N.N. Bogolubov (Jr.
2009-01-01
Full Text Available The work is devoted to the study of the Lagrangian and Hamiltonian properties of some relativistic electrodynamics models and is a continuation of our previous investigations. Based on the vacuum field theory approach, the Lagrangian and Hamiltonian reformulation of some classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed. Within the approach proposed in the work a possibility of the combined description both of electrodynamics and gravity is analyzed.
Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force
Kholmetskii, A. L.; Yarman, T.
2007-01-01
In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)
Charged relativistic fluids and non-linear electrodynamics
Dereli, T.; Tucker, R. W.
2010-01-01
The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.
Symmetries and couplings of non-relativistic electrodynamics
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
Symmetries and Couplings of Non-Relativistic Electrodynamics
Festuccia, Guido; Hartong, Jelle; Obers, Niels A
2016-01-01
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...
Relativistic and quantum electrodynamics effects in the helium pair potential.
Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K
2010-05-01
The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2016-09-01
We consider the relativistic transformation of the magnetic dipole moment and disclose its physical meaning, shedding light on the related difficulties in the physical interpretation of classical electrodynamics in material media.
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect
Caprez, Adam; Batelaan, Herman
2009-03-01
An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
A New Formulation for General Relativistic Force-Free Electrodynamics and Its Applications
无
2007-01-01
We formulate the general relativistic force-free electrodynamics in a new 3+1 language. In this formulation, when we have properly defined electric and magnetic fields, the covariant Maxwell equations could be cast in the traditional form with new vacuum con stitutive constraint equations. The fundamental equation governing a stationary, axisymmet ric force-free black hole magnetosphere is derived using this formulation which recasts the Grad-Shafranov equation in a simpler way. Compared to the classic 3+1 system of Thorne and MacDonald, the new system of 3+1 equations is more suitable for numerical use for it keeps the hyperbolic structure of the electrodynamics and avoids the singularity at the event horizon. This formulation could be readily extended to non-relativistic limit and find applications in flat spacetime. We investigate its application to disk wind, black hole magnetosphere and solar physics in both flat and curved spacetime.
Popa, Alexandru
2013-01-01
Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
The confined hydrogenoid ion in non-relativistic quantum electrodynamics
Amour, L
2006-01-01
We consider a system of a nucleus with an electron together with the quantized electromagnetic field. Instead of fixing the nucleus, the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke and the M\\"ossbauer effects (see [CTDRG]). When an ultraviolet cut-off is imposed we initiate the spectral analysis of the Hamiltonian describing the system and we derive the existence of a ground state. This is achieved without conditions on the fine structure constant. [CTDRG] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, 2001.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
Aharonovich, I
2011-01-01
In previous papers the authors have presented derivations of the Green function for the 5D offshell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg. In this paper, we reconcile these derivations with previously published Green functions which have different forms. We relate our results to the conventional fundamental solutions of 5D wave equations published in the mathematical literature.
Modified Nonlinear Model of Arcsin-Electrodynamics
Kruglov, S. I.
2016-07-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.
Simulating a toy model of electrodynamics in (1 + 1) dimensions
Boozer, A. D.
2009-01-01
We show how to simulate a toy model of electrodynamics in (1+1) dimensions and describe several numerical experiments. The toy model is much simpler than ordinary electrodynamics, but shares many of the same physical features. For example, there are analogs to the electric and magnetic fields, and these fields generate forces between charged particles and support freely propagating radiation. Unlike electrodynamics, however, the toy model is not Lorentz invariant, gives an attractive force be...
Popa, Alexandru
2013-01-01
Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon
Aharonovich, I.; Horwitz, L. P.
2011-08-01
In previous papers derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter τ). In this paper, we reconcile these derivations resulting in different explicit forms, and relate our results to the conventional fundamental solutions of linear 5D wave equations published in the mathematical literature. We give physical arguments for the choice of the Green function retarded in the fifth variable τ.
Modified nonlinear model of arcsin-electrodynamics
Kruglov, S I
2015-01-01
A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter $\\gamma$ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested.
A minimalist pilot-wave model for quantum electrodynamics
W Struyve; H Westman
2007-01-01
We present a way to construct a pilot-wave model for quantum electrodynamics. The idea is to introduce beables corresponding only to the bosonic and not to the fermionic degrees of freedom of the quantum state...
Notes on holographic superconductor models with the nonlinear electrodynamics
Zhao, Zixu; Chen, Songbai; Jing, Jiliang
2013-01-01
We investigate systematically the effect of the nonlinear correction to the usual Maxwell electrodynamics on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. Considering three types of typical nonlinear electrodynamics, we observe that in the black hole background the higher nonlinear electrodynamics correction makes the condensation harder to form and changes the expected relation in the gap frequency, which is similar to that caused by the curvature correction. However, in strong contrast to the influence of the curvature correction, we find that in the AdS soliton background the nonlinear electrodynamics correction will not affect the properties of the holographic superconductor and insulator phase transitions, which may be a quite general feature for the s-wave holographic superconductor/insulator system.
Modeling the three-dimensional structure of ionospheric electrodynamics
Maute, A. I.; Richmond, A. D.
2015-12-01
Ionospheric electric fields and currents are driven by collisionalinteraction between thermospheric winds and ions, bymagnetospherically driven convection and field-aligned currents athigh latitudes, by gravitational and pressure-gradient forces on theionospheric plasma, and by weak currents from the lower atmosphere.The electrodynamics of the ionospheric E and F regions are stronglycoupled. For time scales longer than a few minutes the electric fieldis electrostatic. The electric potential is nearly constant alonggeomagnetic-field lines, and can be represented in two dimensions in acoordinate system aligned with the magnetic field. The currentdensity, however, varies in all three dimensions. The associatedperturbations of the geomagnetic field induce currents in the Earth,which modify the perturbations. We are developing a model of ionospheric electrodynamics that takes into account all of the sourcesand calculates the three-dimensional structure of currents andtheir associated magnetic perturbation fields at high spatialresolution. This model will be used to simulate ionospheric drifts aswell as geomagnetic perturbations at the ground, at low-Earth-orbitsatellite heights, and within the E-region ionosphere. When coupledwith a dynamical model of the thermosphere and ionosphere it can beused to assimilate electrodynamic data into the model. In thispresentation we discuss the modeling principles and present resultsrelevant to the electrodynamics of the middle and low latitudeionosphere below 200 km, including the effects of coupling withF-region electrodynamics and the expected observable effects onrockets and on low Earth orbit satellites.
A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…
A Toy Model of Electrodynamics in (1 + 1) Dimensions
Boozer, A. D.
2007-01-01
A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…
Kotikov, A V
2013-01-01
We compute the two-loop fermion self-energy in massless reduced quantum electrodynamics for an arbitrary gauge using the method of integration by parts. Focusing on the limit where the photon field is four-dimensional, our formula involves only recursively one-loop integrals and can therefore be evaluated exactly. From this formula, we deduce the anomalous scaling dimension of the fermion field as well as the renormalized fermion propagator up to two loops. The results are then applied to the ultra-relativistic limit of graphene and compared with similar results obtained for four-dimensional and three-dimensional quantum electrodynamics.
Wundt, B J; 10.1103/PhysRevA.80.022505
2009-01-01
We calculate the relativistic corrections of relative order (Z alpha)^2$ to the two-photon decay rate of higher excited S and D states in ionic atomic systems, and we also evaluate the leading radiative corrections of relative order alpha (Z alpha)^2 ln[(Z alpha)^(-2)]. We thus complete the theory of the two-photon decay rates up to relative order alpha^3 ln(alpha). An approach inspired by nonrelativistic quantum electrodynamics is used. We find that the corrections of relative order (Z alpha)^2 to the two-photon decay are given by the zitterbewegung, the spin-orbit coupling and by relativistic corrections to the electron mass, and by quadrupole interactions. We show that all corrections are separately gauge-invariant with respect to a "hybrid" transformation from velocity to length gauge, where the gauge transformation of the wave function is neglected. The corrections are evaluated for the two-photon decay from 2S, 3S, 3D, and 4S states in one-electron (hydrogenlike) systems, with 1S and 2S final states.
A J John; S D Maharaj
2011-09-01
We obtain a class of solutions to the Einstein–Maxwell equations describing charged static spheres. Upon specifying particular forms for one of the gravitational potentials and the electric ﬁeld intensity, the condition for pressure isotropy is transformed into a hypergeometric equation with two free parameters. For particular parameter values we recover uncharged solutions corresponding to speciﬁc neutron star models. We ﬁnd two charged solutions in terms of elementary functions for particular parameter values. The ﬁrst charged model is physically reasonable and the metric functions and thermodynamic variables are well behaved. The second charged model admits a negative energy density and violates the energy conditions.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Hot scalar electrodynamics as a toy model for hot QCD
Krämmer, U; Schulz, H; Kraemmer, Ulrike; Rebhan, Anton K; Schulz, Hermann
1995-01-01
Hot scalar electrodynamics is adopted as a toy model for a hot gluon plasma to display some aspects of the compulsory resummation of hard thermal loops when next-to-leading order quantities at soft momentum scales are to be calculated. [Talk given by A.K.R. at a one-day meeting dedicated to the memory of Tanguy ALTHERR, held on November 4, 1994 at CERN, Geneva. To appear in a Gedenkschrift published by World Scientific.
Relativistic Model for two-band Superconductivity
Ohsaku, Tadafumi
2003-01-01
To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.
On plane-wave relativistic electrodynamics in plasmas and in vacuum
Fiore, Gaetano
2016-01-01
We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. Because of this penetration the el...
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Solvable Models Of Infrared Gupta-Bleuler Quantum Electrodynamics
Zerella, Simone
2010-01-01
Solvable hamiltonian models are employed to investigate the extent and limitations of the procedures adopted in the perturbative treatment of the infrared divergences, occurring in the Feynman-Dyson expansion of Quantum Electrodynamics. Isometric M\\"oller operators are obtained in the presence of an infrared regularization, after the removal of an adiabatic switching, with the aid of a suitable mass renormalization. We gain an hamiltonian control of the Yennie-Frautschi-Suura infrared factors and discuss the implications on the perturbative prescriptions for inclusive cross-sections.
Relativistic Corrections to the Bohr Model of the Atom
Kraft, David W.
1974-01-01
Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Exact quantisation of the relativistic Hopfield model
Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)
2016-11-15
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Exact quantisation of the relativistic Hopfield model
Belgiorno, F; Piazza, F Dalla; Doronzo, M
2016-01-01
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Modeling and study of nonlinear effects in electrodynamic shakers
Saraswat, Abhishek; Tiwari, Nachiketa
2017-02-01
An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.
Finite Temperature CPT-even Electrodynamics of the Standard Model Extension
Casana, Rodolfo; Rodrigues, Josberg S; Silva, Madson R O
2009-01-01
In this work, we examine the finite temperature properties of the non-birefringent coefficients of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term $W_{\\alpha \
Three-dimensional lattice Boltzmann model for electrodynamics.
Mendoza, M; Muñoz, J D
2010-11-01
In this paper we introduce a three-dimensional Lattice-Boltzmann model that recovers in the continuous limit the Maxwell equations in materials. In order to build conservation equations with antisymmetric tensors, like the Faraday law, the model assigns four auxiliary vectors to each velocity vector. These auxiliary vectors, when combined with the distribution functions, give the electromagnetic fields. The evolution is driven by the usual Bhatnager-Gross-Krook (BGK) collision rule, but with a different form for the equilibrium distribution functions. This lattice Bhatnager-Gross-Krook (LBGK) model allows us to consider for both dielectrics and conductors with realistic parameters, and therefore it is adequate to simulate the most diverse electromagnetic problems, like the propagation of electromagnetic waves (both in dielectric media and in waveguides), the skin effect, the radiation pattern of a small dipole antenna and the natural frequencies of a resonant cavity, all with 2% accuracy. Actually, it shows to be one order of magnitude faster than the original Finite-difference time-domain (FDTD) formulation by Yee to reach the same accuracy. It is, therefore, a valuable alternative to simulate electromagnetic fields and opens lattice Boltzmann for a broad spectrum of new applications in electrodynamics.
Optimized $\\delta$ expansion for relativistic nuclear models
Krein, G I; Peres-Menezes, D; Nielsen, M; Pinto, M B
1998-01-01
The optimized $\\delta$-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. This technique is discussed in the $\\lambda \\phi^4$ model and then implemented in the Walecka model for the equation of state of nuclear matter. The results obtained with the $\\delta$ expansion are compared with those obtained with the traditional mean field, relativistic Hartree and Hartree-Fock approximations.
Relativistic hadronic models in LDA
Silva, J.B.; Delfino, A.; Malheiro, M. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
2001-07-01
In the framework of the Walecka model we perform a model approximation ({rho}{sub s} = {rho}), in which some nuclear matter observable are calculated analytically. The results are very close to those obtained by the original Walecka model. (author)
Buksman Hollander, Efrain; de Luca, Jayme
2003-02-01
We find a two-degree-of-freedom Hamiltonian for the time-symmetric problem of straight line motion of two electrons in direct relativistic interaction. This time-symmetric dynamical system appeared 100 years ago and it was popularized in the 1940s by the work of Wheeler and Feynman in electrodynamics, which was left incomplete due to the lack of a Hamiltonian description. The form of our Hamiltonian is such that the action of a Lorentz transformation is explicitly described by a canonical transformation (with rescaling of the evolution parameter). The method is closed and defines the Hamitonian in implicit form without power expansions. We outline the method with an emphasis on the physics of this complex conservative dynamical system. The Hamiltonian orbits are calculated numerically at low energies using a self-consistent steepest-descent method (a stable numerical method that chooses only the nonrunaway solution). The two-degree-of-freedom Hamiltonian suggests a simple prescription for the canonical quantization of the relativistic two-body problem.
A toy model of quantum electrodynamics in (1 + 1) dimensionsB
Boozer, A. D.
2008-01-01
We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of classical electrodynamics, and we discuss the connections between the classical and quantum models. In addition, we use the QED model to discuss th...
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Proton relativistic model; Modelo relativistico do proton
Araujo, Wilson Roberto Barbosa de
1995-12-31
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.
Magnetic monopoles and relativistic cosmological models
Stein-Schabes, J.A.
1984-01-01
A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.
Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field
LI Yan-Song; LONG Gui-Lu
2004-01-01
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.
Excess of positrons in cosmic rays: A Lindbladian model of quantum electrodynamics
Campos, Andre G; Bondar, Denys I; Rabitz, Herschel
2015-01-01
The fraction of positrons and electrons in cosmic rays recently observed on the International Space Station unveiled an unexpected excess of the positrons, undermining the current foundations of cosmic rays sources. We provide a quantum electrodynamics phenomenological model explaining the observed data. This model incorporates electroproduction, in which cosmic ray electrons decelerating in the interstellar medium emit photons that turn into electron-positron pairs. These findings not only advance our knowledge of cosmic ray physics, but also pave the way for computationally efficient formulations of quantum electrodynamics, critically needed in physics and chemistry.
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Longhi, Stefano
2011-01-01
Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating.
Nuclear Transparency in a Relativistic Quark Model
Iwama, T; Yazaki, K; Iwama, Tetsu; Kohama, Akihisa; Yazaki, Koichi
1998-01-01
We examine the nuclear transparency for the quasi-elastic ($e, e'p$) process at large momentum transfers in a relativistic quantum-mechanical model for the internal structure of the proton, using a relativistic harmonic oscillator model. A proton in a nuclear target is struck by the incident electron and then propagates through the residual nucleus suffering from soft interactions with other nucleons. We call the proton "dynamical" when we take into account of internal excitations, and "inert" when we freeze it to the ground state. When the dynamical proton is struck with a hard (large-momentum transfer) interaction, it shrinks, i.e., small-sized configuration dominates the process. It then travels through nuclear medium as a time-dependent mixture of intrinsic excited states and thus changing its size. Its absorption due to the soft interactions with nuclear medium depends on its transverse-size. Since the nuclear transparency is a measure of the absorption strength, we calculate it in our model for the dyna...
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-01
We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-21
We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).
Modeling, Design and Analysis of a Electrodynamic Levitation System by Considering the Skin Effect
Mohammad Rajabi Sabadani
2016-01-01
Full Text Available In this paper, lift and drag forces of permanent-magnet electrodynamic suspension (PMEDS System have been studied by considering the skin effect. Electrodynamic suspension is based on repulsive force between two magnetic fields with the same polarity. In this research the electrodynamic suspension system consists of a moving permanent magnet block levitated over a flat conducting plate with 2 mm thickness. At first, the analytical model of the PMEDS is proposed. For this propose, permanent magnet poles are modeled by the current sheets. Then the eddy current is calculated on aluminum sheet by considering the skin effect. Finally, the lift and drag forces are calculated in difference speed. The 2D finite element method is utilized to investigate the effect of speed variations on the performance of PMEDS at two different airgap. Two-dimensional finite element model, the accuracy of proposed analytical model is validated. The results of the finite element method are compared with results obtained by analytical model. It shows the accuracy of the analytical model in the estimation of the lift and drag forces of an electrodynamic suspension system.
Häusler, K.; Hagan, M.E.; Baumgaertner, A.J.G.; Maute, A.; Lu, G.; Doornbos, E.N.; Bruinsma, S.; Forbes, J.M.; Gasperini, F.
2014-01-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November–December 2009 based on 3-hourly Modern-Era Retro
QUANTUM ELECTRODYNAMICS - AN INDIVIDUAL VIEW
1982-01-01
The aim of this report is to describe the development of the quantum electrodynamics in the years from the 1930's to the 1950's. It is based on the way the author saw and participate to this development. Four phases are discussed : preparation (1934 - 1946) ; non-covariant relativistic theory (1947) ; first covariant relativistic theory (1947 - 1948) ; second covariant relativistic theory (1949 - 1950). A detailed technical description is presented. The author shows the influence of quantum e...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
On relativistic models of strange stars
Ramesh Tikekar; Kanti Jotania
2007-03-01
The superdense stars with mass-to-size ratio exceeding 0.3 are expected to be made of strange matter. Assuming that the 3-space of the interior space-time of a strange star is that of a three-paraboloid immersed in a four-dimensional Euclidean space, we obtain a two-parameter family of their physically viable relativistic models. This ansatz determines density distribution of the interior self-gravitating matter up to one unknown parameter. The Einstein's field equations determine the fluid pressure and the remaining geometrical variables. The information about mass-to-size ratio together with the conventional boundary conditions lead to the determination of total mass, radius and other parameters of the stellar configuration.
Stable discrete representation of relativistically drifting plasmas
Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R
2016-01-01
Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.
A Bilocal Model for the Relativistic Spinning Particle
Rempel, Trevor
2016-01-01
In this work we show that a relativistic spinning particle can be described at the classical and the quantum level as being composed of two physical constituents which are entangled and separated by a fixed distance. This bilocal model for spinning particles allows for a natural description of particle interactions as a local interaction at each of the constituents. This form of the interaction vertex provides a resolution to a long standing issue on the nature of relativistic interactions for spinning objects in the context of the worldline formalism. It also potentially brings a dynamical explanation for why massive fundamental objects are naturally of lowest spin. We analyze first a non-relativistic system where spin is modeled as an entangled state of two particles with the entanglement encoded into a set of constraints. It is shown that these constraints can be made relativistic and that the resulting description is isomorphic to the usual description of the phase space of massive relativistic particles ...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
GAIA modeling of electrodynamics in the lower ionosphere during a severe solar flare event
Matsumura, M.; Shiokawa, K.; Shinagawa, H.; Jin, H.; Fujiwara, H.; Miyoshi, Y.; Otsuka, Y.
2016-12-01
Recent studies indicated that the ionospheric F-region disturbances due to solar flare irradiance are controlled not only by photoionization but also by electrodynamical changes of the ionosphere [Liu et al., 2007; Qian et al., 2012]. The electric field changes during solar flare events occur mainly in the E-region due to the X-ray flux enhancement, and in the equatorial counter electrojet regions the eastward electric field turns into westward below 107-km altitude [Manju and Viswanathan, 2005]. The TIME-GCM model has been used to investigate the flare-related electrodynamics of the ionosphere [Qian et al., 2012]. However, the model did not consider the flare effects at altitudes below 97 km due to the ionospheric lower boundary of the model. On the other hand, the GAIA model [Jin et al., 2011] can simulate electron density variations and electrodynamics around and below 100 km because the model does not have the limitation of the lower boundary. We have improved the GAIA model to incorporate the Flare Irradiance Spectral Model (FISM) [Chamberlin et al., 2007; 2008] to understand the global response of the whole ionosphere including E and D regions to the solar flares. We have performed a simulation for the X17 flare event of October 28, 2003, and have showed that soft X-ray considerably enhances conductivity even at an altitude of 80 km. We will report its effect on the ionospheric electric field and the equatorial electrojet currents.
Relativistic mean-field mass models
Peña-Arteaga, D.; Goriely, S.; Chamel, N.
2016-10-01
We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented.
Relativistic mean-field mass models
Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2016-10-15
We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)
Magnetically charged regular black hole in a model of nonlinear electrodynamics
Ma, Meng-Sen
2015-01-01
We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). "Physically" here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which we know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.
The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models
Bogolubov, Nikolai N; Blackmore, Denis; Prykarpatsky, Yarema A
2012-01-01
We review the modern classical electrodynamics problems and present the related main fundamental principles characterizing the electrodynamical vacuumfield structure. We analyze the models of the vacuumfield medium and charged point particle dynamics using the developed field theory concepts. There is also described a new approach to the classical Maxwell theory based on the derived and newly interpreted basic equations making use of the vacuum field theory approach. In particular, there are obtained the main classical special relativity theory relations and their new explanations. The well known Feynman approach to Maxwell electromagnetic equations and the Lorentz type force derivation is also discussed in detail. A related charged point particle dynamics and a hadronic string model analysis is also presented. We also revisited and reanalyzed the classical Lorentz force expression in arbitrary non-inertial reference frames and present some new interpretations of the relations between special relativity theor...
1990-01-01
Quantum electrodynamics is an essential building block and an integral part of the gauge theory of unified electromagnetic, weak, and strong interactions, the so-called standard model. Its failure or breakdown at some level would have a most profound impact on the theoretical foundations of elementary particle physics as a whole. Thus the validity of QED has been the subject of intense experimental tests over more than 40 years of its history. This volume presents an up-to-date review of high precision experimental tests of QED together with comprehensive discussion of required theoretical wor
Nucleon Spin Content in a Relativistic Quark Potential Model Approach
DONG YuBing; FENG QingGuo
2002-01-01
Based on a relativistic quark model approach with an effective potential U(r) = (ac/2)(1 + γ0)r2, the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.
Particles and Events in Classical Off-Shell Electrodynamics
Land, M C
1997-01-01
Despite the many successes of the relativistic quantum theory developed by Horwitz, et. al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution parameter $\\tau$, off-shell electrodynamics constitutes a dynamical theory of spacetime events, interacting through five $\\tau$-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, which is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical level. We then offer a new model of the particle current -- as a certain distribution of the event currents on the worldline -- which eliminates these difficulties and permits comparison of classical off-shell electrodynamics with the standard Maxwell theory. In this model, the ``fix...
Soliton-like solution in quantum electrodynamics
Skoromnik, O D; Keitel, C H
2016-01-01
A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.
Relativistic Landau models and generation of fuzzy spheres
Hasebe, Kazuki
2016-07-01
Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.
Feynman propagator for the nonbirefringent CPT-even electrodynamics of the standard model extension
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Gomes, Adalto R.; Dos Santos, Frederico E. P.
2010-12-01
The CPT-even gauge sector of the standard model extension is composed of 19 components comprised in the tensor (KF)μνρσ, of which nine do not yield birefringence. In this work, we examine the Maxwell electrodynamics supplemented by these nine nonbirefringent CPT-even components in aspects related to the Feynman propagator and full consistency (stability, causality, unitarity). We adopt a prescription that parametrizes the nonbirefringent components in terms of a symmetric and traceless tensor, Kμν, and second parametrization that writes Kμν in terms of two arbitrary four-vectors, Uμ and Vν. We then explicitly evaluate the gauge propagator of this electrodynamics in a tensor closed way. In the sequel, we show that this propagator and involved dispersion relations can be specialized for the parity-odd and parity-even sectors of the tensor (KF)μνρσ. In this way, we reassess some results of the literature and derive some new outcomes showing that the parity-even anisotropic sector engenders a stable, noncausal and unitary electrodynamics.
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2001-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R; Gignoux, C
2002-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.
Glueball Masses in Relativistic Potential Model
Shpenik, A; Kis, J; Fekete, Yu
2000-01-01
The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Casana, Rodolfo; Moreira, Roemir P M
2011-01-01
We have studied a (1+2)-dimensional Lorentz-violating model which is obtained from the dimensional reduction of the nonbirefringent sector of the CPT-even electrodynamics of the standard model extension (SME). The planar theory contains a gauge sector and a scalar sector which are linearly coupled by means of a Lorentz-invariance violating (LIV) vector, $S^{\\mu}$, while the kinetic terms of both sectors are affected by the components of a Lorentz-violating symmetric tensor, $\\kappa^{\\mu\
Three-dimensional fluid and electrodynamic modeling for MHD DCW channels
Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.
1983-01-01
A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.
Nonlinear model of short-scale electrodynamics in the auroral ionosphere
J.-M. A. Noël
Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m^{-2} can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.
Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions
Geometric Models of the Quantum Relativistic Rotating Oscillator
Cotaescu, I I
1997-01-01
A family of geometric models of quantum relativistic rotating oscillator is defined by using a set of one-parameter deformations of the static (3+1) de Sitter or anti-de Sitter metrics. It is shown that all these models lead to the usual isotropic harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is different. As in the case of the (1+1) models, these will have even countable energy spectra or mixed ones, with a finite discrete sequence and a continuous part. In addition, all these spectra, except that of the pure anti-de Sitter model, will have a fine-structure, given by a rotator-like term.
Relativistic models for quasielastic electron and neutrino-nucleus scattering
Meucci Andrea
2012-12-01
Full Text Available Relativistic models developed within the framework of the impulse approximation for quasielastic (QE electron scattering and successfully tested in comparison with electron-scattering data have been extended to neutrino-nucleus scattering. Different descriptions of final-state interactions (FSI in the inclusive scattering are compared. In the relativistic Green’s function (RGF model FSI are described consistently with the exclusive scattering using a complex optical potential. In the relativistic mean field (RMF model FSI are described by the same RMF potential which gives the bound states. The results of the models are compared for electron and neutrino scattering and, for neutrino scattering, with the recently measured charged-current QE (CCQE MiniBooNE cross sections.
Geometric models of (d+1)-dimensional relativistic rotating oscillators
Cotaescu, I I
2000-01-01
Geometric models of quantum relativistic rotating oscillators in arbitrary dimensions are defined on backgrounds with deformed anti-de Sitter metrics. It is shown that these models are analytically solvable, deriving the formulas of the energy levels and corresponding normalized energy eigenfunctions. An important property is that all these models have the same nonrelativistic limit, namely the usual harmonic oscillator.
A time-delayed model for radiation reaction in electrodynamics
Faci, Sofiane; Satheeshkumar, V H
2016-01-01
The dynamics of a radiating charge is one of the oldest unsettled problems in classical physics. The standard Lorentz-Abraham-Dirac (LAD) equation of motion is known to suffer from several pathologies and ambiguities. This paper briefly reviews these issues, and reports on a new model that fixes these difficulties in a natural way. This model is based on a hypothesis that there is an infinitesimal time delay between action and reaction. This can be related to Feynman's regularization scheme, leading to a quasi-local QED with a natural UV cutoff, hence without the need for renormalization as the divergences are absent. Besides leading to a pathology-free equation of motion, the new model predicts a modification of the Larmor formula that is testable with current and near future ultra-intense lasers.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R N
2015-01-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Strange baryon spectroscopy in the relativistic quark model
Faustov, R. N.; Galkin, V. O.
2015-09-01
Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.
Quantum Electrodynamic Modeling of Silicon-Based Active Devices
Shouyuan Shi
2008-01-01
Full Text Available We propose a time-domain analysis of an active medium based on a coupled quantum mechanical and electromagnetic model to accurately simulate the dynamics of silicon-based photonic devices. To fully account for the nonlinearity of an active medium, the rate equations of a four-level atomic system are introduced into the electromagnetic polarization vector. With these auxiliary differential equations, we solve the time evolution of the electromagnetic waves and atomic population densities using the FDTD method. The developed simulation approach has been used to model light amplification and amplified spontaneous emission in silicon nanocrystals, as well as the lasing dynamics in a novel photonic crystal-based silicon microcavity.
Relativistic quark model and pentaquark spectroscopy
Gerasyuta, S M
2002-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks are calculated under the condition that flavor SU(3) symmetry holds. The poles of five-quark amplitudes determine the masses of the lowest pentaquarks. The mass spectra of pentaquarks which contain only light quarks are calculated. The calculation of pentaquark amplitudes estimates the contributions of three subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states.
Non-perturbative quantization of the electroweak model's electrodynamic sector
Fry, M P
2015-01-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces twenty-four fermion determinants. These multiply the Gaussian functional measures of the Maxwell, $Z$, $W$ and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the $Z$, $W$ and $H$ fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be non-perturbatively estimated fo...
Spurious Shell Closures in the Relativistic Mean Field Model
Geng, L S; Toki, H; Long, W H; Shen, G
2006-01-01
Following a systematic theoretical study of the ground-state properties of over 7000 nuclei from the proton drip line to the neutron drip line in the relativistic mean field model [Prog. Theor. Phys. 113 (2005) 785], which is in fair agreement with existing experimental data, we observe a few spurious shell closures, i.e. proton shell closures at Z=58 and Z=92. These spurious shell closures are found to persist in all the effective forces of the relativistic mean field model, e.g. TMA, NL3, PKDD and DD-ME2.
Electrodynamics an intensive course
Chaichian, Masud; Radu, Daniel; Tureanu, Anca
2016-01-01
This book is devoted to the fundamentals of classical electrodynamics, one of the most beautiful and productive theories in physics. A general survey on the applicability of physical theories shows that only few theories can be compared to electrodynamics. Essentially, all electric and electronic devices used around the world are based on the theory of electromagnetism. It was Maxwell who created, for the first time, a unified description of the electric and magnetic phenomena in his electromagnetic field theory. Remarkably, Maxwell’s theory contained in itself also the relativistic invariance of the special relativity, a fact which was discovered only a few decades later. The present book is an outcome of the authors’ teaching experience over many years in different countries and for different students studying diverse fields of physics. The book is intended for students at the level of undergraduate and graduate studies in physics, astronomy, engineering, applied mathematics and for researchers working ...
A relativistic quark–diquark model for the nucleon
Cristian Leonardo Gutierrez; Maurizio De Sanctis
2009-02-01
We developed a constituent quark–diquark model for the nucleon and its resonances using a harmonic oscillator potential for the interaction. The effects due to relativistic kinetic energy correction are studied. Finally, charge form factor of the model is calculated and compared with experimental data.
An analytic toy model for relativistic accretion in Kerr spacetime
Tejeda, Emilio; Miller, John C
2013-01-01
We present a relativistic model for the stationary axisymmetric accretion flow of a rotating cloud of non-interacting particles falling onto a Kerr black hole. Based on a ballistic approximation, streamlines are described analytically in terms of timelike geodesics, while a simple numerical scheme is introduced for calculating the density field. A novel approach is presented for describing all of the possible types of orbit by means of a single analytic expression. This model is a useful tool for highlighting purely relativistic signatures in the accretion flow dynamics coming from a strong gravitational field with frame-dragging. In particular, we explore the coupling due to this between the spin of the black hole and the angular momentum of the infalling matter. Moreover, we demonstrate how this analytic solution may be used for benchmarking general relativistic numerical hydrodynamics codes by comparing it against results of smoothed particle hydrodynamics simulations for a collapsar-like setup. These simu...
The relativistic feedback discharge model of terrestrial gamma ray flashes
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
Relativistic superfluid models for rotating neutron stars
Carter, B
2001-01-01
This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.
Relativistic reflection: Review and recent developments in modeling
Dauser, T.; García, J.; Wilms, J.
2016-05-01
Measuring relativistic reflection is an important tool to study the innermost regions of the an accreting black hole system. In the following we present a brief review on the different aspects contributing to the relativistic reflection. The combined approach is for the first time incorporated in the new ``relxill'' model. The advantages of this more self-consistent approach are briefly summarized. A special focus is put on the new definition of the intrinsic reflection fraction in the lamp post geometry, which allows to draw conclusions about the primary source of radiation in these system. Additionally the influence of the high energy cutoff of the primary source on the reflection spectrum is motivated, revealing the remarkable capabilities of constraining E_cut by measuring relativistic reflection spectra from NuSTAR, preferably with lower energy coverage.
A relativistic toy model for Unruh black holes
Carbonaro, P.
2014-08-01
We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.
Heavy Baryon Transitions in a Relativistic Three-Quark Model
Ivanov, M A; Kroll, P; Lyubovitskij, V E
1997-01-01
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges
Liu, Ningyu; Dwyer, Joseph R.
2013-05-01
This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However
Casana, R; Santos, F E P dos
2014-01-01
We have established the Gupta-Bleuler quantization of the photon belonging to the anisotropic parity-even sector of the CPT-even and Lorentz-violating nonbirefringent electrodynamics of the standard model extension. We first present a rule for the Maxwell electrodynamics to be successfully quantized via Gupta-Bleuler technique in the Lorentz gauge. Recognizing the failure of the Gupta-Bleuler method in the Lorentz gauge, $\\partial _{\\mu }A^{\\mu }=0$, for this massless LV theory, we argue that Gupta-Bleuler can be satisfactorily implemented by choosing a modified Lorentz condition, $\\partial _{\\mu }A^{\\mu }+\\kappa ^{\\mu \
Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.
2017-01-01
The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.
Modeling and Control of Electrodynamic Tethers - an Energy and Topology Approach
Larsen, Martin Birkelund
of propellant a spacecraft need to bring from Earth can be reduced. In this thesis the modeling and control of electrodynamic tethers are investigated, both when a single tether is used to connect two spacecrafts, and when the tethers are used i more general formations of spacecrafts. One of the main challenges......, and separate derivations of the dynamical equations can be cumbersome. It can therefore be advantageous to be able to model a formation independent of its topology, i.e. the way tethers and satellites are interconnected. The thesis treats a class of formations in a generic framework, using graph theory...... to describe the topology of the formations. The framework can be used both to deduce the equations of motion for the attitude motion of the formation and for control design regarding the same motion. The main part of the thesis consists of five scientific papers which have been submitted for international...
Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A
2010-02-10
In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.
Garcia-Salcedo, Ricardo; Quiros, Israel
2013-01-01
Here we investigate the cosmic dynamics of Friedmann-Robertson-Walker universes -- flat spatial sections -- which are driven by nonlinear electrodynamics (NLED) Lagrangians. We pay special attention to the check of the sign of the square sound speed since, whenever the latter quantity is negative, the corresponding cosmological model is classically unstable against small perturbations of the background energy density. Besides, based on causality arguments, one has to require that the mentioned small perturbations of the background should propagate at most at the local speed of light. We also look for the occurrence of curvature singularities. Our results indicate that several cosmological models which are based in known NLED Lagrangians, either are plagued by curvature singularities of the sudden and/or big rip type, or are violently unstable against small perturbations of the cosmological background -- due to negative sign of the square sound speed -- or both. In addition, causality issues associated with su...
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
A RELATIVISTIC QUASI-STATIC MODEL FOR ELECTRONS IN INTENSE LASER FIELDS
CHEN BAO-ZHEN
2001-01-01
A relativistic quasi-static model for the motion of the electrons in relativistic laser fields is proposed. Using the model, the recent experimental results about the generation of the hot electrons in relativistic laser fields can be fit quite well and the important role of the rescattering can be shown clearly.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Quantization of second-order Lagrangians: The Fokker-Wheeler-Feynman model of electrodynamics
Moore, R. A.; Scott, T. C.
1992-10-01
The consequences of quantizing the Fokker-Wheeler-Feynman model of electrodynamics, treating the Lagrangian via its acceleration-dependent (1/c) power-series representation, is examined using recently validated methods. An exact treatment of this acceleration dependence yields, under certain circumstances, high-energy resonant modes. In the past, such modes have been assumed unphysical and have been removed by perturbative or order-reduction techniques. However, these modes appear to be of physical significance. This conclusion follows because this completely ab initio calculation, with no adjustable parameters, has a number of successes. It provides a description for resonances observed in the electron-positron emission from heavy-ion collisions, in particular, and in diproton collisions and, possibly, in other collision experiments as well.
Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms
Gravejat, Philippe; Sere, Eric
2007-01-01
We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, re...
Relativistic Lagrangian model of a nematic liquid crystal
Obukhov, Yuri N; Rubilar, Guillermo F
2012-01-01
We develop a relativistic variational model for a nematic liquid crystal interacting with the electromagnetic field. The constitutive relation for an anisotropic uniaxial diamagnetic and dielectric medium is analyzed. We discuss light wave propagation in this moving uniaxial medium, for which the corresponding optical metrics are identified explicitly. A Lagrangian for the coupled system of a nematic liquid crystal and the electromagnetic field is constructed. We derive a complete set of equations of motion for the system. The canonical energy-momentum and spin tensors are systematically obtained. We compare our results with those within the non-relativistic models. As an application of our general formalism, we discuss the so-called Abraham-Minkowski controversy on the momentum of light in a medium.
Symmetries and solutions of field equations of axion electrodynamics
Nikitin, A G
2012-01-01
The group classification of models of axion electrodynamics with arbitrary self interaction of axionic field is carried out. It is shown that extensions of the basic Poincar\\'e invariance of these models appear only for constant and exponential interactions. The related conservation laws are discussed. Using the In\\"on\\"u-Wigner contraction the non-relativistic limit of equations of axion electrodynamics is found. An extended class of exact solutions for the electromagnetic and axion fields is obtained. Among them there are solutions including up to six arbitrary functions. In particular, solutions which describe propagation with velocities faster than the velocity of light are found. These solutions are smooth and bounded functions which correspond to positive definite and bounded energy density.
Modelling early stages of relativistic heavy-ion collisions
Ruggieri M.
2016-01-01
Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.
An electrodynamics-based model for ion diffusion in microbial polysaccharides.
Liu, Chongxuan; Zachara, John M; Felmy, Andrew; Gorby, Yuri
2004-10-10
An electrodynamics-based model was formulated for simulation of ion diffusion in microbial polysaccharides. The fixed charges and electrostatic double layers that may associate with microbial polysaccharides and their effects on ion diffusion were explicitly built into the model. The model extends a common multicomponent ion diffusion formulation that is based on irreversible thermodynamics under a zero ionic charge flux condition, which is only applicable to the regions without fixed charges and electrostatic double layers. An efficient numerical procedure was presented to solve the differential equations in the model. The model well described key features of experimental observations of ion diffusion in negatively charged microbial polysaccharides including accelerated diffusive transport of cations, exclusion of anions, and increased rate of cation transport with increasing negative charge density. The simulated diffusive fluxes of cations and anions were consistent with a cation exchange diffusion concept in negatively charged polysaccharides at the interface of plant roots and soils; and the developed model allows to mathematically study such diffusion phenomena. An illustrative example was also provided to simulate dynamic behavior of ionic current during ion diffusion within a charged bacterial cell wall polysaccharide and the effects of the ionic current on the compression or expansion of the bacterial electrostatic double layer at the interface of the cell wall and bulk solution.
Relativistic models of a class of compact objects
Rumi Deb; Bikash Chandra Paul; Ramesh Tikekar
2012-08-01
A class of general relativistic solutions in isotropic spherical polar coordinates which describe compact stars in hydrostatic equilibrium are discussed. The stellar models obtained here are characterized by four parameters, namely, , , and of geometrical significance related to the inhomogeneity of the matter content of the star. The stellar models obtained using the solutions are physically viable for a wide range of values of the parameters. The physical features of the compact objects taken up here are studied numerically for a number of admissible values of the parameters. Observational stellar mass data are used to construct suitable models of the compact stars.
Baryon Wave Functions in Covariant Relativistic Quark Models
Dillig, M
2002-01-01
We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.
Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...
Relativistic Mean-Field Models and Nuclear Matter Constraints
Dutra, M; Carlson, B V; Delfino, A; Menezes, D P; Avancini, S S; Stone, J R; Providência, C; Typel, S
2013-01-01
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear \\sigma^3+\\sigma^4 models, (iii) \\sigma^3+\\sigma^4+\\omega^4 models, (iv) models containing mixing terms in the fields \\sigma and \\omega, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the \\sigma (\\omega) field. The isospin dependence of the interaction is modeled by the \\rho meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Moreira, Roemir P. M.
2011-12-01
We have studied a (1+2)-dimensional Lorentz-violating model which is obtained from the dimensional reduction of the nonbirefringent sector of the CPT-even electrodynamics of the standard model extension. The planar theory contains a gauge sector and a scalar sector which are linearly coupled by means of a Lorentz-invariance violating (LIV) vector, Sμ, while the kinetic terms of both sectors are affected by the components of a Lorentz-violating symmetric tensor, κμν. The energy-momentum tensor reveals that both sectors present energy stability for sufficiently small values of the Lorentz-violating parameters. The full dispersion relation equations are exactly determined and analyzed for some special configurations of the LIV backgrounds, showing that the planar model is entirely nonbirefringent at any order in the LIV parameters. At first order, the gauge and scalar sectors are described by the same dispersion relations. Finally, the equations of motion have been solved in the stationary regime and at first order in the LIV parameters. It is observed that the Lorentz-violating parameters do not alter the asymptotical behavior of the electric and magnetic fields but induce an angular dependence which is not present in Maxwell’s planar theory.
Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.
2014-08-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
Heavy-light mesons in a relativistic model
Liu, Jing-Bin; Yang, Mao-Zhi
2016-07-01
We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)
Relativistic Hartree-Fock-Bogoliubov model for deformed nuclei
Ebran, J -P; Arteaga, D Pena; Vretenar, D
2010-01-01
The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is introduced. The model is based on an effective Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel, and the pairing part of the Gogny force is used in the pairing channel. The RHFBz quasiparticle equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Carbon, Neon and Magnesium isotopes. The effect of the explicitly including the pion field is investigated for binding energies, deformation parameters, and charge radii.
Relativistic tight-binding model: Application to Pt surfaces
Tchernatinsky, A.; Halley, J. W.
2011-05-01
We report a parametrization of a previous self-consistent tight-binding model, suitable for metals with a high atomic number in which nonscalar-relativistic effects are significant in the electron physics of condensed phases. The method is applied to platinum. The model is fitted to density functional theory band structures and cohesive energies and spectroscopic data on platinum atoms in five oxidation states, and is then shown without further parametrization to correctly reproduce several low index surface structures. We also predict reconstructions of some vicinal surfaces.
Zangwill, Andrew
2013-01-01
An engaging writing style and a strong focus on the physics make this comprehensive, graduate-level textbook unique among existing classical electromagnetism textbooks. Charged particles in vacuum and the electrodynamics of continuous media are given equal attention in discussions of electrostatics, magnetostatics, quasistatics, conservation laws, wave propagation, radiation, scattering, special relativity and field theory. Extensive use of qualitative arguments similar to those used by working physicists makes Modern Electrodynamics a must-have for every student of this subject. In 24 chapters, the textbook covers many more topics than can be presented in a typical two-semester course, making it easy for instructors to tailor courses to their specific needs. Close to 120 worked examples and 80 applications boxes help the reader build physical intuition and develop technical skill. Nearly 600 end-of-chapter homework problems encourage students to engage actively with the material. A solutions manual is availa...
M.I. Baranov
2013-06-01
Full Text Available A new electrodynamic model of a ball lightning (BL containing an internal toroidal high-temperature energy core and an external electro-neutral highly-polarized water shell is introduced. The BL energy core is formed by electron and proton microtori with intrinsic oppositely directed elementary spiral-circular currents. The BL core spiral-circular electron currents of conductivity create an enveloping strong pulsed azimuth magnetic field and a superstrong vortex radial electrical field.
A. D. Richmond
2009-05-01
Full Text Available In this paper, we demonstrate a procedure for calibrating a complex computer simulation model having uncertain inputs and internal parameters, with application to the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM. We compare simulated magnetic perturbations with observations at two ground locations for various combinations of calibration parameters. These calibration parameters are: the amplitude of the semidiurnal tidal perturbation in the height of a constant-pressure surface at the TIE-GCM lower boundary, the local time at which this maximises and the minimum night-time electron density. A fully Bayesian approach, that describes correlations in time and in the calibration input space is implemented. A Markov Chain Monte Carlo (MCMC approach leads to potential optimal values for the amplitude and phase (within the limitations of the selected data and calibration parameters but not for the minimum night-time electron density. The procedure can be extended to include additional data types and calibration parameters.
New shear-free relativistic models with heat flow
Msomi, A M; Maharaj, S D
2013-01-01
We study shear-free spherically symmetric relativistic models with heat flow. Our analysis is based on Lie's theory of extended groups applied to the governing field equations. In particular, we generate a five-parameter family of transformations which enables us to map existing solutions to new solutions. All known solutions of Einstein equations with heat flow can therefore produce infinite families of new solutions. In addition, we provide two new classes of solutions utilising the Lie infinitesimal generators. These solutions generate an infinite class of solutions given any one of the two unknown metric functions.
Wu, Ya-Bo; Zhang, Cheng-Yuan; Lu, Jian-Bo; Hu, Mu-Hong; Chai, Yun-Tian
2017-04-01
We numerically investigate the holographic paramagnetism-ferromagnetism phase transition in the 4-dimensional Lifshitz spacetime in the presence of three kinds of typical Born-Infeld-like nonlinear electrodynamics. Concretely, in the probe limit, we thoroughly discuss the effects of the nonlinear parameter b and the dynamical exponent z on the critical temperature, magnetic moment and hysteresis loop. The results show that the exponential form of nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder to form with the absent external field for a constant nonlinear parameter b comparing it with the logarithmic form of nonlinear electrodynamics and the Born-Infeld nonlinear electrodynamics, especially for the case of larger dynamical exponent z. Moreover, the increase of nonlinear parameter b (for the fixed z) or dynamical exponent z (for the fixed b) will result in extending the period of the external magnetic field. Particularly, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noteworthy.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Parity-odd and CPT-even electrodynamics of the standard model extension at finite temperature
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Silva, Madson R. O.
2010-05-01
This work examines the finite temperature properties of the CPT-even and parity-odd electrodynamics of the standard model extension. The starting point is the partition function computed for an arbitrary and sufficiently small tensor (kF)ανρφ [see R. Casana, M. M. Ferreira, Jr., J. S. Rodrigues, and M. R. O. Silva, Phys. Rev. DPRVDAQ1550-7998 80, 085026 (2009).10.1103/PhysRevD.80.085026]. After specializing the Lorentz-violating tensor (kF)ανρφ for the leading-order-nonbirefringent and parity-odd coefficients, the partition function is explicitly carried out, showing that it is a power of the Maxwell partition function. Also, it is observed that the Lorentz invariance violation coefficients induce an anisotropy in the black-body angular energy density distribution. Planck’s radiation law retains its usual frequency dependence and the Stefan-Boltzmann law keeps the same form, except for a global proportionality constant.
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
Cyclic models of the relativistic universe: the early history
Kragh, Helge
2013-01-01
Within the framework of relativistic cosmology oscillating or cyclic models of the universe were introduced by A. Friedmann in his seminal paper of 1922. With the recognition of evolutionary cosmology in the 1930s this class of closed models attracted considerable interest and was investigated by several physicists and astronomers. Whereas the Friedmann-Einstein model exhibited only a single maximum value, R. Tolman argued for an endless series of cycles. After World War II, cyclic or pulsating models were suggested by W. Bonnor and H. Zanstra, among others, but they remained peripheral to mainstream cosmology. The paper reviews the development from 1922 to the 1960s, paying particular attention to the works of Friedmann, Einstein, Tolman and Zanstra. It also points out the role played by bouncing models in the emergence of modern big-bang cosmology.
Photon propagator in skewon electrodynamics
Itin, Yakov
2015-01-01
Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulom law is exhibited.
Spectra of heavy-light mesons in a relativistic model
Liu, Jing-Bin
2016-01-01
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model, which is derived from the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation on the heavy quark. The kernel we choose is based on scalar confining and vector Coulomb potentials. The Hamiltonian for heavy-light quark-antiquark system is calculated up to order $1/m_Q^2$. The results are in good agreement with available experimental data except for the masses of the anomalous $D_{s0}^*(2317)$ and $D_{s1}(2460)$ states. The newly observed charmed meson states can be accommodated successfully in the relativistic model and their assignments are presented, the $D_{sJ}^*(2860)$ can be interpreted as the $|1^{3/2}D_1\\rangle$ and $|1^{5/2}D_3\\rangle$ states being the $J^P=1^-$ and $3^-$ members of the 1D family in our model.
De Rijcke, Sven; Boelens, Thomas
2014-01-01
We show that the general relativistic theory of the dynamics of isotropic stellar clusters can be developed essentially along the same lines as the Newtonian theory. We prove that the distribution function can be derived from any isotropic momentum moment and that every higher-order moment of the distribution can be written as an integral over a zeroth-order moment. We propose a mathematically simple expression for the distribution function of a family of isotropic general relativistic cluster models and investigate their dynamical properties. In the Newtonian limit, these models obtain a distribution function of the form F(E) ~ (E-E_0)^alpha, with E binding energy and E_0 a constant that determines the model's outer radius. The slope alpha sets the steepness of the distribution function and the corresponding radial density and pressure profiles. We show that the field equations only yield solutions with finite mass for alpha3.5, only Newtonian models exist. In other words: within the context of this family o...
A "Boosted Fireball" Model for Structured Relativistic Jets
Duffell, Paul C
2013-01-01
We present a model for relativistic jets which generates a particular angular distribution of Lorentz factor and energy per solid angle. We consider a fireball with specific internal energy E/M launched with bulk Lorentz factor \\gamma_B. This "boosted fireball" model is motivated by the phenomenology of collapsar jets, but is applicable to a wide variety of relativistic flows. In its center-of-momentum frame the fireball expands isotropically, converting its internal energy into radially expanding flow with asymptotic Lorentz factor \\eta_0 \\sim E/M. In the lab frame the flow is beamed, expanding with Lorentz factor \\Gamma = 2 \\eta_0 \\gamma_B in the direction of its initial bulk motion and with characteristic opening angle \\theta_0 \\sim 1/\\gamma_B. The flow is jet-like with \\Gamma \\theta_0 \\sim 2 \\eta_0 such that jets with \\Gamma > 1/\\theta_0 are naturally produced. The choice \\eta_0 \\sim \\gamma_B \\sim 10 yields a jet with \\Gamma \\sim 200 on-axis and angular structure characterized by opening angle \\theta_0 \\s...
Spectra of heavy-light mesons in a relativistic model
Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)
2017-05-15
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)
Finite temperature CPT-even electrodynamics of the standard model extension
Casana, Rodolfo; Ferreira Junior, Manoel M.; Rodrigues, Josberg S.; Silva, Madson R.O. [Universidade Federal do Maranhao (UFMA), Sao Luiz, MA (Brazil)
2009-07-01
Full text. In this work, we examine the finite temperature properties of the non-birefringent coefficients of the CPT- even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term W{sub {mu}}{sub {nu}}{sub {alpha}}{sub {beta}}F{sub {mu}}{sub {nu}}F{sub {alpha}}{sub {beta}}. We begin analyzing the Hamiltonian structure following the Diracs procedure for constrained systems. The partition function for this model in the functional integral formalism is properly written and explicitly carried out both for the parity-odd and parity-even sectors of the tensor WW{sub {mu}}{sub {nu}}{sub {alpha}}{sub {beta}}i. The modified partition function is a power of the Maxwell partition function. It is observed that the LIV coefficients induce an anisotropy in the black body energy density angular distribution in two cases of interest. The Planck radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions. Since the LIV coefficients are constrained by very stringent upper bounds, the lower order non-null LIV contribution for the Maxwell thermodynamics would give a good information about the thermodynamical properties of the non birefringent sector the model. It is clearly observed for the parity-odd sector, where the lower correction is quadratic in the LIV parameter {kappa}. On the other hand, in the parity-even sector, the isotropic contribution gives a linear correction in n, whereas the anisotropic contribution coming from the matrix {kappa}{sub e-} only is manifest at fourth order. Hence, the pure anisotropic contribution is irrelevant when compared with the isotropic one. (author)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Unified relativistic physics from a standing wave particle model
Vera, R A
1995-01-01
An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...
The regular conducting fluid model for relativistic thermodynamics
Carter, Brandon
2012-01-01
The "regular" model presented here can be considered to be the most natural solution to the problem of constructing the simplest possible relativistic analogue of the category of classical Fourier--Euler thermally conducting fluid models as characterised by a pair of equations of state for just two dependent variables (an equilibrium density and a conducting scalar). The historically established but causally unsatisfactory solution to this problem due to Eckart is shown to be based on an ansatz that is interpretable as postulating a most unnatural relation between the (particle and entropy) velocities and their associated momenta, which accounts for the well known bad behaviour of that model which has recently been shown to have very pathological mixed-elliptic-hyperbolic comportments. The newer (and more elegant) solution of Landau and Lifshitz has a more mathematically respectable parabolic-hyperbolic comportment, but is still compatible with a well posed initial value problem only in such a restricted limi...
Families of exact solutions of a 2D gravity model minimally coupled to electrodynamics
Moayedi, S K
2001-01-01
Three families of exact solutions for 2-dimensional gravity minimally coupled to electrodynamics are obtained in the context of ${\\cal R}=T$ theory. It is shown, by supersymmetric formalism of quantum mechanics, that the quantum dynamics of a neutral bosonic particle on static backgrounds with both varying curvature and electric field is exactly solvable.
Subrata Pal
2015-05-01
We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.
Path integral quantization of the relativistic Hopfield model
Belgiorno, F; Piazza, F Dalla; Doronzo, M
2016-01-01
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.
Relativistic mean-field models and nuclear matter constraints
Dutra, M.; Lourenco, O.; Carlson, B. V. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos, SP (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-150, Boa Viagem, Niteroi, RJ (Brazil); Menezes, D. P.; Avancini, S. S. [Departamento de Fisica, CFM, Universidade Federal de Santa Catarina, CP. 476, CEP 88.040-900, Florianopolis, SC (Brazil); Stone, J. R. [Oxford Physics, University of Oxford, OX1 3PU Oxford (United Kingdom) and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Providencia, C. [Centro de Fisica Computacional, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal); Typel, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Theorie, Planckstrasse 1,D-64291 Darmstadt (Germany)
2013-05-06
This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.
Electrodynamics of pulsar magnetospheres
Cerutti, Benoît
2016-01-01
We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.
New charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conform...
Relativistic effects in model calculations of double parton distribution function
Rinaldi, Matteo
2016-01-01
In this paper we consider double parton distribution functions (dPDFs) which are the main non perturbative ingredients appearing in the double parton scattering cross section formula in hadronic collisions. By using recent calculation of dPDFs by means of constituent quark models within the so called Light-Front approach, we investigate the role of relativistic effects on dPDFs. We find, in particular, that the so called Melosh operators, which allow to properly convert the LF spin into the canonical one and incorporate a proper treatment of boosts, produce sizeable effects on dPDFs. We discuss specific partonic correlations induced by these operators in transverse plane which are relevant to the proton structure and study under which conditions these results are stable against variations in the choice of the proton wave function.
Radiative leptonic Bc decay in the relativistic independent quark model
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2008-12-01
The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.
New charged shear-free relativistic models with heat flux
Nyonyi, Y.; Maharaj, S. D.; Govinder, K. S.
2013-11-01
We study shear-free spherically symmetric relativistic gravitating fluids with heat flow and electric charge. The solution to the Einstein-Maxwell system is governed by the generalised pressure isotropy condition which contains a contribution from the electric field. This condition is a highly nonlinear partial differential equation. We analyse this master equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are found. The first generator is independent of the electromagnetic field. The second generator depends critically on the form of the charge, which is determined explicitly in general. We provide exact solutions to the gravitational potentials using the symmetries admitted by the equation. Our new exact solutions contain earlier results without charge. We show that other charged solutions, related to the Lie symmetries, may be generated using the algorithm of Deng. This leads to new classes of charged Deng models which are generalisations of conformally flat metrics.
No drama quantum electrodynamics?
Akhmeteli, Andrey [LTASolid Inc, Houston, TX (United States)
2013-04-15
This article builds on recent work (Akhmeteli in Int. J. Quantum Inf. 9(Supp01):17, 2011; J. Math. Phys. 52:082303, 2011), providing a theory that is based on spinor electrodynamics, is described by a system of partial differential equations in 3+1 dimensions, but reproduces unitary evolution of a quantum field theory in the Fock space. To this end, after introduction of a complex four-potential of electromagnetic field, which generates the same electromagnetic fields as the initial real four-potential, the spinor field is algebraically eliminated from the equations of spinor electrodynamics. It is proven that the resulting equations for electromagnetic field describe independent evolution of the latter and can be embedded into a quantum field theory using a generalized Carleman linearization procedure. The theory provides a simple and at least reasonably realistic model, valuable for interpretation of quantum theory. The issues related to the Bell theorem are discussed. (orig.)
Introduction to Extended Electrodynamics
Donev, S
1997-01-01
This paper summarizes the motivations and results obtained so far in the frame of a particular non-linearization of Classical Electrodynamics, which was called Extended Electrodynamics. The main purpose pursued with this non-linear extension of the classical Maxwell's equations is to have a reliable field-theoretical approach in describing (3+1) soliton-like electromagnetic formations, in particular, to build an extended and finite field model of free photons and photon complexes. The first chapter gives a corresponding analysis of Maxwell theory and introduces the new equations. The second chapter gives a full account of the results, including the photon-like solutions, in the vacuum case. A new concept, called scale factor, is defined and successfully used. Two ways for describing the intrinsic angular momentum are given. Interference of two photon-like solutions is also considered. The third chapter considers interaction with external fields (continuous media) on the base of establishing correspondence bet...
English, W.; Hardcastle, M. J.; Krause, M. G. H.
2016-09-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets, we at times find magnetic field amplification by up to a factor of 2 in energy, but mostly the magnetic energy in the lobes is consistent with the magnetic energy injected. We confirm our earlier result that for jets with a toroidally injected magnetic field, the field in the lobes is predominantly aligned with the jet axis once the lobes are well developed, and that this leads to radio flux anisotropies of up to a factor of about two for mature sources. We reproduce the relationship between 151 MHz luminosity and jet power determined analytically in the literature.
Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas
Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Pal, Barnali; Poria, Swarup [Department of Applied Mathematics, University of Calcutta, Kolkata-700009 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)
2013-05-15
In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.
Newtonian and General Relativistic Models of Spherical Shells
Vogt, D
2009-01-01
A family of spherical shells with varying thickness is derived by using a simple Newtonian potential-density pair. Then, a particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian family of shells. The matter of these relativistic shells presents equal azimuthal and polar pressures, while the radial pressure is a constant times the tangential pressure. We also make a first study of stability of both the Newtonian and relativistic families of shells.
Nuclear rho transparencies in a relativistic Glauber model
Cosyn, Wim
2013-01-01
[Background] The recent Jefferson Lab data for the nuclear transparency in $\\rho^ {0}$ electroproduction have the potential to settle the scale for the onset of color transparency (CT) in vector meson production. [Purpose] To compare the data to calculations in a relativistic and quantum-mechanical Glauber model and to investigate whether they are in accordance with results including color transparency given that the computation of $\\rho$-nucleus attenuations is subject to some uncertainties. [Method] We compute the nuclear transparencies in a multiple-scattering Glauber model and account for effects stemming from color transparency, from $\\rho$-meson decay, and from short-range correlations (SRC) in the final-state interactions (FSI). [Results] The robustness of the model is tested by comparing the mass dependence and the hard-scale dependence of the $A(e,e'p)$ nuclear transparencies with the data. The hard-scale dependence of the $(e,e' \\rho ^ {0})$ nuclear transparencies for $^ {12}$C and $^ {56}$Fe are on...
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
Wien Fireball Model of Relativistic Outflows in Active Galactic Nuclei
岩本, 静男; イワモト, シズオ
2003-01-01
We study steady and spherically symmetric outflows of pure electron-positron pair plasma as a possible acceleration mechanism of relativistic jets up to the bulk Lorentz factor of greater than 10. These outflows are initiated by the ``Wien fireball'', which is optically thick to Compton scattering but thin to absorption and in a Wien equilibrium state between pairs and photons at a relativistic temperature.
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
2014-09-23
titlelScientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model...awardnumberl]N00014-13-l-0267 [awardnumber2] [awardnumbermore] [keywords]Ionosphere, Assimilation , Simulations [specialcat] [pillRobert W...totalminoritypostdocs] [bestaccomplishment] With only ground magnetometer measurements, our high-latitude data assimilation model can track the
A relativistic model for neutrino pion production from nuclei in the resonance region
Praet, C; Jachowicz, N; Ryckebusch, J
2007-01-01
We present a relativistic model for electroweak pion production from nuclei, focusing on the $\\Delta$ and the second resonance region. Bound states are derived in the Hartree approximation to the $\\sigma-\\omega$ Walecka model. Final-state interactions of the outgoing pion and nucleon are described in a factorized way by means of a relativistic extension of the Glauber model. Our formalism allows a detailed study of neutrino pion production through $Q^2$, $W$, energy, angle and out-of-plane distributions.
Nonlinear Electrodynamics and QED
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
Nonlinear electrodynamics with birefringence
Kruglov, S I
2015-01-01
A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.
A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas
Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.
2012-01-01
A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...
Relativistic Effects in a QCD Inspired quark model and the necessity of a short distance scale
Pathak, Krishna Kingkar
2010-01-01
We study the masses and decay constants of heavy light flavoured mesons in a QCD Inspired Quark model. We modify the relativistic correction procedure by introducing a short distance scale r0 in analogy with relativistic Hydrogen atom and estimate the values of masses and decay constants of heavy-light mesons. Necessity of a short distance scale r0 \\leq 10-3 - 10-5 fm in the model is indicated. Keywords: heavy- light mesons, masses, decay constants
De Sanctis, M; Santopinto, E; Vassallo, A
2015-01-01
We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.
A reduced model for relativistic electron beam transport in solids and dense plasmas
Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.
2014-07-01
A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.
Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows
Dwyer, J. R.
2015-12-01
Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.
Verweij, A
2006-01-01
CUDI is the extended Fortran code to calculate the electrodynamic and thermal behaviour of any type of Rutherford cable subject to global and/or local variations in field, transport current, and external heat release. The internal parameters of the cable can be freely varied along the length and across the width, such as contact resistances, critical current, cooling rates etc. In this way, all the typical non-uniformities occurring in a cable, e.g. broken filaments, strand welds, cable joints, and edge degradation can be simulated. Also the characteristics of the strands in the cable can be varied from strand to strand. Heat flows through the matrix, through the interstrand contacts, and to the helium are incorporated, as well as the self-field and self- and mutual inductances between the strands. The main features and structure of the program will be discussed.
Casana, R; Santos, F E P dos
2016-01-01
{Following a successfully quantization scheme previously }{{% developed {\\ in Ref. \\cite{GUPTAEVEN} for a}} parity-even {gauge sector} {of the SME, we}} have established the Gupta-Bleuler {% quantization {of a} {\\ parity-odd} and CPT-even }electrodynamics of {the }standard model extension (SME) {without recoursing to a small photon mass regulator}. {Keeping the photons massless,} {% {we have adopted the gauge fixing condition:}} $G(A_{\\mu })=(\\partial _{0}+\\kappa^{0j}\\partial _{j}) (A_{0}+\\kappa ^{0k}A_{k})+\\partial _{i}A^{i}$% . The{\\ four} polarization vectors of the gauge field are {% exactly} determined by solving an eigenvalue problem,{\\ exhibiting birefringent second order contributions in the Lorentz-violating parameters}% . They allow to express the Hamiltonian in terms of annihilation and creation operators whose positivity is guaranteed by imposing a weak Gupta-Bleuler constraint, defining the physical states. Consequently, we compute the field commutation relation which has been expressed in terms ...
Relativistic quantum transport theory for electrodynamics
Zhuang, P; Zhuang, P; Heinz, U
1995-01-01
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy averag...
Non relativistic limit of integrable QFT and Lieb-Liniger models
Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe
2016-12-01
In this paper we study a suitable limit of integrable QFT with the aim to identify continuous non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda field theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Non Relativistic Limit of Integrable QFT and Lieb-Liniger Models
Bastianello, Alvise; Mussardo, Giuseppe
2016-01-01
In this paper we study a suitable limit of integrable QFT with the aim to identify non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda Field Theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Cosmological effects of nonlinear electrodynamics
Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)
2007-06-07
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.
Chen, C. H.; Lin, C. H.; Matsuo, T.; Chen, W. H.; Lee, I. T.; Liu, J. Y.; Lin, J. T.; Hsu, C. T.
2016-06-01
The main purpose of this paper is to investigate the effects of rapid assimilation-forecast cycling on the performance of ionospheric data assimilation during geomagnetic storm conditions. An ensemble Kalman filter software developed by the National Center for Atmospheric Research (NCAR), called Data Assimilation Research Testbed, is applied to assimilate ground-based GPS total electron content (TEC) observations into a theoretical numerical model of the thermosphere and ionosphere (NCAR thermosphere-ionosphere-electrodynamics general circulation model) during the 26 September 2011 geomagnetic storm period. Effects of various assimilation-forecast cycle lengths: 60, 30, and 10 min on the ionospheric forecast are examined by using the global root-mean-squared observation-minus-forecast (OmF) TEC residuals. Substantial reduction in the global OmF for the 10 min assimilation-forecast cycling suggests that a rapid cycling ionospheric data assimilation system can greatly improve the quality of the model forecast during geomagnetic storm conditions. Furthermore, updating the thermospheric state variables in the coupled thermosphere-ionosphere forecast model in the assimilation step is an important factor in improving the trajectory of model forecasting. The shorter assimilation-forecast cycling (10 min in this paper) helps to restrain unrealistic model error growth during the forecast step due to the imbalance among model state variables resulting from an inadequate state update, which in turn leads to a greater forecast accuracy.
Special-relativistic model flows of viscous fluid
Rogava, A D
1996-01-01
Two, the most simple cases of special-relativistic flows of a viscous, incompressible fluid are considered: plane Couette flow and plane Poiseuille flow. Considering only the regular motion of the fluid we found the distribution of velocity in the fluid (velocity profiles) and the friction force, acting on immovable wall. The results are expressed through simple analytical functions for the Couette flow, while for the Poiseiulle flow they are expressed by higher transcendental functions (Jacobi's elliptic functions).
A Nonlinear Model for Relativistic Electrons at Positive Temperature
Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert
2008-01-01
We study the relativistic electron-positron field at positive temperature in the Hartree-Fock-approximation. We consider both the case with and without exchange term, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, S\\'er\\'e, and Solovej where the case of zero temperature was considered.
Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma
Hossen, M. R.; Mamun, A. A. [Jahangirnagar University, Savar, Dhaka (Bangladesh)
2014-12-15
The modeling of a theoretical and numerical study on the nonlinear propagation of modified electron-acoustic (mEA) solitary waves has been carried out in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non-relativistic degenerate inertial cold electrons, both non-relativistic and ultra-relativistic degenerate hot electron and inertial positron fluids, and positively-charged static ions). A reductive perturbation technique is used to derive the planar and the nonplanar Korteweg-de Vries (K-dV) equations, which admit a localized wave solution for the solitary profile. The solitary wave's characteristics are found to have been influenced significantly for the non-relativistic and the ultra-relativistic limits. The mEA solitary waves are also found to have been significantly modified due to the effects of the degenerate pressure and the number densities of this dense plasma's constituents. The properties of the planar K-dV solitary wave are quite different from those of the nonplanar K-dV solitary wave. The relevance of our results to astrophysical objects (like white dwarfs and neutron stars), which are of scientific interest, is briefly mentioned.
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
PT-Symmetry Quantum Electrodynamics--PTQED
Milton, Kimball A; Parashar, Prachi; Shajesh, K V; Wagner, Jef
2007-01-01
The construction of $\\mathcal{PT}$-symmetric quantum electrodynamics is reviewed. In particular, the massless version of the theory in 1+1 dimensions (the Schwinger model) is solved. Difficulties with unitarity of the $S$-matrix are discussed.
Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.
Dunkel, Jörn; Hänggi, Peter
2006-11-01
The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.
Beyond the thermal model in relativistic heavy-ion collisions
Wolschin, Georg
2016-01-01
Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.
A finite Zitterbewegung model for relativistic quantum mechanics
Noyes, H.P.
1990-02-19
Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.
Relativistic Modeling of Quark Stars with Tolman IV Type Potential
Malaver, Manuel
2015-01-01
In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution considering Tolman IV form for the gravitational potential Z. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as the presence of an electrical field modifies the energy density, the radial pressure and the mass of the stellar object and generates a singular charge density.
Relativistic constituent model in sector of light mesons
Krutov, A F; Troitsky, V E
2016-01-01
We present a brief survey of some results on electroweak properties of composite systems that are obtained in the frameworks of our version of the instant form of relativistic quantum mechanics (RQM). Our approach describes well the $\\pi$- and the $\\rho$- mesons in wide range of momentum transfers $Q^{2}$. At large $Q^{2}$ the obtained pion form factor asymptotics coincides with that of QCD predictions. The method permits to perform analytic continuation of pion form factor to complex plane of momentum transfers that is in accordance with predictions of quantum field theory.
On the electrodynamics of Minkowski at low velocities
Rousseaux, G.
2008-10-01
The Galilean constitutive equations for the electrodynamics of moving media are derived for the first time. They explain all the historic and modern experiments which were interpreted so far in a relativistic framework assuming the constant light celerity principle. Here, we show the latter to be sufficient but not necessary.
DONG Yu-Bing; FENG Qing-Guo
2002-01-01
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
On The Origin Of The Classical And Quantum Electrodynamic Arrows Of Time
Leiter, Darryl
2009-01-01
In order to describe the microscopic classical electrodynamic measurement process in an operational, relativistic, observer-participant manner, an Abelian operator symmetry of microscopic observer-participation called Measurement Color (MC) is incorporated into the field theoretic structure of the Classical Electrodynamics (CED) of interacting point charges. The new formalism, called Measurement Color Classical Electrodynamics (MC-CED), is shown to be a nonlocal, time reversal violating, classical field theory of interacting point charges in which a microscopic classical electrodynamic arrow of time emerges dynamically, independent of any external thermodynamic or cosmological assumptions. We then show how the standard canonical quantum field quantization program can be applied to the classical observer-participant MC-CED theory. This leads to the development of a relativistic, observer-participant Measurement Color Quantum Electrodynamic (MC-QED) formalism in the Heisenberg Picture, which contains an intrins...
On the Theory of Resonances in Non-Relativistic QED and Related Models
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Relativistic model for the nonmesonic weak decay of single-lambda hypernuclei
Fontoura, C E; Galeão, A P; De Conti, C; Krein, G
2015-01-01
Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay of single-$\\Lambda$ hypernuclei in the framework of the independent-particle shell model and with the dynamics represented by the $(\\pi,K)$ one-meson-exchange model. Numerical results for the one-nucleon-induced transition rates of ${}^{12}_{\\Lambda}\\textrm{C}$ are presented and compared with those obtained in the analogous nonrelativistic calculation. There is satisfactory agreement between the two approaches, and the most noteworthy difference is that the ratio $\\Gamma_{n}/\\Gamma_{p}$ is appreciably higher and closer to the experimental value in the relativistic calculation. Large discrepancies between ours and previous relativistic calculations are found, for which we do not encounter any fully satisfactory explanation. The most recent experimental data is well reproduced by our results. In summary, we have achieved our purpose to develop a reliable...
On the Electrodynamics of Moving Particles in Gravitational Fields
Nassif, Claudio
2007-01-01
We will look for an implementation of new symmetries in the space-time structure, which allows us to find a unified vision for electrodynamics and gravitation. We will atempt to develop a simple model of the electromagnetic nature of the electron such that the influence of the gravitational field over the electrodynamics in subatomic scales leads us to a reformulation in our comprehention of the space-time structure through the elimination of the classical idea of rest. This will lead to a reformulation of the relativistic theory by introducing the idea about a universal minimum limit of speed in the space-time. Such limit, unattainable by the particles, represents a perfect and absolute inertial reference frame associated to a universal background field (a kind of non-local vacuum energy), enabling a fundamental understanding of the quantum uncertainties. The structure of space-time becomes extended due to such vacuum energy density which leads to a negative pressure in cosmological scales like a cosmologica...
Modelling general relativistic perfect fluids in field theoretic language
Mitskievich, N V
1999-01-01
Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.
Differential Regularization of a Non-relativistic Anyon Model
Freedman, Daniel Z; Rius, N
1994-01-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\\phi$ with $\\lambda (\\phi {}^{*} \\phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\\phi {}^{*} \\phi {}^{*} \\phi \\phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to $\\beta(\\lambda,e)$ vanish, and $\\beta(\\lambda,e)$ itself vanishes when the ``self-dual'' condition relating $\\lambda$ to the gauge coupling $e$ is imposed.
Casana, R.; Ferreira, M. M.; dos Santos, F. E. P.
2016-12-01
Following a successfully quantization scheme previously developed in Ref. [R. Casana, M. M. Ferreira, Jr., and F. E. P. dos Santos, Phys. Rev. D 90, 105025 (2014).] for a parity-even gauge sector of the SME, we have established the Gupta-Bleuler quantization of a parity-odd and C P T -even electrodynamics of the standard model extension (SME) without the need for a small photon mass regulator. Keeping the photons massless, we have adopted the gauge-fixing condition: G (Aμ)=(∂0+κ0 j∂j)(A0+κ0 kAk)+∂iAi . The four polarization vectors of the gauge field are exactly determined by solving an eigenvalue problem, exhibiting birefringent second-order contributions in the Lorentz-violating parameters. They allow us to express the Hamiltonian in terms of annihilation and creation operators whose positivity is guaranteed by imposing a weak Gupta-Bleuler constraint, defining the physical states. Consequently, we compute the field commutation relation that has been expressed in terms of Pauli-Jordan functions modified by Lorentz violation whose light-cone structures have allowed us to analyze the microcausality issue.
Casana, Rodolfo; Ferreira, Manoel M., Jr.; Rodrigues, Josberg S.; Silva, Madson R. O.
2009-10-01
In this work, we examine the finite temperature properties of the CPT-even and Lorentz-invariance-violating (LIV) electrodynamics of the standard model extension, represented by the term WανρφFανFρφ. We begin analyzing the Hamiltonian structure following the Dirac’s procedure for constrained systems and construct a well-defined and gauge invariant partition function in the functional integral formalism. Next, we specialize for the nonbirefringent coefficients of the tensor Wανρφ. In the sequel, the partition function is explicitly carried out for the parity-even sector of the tensor Wανρφ. The modified partition function is a power of the Maxwell’s partition function. It is observed that the LIV coefficients induce an anisotropy in the black body angular energy density distribution. The Planck’s radiation law, however, retains its frequency dependence and the Stefan-Boltzmann law keeps the usual form, except for a change in the Stefan-Boltzmann constant by a factor containing the LIV contributions.
Avancini, S.S.; Marinelli, J.R. [Universidade Federal de Santa Catarina Florianopolis, Depto de Fisica - CFM, Florianopolis (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (Brazil)
2013-06-15
Relativistic models for finite nuclei contain spurious center-of-mass motion in most applications for the nuclear many-body problem, where the nuclear wave function is taken as a single Slater determinant within a space-fixed frame description. We use the Peierls-Yoccoz projection method, previously developed for relativistic approaches together with a reparametrization of the coupling constants that fits binding energies and charge radius and apply our results to calculate elastic electron scattering monopole charge form factors for light nuclei. (orig.)
Space-time orientations, electrodynamics, antiparticles
Tulczyjew, W M [Associated with Instituto Nazionale di Fisica Nucleare Sezione di Napoli, Italy Complesso universitario Monte Sant' Angelo Via Cintia, 80126 Naples (Italy)
2007-11-15
Two definitions of orientation in space-time are introduced. One is a standard definition found for examples presented elsewhere. The other is a new definition based on the Minkowski geometry of space-time. Parities of differential forms appearing in electrodynamics are analysed. Parities of differential forms based on the standard concept of orientation are those introduced by de Rham. Parities based on the relativistic concept of orientation are the intrinsic space-time version of parities normally assigned to electromagnetic objects in texts on electrodynamics. Such assignments are made by Jackson [5] and also by Landau and Lifshitz. We present two formulations of the dynamics of charged particles corresponding to the two assignments of parities to electromagnetic objects. One is due to Stueckelberg and Feynman. The other is an attempt to formulate a classical theory corresponding to Dirac's quantum interpretation of antiparticles following the publications listed.
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)
2006-04-24
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.
Semileptonic decays of $\\Lambda_c$ baryons in the relativistic quark model
Faustov, R N
2016-01-01
Motivated by recent experimental progress in studying weak decays of the $\\Lambda_c$ baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach and QCD. The form factors of the $\\Lambda_c\\to \\Lambda l\
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Larchenkova, T. I.; Lutovinov, A. A.; Lyskova, N. S.
2011-01-01
The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Dif...
Buchert, Thomas; Wiegand, Alexander
2013-01-01
Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...
Kumar, Vinay
2016-01-01
The present book entitled Concepts of Electrodynamics meets the demand of students of all engineering, graduate, honours and postgraduate courses in a single volume. This book covers all the topics on electrodynamics as per the new syllabus prescribed by UGC and AICTE and we do hope that this book will revive interest in the study of various topics on electrodynamics which will carries the reader to a high level of understanding. The text is enriched with a large number of solved examples apart from appropriate illustrations and examples in each chapter.
Quantum regime of a free-electron laser: relativistic approach
Kling, Peter; Sauerbrey, Roland; Preiss, Paul; Giese, Enno; Endrich, Rainer; Schleich, Wolfgang P.
2017-01-01
In the quantum regime of the free-electron laser, the dynamics of the electrons is not governed by continuous trajectories but by discrete jumps in momentum. In this article, we rederive the two crucial conditions to enter this quantum regime: (1) a large quantum mechanical recoil of the electron caused by the scattering with the laser and the wiggler field and (2) a small energy spread of the electron beam. In contrast to our recent approach based on nonrelativistic quantum mechanics in a co-moving frame of reference, we now pursue a model in the laboratory frame employing relativistic quantum electrodynamics.
A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion
Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)
2016-06-15
We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2016-03-01
We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.
Foundations of electrodynamics
Moon, Parry
2013-01-01
Advanced undergraduate text presupposes some knowledge of electricity and magnetism, making substantial use of vector analysis. A serious development of electrodynamics on a postulational basis that clearly defines each concept. 1960 edition.
Blash, Derek M.
The region known as Low-Earth Orbit (LEO) has become populated with artificial satellites and space debris since humanities initial venture into the region. This has turned LEO into a hazardous region. Since LEO is very valuable to many different countries, there has been a push to prevent further buildup and talk of even deorbiting spent satellites and debris already in LEO. One of the more attractive concepts available for deorbiting debris and spent satellites is a Bare Electrodynamic Tether (BET). A BET is a propellantless propulsion technique in which two objects are joined together by a thin conducting material. When these tethered objects are placed in LEO, the tether sweeps across the magnetic field lines of the Earth and induces an electromotive force (emf) along the tether. Current from the space plasma is collected on the bare tether under the action of the induced emf, and this current interacts with the Earth's magnetic field to create a drag force that can be used to deorbit spent satellites and space debris. A Plasma Contactor (PC) is used to close the electrical circuit between the BET and the ionospheric plasma. The PC requires a voltage and, depending on the device, a gas flow to emit electrons through a plasma bridge to the ionospheric plasma. The PC also can require a plasma discharge electrode and a heater to condition the PC for operation. These parameters as well as the PC performance are required to build an accurate simulation of a PC and, therefore, a BET deorbiting system. This thesis focuses on the development, validation, and implementation of a simulation tool to model the effects of a realistic hollow cathode PC system model on a BET deorbit system.
Electrodynamics on extrasolar giant planets
Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-11-20
Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially
Wang, W -M; Gibbon, P; Li, Y -T
2016-01-01
We develop the particle-in-cell (PIC) code KLAPS to include the photon generation via the Compton scattering and electron-positron creation via the Breit-Wheeler process due to quantum electrodynamics (QED) effects. We compare two sets of existing formulas for the photon generation and different Monte Carlo algorithms. Then we benchmark the PIC simulation results.
Strong-field relativistic processes in highly charged ions
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
Spherical relativistic vacuum core models in a Λ-dominated era
Yousaf, Z.
2017-02-01
This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.
Wilson fermions and axion electrodynamics in optical lattices.
Bermudez, A; Mazza, L; Rizzi, M; Goldman, N; Lewenstein, M; Martin-Delgado, M A
2010-11-05
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Finite Size Corrected Relativistic Mean-Field Model and QCD Critical End Point
Uddin, Saeed; Ahmad, Jan Shabir
2012-01-01
The effect of finite size of hadrons on the QCD phase diagram is analyzed using relativistic mean field model for the hadronic phase and the Bag model for the QGP phase. The corrections to the EOS for hadronic phase are incorporated in a thermodynamic consistent manner for Van der Waals like interaction. It is found that the effect of finite size of baryons is to shift CEP to higher chemical potential values.
PACIAE 2.0: An Updated Parton and Hadron Cascade Model (Program) for Relativistic Nuclear Collisions
SA; Ben-hao; ZHOU; Dai-mei; YAN; Yu-liang; LI; Xiao-mei; FENG; Sheng-qing; DONG; Bao-guo; CAI; Xu
2012-01-01
<正>We have updated the parton and hadron cascade model PACIAE for the relativistic nuclear collisions, from based on JETSET 6.4 and PYTHIA 5.7, and referred to as PACIAE 2.0. The main physics concerning the stages of the parton initiation, parton rescattering, hadronization, and hadron rescattering were discussed. The structures of the programs were briefly explained. In addition, some calculated examples were compared with the experimental data. It turns out that this model (program) works well.
Magnetic moments of heavy baryons in the relativistic three-quark model
Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.
Belgiorno, Francesco [Politecnico di Milano, Dipartimento di Matematica, Milano (Italy); INdAM-GNFM, Milano (Italy); Cacciatori, Sergio L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN sezione di Milano, Milano (Italy); Dalla Piazza, Francesco [Universita ' ' La Sapienza' ' , Dipartimento di Matematica, Roma (Italy); Doronzo, Michele [Universita dell' Insubria, Department of Science and High Technology, Como (Italy)
2016-06-15
We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ. The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered. (orig.)
Belgiorno, F; Piazza, F Dala; Doronzo, M
2015-01-01
We investigate the quantization in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field $\\phi$ and the role of the polarization field is played by a further scalar field $\\psi$. The model, which is quadratic in the fields, is still characterized by a nontrivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.
Thermal quantum electrodynamics of nonrelativistic charged fluids.
Buenzli, Pascal R; Martin, Philippe A; Ryser, Marc D
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r(-6) decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Thermal quantum electrodynamics of nonrelativistic charged fluids
Buenzli, Pascal R.; Martin, Philippe A.; Ryser, Marc D.
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r-6 decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Ways to constrain neutron star equation of state models using relativistic disc lines
Bhattacharyya, Sudip
2011-01-01
Relativistic spectral lines from the accretion disc of a neutron star low-mass X-ray binary can be modelled to infer the disc inner edge radius. A small value of this radius tentatively implies that the disc terminates either at the neutron star hard surface, or at the innermost stable circular orbit (ISCO). Therefore an inferred disc inner edge radius either provides the stellar radius, or can directly constrain stellar equation of state (EoS) models using the theoretically computed ISCO radius for the spacetime of a rapidly spinning neutron star. However, this procedure requires numerical computation of stellar and ISCO radii for various EoS models and neutron star configurations using an appropriate rapidly spinning stellar spacetime. We have fully general relativistically calculated about 16000 stable neutron star structures to explore and establish the above mentioned procedure, and to show that the Kerr spacetime is inadequate for this purpose. Our work systematically studies the methods to constrain Eo...
On the current-driven model in the classical electrodynamics of continuous media.
Markel, Vadim A
2010-12-01
The current-driven model in which a continuous medium is excited by a pre-determined current which overlaps with the medium in all points in space but is not subject to constitutive relations is critically analyzed.
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Electrodynamics of Magnetoactive Media
Browning, P K [Department of Physics, UMIST, PO Box 88, Sackville Street, Manchester, M60 1QD (United Kingdom)
2004-11-12
'Electrodynamics of Magnetoactive Media' is an unusual book in that it cuts across conventional physics discipline boundaries. The unifying theme allowing this is, quite simply, the physics of magnetic fields in various media. I believe the authors are correct in stating that the book is unique in specifically covering electrodynamic phenomena associated with magnetic fields, though of course some of the more elementary aspects are covered in the classical textbooks on electromagnetism, which are duly acknowledged. This interdisciplinarity makes the book very interesting to people with a range of backgrounds. For example, as a plasma physicist, I was familiar with most of the material on plasmas, but liquid crystals and superconductors were entirely new territory for me. These chapters were indeed both accessible and interesting, and it was surprising for me to see how much commonality there is in the physics of these various media. The first part of the book covers some fundamentals of electrodynamics and magnetostatics, and of electromagnetic waves. Most of this material is covered in textbooks on electromagnetism, and some of it is very basic (for example, LRC circuit theory, surely covered in most first year physics courses, is included) but it is perhaps a useful prelude for what is to come. The generic topic of charged particle motion in electromagnetic fields is well covered. Three main magnetoactive media are then discussed: plasmas (focusing on waves), liquid crystals and superconductors. It is all too easy to criticise a book on the grounds of omitted material, but I do feel that a chapter on magnetostatics in plasmas would have been very helpful, covering force-free fields and so on. Some interesting analogies could then have been exploited. For example, I was intrigued to discover an equation for magnetic fields in superconductors (equation (9.36)) which, apart from a change of sign, is identical to the Helmholtz equation used to model linear
Model of Quantum Computing in the Cloud: The Relativistic Vision Applied in Corporate Networks
Chau Sen Shia
2016-08-01
Full Text Available Cloud computing has is one of the subjects of interest to information technology professionals and to organizations when the subject covers financial economics and return on investment for companies. This work aims to present as a contribution proposing a model of quantum computing in the cloud using the relativistic physics concepts and foundations of quantum mechanics to propose a new vision in the use of virtualization environment in corporate networks. The model was based on simulation and testing of connection with providers in virtualization environments with Datacenters and implementing the basics of relativity and quantum mechanics in communication with networks of companies, to establish alliances and resource sharing between the organizations. The data were collected and then were performed calculations that demonstrate and identify connections and integrations that establish relations of cloud computing with the relativistic vision, in such a way that complement the approaches of physics and computing with the theories of the magnetic field and the propagation of light. The research is characterized as exploratory, because searches check physical connections with cloud computing, the network of companies and the adhesion of the proposed model. Were presented the relationship between the proposal and the practical application that makes it possible to describe the results of the main features, demonstrating the relativistic model integration with new technologies of virtualization of Datacenters, and optimize the resource with the propagation of light, electromagnetic waves, simultaneity, length contraction and time dilation.
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R. J.; Serot, Brian D.
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Semileptonic decays of Λ{sub c} baryons in the relativistic quark model
Faustov, R.N.; Galkin, V.O. [Institute of Informatics in Education, FRC CSC RAS, Moscow (Russian Federation)
2016-11-15
Motivated by recent experimental progress in studying weak decays of the Λ{sub c} baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ{sub c} → Λlν{sub l} and Λ{sub c} → nlν{sub l} decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data. (orig.)
Relativistic three-body quark model of light baryons based on hypercentral approach
Aslanzadeh, M.; Rajabi, A. A.
2015-05-01
In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.
Chulhai, Dhabih V; Jensen, Lasse
2014-10-01
Raman optical activity has proven to be a powerful tool for probing the geometry of small organic and biomolecules. It has therefore been expected that the same mechanisms responsible for surface-enhanced Raman scattering may allow for similar enhancements in surface-enhanced Raman optical activity (SEROA). However, SEROA has proved to be an experimental challenge and mirror-image SEROA spectra of enantiomers have so far not been measured. There exists a handful of theories to simulate SEROA, all of which treat the perturbed molecule as a point-dipole object. To go beyond these approximations, we present two new methods to simulate SEROA: the first is a dressed-tensors model that treats the molecule as a point-dipole and point-quadrupole object; the second method is the discrete interaction model/quantum mechanical (DIM/QM) model, which considers the entire charge density of the molecule. We show that although the first method is acceptable for small molecules, it fails for a medium-sized one such as 2-bromohexahelicene. We also show that the SEROA mode intensities and signs are highly sensitive to the nature of the local electric field and gradient, the orientation of the molecule, and the surface plasmon frequency width. Our findings give some insight into why experimental SEROA, and in particular observing mirror-image SEROA for enantiomers, has been difficult.
Mueller, B; Marek, A
2012-01-01
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated ele...
Rueda, A.
1986-11-11
Further discussions and detailed calculations on the problem of the spontaneous acceleration of free electromagnetically interacting particles by the zero-point field in the light of a quantum version of the Einstein-Hopf model are presented. It is shown that acceleration occurs if the zero-point field is represented in a time-symmetric fashion within the viewpoint of the Wheeler-Feynman radiant-absorber theory. However, if the zero-point field is represented in the time-asymmetric form, the quantum Einstein-Hopf model yields no translational kinetic-energy growth in disagreement with the previous prediction and with the result of the classical version of the zero-point field in stochastic electrodynamics. The calculations are clear and compelling. Despite that the last no-acceleration result is germane to phenomenological thermodynamics expectations and to a more consistent perspective of quantum theory, the second quantization that leads to the time-symmetric zero-point field yields a conceptually more satisfactory view of this background field which is no longer a free virtual field but becomes a real field which is originated in and is associated with particles. The discussion is based on the different boundary conditions for the electromagnetic-field tensor that the zero-point field (asymmetric vs. symmetric) requires in quantum and in classical theory: time symmetry presupposes a universe that is opaque. If this condition does not hold, we are forced to ordinary time asymmetry and, if a correspondence with quantum electrodynamics is desired, some modification of the hypothesis of stochastic electrodynamics would be required to prevent acceleration. The possible form of that modification is suggested.
Casana, Rodolfo; Ferreira Junior, Manoel M.; Moreira, Roemir P.M. [Universidade Federal do Maranhao (UFMA), MA (Brazil); Gomes, Adalto R. [Instituto Federal de Educacao Ciencia e Tecnologia do Maranhao (IFMA), MA (Brazil)
2011-07-01
Full text: In a recent work, we have accomplished the dimensional reduction of the non birefringent CPT-even gauge sector of the Standard Model Extension. As well-known, the CPT-even gauge sector is composed of nineteen components comprised by the fourth-rank tensor, (K{sub F} ){sub μνρσ}, of which nine do not yield birefringence. These nine components can be parametrized in terms of the symmetric and traceless tensor, k{sub μν} = (K{sub F}){sup ρ} νρσ. Starting from this parametrization, and applying the dimensional reduction procedure, we obtain a planar theory corresponding to the non birefringent sector, composed of a gauge and scalar sectors, mutually coupled. These sectors possess six and three independent components, respectively. Some interesting properties of this theory, concerning classical stationary solutions, were examined recently. In the present work, we explicitly evaluate the Feynman propagator for this model, in a tensor closed way, using a set of operators defined in terms of three 3-vectors. We use this propagator to examine the dispersion relations of this theory, and analyze some properties related to its causality, stability, and unitarity. (author)
Relativistic energy loss in a dispersive medium
Houlrik, Jens Madsen
2002-01-01
The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...
Relativistic energy loss in a dispersive medium
Houlrik, Jens Madsen
2002-01-01
The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...
On spherically symmetric singularity-free models in relativistic cosmology
Ramesh Tikekar
2000-10-01
The introduction of time dependence through a scale factor in a non-conformally ﬂat static cosmological model whose spacetime can be embedded in a ﬁve demensional ﬂat spacetime is shown to give rise to two spherical models of universe ﬁlled with perfect ﬂuid acompannied with radial heat ﬂux without any Big Bang type singularity. The ﬁrst model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.
Lorentz-violating vortex solutions in the CPT-even electrodynamics of the Standard Model Extension
Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), MA (Brazil); Hora, E. da [Universidade Federal da Paraiba (UFPB), PB (Brazil)
2011-07-01
Full text: In this work, we investigate the formation of static rotationally symmetric solutions on the (1+3) dimensional CPT-even and Lorentz-violating photonic sector of the Standard Model Extension (SME). The main goal of this work is to show the possibility of obtaining these solutions, even in the presence of Lorentz-breaking fields. A secondary goal is to examine the effects of these fields on topologically non-trivial configurations. In order to obtain these results, we focus on specific components of Lorentz-violating background, dealing with static Euler-Lagrange equations, from which we fix temporal gauge (absence of electric field) as a proper gauge choice. We assume the usual rotationally symmetric Ansatz, inserting it in the Euler-Lagrange equations previously obtained. This Ansatz describes the Higgs and gauge fields via profile functions g(r) and a(r), respectively. From this Ansatz, we construct suitable boundary conditions near the origin. Also, we write the energy density in terms of these two profile functions, obtaining from it asymptotic boundary conditions. This set of conditions is used to numerically solve the Euler-Lagrange equations (by means of the shooting method). Finally, we plot solutions for some physical quantities (Higgs field, magnetic field and energy density) for several values of the Lorentz-violating parameters. From these plots, we discuss the influence of these coefficients on the topologically non-trivial rotationally symmetric configurations, focusing on the profiles of both magnetic field and energy density. (author)
Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.
Behery, E E; Haas, F; Kourakis, I
2016-02-01
The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.
Ellison, Donald C; Bykov, Andrei M
2015-01-01
We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...
Deeply virtual Compton scattering in a relativistic quark model
Spitzenberg, T.
2007-09-15
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)
Relativistic jet models for two low-luminosity radio galaxies: evidence for backflow?
Laing, R A
2012-01-01
We show that asymmetries in total intensity and linear polarization between the radio jets and counter-jets in two lobed Fanaroff-Riley Class I (FR I) radio galaxies, B2 0206+35 (UGC 1651) and B2 0755+37 (NGC 2484), can be accounted for if these jets are intrinsically symmetrical, with decelerating relativistic outflows surrounded by mildly relativistic backflows. Our interpretation is motivated by sensitive, well-resolved Very Large Array imaging which shows that both jets in both sources have a two-component structure transverse to their axes. Close to the jet axis, a centrally-darkened counter-jet lies opposite a centrally-brightened jet, but both are surrounded by broader collimated emission that is brighter on the counter-jet side. We have adapted our previous models of FR I jets as relativistic outflows to include an added component of symmetric backflow. We find that the observed radio emission, after subtracting contributions from the extended lobes, is well described by models in which decelerating o...
Molecular quantum electrodynamics
Craig, D P
1998-01-01
This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat
Forecasting relativistic electron flux using dynamic multiple regression models
H.-L. Wei
2011-02-01
Full Text Available The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.
Electrodynamics of a Cosmic Dark Fluid
Balakin, Alexander B
2016-01-01
Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of ten models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extende...
Relativistic electromagnetic mass models in spherically symmetric spacetime
Maurya, S K; Ray, Saibal; Chatterjee, Vikram
2015-01-01
Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\
Slightly generalized Maxwell classical electrodynamics can be applied to inneratomic phenomena
Simulik, V M
2002-01-01
In order to extend the limits of classical theory application in the microworld some weak generalization of Maxwell electrodynamics is suggested. It is shown that slightly generalized classical Maxwell electrodynamics can describe the intraatomic phenomena with the same success as relativistic quantum mechanics can do. Group-theoretical grounds for the description of fermionic states by bosonic system are presented briefly. The advantages of generalized electrodynamics in intraatomic region in comparison with standard Maxwell electrodynamics are demonstrated on testing example of hydrogen atom. We are able to obtain some results which are impossible in the framework of standard Maxwell electrodynamics. The Sommerfeld - Dirac formula for the fine structure of the hydrogen atom spectrum is obtained on the basis of such Maxwell equations without appealing to the Dirac equation. The Bohr postulates and the Lamb shift are proved to be the consequences of the equations under consideration. The relationship of the n...
Relativistic modeling of compact stars for anisotropic matter distribution
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)
2017-05-15
In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function e{sup λ} and radial pressure (p{sub r}). Next we have discussed the physical properties of the model in details by taking the radial pressure p{sub r} equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are 2.29M {sub CircleDot} and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21. (orig.)
Relativistic electromagnetic mass models in spherically symmetric spacetime
Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Chatterjee, Vikram
2016-10-01
Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of constructing electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Lorentz in Proc. Acad. Sci. Amst. 6, 1904). This work is in continuation of our earlier investigation of Maurya et al. (Eur. Phys. J. C 75:389, 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass model. In the present work we consider different metric potentials ν and λ and have analyzed them in a systematic way. It is observed that some of the previous solutions related to electromagnetic mass model are nothing but special cases of the presently obtained generalized solution set. We further verify the solution set and especially show that these are extremely applicable in the case of compact stars.
Relativistic quark model for the Omega- electromagnetic form factors
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
A relativistic quark model for the Omega- electromagnetic form factors
Ramalho, G; Gross, Franz
2009-01-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
Nakamura, Masanori
2014-01-01
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...
Modeling the Emission from Turbulent Relativistic Jets in Active Galactic Nuclei
Victoria Calafut; Paul J. Wiita
2015-06-01
We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and our viewing angle to the jet. The total observed flux is found by integrating the radiation from the eddies over the turbulent spectrum. We consider jets that contain turbulent eddies that have either standard Kolmogorov or recently derived relativistic turbulence spectra. We also account for the time delays in receiving the emission of the eddies due to their different simulated positions in the jet, as well as due to the varying beaming directions as they turn over. We examine these theoretical light curves and compute power spectral densities (PSDs) for a range of viewing angles, bulk velocities of the jet, and turbulent velocities. These PSD slopes depend significantly on the turbulent velocity, and are essentially independent of viewing angle and bulk velocity. The flux variations produced in the simulations for realistic values of the parameters tested are consistent with the types of variations observed in radio-loud AGN as, for example, recently measured with the Kepler satellite, as long as the turbulent velocities are not too high.
Octet baryon electromagnetic form factors in a relativistic quark model
Ramalho, G
2011-01-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
A Euclidean bridge to the relativistic constituent quark model
Hobbs, T J; Miller, Gerald A
2016-01-01
${\\bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${\\bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${\\bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of ...
Euclidean bridge to the relativistic constituent quark model
Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.
2017-03-01
Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.
Strong field electrodynamics of a thin foil
Bulanov, S. S.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Rykovanov, S.; Pegoraro, F.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.
2017-03-01
A new one-dimensional analytical model of a thin double layer foil interaction with a laser pulse is presented. It is based on one-dimensional electrodynamics. This model can be used for the study of high intensity laser pulse interactions with overdense plasmas, leading to frequency upshifting, high order harmonic generation, and ion acceleration in different regimes.
Electrodynamics with radiation reaction
Hammond, Richard T
2011-01-01
The self force of electrodynamics is derived from a scalar field. The resulting equation of motion is free of all of the problems that plague the Lorentz Abraham Dirac equation. The age-old problem of a particle in a constant field is solved and the solution has intuitive appeal.
Causality in Classical Electrodynamics
Savage, Craig
2012-01-01
Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…
General Relativistic Equilibrium Models of Magnetized Neutron Stars
Pili, A G; Del Zanna, L
2013-01-01
Magnetic fields play a crucial role in many astrophysical scenarios and, in particular, are of paramount importance in the emission mechanism and evolution of Neutron Stars (NSs). To understand the role of the magnetic field in compact objects it is important to obtain, as a first step, accurate equilibrium models for magnetized NSs. Using the conformally flat approximation we solve the Einstein's equations together with the GRMHD equations in the case of a static axisymmetryc NS taking into account different types of magnetic configuration. This allows us to investigate the effect of the magnetic field on global properties of NSs such as their deformation.
Critical rotation of general-relativistic polytropic models revisited
Geroyannis, V.; Karageorgopoulos, V.
2013-09-01
We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.
Dougherty, Edward T; Turner, James C; Vogel, Frank
2014-01-01
Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model's validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model's predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.
Octet to decuplet electromagnetic transition in a relativistic quark model
Ramalho, G
2013-01-01
We study the octet to decuplet baryon electromagnetic transitions using the covariant spectator quark model, and predict the transition magnetic dipole form factors for those involving the strange baryons. Utilizing SU(3) symmetry, the valence quark contributions are supplemented by the pion cloud dressing based on the one estimated in the $\\gamma^\\ast N \\to \\Delta$ reaction. Although the valence quark contributions are dominant in general, the pion cloud effects turn out to be very important to describe the experimental data. We also show that, other mesons besides the pion in particular the kaon, may be relevant for some reactions such as $\\gamma^\\ast \\Sigma^+ \\to \\Sigma^{*+}$, based on our analysis for the radiative decay widths of the strange decuplet baryons.
Relativistic model of 2p-2h meson exchange currents in (anti)neutrino scattering
Simo, I Ruiz; Barbaro, M B; De Pace, A; Caballero, J A; Donnelly, T W
2016-01-01
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $\\Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $\\sigma$-model together with weak excitation of the $\\Delta(1232)$ resonance and its subsequent decay into $N\\pi$. With these currents we compute the five 2p-2h response functions contributing to $(\
Electromagnetic properties of light and heavy baryons in the relativistic quark model
Nicmorus Marinescu, Diana
2007-06-14
One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit
Semileptonic decays of $\\Lambda_b$ baryons in the relativistic quark model
Faustov, R N
2016-01-01
Semileptonic $\\Lambda_b$ decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy $\\Lambda_b\\to\\Lambda_c\\ell\
A model of global magnetic reconnection rate in relativistic collisionless plasmas
Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui
2016-01-01
A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $\\sim 0.3$ even when the local rate goes up to $\\sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.
On a modified electrodynamics.
Reiss, H R
2012-09-01
A modification of electrodynamics is proposed, motivated by previously unremarked paradoxes that can occur in the standard formulation. It is shown by specific examples that gauge transformations exist that radically alter the nature of a problem, even while maintaining the values of many measurable quantities. In one example, a system with energy conservation is transformed to a system where energy is not conserved. The second example possesses a ponderomotive potential in one gauge, but this important measurable quantity does not appear in the gauge-transformed system. A resolution of the paradoxes comes from noting that the change in total action arising from the interaction term in the Lagrangian density cannot always be neglected, contrary to the usual assumption. The problem arises from the information lost by employing an adiabatic cutoff of the field. This is not necessary. Its replacement by a requirement that the total action should not change with a gauge transformation amounts to a supplementary condition for gauge invariance that can be employed to preserve the physical character of the problem. It is shown that the adiabatic cutoff procedure can also be eliminated in the construction of quantum transition amplitudes, thus retaining consistency between the way in which asymptotic conditions are applied in electrodynamics and in quantum mechanics. The 'gauge-invariant electrodynamics' of Schwinger is shown to depend on an ansatz equivalent to the condition found here for maintenance of the ponderomotive potential in a gauge transformation. Among the altered viewpoints required by the modified electrodynamics, in addition to the rejection of the adiabatic cutoff, is the recognition that the electric and magnetic fields do not completely determine a physical problem, and that the electromagnetic potentials supply additional information that is required for completeness of electrodynamics.
Casana, R.; Ferreira, M. M.; dos Santos, F. E. P.
2014-11-01
We have established the Gupta-Bleuler quantization of the photon belonging to the anisotropic parity-even sector of the C P T -even and Lorentz-violating (LV) nonbirefringent electrodynamics of the standard model extension. We first present a rule for the Maxwell electrodynamics to be successfully quantized via the Gupta-Bleuler technique in the Lorentz gauge. Recognizing the failure of the Gupta-Bleuler method in the Lorentz gauge, ∂μAμ=0 , for this massless LV theory, we argue that Gupta-Bleuler can be satisfactorily implemented by choosing a modified Lorentz condition, ∂μAμ+κμ ν∂μAν=0 , where κμ ν represents the Lorentz violation in the photon sector. By using a plane-wave expansion for the gauge field, whose polarization vectors are determined by solving an eigenvalue problem, and a weak Gupta-Bleuler condition, we obtain a positive-energy Hamiltonian in terms of annihilation and creation operators. The field commutation relation is written in terms of modified Pauli-Jordan functions, revealing the preservation of microcausality for sufficiently small LV parameters. This procedure works even at second order (the birefringent regime).
A Euclidean bridge to the relativistic constituent quark model
Hobbs, Timothy; Alberg, Mary; Miller, Gerald
2017-01-01
We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.
Building relativistic mean field models for finite nuclei and neutron stars
Chen, Wei-Chia; Piekarewicz, J.
2014-10-01
Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, "FSUGold2," is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular, the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter, suggesting a fairly large neutron-skin thickness in Pb208 and a moderate value of the nuclear incompressibility. Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is flexible enough to create models with different assumptions on various observables. Such a scheme—properly supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required to place meaningful constraints on theoretical models.
Topics in Born-Infeld Electrodynamics
Kerner, R; Galtsov, D V
2001-01-01
Classical version of Born-Infeld electrodynamics is recalled and its most important properties discussed. Then we analyze possible abelian and non-abelian generalizations of this theory, and show how certain soliton-like configurations can be obtained. The relationship with the Standard Model of electroweak interactions is also mentioned.
Larchenkova, T I; Lyskova, N S
2011-01-01
The images of relativistic jets from extragalactic sources produced by gravitational lensing by galaxies with different mass surface density distributions are modeled. In particular, the following models of the gravitational lens mass distribution are considered: a singular isothermal ellipsoid, an isothermal ellipsoid with a core, two- and three-component models with a galactic disk, halo, and bulge. The modeled images are compared both between themselves and with available observations. Different sets of parameters are shown to exist for the gravitationally lensed system B0218+357 in multicomponent models. These sets allow the observed geometry of the system and the intensity ratio of the compact core images to be obtained, but they lead to a significant variety in the Hubble constant determined from the modeling results.
Decay Constants and Distribution Amplitudes of B Meson in the Relativistic Potential Model
Sun, Hao-Kai
2016-01-01
In this work we study the decay constants of $B$ and $B_s$ mesons based on the wave function obtained in the relativistic potential model. Our results are in good agreement with experiment data which enables us to apply this method to the investigation of $B$-meson distribution amplitudes. A very compact form of the distribution amplitudes is obtained. We also investigate the one-loop QCD corrections to the purely leptonic decays of $B$ mesons. We find that, after subtracting the infrared divergence in the one-loop corrections using the factorization method, the QCD one-loop corrections to the leptonic decay amplitude will be zero.
Delta isobars in relativistic mean-field models with $\\sigma$-scaled hadron masses and couplings
Kolomeitsev, E E; Voskresensky, D N
2016-01-01
We extend the relativistic mean-field models with hadron masses and meson-baryon coupling constants dependent on the scalar $\\sigma$ field, studied previously to incorporate $\\Delta(1232)$ baryons. Available empirical information is analyzed to put constraints on the couplings of $\\Delta$s with meson fields. Conditions for the appearance of $\\Delta$s are studied. We demonstrate that with inclusion of the $\\Delta$s our equations of state continue to fulfill majority of known empirical constraints including the pressure-density constraint from heavy-ion collisions, the constraint on the maximum mass of the neutron stars, the direct Urca and the gravitational-baryon mass ratio constraints.
Pasta phases in neutron star studied with extended relativistic mean field models
Gupta, Neha
2013-01-01
To explain several properties of finite nuclei, infinite matter, and neutron stars in a unified way within the relativistic mean field models, it is important to extend them either with higher order couplings or with density-dependent couplings. These extensions are known to have strong impact in the high-density regime. Here we explore their role on the equation of state at densities lower than the saturation density of finite nuclei which govern the phase transitions associated with pasta structures in the crust of neutron stars.
Ground state heavy baryon production in a relativistic quark-diquark model
Nobary, M A Gomshi
2007-01-01
We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2$'$ and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly and triply heavy baryons. We discuss the production of $\\Omega_{bbc}$, $\\Omega_{bcc}$ and $\\Omega_{ccc}$ baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.
Shell-model-like Approach (SLAP) for the Nuclear Properties in Relativistic Mean field Theory
MENG Jie; GUO Jian-you; LIU Lang; ZHANG Shuang-quan
2006-01-01
A Shell-model-like approach suggested to treat the pairing correlations in relativistic mean field theory is introduced,in which the occupancies thus obtained have been iterated back into the densities.The formalism and numerical techniques are given in detail.As examples,the ground state properties and low-lying excited states for Ne isotopes are studied.The results thus obtained are compared with the data available.The binding energies,the odd-even staggering,as well as the tendency for the change of the shapes in Ne isotopes are correctly reproduced.
Dauser, T.; García, J.; Walton, , D. J.; Eikmann, W.; Kallman, T.; McClintock, J.; Wilms, J.
2016-05-01
Aims: The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods: The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results: Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model, namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions: Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection fraction is independent of system parameters such as inclination and black hole spin. The reflection-fraction parameter was implemented with the name refl_frac in all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016).
Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
2012-09-01
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.
Namgung, Wuk
Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton
Theoretical physics 3 electrodynamics
Nolting, Wolfgang
2016-01-01
This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...
On generalized logarithmic electrodynamics
Kruglov, S.I. [University of Toronto, Department of Chemical and Physical Sciences, Mississauga, ON (Canada)
2015-02-01
The generalized logarithmic electrodynamics with two parameters β and γ is considered. The indexes of refraction of light in the external magnetic field are calculated. In the case β = γ we come to results obtained by Gaete and Helayel-Neto (Eur Phys J C 74:2816, 2014). The bound on the values of β, γ was obtained from the Birefringence Magnetique du Vide (BMV) experiment. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. (orig.)
Electrodynamics of chiral matter
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Lectures on classical electrodynamics
Englert, Berthold-Georg
2014-01-01
These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.
Electrodynamic absorber theory
Deckert, Dirk-André
2010-01-01
This work deals with questions that arise in classical and quantum electrodynamics when describing the phenomena of radiation reaction and pair creation. The two guiding ideas are the absorber idea of Wheeler and Feynman (i.e. all emitted radiation will be again be absorbed by matter) and the electron sea idea of Dirac. In the first part classical dynamics are studied which allow for a description of radiation reaction without the need of renormalization. The starting point are the couple...
Electrodynamics in Giant Planet Atmospheres
Koskinen, T.; Yelle, R. V.; Lavvas, P.; Cho, J.
2014-12-01
The atmospheres of close-in extrasolar giant planets such as HD209458b are strongly ionized by the UV flux of their host stars. We show that photoionization on such planets creates a dayside ionosphere that extends from the thermosphere to the 100 mbar level. The resulting peak electron density near the 1 mbar level is higher than that encountered in any planetary ionosphere of the solar system, and the model conductivity is in fact comparable to the atmospheres of Sun-like stars. As a result, the momentum and energy balance in the upper atmosphere of HD209458b and similar planets can be strongly affected by ion drag and resistive heating arising from wind-driven electrodynamics. Despite much weaker ionization, electrodynamics is nevertheless also important on the giant planets of the solar system. We use a generic framework to constrain the conductivity regimes on close-in extrasolar planets, and compare the results with conductivites based on the same approach for Jupiter and Saturn. By using a generalized Ohm's law and assumed magnetic fields, we then demonstrate the basic effects of wind-driven ion drag in giant planet atmospheres. Our results show that ion drag is often significant in the upper atmosphere where it can also substantially alter the energy budget through resistive heating.
Extended symmetrical classical electrodynamics.
Fedorov, A V; Kalashnikov, E G
2008-03-01
In this paper, we discuss a modification of classical electrodynamics in which "ordinary" point charges are absent. The modified equations contain additional terms describing the induced charges and currents. The densities of the induced charges and currents depend on the vector k and the vectors of the electromagnetic field, E and B . It is shown that the vectors E and B can be defined in terms of two four-potentials and the components of k are the components of a four-tensor of the third rank. The Lagrangian of the modified electrodynamics is defined. The conditions are derived at which only one four-potential determines the behavior of the electromagnetic field. It is also shown that static modified electrodynamics can describe the electromagnetic field in the inner region of an electric monopole. In the outer region of the electric monopole the electric field is governed by the Maxwell equations. It follows from boundary conditions at the interface between the inner and outer regions of the monopole that the vector k has a discrete spectrum. The electric and magnetic fields, energy, and angular momentum of the monopole are found for different eigenvalues of k .
Space-Time Quantization and Nonlocal Field Theory -Relativistic Second Quantization of Matrix Model
Tanaka, S
2000-01-01
We propose relativistic second quantization of matrix model of D particles in a general framework of nonlocal field theory based on Snyder-Yang's quantized space-time. Second-quantized nonlocal field is in general noncommutative with quantized space-time, but conjectured to become commutative with light cone time $X^+$. This conjecture enables us to find second-quantized Hamiltonian of D particle system and Heisenberg's equation of motion of second-quantized {\\bf D} field in close contact with Hamiltonian given in matrix model. We propose Hamilton's principle of Lorentz-invariant action of {\\bf D} field and investigate what conditions or approximations are needed to reproduce the above Heisenberg's equation given in light cone time. Both noncommutativities appearing in position coordinates of D particles in matrix model and in quantized space-time will be eventually unified through second quantization of matrix model.
Model operator approach to the Lamb shift calculations in relativistic many-electron atoms
Shabaev, V M; Yerokhin, V A
2013-01-01
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
A viscous blast-wave model for relativistic heavy-ion collisions
Jaiswal, Amaresh
2015-01-01
Using a viscosity-based survival scale for geometrical perturbations formed in the early stages of relativistic heavy-ion collisions, we model the radial flow velocity during freeze-out. Subsequently, we employ the Cooper-Frye freeze-out prescription, with first-order viscous corrections to the distribution function, to obtain the transverse momentum distribution of particle yields and flow harmonics. For initial eccentricities, we use the results of Monte Carlo Glauber model. We fix the blast-wave model parameters by fitting the transverse momentum spectra of identified particles at the Large Hadron Collider (LHC) and demonstrate that this leads to a fairly good agreement with transverse momentum distribution of elliptic and triangular flow for various centralities. Within this viscous blast-wave model, we estimate the shear viscosity to entropy density ratio $\\eta/s\\simeq 0.24$ at the LHC.
The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession
Perera, Benetge; Kramer, Michael; Stairs, Ingrid; Ferdman, Robert; Freire, Paulo; Possenti, Andrea; Breton, Rene; Manchester, Richard N; Burgay, Marta; Lyne, Andrew; Camilo, Fernando
2010-01-01
We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed dec...
Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4
Skeltved, Alexander Broberg; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien
2016-01-01
This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modelling results related to the production of Terrestrial Gamma-ray Flashes (TGFs) and high-energy particle emission from thunderstorms. We will study the Relativistic Runaway Electron Avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from Runaway Electrons (REs). The Monte Carlo (MC) simulations take into account the effects of electron ionisation, electron by electron (M{\\o}ller) and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair-production, in the $250$ eV$-100$ GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback, are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio o...
Maruyama, Naomi; Sazykin, Stanislav; Spiro, Robert W.; Anderson, David; Anghel, Adela; Wolf, Richard A.; Toffoletto, Frank R.; Fuller-Rowell, Timothy J.; Codrescu, Mihail V.; Richmond, Arthur D.; Millward, George H.
2007-07-01
Storm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17 18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-computed electric fields. Comparison of model results with measured or estimated low-latitude vertical drift velocities (zonal electric fields) shows that the coupled model is capable of reproducing measurements under a variety of conditions. In particular, our model results suggest, from theoretical grounds, a possibility of long-lasting penetration of magnetospheric electric fields to low latitudes during prolonged periods of enhanced convection associated with southward-directed interplanetary magnetic field, although the model probably overestimates the magnitude and duration of such penetration during extremely disturbed conditions. During periods of moderate disturbance, we found surprisingly good overall agreement between model predictions and data, with penetration electric fields accounting for early main phase changes and oscillations in low-latitude vertical drift, while the disturbance dynamo mechanism becomes increasingly important later in the modeled events. Discrepancies between the model results and the observations indicate some of the difficulties in validating these combined numerical models, and the limitations of the available experimental data.
Cluster decay in very heavy nuclei in a relativistic mean field model
Bhattacharya, Madhubrata; Gangopadhyay, G.
2008-02-01
Exotic cluster decay of very heavy nuclei was studied in the microscopic Super-Asymmetric Fission Model. The Relativistic Mean Field model with the force FSU Gold was employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction were used in the double folding model to obtain the potential between the cluster and the daughter. Half-life values were calculated in the WKB approximation and the spectroscopic factors were extracted. The latter values are seen to have a simple dependence of the mass of the cluster as has been observed earlier. Predictions were made for some possible decays.
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R; Menezes, Débora P
2015-01-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthetizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low density matter composed of neutrons, protons and $\\Lambda$ hyperons using a Relativistic Mean Field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab-initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition ...
Geroyannis, Vassilis S
2014-01-01
We develop a "hybrid approximative scheme" in the framework of the post-Newtonian approximation for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation. We treat the differential equations governing such a model as a "complex initial value problem", and we solve it by using the so-called "complex-plane strategy". We incorporate into the computations the complete solution for the relativistic effects, this issue representing a significant improvement with regard to the classical post-Newtonian approximation, as verified by extended comparisons of the numerical results.
Lin, M. C.; Verboncoeur, J.
2016-10-01
A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.
Relativistic effects on the neutron charge form factor in the constituent quark model
Cardarelli, F
1999-01-01
The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).
Meson-Meson Scattering in the Relativistic Quark Model from Constraint Dynamics
Crater, Horace; Wong, Cheuk-Yin
2004-11-01
Previously, Crater and Van Alstine footnote H.W. Crater and P. Van Alstine, Ann. Phys. (N.Y.) Vol. 148, 57 (1983) employed Dirac's relativistic constraint dynamics to derive Two-Body Dirac equations which were subsequently applied successfully to obtain a covariant nonperturbative description of QED and QCD bound states footnote H.W. Crater, R.L. Becker, C.Y. Wong, and P. Van Alstine, Phys. Rev. D, Vol.46, 5117 (1992), H. Crater and P. Van Alstine to appear in Phys. Rev. D Vol 70 (hep-ph/0208186). We use this formalism to generalize the microscopic theory of meson-meson scattering developed by Barnes and Swanson footnote T. barnes and E.S. Swanson, Phys. Rev. D Vol. 46, 131 (1992) footnote C.Y. Wong, T. Barnes and E.S. Swanson, Phys. Rev. C Vol 62, 045201 (2001)from the nonrelativistic to the relativistic domain. The application of the present formalism will be demonstrated with a simple quark model for the scattering of mesons.
Meier, D L
2003-01-01
I review recent progress in the theory of relativistic jet production, with special emphasis on unifying black hole sources of stellar and supermassive size. Observations of both classes of objects, as well as theoretical considerations, indicate that such jets may be launched with a spine/sheath flow structure, having a much higher Lorentz factor ($\\sim 50$) near the axis and a lower speed ($\\Gamma \\sim 10$ or so) away from the axis. It has become clear that one can no longer consider models of accretion flows without also considering the production of a jet by that flow. Furthermore, the rotation rate of the black hole also must be taken into account. It provides a third parameter that should break the mass/accretion rate degeneracy and perhaps explain why some sources are radio loud and some radio quiet. Slow jet acceleration and collimation is expected theoretically, and can explain some of the observed features of AGN jet sources. Finally, relativistic jets launched by MHD/ED processes are Poynting flux ...
Acceleration-Induced Nonlocal Electrodynamics in Minkowski Spacetime
Muench, U; Mashhoon, B; Muench, Uwe; Hehl, Friedrich W.; Mashhoon, Bahram
2000-01-01
We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare Mashhoon's model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive law involving the Levi-Civita connection as seen from the observer's local frame and conclude that they are in partial agreement only for the case of constant acceleration.
Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects
2011-01-01
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well ...
Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong
2017-03-01
The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3 s 23 p 63 d 2 and first excited states [Ne]3 s 23 p 53 d 3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3 s and 3 p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion.
Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field
Kholmetskii, A. L.; Yarman, T.
2008-01-01
In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…
Methods of numerical analysis of 1-dimensional 2-body problem in Wheeler-Feynman electrodynamics
Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.
2000-04-01
Numerical methods for solution of differential equations with deviating arguments describing 1-dimensional ultra-relativistic scattering of 2 identical charged particles in classical electrodynamics with half-retarded/halfadvanced interaction (Wheeler and Feynman, 1949) are developed. A bifurcation of solutions and violation of their reflectional symmetries in the region of velocities v>0.937c are found in numerical analysis.
Relativistic scalar-vector models of the N-N and N-nuclear interactions
Green, A.E.S.
1985-01-01
This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs.
Relativistic Stark resonances in a simple exactly soluble model for a diatomic molecule
Fillion-Gourdeau, Francois; Bandrauk, Andre D
2012-01-01
A simple 1-D relativistic model for a diatomic molecule with a double point interaction potential is solved exactly in a constant electric field. The Weyl-Titchmarsh-Kodaira method is used to evaluate the spectral density function, allowing the correct normalization of continuum states. The boundary conditions at the potential wells are evaluated using Colombeau's generalized function theory along with charge conjugation invariance and general properties of self-adjoint extensions for point-like interactions. The resulting spectral density function exhibits resonances for quasibound states which move in the complex energy plane as the model parameters are varied. It is observed that for a monotonically increasing interatomic distance, the ground state resonance can either go deeper into the negative continuum or can give rise to a sequence of avoided crossings, depending on the strength of the potential wells. For sufficiently low electric field strength or small interatomic distance, the behavior of resonanc...
Viscous boundary layers of radiation-dominated, relativistic jets. I. The two-stream model
Coughlin, Eric R
2015-01-01
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
Model investigation on the mechanism of QGP formation in relativistic heavy ion collisions
邓胜华; 李家荣
1995-01-01
On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. The thermal effects on the vacuum structure of strongly interacting matter are investigated, and the soliton field equation of the model is solved directly in the whole range of temperature via a numerical method. The phase structure of the system and the features of deconfining phase transition are analysed in detail. In addition, the collective excitations in the vacuum caused by thermal effects are investigated by making use of an order parameter which is given to describe the vacuum condensation at finite temperature. A physical mechanism and an intuitive picture are presented for the formation of QGP from both deconfined hardon matter and the vacuum excitation in relativistic heavy ion collisions.
Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra
Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.
2004-01-01
We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...
Building relativistic mean field models for finite nuclei and neutron stars
Chen, Wei-Chia
2014-01-01
Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed chi-square objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, FSUGold2, is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron star mass observed up to date. In particul...
Semi-classical Electrodynamics
Lestone, John
2016-03-01
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.
Potentialities of Revised Quantum Electrodynamics
Lehnert B.
2013-10-01
Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.
Hu, Zixuan; Ratner, Mark A; Seideman, Tamar
2014-12-14
We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.
Strauss, Y
1999-01-01
We apply the quantum Lax-Phillips scattering theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax-Phillips $S$-matrix is an inner function (the Lax-Phillips theory is essentially a theory of translation invariant subspaces). We then discuss the non-relativistic limit of this theory, and show that the resulting kinematic relations coincide with the conditions required for the Galilean description of a decaying system.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
New parameterization of the effective field theory motivated relativistic mean field model
Kumar, Bharat; Singh, S. K.; Agrawal, B. K.; Patra, S. K.
2017-10-01
A new parameter set is generated for finite and infinite nuclear system within the effective field theory motivated relativistic mean field (ERMF) formalism. The isovector part of the ERMF model employed in the present study includes the coupling of nucleons to the δ and ρ mesons and the cross-coupling of ρ mesons to the σ and ω mesons. The results for the finite and infinite nuclear systems obtained using our parameter set are in harmony with the available experimental data. We find the maximum mass of the neutron star to be 2.03M⊙ and yet a relatively smaller radius at the canonical mass, 12.69 km, as required by the available data.
Higher dimensional charged shear-free relativistic models with heat flux
Nyonyi, Y; Govinder, K S
2014-01-01
We analyse shear-free spherically symmetric relativistic models of gravitating fluids with heat flow and electric charge defined on higher dimensional manifolds. The solution to the Einstein-Maxwell system is governed by the pressure isotropy condition which depends on the spacetime dimension. We study this highly nonlinear partial differential equation using Lie's group theoretic approach. The Lie symmetry generators that leave the equation invariant are determined. We provide exact solutions to the gravitational potentials using the first symmetry admitted by the equation. Our new exact solutions contain the earlier results for the four-dimensional case. Using the other Lie generators, we are able to provide solutions to the gravitational potentials or reduce the order of the master equation to a first order nonlinear differential equation. We derive the temperature transport equation in higher dimensions and find expressions for the causal and Eckart temperatures showing their explicit dependance on the di...
Hyperons in neutron star matter within relativistic mean-field models
Oertel, M; Gulminelli, F; Raduta, A R
2014-01-01
Since the discovery of neutron stars with masses around 2 solar masses the composition of matter in the central part of these massive stars has been intensively discussed. Within this paper we will (re)investigate the question of the appearance of hyperons. To that end we will perform an extensive parameter study within relativistic mean field models. We will show that it is possible to obtain high mass neutron stars (i) with a substantial amount of hyperons, (ii) radii of 12-13 km for the canonical mass of 1.4 solar masses, and (iii) a spinodal instability at the onset of hyperons. The results depend strongly on the interaction in the hyperon-hyperon channels, on which only very little information is available from terrestrial experiments up to now.
Calculation of Energy Spectrum of 12C Isotope by Relativistic Cluster model
Roshanbakht, Nafiseh
2016-01-01
In this paper, we have calculated the energy spectrum of 12C isotope by cluster model. The experimental results show that the "Hoyle" state at 7.65 MeV in 12C isotope has a well-developed three-alpha structure. Hence, we select a three-body system and for interaction between the clusters we use modified Yukawa potential plus coulomb potential. Then, we solve the relativistic Klein-Gordon equation using Nikiforov-Uvarov method to calculate the energy spectrum. Finally, the calculated results are compared with the experimental data. The results show that the isotope 12C should be considered as consisting of three-alpha cluster and the modified Yukawa potential is adaptable for cluster interactions.
Numerical modeling of a Global Navigation Satellite System in a general relativistic framework
Delva, P; Cadez, A
2010-01-01
In this article we model a Global Navigation Satellite System (GNSS) in a Schwarzschild space-time, as a first approximation of the relativistic geometry around the Earth. The closed time-like and scattering light-like geodesics are obtained analytically, describing respectively trajectories of satellites and electromagnetic signals. We implement an algorithm to calculate Schwarzschild coordinates of a GNSS user who receives proper times sent by four satellites, knowing their orbital parameters; the inverse procedure is implemented to check for consistency. The constellation of satellites therefore realizes a geocentric inertial reference system with no \\emph{a priori} realization of a terrestrial reference frame. We show that the calculation is very fast and could be implemented in a real GNSS, as an alternative to usual post-Newtonian corrections. Effects of non-gravitational perturbations on positioning errors are assessed, and methods to reduce them are sketched. In particular, inter-links between satelli...
Modeling the QCD Equation of State in Relativistic Heavy Ion Collisions on BlueGene/L
Soltz, R; Grady, J; Hartouni, E P; Gupta, R; Vitev, I; Mottola, E; Petreczky, P; Karsch, F; Christ, N; Mawhinney, R; Bass, S; Mueller, B; Vranas, P; Levkova, L; Molnar, D; Teaney, D; De Tar, C; Toussaint, D; Sugar, R
2006-04-10
On 9,10 Feb 2006 a workshop was held at LLNL to discuss how a 10% allocation of the ASC BG/L supercomputer performing a finite temperature Lattice QCD (LQCD) calculation of the equation of state and non-equilibrium properties of the quark-gluon state of matter could lead to a breakthrough in our understanding of recent data from the Relativistic Heavy Ion Collider at Brookhaven National Lab. From this meeting and subsequent discussions we present a detailed plan for this calculation, including mechanisms for working in a secure computing environment and inserting the resulting equation of state into hydrodynamic transport models that will be compared directly to the RHIC data. We discuss expected benefits for DOE Office of Science research programs within the context of the NNSA mission.
Dilepton bremsstrahlung from pion-pion scattering in a relativistic OBE model
Eggers, H C; Gale, C; Haglin, K L
1996-01-01
We have made a detailed and quantitative study of dilepton production via bremsstrahlung of a virtual photon during pion-pion collisions. Most calculations of electromagnetic radiation from strong interaction processes rely on the soft photon approximation (SPA). The conditions underlying this approximation are generally violated when dilepton spectra are calculated in terms of their invariant mass, so that an approach going beyond the SPA becomes necessary. Superseding previous derivations, we derive an exact formula for the bremsstrahlung cross section. The resulting formulation is compared to various forms based on the SPA, the two-particle phase space approximation and R\\"uckl's formula using a relativistic One Boson Exchange (OBE) model. Within the OBE approach, we show that approximations to the bremsstrahlung dilepton cross sections often differ greatly from the exact result; discrepancies become greater both with rising temperature and with invariant mass. Integrated dilepton production rates are over...
Wen, D; Wang, X; Ai, B; Liu, G; Dong, D; Liu, L; Wen, De-hua; Chen, Wei; Wang, Xian-ju; Ai, Bao-quan; Liu, Guo-tao; Dong, Dong-qiao; Liu, Liang-gang
2003-01-01
The influence of the rotation on the total masses and radii of the neutron stars are calculated by the Hartle's slow rotation formalism, while the equation of state is considered in a relativistic $\\sigma-\\omega$ model. Comparing with the observation, the calculating result shows that the double neutron star binaries are more like hyperon stars and the neutron stars of X-ray binaries are more like traditional neutron stars. As the changes of the mass and radius to a real neutron star caused by the rotation are very small comparing with the total mass and radius, one can see that Hartle's approximate method is rational to deal with the rotating neutron stars. If three property values: mass, radius and period are observed to the same neutron star, then the EOS of this neutron star could be decided entirely.
Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement
Wettervik, Benjamin Svedung; Siminos, Evangelos; Fülöp, Tünde
2016-01-01
The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of five, because of the use of an adaptive mesh, in a typical scenario involving laser-plasma interaction in the self-induced transparency regime.
Investigation of A＋c- and Ab-Hypernuclei in Relativistic Mean-Field Model
TANYu-Hong; CAIChong-Hai; LILei; NINGPing-Zhi
2003-01-01
We investigate the properties of A+c- and Ab-hypernuclei within the framework of the relativistic mean-field model (RMF). It is found that no A+c bound states can exist if the A+c potential well depth |UA+c| in nuclear matter is less than 10 MeV. If |UA+c|is less than 20 MeV, A+c cannot bind to the heavier nuclei with atomic number larger than 100. We suggest it is preferable to search the A+c-hypernuclei from medium-heavy nuclear systems in experiment. Very small spin-orbit splitting for the A+c in hypernuclei is a/so observed, and for the Ab it is nearly zero.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ-ω Model
CHEN Wei; AI Bao-Quan; LIU Liang-Gang
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model. Different from the results of the previous paper, we find that the effect of the constant a in the self-interaction, U(σ) = aσ+ bσ + cσ + dσ , of the σ meson cannot be neglected.It determines the critical density where tachyon appears. The smaller the a, the larger the critical density. The binding energy, pressure, incompressibility coefficient, nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
De Soto, F
2006-01-01
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2016-08-01
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4
Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien
2014-01-01
This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437
Relativistic QED Plasma at Extremely High Temperature
Masood, Samina S
2016-01-01
Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.
Relativistic Mirrors in Laser Plasmas (Analytical Methods)
Bulanov, Sergei V; Kando, Masaki; Koga, James K
2016-01-01
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.
Relativistic hydro and magnetohydrodynamic models for AGN jet propagation and deceleration
Keppens, R.; Meliani, Z.
2009-01-01
We present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appe
Investigation on regulators in quantum electrodynamics
Stora, Raymond Félix
We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...
Saidi, Wissam A.; Norman, Patrick
2016-07-01
The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.
Saidi, Wissam A; Norman, Patrick
2016-07-14
The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.
Newtonian self-gravitating system in a relativistic huge void universe model
Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon
2016-12-01
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Comparison between Weber’s electrodynamics and classical electrodynamics
A K T Assis; H Torres Silva
2000-09-01
We present the main aspects of Weber’s electrodynamics and of Maxwell’s equations. We discuss Maxwell’s point of view related to Weber’s electrodynamics. We compare Weber’s force with Lorentz’s force. We analyse the relation between Weber’s law and Maxwell’s equations. Finally, we discuss some experiments performed and proposed with which we can distinguish Weber’s force from Lorentz’s one.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
Electrodynamics of Metallic Superconductors
M. Dressel
2013-01-01
Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.
Electrodynamics of Radiating Charges
Øyvind Grøn
2012-01-01
Full Text Available The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.
Electrodynamics classical inconsistencies
De Souza, M M
1995-01-01
The problems of Classical Electrodynamics with the electron equation of motion and with non-integrable singularity of its self-field stress tensor are well known. They are consequences, we show, of neglecting terms that are null off the charge world line but that gives a non null contribution on its world line. The self-field stress tensor of a point classical electron is integrable, there is no causality violation and no conflict with energy conservation in its equation of motion, and there is no need of any kind of renormalization nor of any change in the Maxwell's theory for this. (This is part of the paper hep-th/9510160, stripped , for simplicity, of its non-Minkowskian geometrization of causality and of its discussion about the physical meaning of the Maxwell-Faraday concept of field).
Eringen, A C
1990-01-01
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...
Troxel, M A; Ishak, Mustapha
2013-01-01
We study the effects and implications of anisotropies at the scale of galaxy clusters by building an exact general relativistic model of a cluster using the inhomogeneous and anisotropic Szekeres metric. The model is built from a modified Navarro-Frenk-White (NFW) density profile. We compare this to a corresponding spherically symmetric structure in the Lemaitre-Tolman (LT) model and quantify the impact of introducing varying levels of anisotropy. We examine two physical measures of gravitational infall -- the growth rate of density and the velocity of the source dust in the model. We introduce a generalization of the LT dust velocity profile for the Szekeres metric and demonstrate its consistency with the growth rate of density. We find that the growth rate of density in one substructure increases by 0.5%, 1.5%, and 3.75% for 5%, 10%, and 15% levels of introduced anisotropy, which is measured as the fractional displaced mass relative to the spherically symmetric case. The infall velocity of the dust is found...
General relativistic considerations of the field shedding model of fast radio bursts
Punsly, Brian; Bini, Donato
2016-06-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (B) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic `hair' that must be shed before final collapse. But neutron stars have angular momentum and charge and a fully relativistic Kerr-Newman solution exists in which B has its source inside of the event horizon. In this Letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr-Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B = 1011-1013 G and a long rotation period, >1s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.
Liquid-gas phase transition in strange hadronic matter with relativistic models
Torres, James R.; Gulminelli, F.; Menezes, Débora P.
2016-02-01
Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy. Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase diagram but rather at a qualitative description of the phenomenology, as model independent as possible. Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and Λ hyperons using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations. Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons. Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected to be unstable with respect to the formation of hyperclusters. Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly fitted to ab initio calculations of nuclear and Λ matter.
Edward T. Dougherty
2014-01-01
Full Text Available Transcranial direct current stimulation (tDCS continues to demonstrate success as a medical intervention for neurodegenerative diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with computational simulations using an idealized two-dimensional domain and then an MRI-derived, three-dimensional human head geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use of fine computational grids needed by the medical community.
Quantum electrodynamics near a photonic bandgap
Liu, Yanbing; Houck, Andrew A.
2017-01-01
Photonic crystals are a powerful tool for the manipulation of optical dispersion and density of states, and have thus been used in applications from photon generation to quantum sensing with nitrogen vacancy centres and atoms. The unique control provided by these media makes them a beautiful, if unexplored, playground for strong-coupling quantum electrodynamics, where a single, highly nonlinear emitter hybridizes with the band structure of the crystal. Here we demonstrate that such a hybridization can create localized cavity modes that live within the photonic bandgap, whose localization and spectral properties we explore in detail. We then demonstrate that the coloured vacuum of the photonic crystal can be employed for efficient dissipative state preparation. This work opens exciting prospects for engineering long-range spin models in the circuit quantum electrodynamics architecture, as well as new opportunities for dissipative quantum state engineering.
Magnetic Levitation Experiments with the Electrodynamic Wheel
Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian
Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.
Pramanik, Souvik; Ghosh, Subir
2013-10-01
We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.
Pulsar Electrodynamics: an unsolved problem
Melrose, D B
2016-01-01
Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with $E_\\parallel\
Timelike Momenta In Quantum Electrodynamics
Brodsky, S. J.; Ting, S. C. C.
1965-12-01
In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.
Energy conservation for a radiating charge in classical electrodynamics
Singal, Ashok K
2014-01-01
It is shown that the well-known disparity in classical electrodynamics between the power radiated in electromagnetic fields and the power-loss, as calculated from the radiation reaction on a charge undergoing a non-uniform motion, is successfully resolved when a proper distinction is made between quantities expressed in terms of a "real time" and those expressed in terms of a retarded time. It is shown that the expression for the real-time radiative power loss from a charged particle is somewhat different from the familiar Larmor's formula, or in a relativistic case, from Li\\'{e}nard's formula.
Lienert, Matthias, E-mail: lienert@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany)
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to a relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.
A relativistic mixing-layer model for jets in low-luminosity radio galaxies
Wang, Y; Laing, R; Alexander, P; Pavlovski, G; Knigge, C
2009-01-01
We present an analytical model for jets in Fanaroff & Riley Class I (FRI) radio galaxies, in which an initially laminar, relativistic flow is surrounded by a shear layer. We apply the appropriate conservation laws to constrain the jet parameters, starting the model where the radio emission is observed to brighten abruptly. We assume that the laminar flow fills the jet there and that pressure balance with the surroundings is maintained from that point outwards. Entrainment continuously injects new material into the jet and forms a shear layer, which contains material from both the environment and the laminar core. The shear layer expands rapidly with distance until finally the core disappears, and all of the material is mixed into the shear layer. Beyond this point, the shear layer expands in a cone and decelerates smoothly. We apply our model to the well-observed FRI source 3C31 and show that there is a self-consistent solution. We derive the jet power, together with the variations of mass flux and and en...
Dubus, Guillaume; Fromang, Sébastien
2015-01-01
Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. We developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and VHE lightcurves, constraining the system inclination to $i\\approx 35^{\\rm o}$. There is a tension between th...
General Relativistic Considerations of the Field Shedding Model of Fast Radio Bursts
Punsly, Brian
2016-01-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field ($B$) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic "hair" that must be shed before final collapse. But, neutron stars have angular momentum and charge and a fully relativistic Kerr Newman solution exists in which $B$ has its source inside of the event horizon. In this letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with $B = 10^{11} - 10^{13}$ G and a long rotation period, $>1$ s this is not a ...
Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui
2013-01-01
In this contribution we present some results of potential energy surfaces of actinide and transfermium nuclei from multi-dimensional constrained relativistic mean field (MDC-RMF) models. Recently we developed multi-dimensional constrained covariant density functional theories (MDC-CDFT) in which all shape degrees of freedom $\\beta_{\\lambda\\mu}$ with even $\\mu$ are allowed and the functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. In MDC-RMF models, the pairing correlations are treated with the BCS method. With MDC-RMF models, the potential energy surfaces of even-even actinide nuclei were investigated and the effect of triaxiality on the fission barriers in these nuclei was discussed. The non-axial reflection-asymmetric $\\beta_{32}$ shape in some transfermium nuclei with $N=150$, namely $^{246}$Cm, $^{248}$Cf, $^{250}$Fm, and $^{252}$No were also studied.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Electrodynamic Arrays Having Nanomaterial Electrodes
Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)
2013-01-01
An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.
Two applications of axion electrodynamics
Wilczek, Frank
1987-01-01
The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.
The absorber hypothesis of electrodynamics
De Luca, Jayme
2008-01-01
We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.
BRST Quantisation of Histories Electrodynamics
Noltingk, D.
2001-01-01
This paper is a continuation of earlier work where a classical history theory of pure electrodynamics was developed in which the the history fields have \\emph{five} components. The extra component is associated with an extra constraint, thus enlarging the gauge group of histories electrodynamics. In this paper we quantise the classical theory developed previously by two methods. Firstly we quantise the reduced classical history space, to obtain a reduced quantum history theory. Secondly we qu...
Electrodynamics of a Cosmic Dark Fluid
Alexander B. Balakin
2016-06-01
Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.
Ebran, J-P [CEA/DAM/DIF, F-91297 Arpajon (France); Khan, E; Arteaga, D Pena [Institut de Physique Nucleaire, University Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Vretenar, D, E-mail: jean-paul.ebran@cea.fr [Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia)
2011-09-16
The Relativistic Hartree-Fock-Bogoliubov model for axially deformed nuclei (RHFBz) is presented. The model involves a phenomenological Lagrangian with density-dependent meson-nucleon couplings in the particle-hole channel and the central part of the Gogny force in the particle-particle channel. The RHFBz equations are solved by expansion in the basis of a deformed harmonic oscillator. Illustrative RHFBz calculations are performed for Neon isotopes.
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
LI YanSong; LONG GuiLu
2009-01-01
The relativistic consistent angular-momentum projected shell model (RECAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
Aznauryan, I G
2012-01-01
We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.
Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C
2000-01-01
The detailed way in which duality between sum of exclusive states and the free quark model description operates in semileptonic total decay widths, is analysed. It is made very explicit by the use of the non relativistic harmonic oscillator quark model in the SV limit, and a simple interaction current with the lepton pair. In particular, the Voloshin sum rule is found to eliminate the mismatches of order $\\delta m/m_b^2$.
The relativistic consistent angular-momentum projected shell model study of the N=Z nucleus 52Fe
无
2009-01-01
The relativistic consistent angular-momentum projected shell model(ReCAPS) is used in the study of the structure and electromagnetic transitions of the low-lying states in the N=Z nucleus 52Fe.The model calculations show a reasonably good agreement with the data.The backbending at 12+ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.
Hu, Y. J.; Yang, J.; Kitipornchai, S.
2013-07-01
This paper presents a geometrically nonlinear micro-beam model for the electro-dynamic analysis of an initially curved micro-beam under an applied voltage, with an emphasis on its snap-through and pull-in behaviors. The governing equations of motion and the associated boundary conditions are derived in an arc coordinate system without involving any assumptions on the nonlinear deformation. Differential quadrature method (DQM) and Petzold-Gear Backward Differentiation Formulas (BDF) are employed to solve the governing equations in the space and time domains respectively to obtain the nonlinear fundamental frequency, snap-through voltage, pull-in voltage and the corresponding mode shapes of a micro-beam clamped at both ends. The present analysis is validated through a direct comparison with the published experimental and numerical results. A parametric study is conducted to investigate the influences of the initial gap, base length, arc rise, and initial curved configuration on the snap-through and pull-in behaviors of the micro-beam.
Kawazura, Yohei; Morrison, Philip J
2016-01-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to [Comisso \\textit{et al.}, Phys. Rev. Lett. {\\bf 113}, 045001 (2014)] for the electron--positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked con...
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Analytic modeling of tidal effects in the relativistic inspiral of binary neutron stars.
Baiotti, Luca; Damour, Thibault; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-12-31
To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22 GW cycles are Δϕ≃±0.24 rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.
Murad, Mohammad Hassan; Pant, Neeraj
2014-03-01
In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.
General relativistic modelling of the negative reverberation X-ray time delays in AGN
Emmanoulopoulos, D; Dovciak, M; McHardy, I M
2014-01-01
We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above $10^{-4}$ Hz) i.e. soft band variations lag the hard band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral iron line (Fe k$\\alpha$) at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly-used, but erroneous, top-hat models. Additionally we parametrize the positive ...
Jackson, J.D. [Berkeley University, California (United States)
2001-07-01
This book is the French translation of the last revised edition of the original version published by John Wiley and Sons under the title 'Classical electrodynamics 3. Edition'. It covers the physics and classical mathematics necessary to understand electromagnetic fields in materials and at surfaces and interfaces. It emphasizes the unity of electric and magnetic phenomena both in their physical basis and the mode of their mathematical description. It develops and utilizes a number of tools in mathematical physics, and presents now material on the interaction of relativistic charged particles with electromagnetic fields and other areas. First published in 1962, and again in 1974; the third edition incorporates the slight drifts in emphasis and applications that have occurred in the past twenty years. Content: introduction to electrostatics; boundary-value problems in electrostatics; multipoles, electrostatics of macroscopic media, dielectrics; magneto-statics, Faraday's law, quasi-static fields; Maxwell equations, macroscopic electromagnetism, conservation laws; plane electromagnetic waves and wave propagation; waveguides, resonant cavities, and optical fibers; radiating systems, multipole fields and radiation; scattering and diffraction; special theory of relativity; dynamics of relativistic particles and electromagnetic fields; collisions, energy loss, and scattering of charged particles, Cherenkov and transition radiation; radiation by moving charges; Bremsstrahlung, method of virtual quanta, radiative beta processes; radiation damping, classical models of charged particles. (J.S.)
Quantum Electrodynamics Effects in Rovibrational Spectra of Molecular Hydrogen.
Komasa, Jacek; Piszczatowski, Konrad; Łach, Grzegorz; Przybytek, Michał; Jeziorski, Bogumił; Pachucki, Krzysztof
2011-10-11
The dissociation energies from all rovibrational levels of H2 and D2 in the ground electronic state are calculated with high accuracy by including relativistic and quantum electrodynamics (QED) effects in the nonadiabatic treatment of the nuclear motion. For D2, the obtained energies have theoretical uncertainties of 0.001 cm(-1). For H2, similar uncertainties are for the lowest levels, while for the higher ones the uncertainty increases to 0.005 cm(-1). Very good agreement with recent high-resolution measurements of the rotational v = 0 levels of H2, including states with large angular momentum J, is achieved. This agreement would not have been possible without accurate evaluation of the relativistic and QED contributions and may be viewed as the first observation of the QED effects, mainly the electron self-energy, in a molecular spectrum. For several electric quadrupole transitions, we still observe certain disagreement with experimental results, which remains to be explained.
The Relation between Classical and Quantum Electrodynamics
Mario Bacelar Valente
2011-01-01
Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.
Murad, Mohammad Hassan
2014-01-01
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving Einstein-Maxwell field equations with preferred form of one of the metric potentials, a suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for matter distribution obtained in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g. electrically charged bare strange stars). These models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated numerically that the maximum compactness and mass increase in the presence of electric field and anisotropic pressures. Based on the a...
Maslov, K A; Voskresensky, D N
2016-01-01
Knowledge of the equation of state of the baryon matter plays a decisive role in the description of neutron stars. With an increase of the baryon density the filling of Fermi seas of hyperons and $\\Delta$ isobars becomes possible. Their inclusion into standard relativistic mean-field models results in a strong softening of the equation of state and a lowering of the maximum neutron star mass below the measured values. We extend a relativistic mean-field model with scaled hadron masses and coupling constants developed in our previous works and take into account now not only hyperons but also the $\\Delta$ isobars. We analyze available empirical information to put constraints on coupling constants of $\\Delta$s to mesonic mean fields. We show that the resulting equation of state satisfies majority of presently known experimental constraints.
Experiments with Electrodynamic Wheels
Gaul, Nathan; Corey, Daniel; Cordrey, Vincent; Majewski, Walerian
2015-04-01
Our experiments were involving inductive magnetic levitation. A Halbach array is a system in which a series of magnets is arranged in a manner such that the magnetic field is cancelled on one side of the array while strengthening the field on the other. We constructed two circular Halbach wheels, making the strong magnetic field on the outer rim of the ring. Such system is usually dubbed as an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We demonstrated that these interactions produce both drag and lift forces on the EDW which can theoretically be used for lift and propulsion of the EDW. The focus of our experiments is determining how to maximize the lift-to-drag ratio by the proper choice of the induction element. We will also describe our experiments with a rotating circular Halbach array having the strong magnetic field of about 1 T on the flat side of the ring, and acting as a hovercraft.
Eringen, A C
1990-01-01
This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the unde...
Kopeikin, S M; Kopeikin, Sergei; Fomalont, Ed
2002-01-01
A relativistic sub-picosecond model of gravitational time delay in radio astronomical observations is worked out and a new experimental test of general relativity is discussed in which the effect of retardation of gravity associated with its finite speed can be observed. As a consequence, the speed of gravity can be measured by differential VLBI observations. Retardation in propagation of gravity is a central part of the Einstein theory of general relativity which has not been tested directly so far. The idea of the proposed gravitational experiment is based on the fact that gravity in general relativity propagates with finite speed so that the deflection of light caused by the body must be sensitive to the ratio of the body's velocity to the speed of gravity. The interferometric experiment can be performed, for example, during the very close angular passage of a quasar by Jupiter. Due to the finite speed of gravity and orbital motion of Jupiter, the variation in its gravitational field reaches observer on Ea...
Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models
Kremer, G M
2002-01-01
A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with th...
Looking into the inner black hole accretion disc with relativistic models of iron line
Svoboda, Jiri
2010-01-01
We discuss black hole spin measurements employing the relativistic iron line profiles in the X-ray domain. We investigate the iron line band for two representative sources -- MCG -6-30-15 (active galaxy) and GX 339-4 (X-ray binary). We compare two models of the broad iron line, LAOR and KYRLINE. We realise that the spin is currently determined entirely from the position of the marginally stable orbit while the effect of the spin on the overall line shape would be resolvable with higher resolution X-ray missions. We show that the precision of the spin measurements depends on an unknown angular distribution of the disc emission. We study how sensitive the spin determination is to the assumptions about the intrinsic angular distribution of the emitted photons. We find that the uncertainty of the directional emission distribution translates to 20% uncertainty in the determination of the radius of marginally stable orbit. We perform radiation transfer computations of an X-ray irradiated disc atmosphere (NOAR code)...
Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
Baiotti, Luca; Giacomazzo, Bruno; Nagar, Alessandro; Rezzolla, Luciano
2010-01-01
To detect the gravitational-wave signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We have performed the longest (to date) general-relativistic simulations of binary neutron stars with different compactnesses and used them to constrain a tidal extension of the effective-one-body model so that it reproduces the numerical waveforms accurately and essentially up to the merger. The typical errors in the phase over the $\\simeq 22$ gravitational-wave cycles are $\\Delta \\phi\\simeq \\pm 0.24$ rad, thus with relative phase errors $\\Delta \\phi/\\phi \\simeq 0.2%$. We also show that with a single choice of parameters, the effective-one-body approach is able to reproduce all of the numerically-computed phase evolutions, in contrast with what found when adopting a tidally corrected post-Newtonian Taylor-T4 expansion.
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Nuclear matter fourth-order symmetry energy in relativistic mean field models
Cai, Bao-Jun
2011-01-01
Within the nonlinear relativistic mean field model, we derive the analytical expression of the nuclear matter fourth-order symmetry energy $E_{4}(\\rho)$. Our results show that the value of $E_{4}(\\rho)$ at normal nuclear matter density $\\rho_{0}$ is generally less than 1 MeV, confirming the empirical parabolic approximation to the equation of state for asymmetric nuclear matter at $\\rho_{0}$. On the other hand, we find that the $E_{4}(\\rho)$ may become nonnegligible at high densities. Furthermore, the analytical form of the $E_{4}(\\rho)$ provides the possibility to study the higher-order effects on the isobaric incompressibility of asymmetric nuclear matter, i.e., $K_{\\mathrm{sat}}(\\delta)=K_{0}+K_{\\mathrm{{sat},2}}\\delta ^{2}+K_{\\mathrm{{sat},4}}\\delta ^{4}+\\mathcal{O}(\\delta ^{6})$ where $\\delta =(\\rho_{n}-\\rho_{p})/\\rho $ is the isospin asymmetry, and we find that the value of $K_{\\mathrm{{sat},4}}$ is generally comparable with that of the $K_{\\mathrm{{sat},2}}$. In addition, we study the effects of the $E...
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
English, William; Krause, Martin G H
2016-01-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets we at times find magnetic field amplification by up to a factor of two in energy, but mostly the magnetic energy in the lobes is co...
Relativistic mirrors in laser plasmas (analytical methods)
Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.
2016-10-01
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.
Nanofriction in Cavity Quantum Electrodynamics.
Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna
2015-12-01
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.
2008-11-01
In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].
An introduction to relativistic processes and the standard model of electroweak interactions
Becchi, Carlo Maria
2014-01-01
These lectures are meant to be a reference and handbook for an introductory course in Theoretical Particle Physics, suitable for advanced undergraduates or beginning graduate students. Their purpose is to reconcile theoretical rigour and completeness with a careful analysis of more phenomenological aspects of the physics. They aim at filling the gap between quantum field theory textbooks and purely phenomenological treatments of fundamental interactions. The first part provides an introduction to scattering in relativistic quantum field theory. Thanks to an original approach to relativistic processes, the relevant computational techniques are derived cleanly and simply in the semi-classical approximation. The second part contains a detailed presentation of the gauge theory of electroweak interactions with particular focus to the processes of greatest phenomenological interest. The main novelties of the present second edition are a more complete discussion of relativistic scattering theory and an expansion of ...
General relativistic modelling of the negative reverberation X-ray time delays in AGN
Emmanoulopoulos, D.; Papadakis, I. E.; Dovčiak, M.; McHardy, I. M.
2014-04-01
We present the first systematic physical modelling of the time-lag spectra between the soft (0.3-1 keV) and the hard (1.5-4 keV) X-ray energy bands, as a function of Fourier frequency, in a sample of 12 active galactic nuclei which have been observed by XMM-Newton. We concentrate particularly on the negative X-ray time-lags (typically seen above 10-4 Hz), i.e. soft-band variations lag the hard-band variations, and we assume that they are produced by reprocessing and reflection by the accretion disc within a lamp-post X-ray source geometry. We also assume that the response of the accretion disc, in the soft X-ray bands, is adequately described by the response in the neutral Fe Kα line at 6.4 keV for which we use fully general relativistic ray-tracing simulations to determine its time evolution. These response functions, and thus the corresponding time-lag spectra, yield much more realistic results than the commonly used, but erroneous, top-hat models. Additionally, we parametrize the positive part of the time-lag spectra (typically seen below 10-4 Hz) by a power law. We find that the best-fitting black hole (BH) masses, M, agree quite well with those derived by other methods, thus providing us with a new tool for BH mass determination. We find no evidence for any correlation between M and the BH spin parameter, α, the viewing angle, θ, or the height of the X-ray source above the disc, h. Also on average, the X-ray source lies only around 3.7 gravitational radii above the accretion disc and θ is distributed uniformly between 20° and 60°. Finally, there is a tentative indication that the distribution of α may be bimodal above and below 0.62.
Cosmic electrodynamics electrodynamics and magnetic hydrodynamics of cosmic plasmas
Fleishman, Gregory D
2013-01-01
This volume offers a deep and detailed overview of plasma behavior in diverse astrophysical conditions. The presentation is based on a solid science foundation that includes well established physical laws of electromagnetism, hydrodynamics, classical and quantum mechanics and other relevant fields of science. Qualitative ideas and descriptions are followed by quantitative derivations and estimates of key physical quantities, and the results of theories and models are confronted with modern observational data obtained from numerous international science programs. Fundamental astrophysical phenomena, such as charged particle acceleration and magnetic field generation, are presented along with spectacular phenomena, such as stellar winds (including ultra-relativistic pulsar wind), supernova explosions and evolution of its remnants, and solar flares.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Optimal Control of Electrodynamic Tethers
2008-06-01
left with ( ) ( ) 1 2 1 2 23 3 3 32 1 2 1 2 3 3 ˆ ˆ 2 2 2 ˆ ˆ 6 6 t t t t t t m m m m m T m L m L M M m LM M M MLm M M... Contract RH4-394049, March 1985, p 31. 9 Pelaez, J. and Lorenzini, E. C., “Libration Control of Electrodynamic Tethers in Inclined Orbit,” Journal of...COVERED (From – To) Aug 2006 – Jul 2008 4. TITLE AND SUBTITLE Optimal Control of Electrodynamic Tethers 5a. CONTRACT NUMBER 5b
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Modelling and measurement of jet quenching in relativistic heavy-ion collisions at the LHC
Verweij, M.
2013-01-01
In relativistic collisions between nuclei, the creation of a strongly interacting medium, called the Quark Gluon Plasma (QGP), is expected. It is expected that such a medium also existed in the early universe just after the Big Bang. The phase transition of interest is where the dense medium of free
Kawazura, Yohei; Miloshevich, George; Morrison, Philip J.
2017-02-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the electron-positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a more general 3 + 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume smallness of the electron ion mass ratio.
Avetissian, Hamlet
2006-01-01
This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.
Quantum Electrodynamics in Photonic Crystal Waveguides
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... probability. The Q-factor distributions of Anderson localized modes have been measured in PhC waveguides with articial induced disorder with embedded emitters. The largest Q-factors are found in the sample with the smallest amount of disorder. From a comparison with the waveguide model the localization length...
Cavity quantum electrodynamics: coherence in context.
Mabuchi, H; Doherty, A C
2002-11-15
Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.
On the structure of 3-dimensional 2-body problem solutions in Wheeler-Feynman electrodynamics
Klimenko, S. [Institute for High Energy Physics, Protvino (Russian Federation); Nikitin, I. [National Research Center for Information Technology, St. Augustin (Germany)
2001-09-01
The problem of the relativistic 3-dimensional motion of 2 oppositely charged equally massive particles in classical electrodynamics with half-retarded/half-advanced interactions is investigated. It is shown that at a certain critical energy value the topological structure of phase space is changed, leading to bifurcation (splitting) of solutions, appearance of extra non-Newtonian degrees of freedom and break of reflectional symmetries.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R; Rubiera-Garcia, D; Santos, C dos
2015-01-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via introduction of three non-negative functions depending only in the Higgs field, namely, $G(|\\phi|)$, $w(|\\phi|) $ and $V(|\\phi|)$. A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows to minimize the system energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models such that a generalized version of Maxwell-Higgs electrodynamics is recovered in a certain limit of the theory.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R.; Hora, E. da; Rubiera-Garcia, D.; Santos, C. dos
2015-08-01
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely, , , and . A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampère law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory.
Topological vortices in generalized Born-Infeld-Higgs electrodynamics
Casana, R. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Hora, E. da [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, Maranhao (Brazil); Universidade Federal do Maranhao, Coordenadoria Interdisciplinar de Ciencia e Tecnologia, Sao Luis, Maranhao (Brazil); Rubiera-Garcia, D. [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Santos, C. dos [Faculdade de Ciencias da Universidade do Porto, Centro de Fisica e Departamento de Fisica e Astronomia, Porto (Portugal)
2015-08-15
A consistent BPS formalism to study the existence of topological axially symmetric vortices in generalized versions of the Born-Infeld-Higgs electrodynamics is implemented. Such a generalization modifies the field dynamics via the introduction of three nonnegative functions depending only in the Higgs field, namely,G(vertical stroke φ vertical stroke), w(vertical stroke φ vertical stroke), and V (vertical stroke φ vertical stroke). A set of first-order differential equations is attained when these functions satisfy a constraint related to the Ampere law. Such a constraint allows one to minimize the system's energy in such way that it becomes proportional to the magnetic flux. Our results provides an enhancement of the role of topological vortex solutions in Born-Infeld-Higgs electrodynamics. Finally, we analyze a set of models entailing the recovery of a generalized version of Maxwell-Higgs electrodynamics in a certain limit of the theory. (orig.)
Zhang, Shengpan P.; Roble, Raymond G.; Shepherd, Gordon G.
2001-10-01
Longitudinal zonally averaged Wind Imaging Interferometer (WINDII) (on UARS) night-time oxygen (O(1S)) and hydroxyl (P(3) line in the OH(8, 3) Meinel band) volume emission rates exhibit dramatic spatial and temporal variations. The recently improved thermosphere/ionosphere/mesosphere electrodynamics general circulation model (TIME-GCM) produces simulations for the two airglows through the input of (1, 1) upward propagating diurnal tides. The model simulations show excellent agreement with WINDII observations in both the local time domain and the latitudinal domain between 40°S and 40°N. The influence of diurnal tides on the two airglows in strongest in the tropical region. In the local solar time domain the emission rate and peak altitude at the equator show large tidal perturbations, but they are fairly stable at midlatitude. In the latitudinal domain there is an equatorial trough in the oxygen emission rate which exists regardless of local time and season. The hydroxyl emission rate is more dependent on local time and season. At equinox it has a prominent equatorial maximum which disappears at dawn, whereas at solstice it has a very weak equatorial maximum at dusk, changing soon after midnight to an equatorial minimum. These features of emission rates are also compared to TIME-GCM simulations for meridional wind, temperature, and atomic oxygen density, [O], with and without upward propagating diurnal tides. The results are as follows: (1) The large oscillations of the two nightglows as well the atomic oxygen density in the tropical region are driven by the diurnal propagating tides. In altitude the mesosphere and lower thermosphere is divided into two type of cells, one with meridional winds converging at the equator, higher temperature, and enhanced [O] and airglow emission rates, and the other with meridional winds diverging from the equator, lower temperature, and depleted [O] and airglow emission rates; all these are essentially related to the wavelength
Recent Developments in relativistic models for exclusive (e,e'p) reactions
Udias, J M; De Guerra, E M; Escuderos, A; Caballero, J A; Vignote, Javier R.
2001-01-01
A comparison of impulse approximation calculations for the (e,e'p) reaction, based on the Dirac equation and the Schrodinger one is presented. Trivial (kinematics) differences are indicated, as well as how to remove them from the standard nonrelativistic formalism. Signatures of the relativistic approach are found where the enhancement of the lower components (spinor distortion or negative energy contributions) modifies TL observables with respect to the nonrelativistic predictions, what seems to be confirmed by the experiment. Finally, the relativistic approach is used to analyze several experiments for the reaction 16O(e,e'p)15N taken at values of Q^2 from 0.2 to 0.8 (GeV/c)^2, not finding a significant Q^2 dependence of the scale factors over this range.
Relativistic models of magnetars: the twisted-torus magnetic field configuration
Ciolfi, R; Gualtieri, L; Pons, J A
2009-01-01
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.
A semi-relativistic model for tidal interactions in BH-NS coalescing binaries
Ferrari, V; Gualtieri, L; Pannarale, F [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
2009-06-21
We study the tidal effects of a Kerr black hole on a neutron star in black hole-neutron star (BH-NS) binary systems by using a semi-analytical approach which describes the neutron star as a deformable ellipsoid. Relativistic effects on the neutron star self-gravity are taken into account by employing a scalar potential resulting from relativistic stellar structure equations. We calculate quasi-equilibrium sequences of BH-NS binaries and the critical orbital separation at which the star is disrupted by the black hole tidal field: the latter quantity is of particular interest because when it is greater than the radius of the innermost stable circular orbit, a short gamma-ray burst scenario may develop.
Pentaquarks in a relativistic quark model and nature of Theta-states
Gerasyuta, S M
2003-01-01
The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of the leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks including the u, d, s- quarks are calculated. The poles of these amplitudes determine the masses of Theta-pentaquarks. The mass spectra of the isotensor Theta-pentaquarks are calculated.
Drescher, H.J
1999-06-11
In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-10-01
Electrodynamics is the most tested fundamental physical theory. Relativity arose from the completion of Maxwell-Lorentz electrodynamics. Introducing the metric gij as gravitational potential in 1913, versed in general (coordinate-)covariant formalism in 1914 and shortly after the completion of general relativity, Einstein put the Maxwell equations in general covariant form with only the constitutive relation between the excitation and the field dependent on and connected by the metric in 1916. Further clarification and developments by Weyl in 1918, Murnaghan in 1921, Kottler in 1922 and Cartan in 1923 together with the corresponding developments in electrodynamics of continuous media by Bateman in 1910, Tamm in 1924, Laue in 1952 and Post in 1962 established the premetric formalism of electrodynamics. Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle I (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom — the pseudoscalar (Abelian axion or EM axion) degree of freedom and the scalar (dilaton) degree of freedom (i.e. metric with axion and dilaton). In this paper, we review this connection and the
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Hernandez-Zapata, Sergio; 10.1007/s10701-010-9413-7
2010-01-01
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\\sigma} as the dynamical temporal...
Murad, Mohammad Hassan [BRAC University, Department of Mathematics and Natural Sciences, Dhaka (Bangladesh); Fatema, Saba [Daffodil International University, Department of Natural Sciences, Dhaka (Bangladesh)
2015-11-15
In this work some families of relativistic anisotropic charged fluid spheres have been obtained by solving the Einstein-Maxwell field equations with a preferred form of one of the metric potentials, and suitable forms of electric charge distribution and pressure anisotropy functions. The resulting equation of state (EOS) of the matter distribution has been obtained. Physical analysis shows that the relativistic stellar structure for the matter distribution considered in this work may reasonably model an electrically charged compact star whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself (e.g., electrically charged bare strange stars). Furthermore these models permit a simple method of systematically fixing bounds on the maximum possible mass of cold compact electrically charged self-bound stars. It has been demonstrated, numerically, that the maximum compactness and mass increase in the presence of an electric field and anisotropic pressures. Based on the analytic models developed in this present work, the values of some relevant physical quantities have been calculated by assuming the estimated masses and radii of some well-known potential strange star candidates like PSR J1614-2230, PSR J1903+327, Vela X-1, and 4U 1820-30. (orig.)
Soto, F. de [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)]|[Dpto. Sistemas Fisicos, Quimicos y Naturales, U. Pablo de Olavide, 41013 Sevilla (Spain); Carbonell, J. [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)
2007-04-15
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding - infinite space - low energy parameters and bound state binding energies from eigenstates computed at finite lattice size is discussed. The results have been obtained with a non relativistic model, which is justified by the small energies involved in the calculations. Despite its simplicity, the model considered contains an essential ingredient of the hadron-hadron interaction - its finite range - which plays a relevant role in view of extracting the low energy parameters from the finite volume spectra. It offers a wieldy and physically sound tool to test the validity of the different approaches discussed in the literature to study the low energy scattering of baryon-baryon or meson-baryon systems from a lattice simulations in QCD. The results presented in this work have been essentially limited to the ground state of central attractive interactions, depending only on one parameter. The method can be easily applied to more involved interactions, like hard core repulsive terms or non central potentials leading to coupled channel equations. (authors)
Bernardos, P. [Universidad de Cantabria, Departamento de Matematica Aplicada y Ciencias de la Computacion, 39005, Santander (Spain); Fomenko, V.N. [St Petersburg University for Railway Engineering, Department of Mathematics, 190031, St Petersburg (Russian Federation); Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, 39005, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, 39005, Santander (Spain); Savushkin, L.N. [St Petersburg University for Telecommunications, Department of Physics, 191186, St Petersburg (Russian Federation)
2001-02-01
An effective nuclear model describing {omega}-, {rho}- and axial-mesons as gauge fields is applied to nuclear matter in the relativistic Hartree-Fock approximation. The isoscalar two-pion exchange is simulated by a scalar field s similar to that used in the conventional relativistic mean-field approach. Two more scalar fields are essential ingredients of the present treatment: the {sigma}-field, the chiral partner of the pion, and the {sigma}-field, the Higgs field for the {omega}-meson. Two versions of the model are used depending on whether the {sigma}-field is considered as a dynamical variable or 'frozen', by taking its mass as infinite. The model contains four free parameters in the first case and three in the second one which are fitted to the nuclear matter saturation conditions. The nucleon and meson effective masses, compressibility modulus and symmetry energy are calculated. The results prove the reliability of the Dirac-Hartree-Fock approach within the linear realization of the chiral symmetry. (author)
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Geng, L S; Meng, J
2005-01-01
We perform a systematic study of the ground-state properties of all the nuclei from the proton drip line to the neutron drip line throughout the periodic table employing the relativistic mean field model. The TMA parameter set is used for the mean-field Lagrangian density, and a state-dependent BCS method is adopted to describe the pairing correlation. The ground-state properties of a total of 6969 nuclei with $Z,N\\ge 8$ and $Z\\le 100$ from the proton drip line to the neutron drip line, including the binding energies, the separation energies, the deformations, and the rms charge radii, are calculated and compared with existing experimental data and those of the FRDM and HFB-2 mass formulae. This study provides the first complete picture of the current status of the descriptions of nuclear ground-state properties in the relativistic mean field model. The deviations from existing experimental data indicate either that new degrees of freedom are needed, such as triaxial deformations, or that serious effort is ne...
Accelerator and electrodynamics capability review
Jones, Kevin W [Los Alamos National Laboratory
2010-01-01
Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.
Potential Theory in Classical Electrodynamics
Engelhardt, Wolfgang
2012-01-01
In Maxwell's classical theory of electrodynamics the fields are frequently expressed by potentials in order to facilitate the solution of the first order system of equations. This method obscures, however, that there exists an inconsistency between Faraday's law of induction and Maxwell's flux law. As a consequence of this internal contradiction there is neither gauge invariance, nor exist unique solutions in general. It is also demonstrated that inhomogeneous wave equations cannot be solved by retarded integrals.
Some problems of classical electrodynamics
Ginzburg, I. F.
2011-12-01
In this lecture, I discuss issues that usually escape attention of students in electrodynamics. These are the questions of (1) what the photon observed in nature "looks like," (2) how an interference pattern arises from a source containing a lot of incoherently emitting atoms, and (3) how light "slows down" in a medium. Answers to these questions, if discussed at all, are scattered over various textbooks. Here, I follow our textbook [1].
PT-Symmetric Quantum Electrodynamics
Bender, C M; Milton, K A; Shajesh, K V; Bender, Carl M.; Cavero-Pelaez, Ines; Milton, Kimball A.
2005-01-01
The Hamiltonian for quantum electrodynamics becomes non-Hermitian if the unrenormalized electric charge $e$ is taken to be imaginary. However, if one also specifies that the potential $A^\\mu$ in such a theory transforms as a pseudovector rather than a vector, then the Hamiltonian becomes PT symmetric. The resulting non-Hermitian theory of electrodynamics is the analog of a spinless quantum field theory in which a pseudoscalar field $\\phi$ has a cubic self-interaction of the form $i\\phi^3$. The Hamiltonian for this cubic scalar field theory has a positive spectrum, and it has recently been demonstrated that the time evolution of this theory is unitary. The proof of unitarity requires the construction of a new operator called C, which is then used to define an inner product with respect to which the Hamiltonian is self-adjoint. In this paper the corresponding C operator for non-Hermitian quantum electrodynamics is constructed perturbatively. This construction demonstrates the unitarity of the theory. Non-Hermit...
Carlsten, B.E.; Fazio, M.V.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.
1992-01-01
We discuss basic Relativistic Klystron Amplifier physics. We show that in the intense space-charge regime the maximum power extraction does not coincide with the maximum harmonic bunching. In addition, we show that as the beam is bunched, the additional power stored in the Coulomb fields does not add significantly to the overall power extraction. Because of these effects, the power extraction at 1.3 GHz for a 500 kV, 5 kA beam with reasonable beam-to-wall spacing is limited to around 35%. 3 refs., 17 figs.
A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space
LI Lei; WANG Shun-Jin; ZHOU Shan-Gui; ZHANG Guang-Biao
2007-01-01
For describing the radial excited states a relativistic confining potential in momentum space is included in the meson effective light-cone Hamiltonian. The meson eigen equations are transformed from the front form to the instant form and formulated in total angular representation. Details about numerically solving these equations are discussed, mainly focusing on treating singularities arising from one-gluon exchange interactions and confinement. The results of pseudo-scalar mesons indicate that the improved meson effective light-cone Hamiltonian can describe the ground states and radial excited states well. Some radial excited states are also predicted and waiting for experimental test.
Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma
CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang
2008-01-01
We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.
Effects of Rotation and Relativistic Charge Flow on Pulsar Magnetospheric Structure
Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.
2005-01-01
We propose an analytical 3-D model of the open field-line region of a neutron star (NS) magnetosphere. We construct an explicit analytic solution for arbitrary obliquity (angle between the rotation and magnetic axes) incorporating the effects of magnetospheric rotation, relativistic flow of charges (e.g. primary electron beam) along the open field lines, and E X B drift of these charges. Our solution employs the space-charge-limited longitudinal current calculated in the electrodynamic model of Muslimov & Tsygan (1992) and is valid up to very high altitudes nearly approaching the light cylinder. We assume that in the innermost magnetosphere, the NS magnetic field can be well represented by a static magnetic dipole configuration. At high altitudes the open magnetic field lines significantly deviate from those of a static dipole and tend to focus into a cylindrical bundle, swept back in the direction opposite to the rotation, and also bent towards the rotational equator. We briefly discuss some implications...
Relativistic formulation and reference frame
Klioner, Sergei A.
2004-01-01
After a short review of experimental foundations of metric theories of gravity, the choice of general relativity as a theory to be used for the routine modeling of Gaia observations is justified. General principles of relativistic modeling of astronomical observations are then sketched and compared to the corresponding Newtonian principles. The fundamental reference system -- Barycentric Celestial Reference System, which has been chosen to be the relativistic reference system underlying the f...
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum
Ольга Юрьевна Хецелиус
2014-11-01
Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.
Sulaksono, A; Agrawal, B K
2014-01-01
The model dependence and the symmetry energy dependence of the core-crust transition properties for the neutron stars are studied using three different families of systematically varied extended relativistic mean field model. Several forces within each of the families are so considered that they yield wide variations in the values of the nuclear symmetry energy $a_{\\rm sym}$ and its slope parameter $L$ at the saturation density. The core-crust transition density is calculated using a method based on random-phase-approximation. The core-crust transition density is strongly correlated, in a model independent manner, with the symmetry energy slope parameter evaluated at the saturation density. The pressure at the transition point dose not show any meaningful correlations with the symmetry energy parameters at the saturation density. At best, pressure at the transition point is correlated with the symmetry energy parameters and their linear combination evaluated at the some sub-saturation density. Yet, such corre...
Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank
2009-01-01
Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40.
Gierliński, M.; Maciołek-Niedźwiecki, A.; Ebisawa, K.
2001-01-01
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the acc...
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.
1982-12-01
Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
The Earth's Electron Radiation Belts Modeling: from the Source Population to Relativistic Energies
Aseev, N.; Shprits, Y. Y.; Kellerman, A. C.; Drozdov, A.; Zhu, H.
2016-12-01
The dynamics of the Earth's electron radiation belts is characterized by intricate interactions of different particle populations. During the main phase of a geomagnetic storm, electron source (tens keV) and seed (hundreds keV) populations are injected from the plasma sheet to the outer belt region. The source population transfers energy to electromagnetic waves, while the seed population can be accelerated locally by interaction with chorus waves. Electrons can also be lost by scattering into the loss cone due to wave-particle interaction and by magnetopause shadowing due to outward radial motion. In this work, we present results of simulations of the dynamics of electron fluxes in the inner magnetosphere from a few keV to relativistic energies of several MeV using the VERB-4D code. The code includes radial, energy and pitch angle diffusion, convection and adiabatic effects due to compression or expansion of the magnetic field. We extended the spatial outer boundary of the computational domain to 10-15 RE which allow us to study, how the source and seed population particles are convected from the plasma sheet, accelerated to relativistic energies and lost to the atmosphere or the magnetopause. The results of simulations reproduce Van Allen Probes, GOES and THEMIS observations, indicating that magnetospheric convection is the main driver of electron dynamics above the GEO, while radial diffusion and local diffusion are the most important processes in the outer belt region.
Chedia, O. V.; Kahniashvili, T. A.; Machabeli, G. Z.; Nanobashvili, I. S.
1996-05-01
An investigation of the kinematics of a rotating relativistic plasma stream in the perpendicular rotator model of the pulsar magnetosphere is presented. It is assumed that the plasma (ejected from the pulsar) moves along the pulsar magnetic field lines and also corotates with them. The field lines are considered to be radial straight lines, located in the plane which is perpendicular to the pulsar rotation axis. The necessity of taking particle inertia into account is discussed. It is argued that the “massless” (“force-free”) approximation cannot be used for the description of this problem. The frame selection is discussed and it is shown that it is convenient to discuss the problem in the noninertial frame of ZAMOs (Zero Angular Momentum Observers). The equation of motion and the exact set of equations describing the behaviour of a relativistic plasma stream in the pulsar magnetosphere is obtained. The possible relevance of this investigation for the understanding of the formation process of a pulsar magnetosphere is discussed.
Problems in point charge electrodynamics
Ferris, Michael R
2013-01-01
(Shortened due to character limit) This thesis consists of two parts. In part I we consider a discrepancy in the derivation of the electromagnetic self force for a point charge. In the point charge framework the self force can be defined as an integral of the Lienard-Wiechert stress 3-forms over a suitably defined worldtube. We show the Schott term may be obtained using a null displacement vector to define the worldtube providing certain conditions are realized. Part II comprises an investigation into a problem in accelerator physics. In a high energy accelerator the cross-section of the beampipe is not continuous and there exist geometric discontinuities such as collimators and cavities. When a relativistic bunch of particles passes such a discontinuity the field generated by a leading charge can interact with the wall and consequently affect the motion of trailing charges. The fields acting on the trailing charges are known as (geometric) wakefields. We model a bunch of particles as a one dimensional contin...
A Uniﬁed Theory of Interaction: Gravitation and Electrodynamics
Wagener P.
2008-10-01
Full Text Available A theory is proposed from which the basic equations of gravitation and electromagnetism are derived from a single Lagrangian. The total energy of an atom can be expressed in a power series of the fine structure constant, $alpha$. Specific selections of these terms yield the relativistic correction to the Bohr values of the hydrogen spectrum and the Sommerfeld-Dirac equation for the fine structure spectrum of the hydrogen atom. Expressions for the classical electron radius and some of the Large Number Coincidences are derived. A Lorentz-type force equation is derived for both gravitation and electrodynamics. Electron spin is shown to be an effect of fourth order in $alpha$.
Quantum electrodynamical corrections to a magnetic dipole in general relativity
Pétri, J
2015-01-01
Magnetized neutron stars are privileged places where strong electromagnetic fields as high as $\\BQ=4.4\\times10^9$~T exist, giving rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). These corrections need to be included to the general relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron star. In this paper, these QED and GR perturbations to the standard flat space-time dipole are calculated to the lowest order in the fine structure constant~$\\alpha_{\\rm sf}$ and to any order in the ratio $\\Rs/R$ where $R$ is the neutron star radius and $\\Rs$ its Schwarzschild radius. Following our new 3+1~formalism developed in a previous work, we compute the multipolar non-linear corrections to this dipole and demonstrate the presence of a small dipolar~$\\ell=1$ and hexapolar~$\\ell=3$ component.
Quantum corrections to the Larmor radiation formula in scalar electrodynamics
Higuchi, A
2009-01-01
We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.
On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics
Barraz, N M; Moura-Melo, W A; Helay"el-Neto, J A
2007-01-01
We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical framework in (3+1) dimensions. This is the standard Maxwell model extended by means of a Chern-Simons-like term, $b_\\mu\\tilde{F}^{\\mu\
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Numerical simulations of the internal shock model in magnetized relativistic jets of blazars
Rueda-Becerril, Jesus M; Aloy, Miguel A
2015-01-01
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
KE Hong-Wei; XU Ming-Mei; LIU Lian-Shou
2009-01-01
By studying the critical phenomena in continuum-percolation of discs, we find a new approach to locate the critical point, i.e.using the inflection point of P_∞ as an evaluation of the percolation threshold.The susceptibility, defined as the derivative of P_∞, possesses a finite-size scaling property, where the scaling exponent is the reciprocal of ν, the critical exponent of the correlation length.A possible application of this approach to the study of the critical phenomena in relativistic heavy ion collisions is discussed.The critical point for deconfinement can be extracted by the inflection point of P_(QGP)-the probability for the event with QGP formation.The finite-size scaling of its derivative can give the critical exponent ν, which is a rare case that can provide an experimental measure of a critical exponent in heavy ion collisions.
QED shift calculations in relativistic many-electron atoms and ions
Tupitsyn, I I; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-01-01
We incorporated quantum electrodynamics (QED) corrections into the broadly-applicable high-precision relativistic method that combines configuration interaction (CI) and linearized coupled-cluster approaches. With the addition of the QED, this CI+all-order method allows one to accurately predict properties of heavy ions of particular interest to the design of precision atomic clocks and tests of fundamental physics. To evaluate the accuracy of the QED contributions and test various QED models, we incorporated four different one-electron QED potentials. We demonstrated that all of them give consistent and reliable results. For the strongly bound electrons (i.e. inner electrons of heavy atoms, or valence electrons in highly-charged ions), the nonlocal potentials are more accurate, than the local one. Results are presented for cases of particular experimental interest.
Multipole Expansion in Generalized Electrodynamics
Bonin, C A; Ortega, P H
2016-01-01
In this article we study some classical aspects of Podolsky Electrodynamics in the static regime. We develop the multipole expansion for the theory in both the electrostatic and the magnetostatic cases. We also address the problem of consistently truncating the infinite series associated with the several kinds of multipoles, yielding approximations for the static Podolskian electromagnetic field to any degree of precision required. Moreover, we apply the general theory of multipole expansion to some specific physical problems. In those problems we identify the first terms of the series with the monopole, dipole and quadrupole terms in the generalized theory. We also propose a situation in which Podolsky theory can be experimentally tested.
Barik, N; Mohanty, D K; Panda, P K; Frederico, T
2013-01-01
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...
CHEN Jin-Gen; ZHOU Xing-Fei; WANG Kun; MA Guo-Liang; TIAN Wen-Dong; ZUO Jia-Xu; MA Chun-Wang; CHEN Jin-Hui; YAN Ting-Zhi; SHEN Wen-Qing; CAI Xiang-Zhou; WANG Ting-Tai; MA Yu-Gang; REN Zhong-Zhou; FANG De-Qing; ZHONG Chen; WEI Yi-Bin; GUO Wei
2004-01-01
@@ A candidate for proton halo nucleus 23Al is investigated based on the constrained calculations in the framework of the deformed relativistic mean field (RMF) model with the NL075 parameter set. It is shown by the constrained calculations that the ground state of 23Al has a large deformation that corresponds to the prolate shape. With that large deformation, the non-constrained RMF calculation predicts that there appears an inversion between the 2s1/2 [211] and 1d5/2 [202] shells. The valence proton of 23Al is weakly bound and occupies 2s1/2 [211] and 1d5/2 [202] with the weights of 56% and 29%, respectively. The calculated RMS radius for matter is in agreement with the experimental one. It is also predicted that the difference between the proton RMS radius and the neutron one is very large. This suggests that there exists a proton halo in 23Al.
Rybczyński, Maciej
2011-01-01
We investigate the influence of the nucleon-nucleon collision profile (probability of interaction as a function of the nucleon-nucleon impact parameter) in the wounded nucleon model and its extensions on several observables measured in relativistic heavy-ion collisions. We find that the participant eccentricity coefficient, $\\epsilon^\\ast$, as well as the higher harmonic coefficients, $\\epsilon_n^\\ast$, are reduced by 10-20% for mid-peripheral collisions when the realistic (Gaussian) profile is used, as compared to the case with the commonly-used hard-sphere profile. Similarly, the multiplicity fluctuations, treated as the function of the number of wounded nucleons in one of the colliding nuclei, are reduced by 10-20%. This demonstrates that the Glauber Monte Carlo codes should necessarily use the realistic nucleon-nucleon collision profile in precision studies of these observables. The Gaussian collision profile is built-in in {\\tt GLISSANDO}.
Fedele, Renato; De Nicola, Sergio; Shukla, P K; Jovanovic, Dusan
2011-01-01
Thermal Wave Model is used to study the strong self-consistent Plasma Wake Field interaction (transverse effects) between a strongly magnetized plasma and a relativistic electron/positron beam travelling along the external magnetic field, in the long beam limit, in terms of a nonlocal NLS equation and the virial equation. In the linear regime, vortices predicted in terms of Laguerre-Gauss beams characterized by non-zero orbital angular momentum (vortex charge). In the nonlinear regime, criteria for collapse and stable oscillations is established and the thin plasma lens mechanism is investigated, for beam size much greater than the plasma wavelength. The beam squeezing and the self-pinching equilibrium is predicted, for beam size much smaller than the plasma wavelength, taking the aberrationless solution of the nonlocal Nonlinear Schroeding equation.
Tachyon Pole in σ Meson Propagator in Nuclear Matter in the Relativistic σ—ω Model
CHENWei; AIBao－Quan; 等
2001-01-01
The conditions that the tachyon pole of the σ meson propagator in nuclear matter appears are studied in the one-loop approximation in the relativistic σ-ω model.Different from the results of the previous paper,we find that the effect of the constant a in the self-interaction,U(σ)=aσ+1/2! bσ2+1/3!cσ3+1/4!dσ4,of the σ meson cannot be neglected.It determines the critical density where techyon appears.The smaller the a,the larger the critical density.The binding energy,pressure,incompressibility coefficient,nucleon effective mass are calculated and the relation between parameters to the tachyon pole is also studied.
Bai, Hong-Bo; Zhang, Zhen-Hua; Li, Xiao-Wei
2016-11-01
Ground state properties for Mg isotopes, including binding energies, one- and two-neutron separation energies, pairing energies, nuclear matter radii and quadrupole deformation parameters, are obtained from the self-consistent relativistic mean field (RMF) model with the pairing correlations treated by a shell-mode-like approach (SLAP), in which the particle-number is conserved and the blocking effects are treated exactly. The experimental data, including the binding energies and the one- and two-neutron separation energies, which are sensitive to the treatment of pairing correlations and block effects, are well reproduced by the RMF+SLAP calculations. Supported by NSFC (11465001,11275098, 11275248, 11505058,11165001) and Natural Science Foundation of Inner Mongolia of China (2016BS0102)
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Relativistic effects in atom gravimeters
Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun
2017-01-01
Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.
Causal structure and electrodynamics on Finsler spacetimes
Pfeifer, Christian; Wohlfarth, Mattias N. R.
2011-08-01
We present a concise new definition of Finsler spacetimes that generalizes Lorentzian metric manifolds and provides consistent backgrounds for physics. Extending standard mathematical constructions known from Finsler spaces, we show that geometric objects like the Cartan nonlinear connection and its curvature are well defined almost everywhere on Finsler spacetimes, including their null structure. This allows us to describe the complete causal structure in terms of timelike and null curves; these are essential to model physical observers and the propagation of light. We prove that the timelike directions form an open convex cone with a null boundary, as is the case in Lorentzian geometry. Moreover, we develop action integrals for physical field theories on Finsler spacetimes, and tools to deduce the corresponding equations of motion. These are applied to construct a theory of electrodynamics that confirms the claimed propagation of light along Finsler null geodesics.
Causal structure and electrodynamics on Finsler spacetimes
Pfeifer, Christian
2011-01-01
We present a concise new definition of Finsler spacetimes that generalize Lorentzian metric manifolds and provide consistent backgrounds for physics. Extending standard mathematical constructions known from Finsler spaces we show that geometric objects like the Cartan non-linear connection and its curvature are well-defined almost everywhere on Finsler spacetimes, also on their null structure. This allows us to describe the complete causal structure in terms of timelike and null curves; these are essential to model physical observers and the propagation of light. We prove that the timelike directions form an open convex cone with null boundary as is the case in Lorentzian geometry. Moreover, we develop action integrals for physical field theories on Finsler spacetimes, and tools to deduce the corresponding equations of motion. These are applied to construct a theory of electrodynamics that confirms the claimed propagation of light along Finsler null geodesics.
On spacetime structure and electrodynamics
Ni, Wei-Tou
2016-01-01
Since almost all phenomena electrodynamics deal with have energy scales much lower than the Higgs mass energy and intermediate boson energy, electrodynamics of continuous media should be applicable and the constitutive relation of spacetime/vacuum should be local and linear. What is the key characteristic of the spacetime/vacuum? It is the Weak Equivalence Principle (WEP I) for photons/wave packets of light which states that the spacetime trajectory of light in a gravitational field depends only on its initial position and direction of propagation, and does not depend on its frequency (energy) and polarization, i.e. nonbirefringence of light propagation in spacetime/vacuum. With this principle it is proved by the author in 1981 in the weak field limit, and by Lammerzahl and Hehl in 2004 together with Favaro and Bergamin in 2011 without assuming the weak-field condition that the constitutive tensor must be of the core metric form with only two additional degrees of freedom - the pseudoscalar (Abelian axion or ...
Advances in FDTD computational electrodynamics photonics and nanotechnology
Oskooi, Ardavan; Johnson, Steven G
2013-01-01
Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...
Lorentz covariant reduced-density-operator theory for relativistic quantum information processing
Ahn, D; Hwang, S W; Ahn, Doyeol; Lee, Hyuk-jae; Hwang, Sung Woo
2003-01-01
In this paper, we derived Lorentz covariant quantum Liouville equation for the density operator which describes the relativistic quantum information processing from Tomonaga-Schwinger equation and an exact formal solution for the reduced-density-operator is obtained using the projector operator technique and the functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is shown that our results agree with those of non-relativistic case which is valid only in some specified reference frame. The formulation presented in this work is general and might be applied to related fields such as quantum electrodynamics and relativistic statistical mechanics.
Inner Disc Obscuration in GRS 1915+105 Based on Relativistic Slim Disc Model
Vierdayanti, K; Mineshige, S; Bursa, M
2013-01-01
We study the observational signatures of the relativistic slim disc of 10 M_sun black hole, in a wide range of mass accretion rate, mdot, dimensionless spin parameter, a_ast, and viewing angle, i. In general, the innermost temperature, T_in increases with the increase of i for a fixed value of mdot and a_ast, due to the Doppler effect. However, for i > 50 and mdot > mdot_turn, T_in starts to decrease with the increase of mdot. This is a result of self-obscuration -- the radiation from the innermost hot part of the disc is blocked by the surrounding cooler part. The value of mdot_turn and the corresponding luminosities depend on a_ast and i. Such obscuration effects cause an interesting behavior on the disc luminosity (L_disc) -- T_in plane for high inclinations. In addition to the standard-disc branch which appears below mdot_turn and which obeys L_disc propto T_in^4 -relation, another branch above mdot_turn, which is nearly horizontal, may be observed at luminosities close to the Eddington luminosity. We sho...
Methods of Numerical Analysis of One-Dimensional Two-Body Problem in Wheeler-Feynman Electrodynamics
Klimenko, S. V.; Nikitin, I. N.; Urazmetov, W. F.
Numerical methods for solutions of differential equations with deviating arguments describing one-dimensional ultra-relativistic scattering of two identical charged particles in Wheeler-Feynman electrodynamics with half-retarded/half-advanced interaction are developed. Utilization of the methods for the physical problem analysis leads to the discovery of a bifurcation of solutions and breaking of their reflectional symmetry for particles asymptotic velocity v>0.937c in their center-of-mass frame.
Electrodynamics of ionospheric weather over low latitudes
Abdu, Mangalathayil Ali
2016-12-01
The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the
A relativistic correction to semiclassical charmonium
Weiss, J.
1995-09-01
It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.
Classical electrodynamics from image charges to the photon mass and magnetic monopoles
Lacava, Francesco
2016-01-01
This book proposes intriguing arguments that will enable students to achieve a deeper understanding of electromagnetism, while also presenting a number of classical methods for solving difficult problems. Two chapters are devoted to relativistic electrodynamics, covering all aspects needed for a full comprehension of the nature of electric and magnetic fields and, subsequently, electrodynamics. Each of the two final chapters examines a selected experimental issue, introducing students to the work involved in actually proving a law or theory. Classical books on electricity and magnetism are mentioned in many references, helping to familiarize students with books that they will encounter in their further studies. Various problems are presented, together with their worked-out solutions. The book is based on notes from special lectures delivered by the author to students during the second year of a BSc course in Physics, but the subject matter may also be of interest to senior physicists, as many of the themes co...
On Kottler's path: origin and evolution of the premetric program in gravity and in electrodynamics
Hehl, Friedrich W; Obukhov, Yuri N
2016-01-01
In 1922, Kottler put forward the program to remove the gravitational potential, the metric of spacetime, from the fundamental equations in physics as far as possible. He successfully applied this idea to Newton's gravitostatics and to Maxwell's electrodynamics, where Kottler recast the field equations in premetric form and specified a metric-dependent constitutive law. We will discuss the basics of the premetric approach and some of its beautiful consequences, like the division of universal constants into two classes. We show that classical electrodynamics can be developed without a metric quite straightforwardly: the Maxwell equations, together with a local and linear response law for electromagnetic media, admit a consistent premetric formulation. Kottler's program succeeds here without provisos. In Kottler's approach to gravity, making the theory relativistic, two premetric quasi-Maxwellian field equations arise, but their field variables, if interpreted in terms of general relativity, do depend on the met...
Powell, B J
2015-01-01
We review theories of phosphorescence in cyclometalated complexes. We focus primarily on pseudooctahedrally coordinated $t_{2g}^6$ metals (e.g., [Os(II)(bpy)$_3$]$^{2+}$, Ir(III)(ppy)$_3$ and Ir(III)(ptz)$_3$) as, for reasons that are explored in detail, these show particularly strong phosphorescence. We discuss both first principles approaches and semi-empirical models, e.g., ligand field theory. We show that together these provide a clear understanding of the photophysics and in particular the lowest energy triplet excitation, T$_1$. In order to build a good model relativistic effects need to be included. The role of spin-orbit coupling is well-known, but scalar relativistic effects are also large - and are therefore also introduced and discussed. No expertise in special relativity or relativistic quantum mechanics is assumed and a pedagogical introduction to these subjects is given. It is shown that, once both scalar relativistic effects and spin-orbit coupling are included, time dependent density function...
Pastor, J
2004-07-01
We have determined the equation of state of nuclear matter according to relativistic non-linear models. In particular, we are interested in regions of high density and/or high temperature, in which the thermodynamic functions have very different behaviours depending on which model one uses. The high-density behaviour is, for example, a fundamental ingredient for the determination of the maximum mass of neutron stars. As an application, we have studied the process of two-pion annihilation into e{sup +}e{sup -} pairs in dense and hot matter. Accordingly, we have determined the way in which the non-linear terms modify the meson propagators occurring in this process. Our results have been compared with those obtained for the meson propagators in free space. We have found models that give an enhancement of the dilepton production rate in the low invariant mass region. Such an enhancement is in good agreement with the invariant mass dependence of the data obtained in heavy ions collisions at CERN/SPS energies. (author)
Modern Classical Electrodynamics and Electromagnetic Radiation - Vacuum Field Theory Aspects
Bogolubov, N N
2012-01-01
The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and related with them physical aspects. Based on the vacuum field theory no-geometry approach, developed in \\cite{BPT,BPT1}, the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. A problem closely related to the radiation reaction force is analyzed aiming to explain the Wheeler and Feynman reaction radiation mechanism, well known as the absorption radiation theory, and strongly dependent on the Mach type interaction of a charged point particle in an ambient vacuum electromagnetic medium. There are discussed some relationships between this problem and the one derived within the context of the vacuum field theory approach. The R. \\ Feynman's \\textquotedblleft heretical\\textquotedblright\\ approach \\cite{Dy1,Dy2} to deriving the Lorentz force based Maxwell electromagnetic equations is also revisited, its complete legacy is argued both by means o...
Detailed explicit solution of the electrodynamic wave equations
Iryna Yu. Dmitrieva
2015-10-01
Full Text Available Present results concern the general scientific tendency dealing with mathematical modeling and analytical study of electromagnetic field phenomena described by the systems of partial differential equations. Specific electrodynamic engineering process with expofunctional influences is simulated by the differential Maxwell system whose effective research is equivalent to the rigorous solution of the general wave partial differential equation regarding all scalar components of electromagnetic field vector intensities. The given equation is solved explicitly in detail using method of integral transforms and irrespectively to the concrete boundary conditions. Specific cases of unexcited vacuum and isotropic homogeneous medium were considered. Proposed approach can be applied to any finite dimensional system of partial differential equations with piece wise constant coefficients and its corresponding scalar equations representing mathematical models in modern electrodynamics. In comparison with the known results, current research is completely thorough and accurate that implies its direct practical application.
Electrodynamic Analysis of Dissipative Electromagnetic Materials Based on Fractional Derivative
TAN Kang-Bo; LIANG Chang-Hong; DANG Xiao-Jie
2007-01-01
The generalized Lagrangian is defined in a dissipative electromagnetic medium on the basis of the combination of dynamical analysis and fractional derivative.Lorentz medium models are obtained by formulating relevant EulerLagrange equations.The invariance is obtained subsequently by investigating the invariance of time variation in the system,and then the relation between the related Hamiltonian and electromagnetic energy density is investigated.Canonical equations are obtained eventually.The electrodynamic interpretation on dissipative electromagnetic systems is revesled.
Radiative corrections in bumblebee electrodynamics
R.V. Maluf
2015-10-01
Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.
Resummations in hot scalar electrodynamics
Krämmer, U; Schulz, H
1994-01-01
The gauge-boson sector of perturbative scalar electrodynamics is investigated in detail as a testing ground for resummation methods in hot gauge theories. It also serves as a simple non-trivial reference system for the non-Abelian gluon plasma. The complete next-to-leading order contributions to the polarization tensor are obtained within the resummation scheme of Braaten and Pisarski. The simpler scheme proposed recently by Arnold and Espinosa is shown to apply to static quantities only, whereas Braaten-Pisarski resummation turns out to need modification for collective phenomena close to the light-cone. Finally, a recently proposed resummation of quasi-particle damping contributions is assessed critically.
Chainakun, P; Kara, E
2016-01-01
General relativistic ray tracing simulations of the time-averaged spectrum and energy-dependent time delays in AGN are presented. We model the lamp-post geometry in which the accreting gas is illuminated by an X-ray source located on the rotation axis of the black hole. The spectroscopic features imprinted in the reflection component are modelled using REFLIONX. The associated time delays after the direct continuum, known as reverberation lags, are computed including the full effects of dilution and ionization gradients on the disc. We perform, for the first time, simultaneous fitting of the time-averaged and lag-energy spectra in three AGN: Mrk 335, IRAS 13224-3809 and Ark 564 observed with XMM-Newton. The best fitting source height and central mass of each AGN partly agree with those previously reported. We find that including the ionization gradient in the model naturally explains lag-energy observations in which the 3 keV and 7-10 keV bands precede other bands. To obtain the clear 3 keV and 7-10 keV dips ...
Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui
2016-01-01
We develop a multidimensionally-constrained relativistic Hartree-Bogoliubov (MDC-RHB) model in which the pairing correlations are taken into account by making the Bogoliubov transformation. In this model, the nuclear shape is assumed to be invariant under the reversion of $x$ and $y$ axes, i.e., the intrinsic symmetry group is $V_4$ and all shape degrees of freedom $\\beta_{\\lambda\\mu}$ with even $\\mu$ are included self-consistently. The RHB equation is solved in an axially deformed harmonic oscillator basis. A separable pairing force of finite range is adopted in the MDC-RHB model. The potential energy curves of neutron-rich even-even Zr isotopes are calculated. The ground state shapes of $^{108-112}$Zr are predicted to be tetrahedral with both functionals DD-PC1 and PC-PK1 and $^{106}$Zr is also predicted to have a tetrahedral ground state with the functional PC-PK1. The tetrahedral ground states are caused by large energy gaps at $Z=40$ and $N=70$ when $\\beta_{32}$ deformation is included. Although the incl...
Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)
2016-05-15
The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)
Ivanov, M V; Caballero, J A; Antonov, A N; de Guerra, E Moya; Gaidarov, M K
2008-01-01
The superscaling analysis using the scaling function obtained within the coherent density fluctuation model is extended to calculate charge-changing neutrino and antineutrino scattering on $^{12}$C at energies from 1 to 2 GeV not only in the quasielastic but also in the delta excitation region. The results are compared with those obtained using the scaling functions from the relativistic Fermi gas model and from the superscaling analysis of inclusive scattering of electrons from nuclei.
Magnetic collimation of the relativistic jet in M 87
Gracia, JG; Tsinganos, KT; Bogovalov, SV
2005-01-01
We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-nonrelativistic outer disk-wind. The relativistic outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a n
Electrodynamic forces in elastic matter
Antoci, S.; Mihich, L.
1999-01-01
A macroscopic theory for the dynamics of elastic, isotropic matter in presence of electromagnetic fields is proposed here. We avail of Gordon's general relativistic derivation of Abraham's electromagnetic energy tensor as starting point. The necessary description of the elastic and of the inertial behaviour of matter is provided through a four dimensional generalisation of Hooke's law, made possible by the introduction of a four dimensional ``displacement'' vector. As intimated by Nordstroem,...
Off-Shell Quantum Electrodynamics
Land, M. C.; Horwitz, L. P.
1996-01-01
More than twenty years have passed since the threads of the `proper time formalism' in covariant classical and quantum mechanics were brought together to construct a canonical formalism for the relativistic mechanics of many particles. Drawing on the work of Fock, Stueckelberg, Nambu, Schwinger, and Feynman, the formalism was raised from the status of a purely formal mathematical technique to a covariant evolution theory for interacting particles. In the context of this theory, solutions have...
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Quantum electrodynamics near a photonic band-gap
Liu, Yanbing; Houck, Andrew
Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.
Cosmology and action-at-a-distance electrodynamics
Hoyle, F. [102 Admirals Walk, West Cliff Road, West Cliff, Bournemouth, Dorset BH25HF (United Kingdom); Narlikar, J.V. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkind, Pune 411007 (India)
1995-01-01
This article reviews the developments in the electrodynamics of direct interparticle action, emphasizing the achievements in quantum as well as classical electrodynamics. It is shown that the application of the Wheeler-Feynman absorber theory of radiation places stringent requirements on the asymptotic future and past light cones of the universe. All Friedman cosmologies fail to meet these requirements, but the steady-state and the quasi-state-state models have the right kind of structure to make the theory work. Further, it is shown that the working theory is free from the problems of divergence that trouble the classical and quantum field theory. In particular, no renormalization is needed: The bare mass and bare charge of an electron are finite. A few ideas relating to the response of the universe to a local microscopic experiment are presented as well as on possible clues to the outstanding issues of foundations of quantum theory.