perez Calderon
2018-05-01
Full Text Available Deep sea oil exploration is increasing and presents environmental challenges for deep ocean ecosystems. Marine oil spills often result in contamination of sediments with oil; following the Deepwater Horizon (DwH disaster up to 31% of the released oil entrained in the water column was deposited as oily residues on the seabed. Although the aftermath of DwH was studied intensely, lessons learned may not be directly transferable to other deep-sea hydrocarbon exploration areas, such as the Faroe-Shetland Channel (FSC which comprises cold temperatures and a unique hydrodynamic regime. Here, transport of hydrocarbons into deep FSC sediments, subsequent responses in benthic microbial populations and effects of dispersant application on hydrocarbon fate and microbial communities were investigated. Sediments from 1,000 m in the FSC were incubated at 0°C for 71 days after addition of a 20-hydrocarbon component oil-sediment aggregate. Dispersant was added periodically from day 4. An additional set of cores using sterilized and homogenized sediment was analyzed to evaluate the effects of sediment matrix modification on hydrocarbon entrainment. Sediment layers were independently analyzed for hydrocarbon content by gas chromatography with flame ionization detection and modeled with linear mixed effects models. Oil was entrained over 4 cm deep into FSC sediments after 42 days and dispersant effectiveness on hydrocarbon removal from sediment to the water column decreased with time. Sterilizing and homogenizing sediment resulted in hydrocarbon transport over 4 cm into sediments after 7 days. Significant shifts in bacterial populations were observed (DGGE profiling in response to hydrocarbon exposure after 42 days and below 2 cm deep. Dispersant application resulted in an accelerated and modified shift in bacterial communities. Bacterial 16S rRNA gene sequencing of oiled sediments revealed dominance of Colwellia and of Fusibacter when dispersant was applied over
Quantification of the effect of oil layer thickness on entrainment of surface oil
Klaas Dijkstra; Albertinka J. Murk; Marieke Zeinstra-Helfrich; Wierd Koops
2015-01-01
This study quantifies the effect of oil layer thickness on entrainment and dispersion of oil into seawater, using a plunging jet with a camera system. In contrast to what is generally assumed, we revealed that for the low viscosity “surrogate MC252 oil” we used, entrainment rate is directly
Beersma, DGM; Daan, S; Hut, RA
The accuracy with which a circadian pacemaker can entrain to an environmental 24-h zeitgeber signal depends on (a) characteristics of the entraining signal and (b) response characteristics and intrinsic stability of the pacemaker itself. Position of the sun, weather conditions, shades, and
Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus)
Hut, Roelof A.; Mrosovsky, N.; Daan, Serge
1999-01-01
Entrainment by nonphotic, activity-inducing stimuli has been investigated in detail in nocturnal rodents, but little is known about nonphotic entrainment in diurnal animals. Comparative studies would offer the opportunity to distinguish between two possibilities. (1) If nonphotic phase shifts depend
A review of the interference of carbon containing fly ash with air entrainment in concrete
DEFF Research Database (Denmark)
Pedersen, Kim Hougaard; Jensen, Anker Degn; Skjøth-Rasmussen, Martin Skov
2008-01-01
may interfere with air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increase its workability and resistance toward freezing and thawing conditions. The problem has increased with implementation of low-NOx combustion technologies. This review presents the past...
Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping
Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna
2017-11-01
This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.
The role of high-level processes for oscillatory phase entrainment to speech sound
Directory of Open Access Journals (Sweden)
Benedikt eZoefel
2015-12-01
Full Text Available Constantly bombarded with input, the brain has the need to filter out relevant information while ignoring the irrelevant rest. A powerful tool may be represented by neural oscillations which entrain their high-excitability phase to important input while their low-excitability phase attenuates irrelevant information. Indeed, the alignment between brain oscillations and speech improves intelligibility and helps dissociating speakers during a cocktail party. Although well-investigated, the contribution of low- and high-level processes to phase entrainment to speech sound has only recently begun to be understood. Here, we review those findings, and concentrate on three main results: (1 Phase entrainment to speech sound is modulated by attention or predictions, likely supported by top-down signals and indicating higher-level processes involved in the brain’s adjustment to speech. (2 As phase entrainment to speech can be observed without systematic fluctuations in sound amplitude or spectral content, it does not only reflect a passive steady-state ringing of the cochlea, but entails a higher-level process. (3 The role of intelligibility for phase entrainment is debated. Recent results suggest that intelligibility modulates the behavioral consequences of entrainment, rather than directly affecting the strength of entrainment in auditory regions. We conclude that phase entrainment to speech reflects a sophisticated mechanism: Several high-level processes interact to optimally align neural oscillations with predicted events of high relevance, even when they are hidden in a continuous stream of background noise.
Measured gas and particle temperatures in VTT's entrained flow reactor
DEFF Research Database (Denmark)
Clausen, Sønnik; Sørensen, L.H.
2006-01-01
Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...... agreement with thermocouple readings. Gas lines and bands from CO, CO2 and H2O can be observed in the spectra. CO was only observed at the first measuring port (100ms) with the strongest CO-signal seen during experiments with straw particles. Variations in gas concentration (CO2 and H2O) and the signal from...
Ignition characteristics of coal blends in an entrained flow furnace
Energy Technology Data Exchange (ETDEWEB)
J. Faundez; B. Arias; F. Rubiera; A. Arenillas; X. Garcia; A.L. Gordon; J.J. Pis [Universidad de Concepcion, Concepcion (Chile)
2007-09-15
Ignition tests were carried out on blends of three coals of different rank - subbituminous, high volatile and low volatile bituminous - in two entrained flow reactors. The ignition temperatures were determined from the gas evolution profiles (CO, CO{sub 2}, NO, O{sub 2}), while the mechanism of ignition was elucidated from these profiles and corroborated by high-speed video recording. Under the experimental conditions of high carbon loading, clear interactive effects were observed for all the blends. Ignition of the lower rank coals (subbituminous, high volatile bituminous) enhanced the ignition of the higher rank coal (low volatile bituminous) in the blends. The ignition temperatures of the blends of the low rank coals (subbituminous-high volatile bituminous) were additive. However, for the rest of the blends the ignition temperatures were always closer to the lower rank coal in the blend. 21 refs., 8 figs.
Impingement and entrainment: an updated annotated bibliography. Final report
International Nuclear Information System (INIS)
Yost, F.E.; Uziel, M.S.
1981-05-01
Presented as an annotated bibliography are 1343 references dealing with entrainment and impingement effects on aquatic organisms passing through the cooling systems of thermal power plants. The references were obtained from open literature and from environmental reports and impact statements prepared by or for the electric utility industry. Two earlier bibliographies contain literature from 1950 through 1976. This update contains additional literature acquired since 1976. Topics covered are site-specific field studies at facilities located on lakes, reservoirs, rivers, or estuaries. The studies include special engineering studies, laboratory studies, studies of biological effects, reviews and methodologies, and studies of the mitigation of effects. References are arranged alphabetically by author, and indexes are provided to personal and corporate authors, and to facility, waterbody, and taxonomic names
Structure and applications of point form relativistic quantum mechanics
International Nuclear Information System (INIS)
Klink, W.H.
2003-01-01
The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)
Out-of-synchrony speech entrainment in developmental dyslexia.
Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel
2016-08-01
Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi
2000-01-01
A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)
Experimental study of near-field entrainment of moderately overpressured jets
Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.
2011-01-01
Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.
Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.N.
1981-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
Thermodynamics of polarized relativistic matter
Energy Technology Data Exchange (ETDEWEB)
Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)
2016-07-05
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Observation of relativistic antihydrogen atoms
International Nuclear Information System (INIS)
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure
Similarity flows in relativistic hydrodynamics
International Nuclear Information System (INIS)
Blaizot, J.P.; Ollitrault, J.Y.
1986-01-01
In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations
Relativistic heavy ion facilities: worldwide
International Nuclear Information System (INIS)
Schroeder, L.S.
1986-05-01
A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs
Unlimited Relativistic Shock Surfing Acceleration
International Nuclear Information System (INIS)
Ucer, D.; Shapiro, V. D.
2001-01-01
Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing
The magnetosphere in relativistic physics
International Nuclear Information System (INIS)
Zapffe, C.A.
1982-01-01
The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)
The performative pleasure of imprecision: a diachronic study of entrainment in music performance
Directory of Open Access Journals (Sweden)
Andrew eGeeves
2014-10-01
Full Text Available This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Nonverbal communicative exchanges, via eye contact, gesture and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.
Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers
Watanabe, T.; Riley, J. J.; Nagata, K.
2017-10-01
The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...
Relativistic corrections to molecular dynamic dipole polarizabilities
DEFF Research Database (Denmark)
Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard
1995-01-01
obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...
A Primer to Relativistic MOND Theory
Bekenstein, J.D..; Sanders, R.H.
2005-01-01
Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its
Relativistic astrophysics and theory of gravity
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.
1982-01-01
A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology
Einstein Never Approved of Relativistic Mass
Hecht, Eugene
2009-01-01
During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…
Random phase approximation in relativistic approach
International Nuclear Information System (INIS)
Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang
2009-01-01
Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)
Loading relativistic Maxwell distributions in particle simulations
Zenitani, S.
2015-12-01
In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Relativistic theory of spontaneous emission
International Nuclear Information System (INIS)
Barut, A.O.; Salamin, Y.I.
1987-06-01
We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs
Physical processes in relativistic plasmas
International Nuclear Information System (INIS)
Svensson, R.
1984-01-01
The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)
24-Hour Relativistic Bit Commitment.
Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo
2016-09-30
Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.
Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker
2014-01-01
Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.
International Nuclear Information System (INIS)
Boreman, J.; Goodyear, C.P.
1988-01-01
An empirically derived age-, time-, and space-variant equation was used to estimate entrainment mortality at power plants for seven fish species inhabiting the Hudson River estuary. Entrainment mortality is expressed as a conditional rate, which is the fractional reduction in year-class strength due to entrainment if other sources of mortality are density-independent. Estimates of the conditional entrainment mortality, based on historical and projected once-through cooling operation of five power plants, were 11-22% for striped bass, 11-17% for white perch, 5-7% for Atlantic tomcod, 14-21% for American shad, 4-11% for river herring (alewife and blueback herring combined), and 35-79% for bay anchovy. Closed-cycle cooling (natural-draft cooling towers) at three of the power plants (Indian Point, Bowline Point, and Roseton) would reduce entrainment mortality of striped bass by 50-80%, of white perch by 75-80%, of Atlantic tocod by 65-70%, of American shad by 80%, of river herring by 30-90%, and of bay anchovy by 45-80%. The life stages most vulnerable to entrainment mortality were post-yolk-sac larva and entrainable size juvenile. 18 refs., 7 tabs
Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system
Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker
2015-01-01
Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137
Neurobiological Foundations of Neurologic Music Therapy: Rhythmic Entrainment and the Motor System
Directory of Open Access Journals (Sweden)
Michael eThaut
2015-02-01
Full Text Available AbstractEntrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks and biological systems (e.g. fire flies. However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al, 1999. Physiological, kinematic and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of Neurologic Music Therapy.
Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.
Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P
2018-05-03
Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.
The Entrainment Rate for Buoyant Plumes in a Crossflow
Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.
2010-03-01
We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.
Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni
2016-10-01
The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.
Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking
Wawrzeńczyk, Jerzy; Molendowska, Agnieszka
2017-10-01
This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
Reflooding phase of the LOCA - state of the art II. Rewetting and liquid entrainment
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1977-01-01
Understanding the mechanisms by which hot fuel rods quench and the physics of liquid droplet entrainment is important for the analysis of the reflooding phase of the LOCA. Published models of the rewetting process include simple one-dimensional solutions. The basic physical assumptions of these models and the numerical values assigned to the various parameters, as well as empirical rewetting correlations are discussed. The various mechanisms for liquid droplet entrainment and analytical formulations of the critical gas velocity and of the droplet diameter at the onset of entrainment are reviewed
International Nuclear Information System (INIS)
Kreh, T.V.; Derwort, J.E.
1976-01-01
Carbon assimilation rates of phytoplankton communities entrained through Oconee Nuclear Station were measured on six dates during 1974. Thermal, mechanical, condenser, and multiple entrainment effects on uptake rates were compared by incubating samples in vitro in controlled-temperature water baths. Duplicate light and dark bottles containing water from four cooling-system locations were exposed to temperatures approximating intake and discharge temperatures. The relationships were variable, but exposure of the hypolimnetic intake water at near-discharge temperatures (thermal effect) stimulated primary productivity in four of six experiments. Multiple entrainment and mechanical effects caused no consistent change in assimilation rates
Energy Technology Data Exchange (ETDEWEB)
Fedorovich, E.; Kaiser, R. [Univ. Karlsruhe, Inst. fuer Hydrologie und Wasserwirtschaft (Germany)
1997-10-01
We present results from a parallel wind-tunnel/large-eddy simulation (LES) model study of mixing and entrainment in the atmospheric convective boundary layer (CBL) longitudinally developing over a heated surface. The advection-type entrainment of warmer air from upper turbulence-free layers into the growing CBL has been investigated. Most of numerical and laboratory model studies of the CBL carried out so far dealt with another type of entrainment, namely the non-steady one, regarding the CBL growth as a non-stationary process. In the atmosphere, both types of the CBL development can take place, often being superimposed. (au)
A hybrid model to predict the entrainment and subsurface transport of oil
International Nuclear Information System (INIS)
Spaulding, M.L.; Odulo, A.; Kolluru, V.S.
1992-01-01
The entrainment of surface oil into the water column and its subsequent subsurface transport and dispersion are predicted by a hybrid analytic-numerical solution to the advective diffusion equation. Total oil or selected hydrocarbon component concentrations in the water column are predicted. Assuming that the principal mechanism for entrainment is due to breaking waves, the oil entrainment rate is specified using the empirically based algorithm of Delvigne and Sweeney (1988). The subsurface transport model explicitly accounts for buoyant forces on dispersed oil by droplet size. Application of the model to an analytic test case and several hypothetical scenarios illustrates the model's utility. 35 refs., 8 figs., 2 tabs
An applied model for the height of the daytime mixed layer and the entrainment zone
DEFF Research Database (Denmark)
Batchvarova, E.; Gryning, Sven-Erik
1994-01-01
A model is presented for the height of the mixed layer and the depth of the entrainment zone under near-neutral and unstable atmospheric conditions. It is based on the zero-order mixed layer height model of Batchvarova and Gryning (1991) and the parameterization of the entrainment zone depth......-layer height: friction velocity, kinematic heat flux near the ground and potential temperature gradient in the free atmosphere above the entrainment zone. When information is available on the horizontal divergence of the large-scale flow field, the model also takes into account the effect of subsidence...
Thermodynamic laws and equipartition theorem in relativistic Brownian motion.
Koide, T; Kodama, T
2011-06-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
Relativistic effects in resonance absorption
International Nuclear Information System (INIS)
Drake, J.F.; Lee, Y.C.
1976-01-01
The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed
Parton distribution in relativistic hadrons
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.
1979-01-01
The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance
Relativistic three-particle theory
International Nuclear Information System (INIS)
Hochauser, S.
1979-01-01
In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)
Energy Technology Data Exchange (ETDEWEB)
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2009-10-02
Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.
Engine jet entrainment in the near field of an aircraft
Energy Technology Data Exchange (ETDEWEB)
Garnier, F.; Jacquin, L.; Laverdant, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1997-12-31
A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.
Spontaneous eye blinks are entrained by finger tapping.
Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W
2010-02-01
We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.
Engine jet entrainment in the near field of an aircraft
Energy Technology Data Exchange (ETDEWEB)
Garnier, F; Jacquin, L; Laverdant, A [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)
1998-12-31
A simplified approach has been applied to analyse the mixing and entrainment processes of the engine exhaust through their interaction with the vortex wake of an aircraft. These investigations are focused on the near filed, extending from exit nozzle to the beginning of the vortex phase (i.e. to about twenty seconds after the wake is generated). This study is performed using an integral model and a numerical simulation for a two-engine large civil aircraft. The properties of the wing-tip vortices on the calculation of the dilution ratio (defined as a tracer concentration) have been shown. The mixing process is also affected by the buoyancy effect, but only after the jet regime, when the trapping in the vortex core has occurred. Qualitative comparison with contrail photography shows similar features. Finally the distortion and stretching of the plume streamlines inside the vortices can be observed, and the role of the descent of the vortices on the maximum tracer concentration has been discussed. (author) 19 refs.
Kinematics of flow and sediment particles at entrainment and deposition
Antico, Federica; Sanches, Pedro; Aleixo, Rui; Ferreira, Rui M. L.
2015-04-01
A cohesionless granular bed subjected to a turbulent open-channel flow is analysed. The key objective is to clarify the kinematics of entrainment and deposition of individual sediment particles. In particular, we quantify a) the turbulent flow field in the vicinity of particles at the instants of their entrainment and of their deposition; b) the initial particle velocity and the particle velocity immediately before returning to rest. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameters in the range 0.007 to 0.03. Froude numbers ranged from 0.63 to 0.95 while boundary Reynolds numbers were in the range 130 to 300. It was observed that the bed featured patches of regular arrangements: face centered cubic (fcc) or hexagonal close packing (hcp) blocks alternate with and body centered cubic (bcc) blocks. The resulting bed surface exhibits cleavage lines between blocks and there are spatial variations of bed elevation. The option for artificial sediment allowed for a simplified description of particle positioning at the instant of entrainment. In particular support and pivoting angles are found analytically. Skin friction angles were determind experimentally. The only relevant variables are exposure (defined as the ratio of the actual frontal projection of the exposed area to the area of a circle with 5 mm diameter) and protrusion (defined as the vertical distance between the apex of the particle and the mean local bed elevation
Colour As a Signal for Entraining the Mammalian Circadian Clock
Walmsley, Lauren; Hanna, Lydia; Mouland, Josh; Martial, Franck; West, Alexander; Smedley, Andrew R.; Bechtold, David A.; Webb, Ann R.; Lucas, Robert J.; Brown, Timothy M.
2015-01-01
Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. PMID:25884537
Colour as a signal for entraining the mammalian circadian clock.
Directory of Open Access Journals (Sweden)
Lauren Walmsley
2015-04-01
Full Text Available Twilight is characterised by changes in both quantity ("irradiance" and quality ("colour" of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
Familiarity Affects Entrainment of EEG in Music Listening
Directory of Open Access Journals (Sweden)
Yuiko Kumagai
2017-07-01
Full Text Available Music perception involves complex brain functions. The relationship between music and brain such as cortical entrainment to periodic tune, periodic beat, and music have been well investigated. It has also been reported that the cerebral cortex responded more strongly to the periodic rhythm of unfamiliar music than to that of familiar music. However, previous works mainly used simple and artificial auditory stimuli like pure tone or beep. It is still unclear how the brain response is influenced by the familiarity of music. To address this issue, we analyzed electroencelphalogram (EEG to investigate the relationship between cortical response and familiarity of music using melodies produced by piano sounds as simple natural stimuli. The cross-correlation function averaged across trials, channels, and participants showed two pronounced peaks at time lags around 70 and 140 ms. At the two peaks the magnitude of the cross-correlation values were significantly larger when listening to unfamiliar and scrambled music compared to those when listening to familiar music. Our findings suggest that the response to unfamiliar music is stronger than that to familiar music. One potential application of our findings would be the discrimination of listeners' familiarity with music, which provides an important tool for assessment of brain activity.
Relativistic thermodynamics of Fluids. l
International Nuclear Information System (INIS)
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
International Nuclear Information System (INIS)
Bakalov, D.D.; Melezhik, V.S.
1987-01-01
The relativistic Hamiltonian for 3-spin particles with electromagnetic interaction has been represented in the form of a sum of terms with factorized dependence on spin, angular and spheroidal variable, and its matrix elements have been expressed in terms of the matrix elements of a small number of ''basic'' operators. The numerical values of the latter have been tabulated, thus allowing for the evaluation of the leading relativistic effects in any 3-body system (with unit particle charge) with and accuracy of ∼ 0(1/2M), where 1/2M=(M 1 -1 +M 2 -1 )/2(M 1 -1 +M 3 -1 ) is the small parameter of the adiabatic expansion (M i , i=1,2,3 being particle masses)
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
New derivation of relativistic dissipative fluid dynamics
International Nuclear Information System (INIS)
Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata
2012-01-01
Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation
Relativistic Theory of Few Body Systems
Energy Technology Data Exchange (ETDEWEB)
Franz Gross
2002-11-01
Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.
Penetration of relativistic heavy ions through matter
International Nuclear Information System (INIS)
Scheidenberger, C.; Geissel, H.
1997-07-01
New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-09-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
Whispering gallery effect in relativistic optics
Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.
2018-03-01
relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.
Holographic Aspects of a Relativistic Nonconformal Theory
Directory of Open Access Journals (Sweden)
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
The de Sitter relativistic top theory
International Nuclear Information System (INIS)
Armenta, J.; Nieto, J.A.
2005-01-01
We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory
The ionisation equation in a relativistic gas
International Nuclear Information System (INIS)
Kichenassamy, S.; Krikorian, R.A.
1983-01-01
By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)
On the physics of relativistic double layers
International Nuclear Information System (INIS)
Carlqvist, P.
1982-06-01
A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)
Local density approximations for relativistic exchange energies
International Nuclear Information System (INIS)
MacDonald, A.H.
1986-01-01
The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented
The Dirac operator on a finite domain and the R-matrix method
International Nuclear Information System (INIS)
Grant, I P
2008-01-01
Relativistic effects in electron-atom collisions and photo-excitation and -ionization processes increase in importance as the atomic number of the target atom grows and spin-dependent effects increase. A relativistic treatment in which electron motion is described using the Dirac Hamiltonian is then desirable. A version of the popular nonrelativistic R-matrix package incorporating terms from the Breit-Pauli Hamiltonian has been used for modelling such processes for some years. The fully relativistic Dirac R-matrix method has been less popular, but is becoming increasingly relevant for applications to heavy ion targets, where the need to use relativistic wavefunctions is more obvious. The Dirac R-matrix method has been controversial ever since it was first proposed by Goertzel (1948 Phys. Rev. 73 1463-6), and it is therefore important to confirm that recent elaborate and costly applications of the method, such as, Badnell et al (2004 J. Phys. B: At. Mol. Phys. 37 4589) and Ballance and Griffin (2007 J. Phys. B: At. Mol. Opt. Phys. 40 247-58), rest on secure foundations. The first part of this paper analyses the structure of the two-point boundary-value problem for the Dirac operator on a finite domain, from which we construct a unified derivation of the Schroedinger (nonrelativistic) and Dirac (relativistic) R-matrix methods. Suggestions that the usual relativistic theory is not well founded are shown to be without foundation
Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches
Energy Technology Data Exchange (ETDEWEB)
Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)
2016-05-06
Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.
The Wigner function in the relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.
2016-12-15
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.
New relativistic generalization of the Heisenberg commutation relations
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.
1984-01-01
A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator
De-entrainment on vertical elements in air droplet cross flow
International Nuclear Information System (INIS)
Dallman, J.C.; Kirchner, W.L.
1980-01-01
De-entrainment phenomena on vertical elements in air-water droplet cross flow are generated using a horizontal array of water spray nozzles and a draft-induced wind tunnel. These conditions are used to obtain experimental values of the de-entrainment efficiency of isolated elements (25.4-, 63.5-, and 101.6-mm-diam cylinders and a 76.2-mm-square tube), and of an array of 101.6-mm-diam cylinders. A flow model is developed that extrapolates the de-entrainment efficiency of isolated elements through the use of a correlation for the interference effect to predict the efficiency of large arrays of similar elements. This simple model is shown to provide a good prediction of the de-entrainment efficiency of arrays in terms of the efficiency of an isolated element
REGSOLexpert: Entrainer Selection Tool for waste solvent recovery by batch distillation processes
Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Baudouin, Olivier; Joulia, Xavier
2009-01-01
A general procedure to systematize the search of several alternatives enabling the separation of non-ideal binary mixtures such as pressure-swing distillation, azeotropic and extractive distillation is presented. The use of heterogeneous entrainers is specially highlighted.
International Nuclear Information System (INIS)
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Craps, Ben; Evnin, Oleg; Nguyen, Kévin
2017-02-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Energy Technology Data Exchange (ETDEWEB)
Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [Department of Physics, Faculty of Science, Chulalongkorn University, Thanon Phayathai, Pathumwan, Bangkok 10330 (Thailand); Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Nguyen, Kévin [Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB), and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)
2017-02-08
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms?
Directory of Open Access Journals (Sweden)
James Michael Hyman
2011-03-01
Full Text Available There has been considerable interest in the importance of oscillations in the brain and in how these oscillations relate to the firing of single neurons. Recently a number of studies have shown that the spiking of individual neurons in the medial prefrontal cortex (mPFC become entrained to the hippocampal (HPC theta rhythm. We recently showed that theta-entrained mPFC cells lost theta-entrainment specifically on error trials even though the firing rates of these cells did not change (Hyman et al., 2010. This implied that the level of HPC theta-entrainment of mPFC units was more predictive of trial outcome than differences in firing rates and that there is more information encoded by the mPFC on working memory tasks than can be accounted for by a simple rate code. Nevertheless, the functional meaning of mPFC entrainment to HPC theta remains a mystery. It is also unclear as to whether there are any differences in the nature of the information encoded by theta-entrained and non-entrained mPFC cells. In this review we discuss mPFC entrainment to HPC theta within the context of previous results as well as provide a more detailed analysis of the Hyman et al. (2010 data set. This re-analysis revealed that theta-entrained mPFC cells selectively encoded a variety of task relevant behaviors and stimuli while never theta-entrained mPFC cells were most strongly attuned to errors or the lack of expected rewards. In fact, these error responsive neurons were responsible for the error representations exhibited by the entire ensemble of mPFC neurons. A theta reset was also detected in the post-error period. While it is becoming increasingly evident that mPFC neurons exhibit correlates to virtually all cues and behaviors, perhaps phase-locking directs attention to the task-relevant representations required to solve a spatially based working memory task while the loss of theta-entrainment at the start of error trials may represent a shift of attention away from
Paritta Prayoonyong
2014-01-01
The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...
Neural entrainment to rhythmically-presented auditory, visual and audio-visual speech in children
Directory of Open Access Journals (Sweden)
Alan James Power
2012-07-01
Full Text Available Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal ‘samples’ of information from the speech stream at different rates, phase-resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (‘phase locking’. Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase-locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically-developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate based on repetition of the syllable ba, presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a talking head. To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the ba stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a ba in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling
Time Operator in Relativistic Quantum Mechanics
Khorasani, Sina
2017-07-01
It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.
On quantization of relativistic string theory
International Nuclear Information System (INIS)
Isaev, A.P.
1982-01-01
Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained
Fourth sound in relativistic superfluidity theory
International Nuclear Information System (INIS)
Vil'chinskij, S.I.; Fomin, P.I.
1995-01-01
The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined
Relativistic Boltzmann theory for a plasma
International Nuclear Information System (INIS)
Erkelens, H. van.
1984-01-01
This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)
Relativistic nuclear physics and quantum chromodynamics. Abstracts
International Nuclear Information System (INIS)
1994-01-01
The data of investigations on problems of high energy physics are given. Special attention pays to quantum chromodynamics at large distances, cumulative processes, multiquark states and relativistic nuclear collisions
Hot relativistic winds and the Crab nebula
International Nuclear Information System (INIS)
Fujimura, F.S.; Kennel, C.F.
1981-01-01
Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)
ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER
International Nuclear Information System (INIS)
MCLERRAN, L.
1999-01-01
The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities
International Nuclear Information System (INIS)
Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.
2010-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.
Summary of the relativistic heavy ion sessions
International Nuclear Information System (INIS)
Harris, J.W.
1988-01-01
The topics covered in the Relativistic Heavy Ion Sessions span four orders of magnitude in energy in the laboratory and a few more in theory. In the two years since the last Intersections conference, experiments in the field of very high energy heavy ion research have begun at CERN and Brookhaven. The prime motivation for these experiments is the possibility of forming quark matter. This paper is a review of the topics covered in the Relativistic Heavy Ion Sessions
Relativistic charged fluids: hydrodynamic and kinetic approaches
International Nuclear Information System (INIS)
Debbasch, F.; Bonnaud, G.
1991-10-01
This report gives a rigorous and consistent hydrodynamic and kinetic description of a charged fluid and the basis equations, in a relativistic context. This study should lead to a reliable model, as much analytical as numerical, of relativistic plasmas which will appear in the interaction of a strong laser field with a plasma. For simplicity, we limited our study to a perfect fluid or, in other words, we disregarded the energy dissipation processes inside the fluid [fr
On the convexity of relativistic hydrodynamics
International Nuclear Information System (INIS)
Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)
Chiral quark model with relativistic kinematics
International Nuclear Information System (INIS)
Garcilazo, H.; Valcarce, A.
2003-01-01
The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum
Chiral quark model with relativistic kinematics
Garcilazo, H.; Valcarce, A.
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Limits and signatures of relativistic spaceflight
Yurtsever, Ulvi; Wilkinson, Steven
2018-01-01
While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.
Relativistic klystron research at SLAC and LLNL
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-06-01
We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab
Fundamental laws of relativistic classical dynamics revisited
International Nuclear Information System (INIS)
Blaquiere, Augustin
1977-01-01
By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr
Dechanneling function for relativistic axially channeled electrons
International Nuclear Information System (INIS)
Muralev, V.A.; Telegin, V.I.
1981-01-01
Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru
The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.
Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto
2014-07-24
The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Relativistic positioning systems: Numerical simulations
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
Relativistic gas in a Schwarzschild metric
International Nuclear Information System (INIS)
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)
A Comprehensive Comparison of Relativistic Particle Integrators
Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.
2018-03-01
We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.
Interaction of relativistic elementary atoms with matter. I. General formulas
International Nuclear Information System (INIS)
Mrowczyn'ski, S.
1987-01-01
The problem of the interaction of relativistic elementary atoms (Coulomb bound states of elementary particles such as positronium, pionium, etc.) with matter is studied in the reference frame where the atom is initially at rest. An atom of matter is treated as a spinless structureless fast particle. The amplitudes of elementary-atom interaction are derived in the Born approximation under the assumption that a momentum transfer to the atom does not significantly exceed an inverse Bohr radius of the atom. The elementary-atom excitation and ionization processes are considered. The transitions where the spin projection of the atom component is reversed are also studied. In particular the matrix elements for para-ortho and ortho-para transitions are given. The spin structure of the amplitudes is discussed in detail. The sum rules, which allow the calculation of the cross sections summed over atom final states are found. Finally the formulas of the atom interaction cross sections are presented
Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.
2017-12-01
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
Relativistic mechanics, time and inertia
International Nuclear Information System (INIS)
Kilmister, C.W.; Tocaci, E.
1985-01-01
This book offers a thought-provoking approach to the fundamentals of relativity, and is structured to provide a clear-cut introduction to the essentials of relativistic mechanics. It seeks to emphasize the sensible content of concepts, to improve on their inherent or often forgotten fuzziness, and to explore prospects for their further exploitation. The work also provides an analysis conducive to a rigorous, normative definition of Time, which is seen as a synthesis of universal motion, instrumental in defining a general measure to transformations, and as a sufficient reason to suppose that the speed of light must be the same in all inertial reference frames - hence showing this cardinal postulate to be a demonstrable truth. Moreover it provides an augmented perception of what inertial vs. non-inertial systems are. In addition, the book offers a natural, time-like interpretation of Space that departs from the usual converse approach; it offers a self-consistent proposal to rationalize the axiomatic grounds of mechanics, based on a single postulate in conjunction with the overall approach developed. (author). refs.; figs.; tabs
Canonical formalism for relativistic dynamics
International Nuclear Information System (INIS)
Penafiel-Nava, V.M.
1982-01-01
The possibility of a canonical formalism appropriate for a dynamical theory of isolated relativistic multiparticle systems involving scalar interactions is studied. It is shown that a single time-parameter structure satisfying the requirements of Poincare invariance and simultaneity of the constituents (global tranversality) can not be derived from a homogeneous Lagrangian. The dynamics is deduced initially from a non-homogeneous but singular Lagrangian designed to accommodate the global tranversality constraints with the equaltime plane associated to the total momentum of the system. An equivalent standard Lagrangian is used to generalize the parametrization procedure which is referred to an arbitrary geodesic in Minkowski space. The equations of motion and the definition of center of momentum are invariant with respect to the choice of geodesic and the entire formalism becomes separable. In the original 8N-dimensional phase-space, the symmetries of the Lagrangian give rise to a canonical realization of a fifteen-generator Lie algebra which is projected in the 6N dimensional hypersurface of dynamical motions. The time-component of the total momentum is thus reduced to a neutral element and the canonical Hamiltonian survives as the only generator for time-translations so that the no-interaction theorem becomes inapplicable
Zhan, Xingzhi
2002-01-01
The main purpose of this monograph is to report on recent developments in the field of matrix inequalities, with emphasis on useful techniques and ingenious ideas. Among other results this book contains the affirmative solutions of eight conjectures. Many theorems unify or sharpen previous inequalities. The author's aim is to streamline the ideas in the literature. The book can be read by research workers, graduate students and advanced undergraduates.
Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.
1982-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
International Nuclear Information System (INIS)
Lusanna, Luca
2011-01-01
After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.
Influence of entrainment and countergradient on the ABL diurnal development
Hernández-Ceballos, M. A.
2009-09-01
The representation of the diurnal evolution of the boundary layer (ABL) by NCAR-Penn State Mesoscale Model (MM5) and by the mesoscale model Weather Research Forecast (WRF) is compared. Special attention is paid to determine the role of processes that occur near and below the inversion zone: the positive correlation between the heat flux and the gradient (countergradient) and the role of entrainment of heat originating from the free troposphere. Both processes play a key role in the modelling of the diurnal variability of temperature, moisture and atmospheric compounds. A number of 13 simulations are carried out to determine the sensitivity of the model results to the formulation of the ABL height and countergradient heat flux in the Medium Range Forecast (MRF) ABL scheme. Model results are compared with experimental data obtained from the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen oxides) campaign. It was organized by Max Planck Institute for Atmospheric Chemistry (Germany) in collaboration with the National Institute for Aerospace Technology (Spain). The DOMINO campaign took place at the "Atmospheric Sounding Station - El Arenosillo", a platform dedicated to atmospheric measurements in the Southwest of Spain. All numerical experiments are grouped in four clusters, each focussing on the sensitivity of different relevant aspects. The following aspects of the formulation are analyzed: surface moisture availability (M), the countergradient term (Î³c) and the ABL height (h). This is done by modifying both the bulk critical Richardson number (Ric) at the inversion zone, and a coefficient of proportionality (b) that determines the excess temperature and countergradient. The importance of b is due to its direct relation in the definition of both, Î³c and h. The results got with MM5 model show that temperature and specific moisture temporal evolution is not very sensitive to changes in the soil moisture availability (M value from 0.6 to 0.1). Using the MRF
Liquid entrainment and off-take through the break at the top of a vessel
International Nuclear Information System (INIS)
Kim, Chang Hyun; No, Hee Cheon
2005-01-01
In order to determine the bleed capacity of the safety depressurization system (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of total loss of feed water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within +/-1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than the existing pool entrainment data due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, E fg , strongly depends upon j g * /h * and is proportional to the seventh power of j g * /h * in the same way as the off-take data. The empirical correlation for the onset of off-take is developed in terms of the Froude number (Fr g ) at the break and the non-dimensional inception height (h b /d). This correlation shows agreement with the present experimental data within +/-15%. The present off-take quality data show agreement with Schrock's off-take quality correlation with the rms error of 15.8%
Liquid entrainment and off-take from the two-phase mixture surface in a vessel
International Nuclear Information System (INIS)
Kim, Chang Hyun; No, Hee Cheon
2003-01-01
In order to determine the bleed capacity of the Safety Depressurization System (SDS) of Advanced Power Reactor 1400 (APR1400) in the case of Total Loss of Feed Water (TLOFW), we performed an experimental study of liquid entrainment and liquid off-take from the swelled two-phase mixture surface in a vessel. A total of 220 experimental data on the entrainment and off-take are obtained using a test vessel with a height of 2.0m and an inner diameter of 0.3m, and a top break with a diameter of 0.05m. Two-phase mixture levels are measured by an ultrasonic sensor within ±1.77% with respect to the visual level data. Droplet entrainment data are obtained with and without the top break and are compared with the existing pool entrainment data. The present droplet entrainment data have higher values than those of the existing pool entrainment due to (a) the pulling toward the break of the liquid deentrained on the top wall of the vessel and (b) gas acceleration in the vicinity of the break. In the present experiment, droplet entrainment, Efg, strongly depends upon jg/h and is proportional to the 7th power of jg/h in the same way as the off-take data. The empirical correlation for the onset of off-take is developed in terms of the Froude number (Frg) at the break and the non-dimensional inception height (hb/d). This correlation shows agreement with the present experimental data within ±15%. The present off-take quality data show agreement with Schrock's off-take quality correlation with the r.m.s. error of 15.8%
Onset of liquid droplet entrainment on a direct vessel injection system for APR1400
Energy Technology Data Exchange (ETDEWEB)
Kim, Han-sol; Lee, Jae-Young [Handong Global University, Pohang (Korea, Republic of); Kim, Jong-Rok; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
In this research, a series of visualization works was conducted to understand droplet entrainment of the flow pattern generated in direct vessel injection system(DVI) of Korea nuclear power plant, APR 1400. In the emergency situation of a nuclear power plant, reliability of DVI cooling can be an important issue. It is known that, the amount and the rate of entrainment during the DVI cooling process can significantly affect the total heat removal. To visualize the film Reynolds number closely related with onset of droplet entrainment induced by falling film flow and lateral air flow in a small gap, confocal chromatic sensing method for measuring accurately film thickness and depth averaging particle image velocimetry for film velocity were used. The results have been post processed 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. To visualize the droplet entrainment induced by falling film flow and lateral air flow in a small gap, shadowgraph method with CCD camera (2200fps, 1280 pixel X 800 pixel, ) on coated plate with super water-repellent agent was used. The results have been post processed using 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. By adopting both super hydrophobic coating method and shadowgraph method, entrainment in a narrow gap was successfully visualized that has rarely performed before and meaningful results for DVI system research fields have been made.
Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.
2015-01-01
Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725
Onset of liquid droplet entrainment on a direct vessel injection system for APR1400
International Nuclear Information System (INIS)
Kim, Han-sol; Lee, Jae-Young; Kim, Jong-Rok; Euh, Dong-Jin
2016-01-01
In this research, a series of visualization works was conducted to understand droplet entrainment of the flow pattern generated in direct vessel injection system(DVI) of Korea nuclear power plant, APR 1400. In the emergency situation of a nuclear power plant, reliability of DVI cooling can be an important issue. It is known that, the amount and the rate of entrainment during the DVI cooling process can significantly affect the total heat removal. To visualize the film Reynolds number closely related with onset of droplet entrainment induced by falling film flow and lateral air flow in a small gap, confocal chromatic sensing method for measuring accurately film thickness and depth averaging particle image velocimetry for film velocity were used. The results have been post processed 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. To visualize the droplet entrainment induced by falling film flow and lateral air flow in a small gap, shadowgraph method with CCD camera (2200fps, 1280 pixel X 800 pixel, ) on coated plate with super water-repellent agent was used. The results have been post processed using 4G Insight software. By measuring two dimensional film Reynolds number, we can predict the onset of droplet entrainment and obtain visible breakup region intuitively. By adopting both super hydrophobic coating method and shadowgraph method, entrainment in a narrow gap was successfully visualized that has rarely performed before and meaningful results for DVI system research fields have been made
Betatron coupling: Merging Hamiltonian and matrix approaches
Directory of Open Access Journals (Sweden)
R. Calaga
2005-03-01
Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT
Energy Technology Data Exchange (ETDEWEB)
Friedlander, Erwin M.; Heckman, Harry H.
1982-04-01
Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.
Relativistic model for statevector reduction
International Nuclear Information System (INIS)
Pearle, P.
1991-04-01
A relativistic quantum field model describing statevector reduction for fermion states is presented. The time evolution of the states is governed by a Schroedinger equation with a Hamiltonian that has a Hermitian and a non-Hermitian part. In addition to the fermions, the Hermitian part describes positive and negative energy mesons of equal mass, analogous to the longitudinal and timelike photons of electromagnetism. The meson-field-sum is coupled to the fermion field. This ''dresses'' each fermion so that, in the extreme nonrelativistic limit (non-moving fermions), a fermion in a position eigenstate is also in an eigenstate of the meson-field-difference with the Yukawa-potential as eigenvalue. However, the fermions do not interact: this is a theory of free dressed fermions. It is possible to obtain a stationary normalized ''vacuum'' state which satisfies two conditions analogous to the gauge conditions of electromagnetism (i.e., that the meson-field-difference, as well as its time derivative, give zero when applied to the vacuum state), to any desired degree of accuracy. The non-Hermitian part of the Hamiltonian contains the coupling of the meson-field-difference to an externally imposed c-number fluctuating white noise field, of the CSL (Continuous Spontaneous Localization) form. This causes statevector reduction, as is shown in the extreme nonrelativistic limit. For example, a superposition of spatially separated wavepackets of a fermion will eventually be reduced to a single wavepacket: the meson-field-difference discriminates among the Yukawa-potential ''handles'' attached to each wavepacket, thereby selecting one wavepacket to survive by the CSL mechanism. Analysis beyond that given in this paper is required to see what happens when the fermions are allowed to move. (It is possible that the ''vacuum'' state becomes involved in the dynamics so that the ''gauge'' conditions can no longer be maintained.) It is shown how to incorporate these ideas into quantum
Chaos and maps in relativistic rynamical systems
Directory of Open Access Journals (Sweden)
L. P. Horwitz
2000-01-01
Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
Directory of Open Access Journals (Sweden)
B. Croft
2012-11-01
Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.
A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.
Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.
2012-11-01
The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all
Performance of entrained flow and fluidised bed biomass gasifiers on different scales
International Nuclear Information System (INIS)
Tremel, Alexander; Becherer, Dominik; Fendt, Sebastian; Gaderer, Matthias; Spliethoff, Hartmut
2013-01-01
Highlights: ► Gasification of biomass in fluidised bed and entrained flow reactors is modelled. ► The systems are evaluated for a thermal input from 10 MW to 500 MW. ► Special attention is given to the preconditioning methods for biomass. ► Fluidised bed and entrained flow gasifiers are compared in terms of efficiency and costs. - Abstract: This biomass gasification process study compares the energetic and economic efficiencies of a dual fluidised bed and an oxygen-blown entrained flow gasifier from 10 MW th to 500 MW th . While fluidised bed gasification became the most applied technology for biomass in small and medium scale facilities, entrained flow gasification technology is still used exclusively for industrial scale coal gasification. Therefore, it is analysed whether and for which capacity the entrained flow technology is an energetically and economically efficient option for the thermo-chemical conversion of biomass. Special attention is given to the pre-conditioning methods for biomass to enable the application in an entrained flow gasifier. Process chains are selected for the two gasifier types and subsequently transformed to simulation models. The simulation results show that the performance of both gasifier types is similar for the production of a pressurised product gas (2.5 MPa). The cold gas efficiency of the fluidised bed is 76–79% and about 0.5–2 percentage points higher than for the entrained flow reactor. The net efficiencies of both technologies are similar and between 64% and 71% depending on scale. The auxiliary power consumption of the entrained flow reactor is caused mainly by the air separation unit, the oxygen compression, and the fuel pulverisation, whereas the fluidised bed requires additional power mainly for gas compression. The costs for the product gas are determined as between €4.2 cent/kWh (500 MW th ) and €7.4 cent/kWh (10 MW th ) in the economic analysis of both technologies. The study indicates that the
Advances in field and analytical methods for estimating entrainment mortality factors
International Nuclear Information System (INIS)
Muessig, P.H.; Young, J.R.; Vaughan, D.S.; Smith, B.A.
1988-01-01
The hearings and settlement negotiations in the Hudson River case focused on various modeling input factors for calculating reduction in year-class strength of important fish species in the Hudson River due to power plant operations. One of the inputs that received considerable attention, and about which the various parties to the case came to general agreement, was the entrainment mortality factor, or f-factor, the probability that an entrained live organism will be killed as a result of its passage through a power plant in the condenser cooling water. Entrainment mortality includes death due to temperature increases and death due to mechanical processes. The convergence of views about the f-factor arose from increased understanding of the sources of estimation error, improvements in gear for collection of fish larvae, and development of a model for the thermal component of entrainment mortality. Improvements in sampling-gear design reduced potential biases in mortality estimates, reduced estimates of mechanical mortality from 0.923 to 0.412, and improved the statistical power to detect entrainment mortality and the precision of mortality estimates. 20 refs., 7 figs., 1 tab
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
Experimental investigations on a common centrifugal pump operating under gas entrainment conditions
Energy Technology Data Exchange (ETDEWEB)
Schäfer, Thomas, E-mail: thomas.schaefer@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Neumann, Martin [Technische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering (Germany); Bieberle, André [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (Germany); Technische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering (Germany)
2017-05-15
Highlights: • The pump performance has been evaluated for several gas entrainment conditions. • The gas entraining flow regime has a large impact on the pump performance. • High-resolution gamma-ray computed tomography (HireCT) has been applied. • Gas holdup inside the operating impeller has been visualized and quantified. • Gas holdup profiles along selected streamlines have been calculated. - Abstract: This paper presents an experimental study on the effects of additional gas entrainment in centrifugal pumps designed for conveying liquid phases only. The pump performance has been evaluated for several gas entrainment conditions, and for various operational settings of the pump, such as its alignment and the rotational speed of the impeller. As a main performance indicator the impact of entrained gas on the hydraulic power of the pump has been analyzed using experimental data. Additionally, high-resolution gamma-ray computed tomography (HireCT) operated in time-averaged rotation-synchronized scanning mode has been applied to quantify local phase fraction distributions inside the rapidly rotating pump impeller. Based on these quantitative tomographic measurements, gas holdup profiles along selected streamlines have been calculated and gas accumulation areas inside the impeller chambers have been visualized. Thus, various internally accumulated gas holdup patterns have been identified and, eventually, associated with characteristic pump performance behaviors. Moreover, the tomographic measuring method allowed an enhanced gas holdup analysis in specified pump compartments. As a result, the related specific gas and liquid phase holdup profiles have been evaluated.
Directory of Open Access Journals (Sweden)
Howard J Gritton
Full Text Available The suprachiasmatic nucleus (SCN is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.
Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.
Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik
2014-12-01
Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.
Experimental investigations on a common centrifugal pump operating under gas entrainment conditions
International Nuclear Information System (INIS)
Schäfer, Thomas; Neumann, Martin; Bieberle, André; Hampel, Uwe
2017-01-01
Highlights: • The pump performance has been evaluated for several gas entrainment conditions. • The gas entraining flow regime has a large impact on the pump performance. • High-resolution gamma-ray computed tomography (HireCT) has been applied. • Gas holdup inside the operating impeller has been visualized and quantified. • Gas holdup profiles along selected streamlines have been calculated. - Abstract: This paper presents an experimental study on the effects of additional gas entrainment in centrifugal pumps designed for conveying liquid phases only. The pump performance has been evaluated for several gas entrainment conditions, and for various operational settings of the pump, such as its alignment and the rotational speed of the impeller. As a main performance indicator the impact of entrained gas on the hydraulic power of the pump has been analyzed using experimental data. Additionally, high-resolution gamma-ray computed tomography (HireCT) operated in time-averaged rotation-synchronized scanning mode has been applied to quantify local phase fraction distributions inside the rapidly rotating pump impeller. Based on these quantitative tomographic measurements, gas holdup profiles along selected streamlines have been calculated and gas accumulation areas inside the impeller chambers have been visualized. Thus, various internally accumulated gas holdup patterns have been identified and, eventually, associated with characteristic pump performance behaviors. Moreover, the tomographic measuring method allowed an enhanced gas holdup analysis in specified pump compartments. As a result, the related specific gas and liquid phase holdup profiles have been evaluated.
Searching for roots of entrainment and joint action in early musical interactions
Directory of Open Access Journals (Sweden)
Jessica ePhillips-Silver
2012-02-01
Full Text Available When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment. In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation, which in turn support musical behavior (imitation and complementary joint action. To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy.
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai
2016-01-01
Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.
Word-by-word entrainment of speech rhythm during joint story building
Directory of Open Access Journals (Sweden)
Tommi eHimberg
2015-06-01
Full Text Available Movements and behaviour synchronise during social interaction at many levels, often unintentionally. During smooth conversation, for example, participants adapt to each others' speech rates. Here we aimed to find out to which extent speakers adapt their turn-taking rhythms during a story-building game.Nine sex-matched dyads of adults (12 males, 6 females created two 5-min stories by contributing to them alternatingly one word at a time. The participants were located in different rooms, with audio connection during one story and audiovisual during the other. They were free to select the topic of the story.Although the participants received no instructions regarding the timing of the story building, their word rhythms were highly entrained (R ̅ = 0.70, p < 0.001 even though the rhythms as such were unstable (R ̅ = 0.14 for pooled data. Such high entrainment in the absence of steady word rhythm occurred in every individual story, independently of whether the subjects were connected via audio-only or audiovisual link.The observed entrainment was of similar strength as typical entrainment in finger-tapping tasks where participants are specifically instructed to synchronize their behaviour. Thus speech seems to spontaneously induce strong entrainment between the conversation partners, likely reflecting automatic alignment of their semantic and syntactic processes.
The time-dependent relativistic mean-field theory and the random phase approximation
International Nuclear Information System (INIS)
Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang
2001-01-01
The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained
Exact quantisation of the relativistic Hopfield model
Energy Technology Data Exchange (ETDEWEB)
Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)
2016-11-15
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Relativistic stars in vector-tensor theories
Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji
2018-04-01
We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.
Spinning relativistic particles in external fields
International Nuclear Information System (INIS)
Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B
2000-01-01
The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)
Nonlinear relativistic plasma resonance: Renormalization group approach
Energy Technology Data Exchange (ETDEWEB)
Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-02-15
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.
Theory of relativistic radiation reflection from plasmas
Gonoskov, Arkady
2018-01-01
We consider the reflection of relativistically strong radiation from plasma and identify the physical origin of the electrons' tendency to form a thin sheet, which maintains its localisation throughout its motion. Thereby, we justify the principle of relativistic electronic spring (RES) proposed in [Gonoskov et al., Phys. Rev. E 84, 046403 (2011)]. Using the RES principle, we derive a closed set of differential equations that describe the reflection of radiation with arbitrary variation of polarization and intensity from plasma with an arbitrary density profile for an arbitrary angle of incidence. We confirm with ab initio PIC simulations that the developed theory accurately describes laser-plasma interactions in the regime where the reflection of relativistically strong radiation is accompanied by significant, repeated relocation of plasma electrons. In particular, the theory can be applied for the studies of plasma heating and coherent and incoherent emissions in the RES regime of high-intensity laser-plasma interaction.
Relativistic transport theory for cosmic-rays
International Nuclear Information System (INIS)
Webb, G.M.
1985-01-01
Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented
Relativistic Calculations for Be-like Iron
International Nuclear Information System (INIS)
Yang Jianhui; Zhang Jianping; Li Ping; Li Huili
2008-01-01
Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable
Relativistic Spacecraft Propelled by Directed Energy
Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng
2018-04-01
Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.
Relativistic dynamical reduction models and nonlocality
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.
1990-09-01
We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs
Viscous photons in relativistic heavy ion collisions
International Nuclear Information System (INIS)
Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern
2011-01-01
Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.
Relativistic spin precession in the double pulsar.
Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea
2008-07-04
The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.
Neutron relativistic phenomenological and microscopic optical potential
International Nuclear Information System (INIS)
Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong
1991-01-01
In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested
Bhatia, Rajendra
1997-01-01
A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...
Relativistic thermodynamics and kinetic theory, with applications to cosmology
International Nuclear Information System (INIS)
Stewart, J.M.
1973-01-01
The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)
Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation
International Nuclear Information System (INIS)
Znojil, Miloslav
2004-01-01
Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations
Observational and theoretical aspects of relativistic astrophysics and cosmology
International Nuclear Information System (INIS)
Sanz, J.L.; Goicoechea, L.J.
1985-01-01
The studies of relativistic astrophysics and cosmology in these proceedings include primordial nucleosynthesis, nonluminous matter, star and galaxy evolution, cosmic microwave background, and general relativistic models of the universe
Pivotal issues on relativistic electrons in ITER
Boozer, Allen H.
2018-03-01
The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.
International Nuclear Information System (INIS)
Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.
1988-01-01
The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
General Relativistic Calculations for White Dwarf Stars
Mathew, Arun; Nandy, Malay K.
2014-01-01
The mass-radius relations for white dwarf stars are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of $1.4562M_\\odot$ is modified to $1.4166M_\\odot$ in the general relativistic case for $^4_2$He (and $^{12}_{\\ 6}$C) white dwarf stars. Using the same general relativistic treatment, the critical mass for $^{56}_{26}$Fe white dwarf is ...
Relativistic quantum mechanics of leptons and fields
International Nuclear Information System (INIS)
Grandy, W.T. Jr.
1991-01-01
This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory
The relativistic Brownian motion: Interdisciplinary applications
International Nuclear Information System (INIS)
Aragones-Munoz, A; Sandoval-Villalbazo, A
2010-01-01
Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.
Relativistic motion in gamma-ray bursts
International Nuclear Information System (INIS)
Krolik, J.H.; Pier, E.A.
1991-01-01
Three fundamental problems affect models of gamma-ray bursts, i.e., the energy source, the ability of high-energy photons to escape the radiation region, and the comparative weakness of X-ray emission. It is indicated that relativistic bulk motion of the gamma-ray-emitting plasma generically provides a solution to all three of these problems. Results show that, if the plasma that produces gamma-ray bursts has a bulk relativistic velocity with Lorentz factor gamma of about 10, several of the most troubling problems having to do with gamma-ray bursts are solved. 42 refs
Path integral for relativistic particle theory
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.
1990-06-01
An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs
Relativistic effects in a rotating coordinate system
International Nuclear Information System (INIS)
Chugreev, Y.V.
1989-01-01
The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center
Impossibility of an acyclic relativistic electric motor
Energy Technology Data Exchange (ETDEWEB)
Spavieri, G [Universidad de Los Andes, Merida (Venezuela); Cavalleri, G [Milan Univ. (Italy). Ist. di Fisica; Spinelli, G [Padua Univ. (Italy). Ist. di Matematica Applicata
1981-02-11
The relativistic torque acting on a circuit carrying a current and having a uniform translatory motion in a constant and uniform electric field would seem to suggest the possibility of an acyclic relativistic electric motor. However, the net effect on the side parallel to the rotation axis is exactly balanced by the variation of the angular momentum (in the case of an insulating circuit transporting electric charges) or by the external moment due to the magnetic field (in the case of a conducting circuit) acting on the two sides perpendicular to the rotation axis.
Relativistic multiple scattering X-alpha calculations
International Nuclear Information System (INIS)
Chermette, H.; Goursot, A.
1986-01-01
The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations
Relativistic tunneling through two successive barriers
International Nuclear Information System (INIS)
Lunardi, Jose T.; Manzoni, Luiz A.
2007-01-01
We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation
Relativistic klystron research for high gradient accelerators
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-06-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Kaplan, George
2011-01-01
This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r
Constraints on the cosmological relativistic energy density
International Nuclear Information System (INIS)
Zentner, Andrew R.; Walker, Terry P.
2002-01-01
We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle
Cosmic anisotropy with reduced relativistic gas
Energy Technology Data Exchange (ETDEWEB)
Castardelli dos Reis, Simpliciano [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)
2018-02-15
The dynamics of cosmological anisotropies is investigated for Bianchi type I universe filled by a relativistic matter represented by the reduced relativistic gas model (RRG), with equation of state interpolating between radiation and matter. Previously it was shown that the interpolation is observed in the background cosmological solutions for homogeneous and isotropic universe and also for the linear cosmological perturbations. We extend the application of RRG to the Bianchi type I anisotropic model and find that the solutions evolve to the isotropic universe with the pressureless matter contents. (orig.)
Relativistic deuteron wave function on light front
International Nuclear Information System (INIS)
Karmanov, V.A.
1980-01-01
In the framework of the one boson exchange model the approximate analytical expression for the deuteron wave function (WF) at relativistic relative momenta is obtained. WF depends on extra variable having the form of a unit vector and is determined by six functions instead of two ones (S-and D-waves) in the nonrelativistic case. At moderate momenta the WF is matched with WF in the Reid model. It is emphasized the importance of indication of the qualitative observed phenomena associated with change of parametrization and spin structure of relativistic deuteron WF
Thermodynamic equilibrium in relativistic rotating systems
International Nuclear Information System (INIS)
Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.
1988-01-01
The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)
Relativistic classical limit of quantum theory
International Nuclear Information System (INIS)
Shin, G.R.; Rafelski, J.
1993-01-01
We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density
Entraining the topology and the dynamics of a network of phase oscillators
Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.
2009-04-01
We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.
Sueki, Kenta; Niino, Hiroshi
2016-12-01
The characteristics of typhoons that spawned tornadoes (tornadic typhoons: TTs) in Japan from 1991 to 2013 were investigated by composite analysis using the Japanese 55 year Reanalysis and compared with those of typhoons that did not spawn tornadoes (nontornadic typhoons: NTs). We found that convective available potential energy (CAPE), which considers the effects of entrainment (entraining CAPE: E-CAPE), and storm-relative environmental helicity (SREH) are significantly large in the northeast quadrant of TTs where tornadoes frequently occur and that E-CAPE and SREH in that quadrant for TTs are larger than those for NTs. On the other hand, ordinary CAPE without entrainment does not account for the spatial distribution of tornado occurrences nor does it distinguish TTs from NTs. E-CAPE is sensitive to humidity in the midtroposphere; thus, it is effective for detecting a conditionally unstable layer up to about 550 hPa, which is distinctive of TTs.
Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado
Elliott, John G.
2002-01-01
The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment-entrainment
The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock
Directory of Open Access Journals (Sweden)
Raphaela Heussen
2015-01-01
Full Text Available The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Liu, Yangang; Zhang, Guang Jun; Luo, Shi
2018-01-01
This study investigates the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.
Reflooding phase of the LOCA in PWRs. Part II: rewetting and liquid entrainment
International Nuclear Information System (INIS)
Elias, E.; Yadigaroglu, G.
1978-01-01
Surface rewetting and liquid-droplet entrainment play an important role in the analysis of the reflooding phase of the loss-of-coolant accident in pressurized-water reactors. The definitions and the various interpretations given to the rewetting temperature and the rewetting mechanisms of the fuel rods are discussed. Published models of the axial-conduction-controlled rewetting process include one-dimensional solutions in two axial regions, one-dimensional solutions in three axial regions with or without precursory cooling, one- and two-dimensional numerical-difference techniques using temperature-dependent heat-transfer coefficients, and analytical two-dimensional solutions. The basic physical assumptions and the numerical values assigned to the various parameters, as well as empirical rewetting correlations, are discussed. The physical mechanisms for liquid-droplet entrainment and analytical formulations of the critical gas velocity and of the droplet diameter at the onset of entrainment are reviewed
PTV analysis of the entrained air into the diesel spray at high-pressure injection
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
De-entrainment phenomena on vertical tubes in droplet cross flow. Informal report
International Nuclear Information System (INIS)
Dallman, J.C.; Kirchner, W.L.
1980-04-01
In this study, flow conditions in the upper plenum of a PWR during the reflood stage of a loss-of-coolant accident (LOCA) are simulated using water sprays and a draft-induced wind tunnel. The de-entrainment efficiencies of isolated structures are presented for a variety of air-water droplet cross flow conditions. Since droplet splashing and/or bouncing from the draining liquid film is not accounted for in classical inertial impaction theory, there is substantial disagreement between measurement and the theory. The de-entrainment efficiencies of isolated tubes are extrapolated to those of tubes in a multiple tube array, and a predictive relation is presented for the overall de-entrainment eficiency of multiple tube arrays
Directory of Open Access Journals (Sweden)
Michael Margaliot
Full Text Available Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic
Fuller, Charles; Ringgold, Kristyn
The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.
Is the food-entrainable circadian oscillator in the digestive system?
Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.
2003-01-01
Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.
Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows
Energy Technology Data Exchange (ETDEWEB)
Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2009-04-15
The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)
Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters
Directory of Open Access Journals (Sweden)
Gorman Michael R
2003-10-01
Full Text Available Abstract Background Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history. This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal. Results In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant. Conclusions The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian
Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?
Energy Technology Data Exchange (ETDEWEB)
Guemez, J.
2010-07-01
A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.
Relativistic effects in the Thomas--Fermi atom
International Nuclear Information System (INIS)
Waber, J.T.; Canfield, J.M.
1975-01-01
Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values
Belitsky, A. V.
2017-10-01
The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang-Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2017-10-01
Full Text Available The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional contour. Their dynamics was unraveled in the past several years and culminated in a complete description of pentagons as an exact function of the 't Hooft coupling. In this paper we provide a solution for the last building block in this program, the SU(4 matrix structure arising from internal symmetry indices of scalars and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
Behaviour of heavy metals during the thermal conversion of sawdust in an entrained flow reactor
Energy Technology Data Exchange (ETDEWEB)
Klensch, S.; Reimert, R. [Engler-Bunte-Inst., Bereich Gas, Erdoel und Kohle, Univ. Karlsruhe, Karlsruhe (Germany)
1999-07-01
Since its utilization is nearly CO{sub 2}-neutral, biomass represents a major alternative energy carrier in comparison with fossil fuels in CO{sub 2} reduction scenarios frequently discussed. Decentral generation of power and heat in medium sized plants could develop as a preferred application in future. During thermal conversion (gasification and combustion) of biomass the inorganic matter including the heavy metals will be found in the solid residues, i. e. slags and ashes, and in very low concentrations in the product gas (fuel or flue gas). The ashes should be returned to the forests and the agricultural areas respectively to avoid the use of industrial fertilizers. However, for this purpose the heavy metal concentrations of ashes may not exceed specific limit values, otherwise the returned ashes can lead to harmful effects on the ecological system. In awareness of this problem, in Austria some limit values for the concentrations of Cd, Cr, Cu, Ni, Pb and Zn in returned ashes are valid since 1997. No danger for the environment can be expected by slags containing heavy metals. The heavy metals are fixed environmentally neutral in the glass matrix as has been proven for coal and for residue gasification many times. Dividing the total of the residues into such two streams (returned ash and slag) avoids the disposal of the ashes. The heavy metal behaviour during the thermal conversion of sawdust was investigated in a bench scale plant. In essence, the plant consists of an entrained flow reactor (length of reaction zone: 2,500 mm; inner diameter: 70 mm) and a candle barrier filter with 6 rigid ceramic filter elements (DIA-Schumalith 10-20). The biomass flow rate is as high as 6 kg/h and the operating pressure is about 0.12 MPa. Experimental results show the influences of the conversion temperature (1100 - 1300 C), of the dedusting temperature (350 - 800 C), and of the gas atmosphere (reducing, oxidising) on the heavy metal concentrations of the slag and of the fly
Relativistic quasiparticle random-phase approximation calculation of total muon capture rates
International Nuclear Information System (INIS)
Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.
2009-01-01
The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from 12 C to 244 Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g A =1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.
Ronconi, Luca; Melcher, David
2017-11-01
Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural
Directory of Open Access Journals (Sweden)
M. Rastello
2002-01-01
Full Text Available Results of laboratory experiments are presented in which a finite suspension of sawdust particles was released instantaneously into a rectangular channel immersed in a water tank. Two kinds of gravity currents were studied: currents with or without entrainment of particles from the bed. Experiments were repeated for two slopes: 30° and 45°. We observed that the velocity of the front was significantly in-creased as particle entrainment occurred. In addition, our experiments showed that the front kept a quasi-constant velocity for both runs. This might suggest that the flow regime corresponded to the "slumping regime" or "adjustment phase" described earlier by Huppert and Simpson (1980.
Directory of Open Access Journals (Sweden)
Jessica Marie Ross
2014-08-01
Full Text Available The human sensorimotor system can be readily entrained to environmental rhythms, through multiple sensory modalities. In this review, we provide an overview of theories of timekeeping that make this neuroentrainment possible. First, we present recent evidence that contests the assumptions made in classic timekeeper models. The role of state estimation, sensory feedback and movement parameters on the organization of sensorimotor timing are discussed in the context of recent experiments that examined simultaneous timing and force control. This discussion is extended to the study of coordinated multi-effector movements and how they may be entrained.
International Nuclear Information System (INIS)
Li, J H; Schumacher, P; Albu, M; Hofer, F; Ludwig, T H; Arnberg, L
2016-01-01
Entrained droplet technique and DSC analyses were employed to investigate the influence of trace elements of Sr, Eu and P on the heterogeneous nucleation of entrained eutectic Si in high purity melt spun Al-5wt.% Si alloys. Sr and Eu addition was found to exert negative effects on the nucleation process, while an increased undercooling was observed. This can be attributed to the formation of phosphide compounds having a lower free energy and hence may preferentially form compared to AlP. Only a trace P addition was found to have a profound effect on the nucleation process. The nucleation kinetics is discussed on the basis of the classical nucleation theory and the free growth model, respectively. The estimated AlP patch size was found to be sufficient for the free growth of Si to occur within the droplets, which strongly indicates that the nucleation of Si on an AlP patch or AlP particle is a limiting step for free growth. The maximum nucleation site density within one droplet is directly related to the size distribution of AlP particles or AlP patches for Si nucleation, but is independent of the cooling rates. Although the nucleation conditions were optimized in entrained droplet experiments, the observed mechanisms are also valid at moderate cooling conditions, such as in shape casting. (paper)
International Nuclear Information System (INIS)
Chen Baoqiu; Ma Zhongyu
1992-01-01
Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential
Rubin , Jacques ,
2014-01-01
Version de travail de thèse d'habilitation à diriger des recherches; Preprint; Current positioning systems are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. We show how this conformal aspect can be the four-dime...
Polarizational bremsstrahlung in non-relativistic collisions
International Nuclear Information System (INIS)
Korol, A.V.; Solov'yov, A.V.
2006-01-01
We review the developments made during the last decade in the theory of polarization bremsstrahlung in the non-relativistic domain. A literature survey covering the latest history of the phenomenon is given. The main features which distinguish the polarization bremsstrahlung from other mechanisms of radiation are discussed and illustrated by the results of numerical calculations
New interior solution describing relativistic fluid sphere
Indian Academy of Sciences (India)
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...
Circular relativistic motion of two identical bodies
International Nuclear Information System (INIS)
Shavokhina, N.S.
1983-01-01
Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper
Properties of general relativistic kink solution
International Nuclear Information System (INIS)
Kodama, T.; Oliveira, L.C.S. de; Santos, F.C.
1978-12-01
Properties of the general relativistic kink solution of a nonlinear scalar field recently obtained, are discussed. It has been shown that the kink solution is stable against radical perturbations. Possible applications to Hadron physics from the geometrodynamic point of view are suggested [pt
Some remarks concerning relativistic kinetic theory
International Nuclear Information System (INIS)
Schroeter, J.
1990-01-01
The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)
Dirac's aether in relativistic quantum mechanics
International Nuclear Information System (INIS)
Petroni, N.C.; Bari Univ.; Vigier, J.P.
1984-01-01
The paper concerns Dirac's aether model, based on a stochastic covariant distribution of subquantum motions. Stochastic derivation of the relativistic quantum equations; deterministic nonlocal interpretation of the Aspect-Rapisarda experiments on the EPR paradox; and photon interference with itself; are all discussed. (U.K.)
Radio Ranging Techniques to test Relativistic Gravitation
Cowsik, R.
1999-01-01
It is suggested that modern techniques of radio ranging when applied to study the motion of the Moon, can improve the accuracy of tests of relativistic gravitation obtained with currently operating laser ranging techniques. Other auxillary information relevant to the Solar system would also emerge from such a study.
Detectors for relativistic heavy-ion experiments
International Nuclear Information System (INIS)
Braun-Munzinger, P.; Cleland, W.; Young, G.R.
1989-04-01
We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC
Consistent resolution of some relativistic quantum paradoxes
International Nuclear Information System (INIS)
Griffiths, Robert B.
2002-01-01
A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics