A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Relativistic Corrections to the Bohr Model of the Atom
Kraft, David W.
1974-01-01
Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)
Haendler, Blanca L.
1982-01-01
Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)
Willden, Jeff
2001-01-01
"Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…
Spreading the gospel: The Bohr atom popularised
Kragh, Helge
2011-01-01
The emergence of quantum theory in the early decades of the twentieth century was accompanied by a wide range of popular science books, all of which presented in words and in images new scientific ideas about the structure of the atom. The work of physicists such as Ernest Rutherford and Niels Bohr, among others, was pivotal to the so-called planetary model of the atom, which, still today, is used in popular accounts and in science textbooks. In an attempt to add to our knowledge about the popular trajectory of the new atomic physics, this paper examines one book in particular, coauthored by Danish science writer Helge Holst and Dutch physicist and close collaborator of Niels Bohr, Hendrik A. Kramers. Translated from Danish into four European languages, the book not only presented contemporary ideas about the quantum atom, but also went into rather lengthy discussions about unresolved problems. Moreover, the book was quite explicit in identifying the quantum atom with the atom as described by Bohr's theory. W...
The many faces of the Bohr atom
Kragh, Helge
2013-01-01
The atomic model that Niels Bohr suggested in 1913 celebrated its greatest victories in connection with one-electron atoms. Among them were the isotopic spectral effect and what became known as Rydberg atoms, insights that were fully recognized only many years later. He considered the original ring model a first step towards an understanding of atomic structure, and during the following years he developed it into more ambitious models that, he hoped, would also describe many-electron atoms. His theory of the periodic system marked the culmination of the orbital atom within the framework of the old quantum theory. However, the theory would soon be replaced by more symbolic models that heralded the coming of the quantum-mechanical atom.
Bohr's Creation of his Quantum Atom
Heilbron, John
2013-04-01
Fresh letters throw new light on the content and state of Bohr's mind before and during his creation of the quantum atom. His mental furniture then included the atomic models of the English school, the quantum puzzles of Continental theorists, and the results of his own studies of the electron theory of metals. It also included the poetry of Goethe, plays of Ibsen and Shakespeare, novels of Dickens, and rhapsodies of Kierkegaard and Carlyle. The mind that held these diverse ingredients together oscillated between enthusiasm and dejection during the year in which Bohr took up the problem of atomic structure. He spent most of that year in England, which separated him for extended periods from his close-knit family and friends. Correspondence with his fianc'ee, Margrethe Nørlund, soon to be published, reports his ups and downs as he adjusted to J.J. Thomson, Ernest Rutherford, the English language, and the uneven course of his work. In helping to smooth out his moods, Margrethe played an important and perhaps an enabling role in his creative process.
100th anniversary of Bohr's model of the atom.
Schwarz, W H Eugen
2013-11-18
In the fall of 1913 Niels Bohr formulated his atomic models at the age of 27. This Essay traces Bohr's fundamental reasoning regarding atomic structure and spectra, the periodic table of the elements, and chemical bonding. His enduring insights and superseded suppositions are also discussed.
Hemoglobin Bohr effects: atomic origin of the histidine residue contributions.
Zheng, Guishan; Schaefer, Michael; Karplus, Martin
2013-11-26
The Bohr effect in hemoglobin, which refers to the dependence of the oxygen affinity on the pH, plays an important role in its cooperativity and physiological function. The dominant contribution to the Bohr effect arises from the difference in the pKa values of His residues of the unliganded (deoxy) and liganded (carbonmonoxy) structures. Using recent high resolution structures, the residue pKa values corresponding to the two structures are calculated. The method is based on determining the electrostatic interactions between residues in the protein, relative to those of the residue in solution, by use of the linearized finite difference Poisson-Boltzmann equation and Monte Carlo sampling of protonation states. Given that good agreement is obtained with the available experimental values for the contribution of His residues in HbA to the Bohr effect, the calculated results are used to determine the atomic origin of the pKa shift between deoxy and carbonmonoxy HbA. The contributions to the pKa shift calculated by means of the linear response approximation show that the salt bridge involving His146 plays an important role in the alkaline Bohr effect, as suggested by Perutz but that other interactions are significant as well. A corresponding analysis is made for the contribution of His143 to the acid Bohr effect for which there is no proposed explanation. The method used is summarized and the program by which it is implemented is described in the Appendix .
Experimental test of Bohr's complementarity principle with single neutral atoms
Wang, Zhihui; Tian, Yali; Yang, Chen; Zhang, Pengfei; Li, Gang; Zhang, Tiancai
2016-12-01
An experimental test of the quantum complementarity principle based on single neutral atoms trapped in a blue detuned bottle trap was here performed. A Ramsey interferometer was used to assess the wavelike behavior or particlelike behavior with second π /2 rotation on or off. The wavelike behavior or particlelike behavior is characterized by the visibility V of the interference or the predictability P of which-path information, respectively. The measured results fulfill the complementarity relation P2+V2≤1 . Imbalance losses were deliberately introduced to the system and we find the complementarity relation is then formally "violated." All the experimental results can be completely explained theoretically by quantum mechanics without considering the interference between wave and particle behaviors. This observation complements existing information concerning Bohr's complementarity principle based on wave-particle duality of a massive quantum system.
Relativistic effects in atom gravimeters
Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun
2017-01-01
Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.
Love, literature and the quantum atom Niels Bohr's 1913 trilogy revisited
Aaserud, Finn
2013-01-01
Niels Bohr ranks with Einstein among the physicists of the 20th century. He rose to this status through his invention of the quantum theory of the atom and his leadership in its defense and development. He also ranks with Einstein in his humanism and his sense of responsibility to his science and the society that enabled him to create it. Our book presents unpublished excerpts from extensive correspondence between Bohr and his immediate family, and uses it to describe and analyze the psychological and cultural background to his invention. The book also contains a reprinting of the three papers of 1913 - the "Trilogy" - in which Bohr worked out the provisional basis of a quantum theory of the atom.
Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?
Niaz, Mansoor; Cardellini, Liberato
2011-12-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.
Observation of relativistic antihydrogen atoms
Blanford, Glenn Delfosse, Jr.
1997-09-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
The Bohr Correspondence Principle: Kepler Orbits of the Electron in a Hydrogen Atom
2016-06-01
We consider the quantum-mechanical non-relativistichydrogen atom. We show that for boundstates with size much larger than the Bohr radius,one can construct a wave packet that is localizedin space corresponding to a classical particlemoving in a circular orbit.
Does God Play Dice with Universe The Hydrogen Atomic Model of Bohr and de Broglie
Kamenov, P S
1999-01-01
In this paper it is shown that if one accept assumption of de Broglie that "unitary wave-particle" exists simultaneously and this coexistence is real, then one can find the mean life time of the hydrogen atom of Bohr (intensities). Something more, the acceptance of de Broglie's ideas show that a single excited hydrogen atom decays at exactly predictable moment (after excitation). The natural width of excited hydrogen atoms are found using the Bohr's model of this atom and de Broglie's ideas. The mean life time of the excited states is a characteristic only of a statistical ensemble of many atoms and coincide exactly with experimental data and can be used for analytical applications. It is shown also that resonant Mossbauer absorption in time domain provides a qualitative evidence of the existence of "own lifetime" for first excited states of the nuclei.
Atomically thin spherical shell-shaped superscatterers based on a Bohr model.
Li, Rujiang; Lin, Xiao; Lin, Shisheng; Liu, Xu; Chen, Hongsheng
2015-12-18
Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with a Bohr model. In addition, based on the analysis of the Bohr model, it is shown that contrary to the TM case, superscattering is hard to achieve by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.
Sommerfeld, Arnold
2013-07-01
In December 6th 1915 and January 8th 1916 Arnold Sommerfeld put the Bavarian Academy of Sciences two treatises in the amount of 75 printed pages before, by which he extended Bohr's atomic model from the year 1913 to the Bohr-Sommerfeld atom theory. In Sommerfeld's collected works only the publication submitted 1916 by Sommerfeld in the Annals of Physics about this is found.''My spectral lines are finally printed in the Academy to the impure. In the Annals they will appear in purer form'', so Sommerfeld has announced in this publication in February 10th 1916 to the editor of the Annals of Physics. From the science-historical view however for the extension of Bohr's atom theory just the Academy-treatises published before the purification process are of special interest. To the reproduction of these Academy-treatises an extensive physics-historical essay is prepended.
Conceptual objections to the Bohr atomic theory — do electrons have a "free will" ?
Kragh, Helge
2011-11-01
The atomic model introduced by Bohr in 1913 dominated the development of the old quantum theory. Its main features, such as the radiationless stationary states and the discontinuous quantum jumps between the states, were hard to swallow for contemporary physicists. While acknowledging the empirical power of the theory, many scientists criticized its foundation or looked for ways to reconcile it with classical physics. Among the chief critics were A. Crehore, J.J. Thomson, E. Gehrcke and J. Stark. This paper examines from a historical perspective the conceptual objections to Bohr's atom, in particular the stationary states (where electrodynamics was annulled by fiat) and the mysterious, apparently teleological quantum jumps. Although few of the critics played a constructive role in the development of the old quantum theory, a history neglecting their presence would be incomplete and distorted.
Observation of relativistic antihydrogen atoms
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
How Sommerfeld extended Bohr's model of the atom (1913-1916)
Eckert, Michael
2014-04-01
Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.
Relativistic Scott correction for atoms and molecules
Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig
2010-01-01
We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...
Relativistic collisions of structured atomic particles
Voitkiv, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)
2008-07-01
The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states - including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5-1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light. (orig.)
The Holographic Nature of Bohr Atomic Model%波尔原子模型及其全息性
赵丽特; 王喜建; 周党培
2016-01-01
This paper shows the holographic nature of the micro world and the macro world in physics by comparing the Bohr atomic model and the movement of the planets in the solar system.%文章通过波尔原子模型和太阳系中行星运动的对比，展现物理学中微观世界和宏观世界的全息性。
General Relativistic Effects in Atom Interferometry
Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.
2008-03-17
Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.
Atoms, metaphors and paradoxes Niels Bohr and the construction of a new physics
Petruccioli, Sandro
2006-01-01
This book gives a detailed study of the development and the interpretation given to Niels Bohr's Principle of Correspondence. It also describes the role that this principle played in guiding Bohr's research over the critical period from 1920 to 1927. Quantum mechanics, developed in the 1920s and 1930s by Bohr, Heisenberg, Born, Schrödinger and Dirac, represents one of the most profound turning points in science. This theory required a wholly new kind of physics in which many of the principles, concepts and models representing reality, that had formed the basis of classical physics since Galileo and Newton, had to be abandoned. This book re-examines the birth of quantum mechanics, in particular examining the development of crucial and original insights of Niels Bohr.
Recurrence relation for relativistic atomic matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Bai, Tongdong; Stachel, John
In his response to EPR, Bohr introduces several ideal experimental arrangements that often are not understood correctly, and his discussion about them is given a positivist reading. Our analysis demonstrates the difference between such areading and Bohr's actual position, and also clarifies the meaning of several of Bohr's key physical and philosophical ideas: * The role of the quantum of action in the distinction between classical and quantum systems; * The criterion of measurability for theoretically defined concepts; * The freedom in placement of the "cut" between measuring instrument and measured system; * The non-visualizability of the quantum formalism; and Bohr's concepts of phenomenon and complementarity.
Relativistic Transitions in the Hydrogenic Atoms
Boudet, R
2009-01-01
When one approaches the study of the quantal relativistic theory of the electron, one may be surprised by the gap which lies between the frame of the experiments, i.e. the real geometry of the space and time, and the abstraction of the complex matrices and spinors formalism employed in the presentation of the theory. This book uses a theory of the electron, introduced by David Hestenes, in which the mathematical language is the same as the one of the geometry of the space and time. Such a language not only allows one to find again the well known results concerning the one-electron atoms theory but furthermore leads easily to the resolution of problems considered for a long time without solution.
Latimer, Colin J.
1983-01-01
Discusses some lesser known examples of atomic phenomena to illustrate to students that the old quantum theory in its simplest (Bohr) form is not an antiquity but can still make an important contribution to understanding such phenomena. Topics include hydrogenic/non-hydrogenic spectra and atoms in strong electric and magnetic fields. (Author/JN)
Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves
Lusanna, Luca
2009-01-01
A review is given of the formulation of relativistic atomic theory, in which there is an explicit realization of the Poincare' generators, both in the inertial and in the non-inertial rest-frame instant form of dynamics in Minkowski space-time. This implies the need to solve the problem of the relativistic center of mass of an isolated system and to describe the transitions from different conventions for clock synchronization, namely for the identifications of instantaneous 3-spaces, as gauge transformations. These problems, stemming from the Lorentz signature of space-time, are a source of non-locality, which induces a spatial non-separability in relativistic quantum mechanics, with implications for relativistic entanglement. Then the classical system of charged particles plus the electro-magnetic field is studied in the framework of ADM canonical tetrad gravity in asymptotically Minkowskian space-times admitting the ADM Poincare' group at spatial infinity, which allows to get the general relativistic extens...
Bohr's way to defining complementarity
De Gregorio, Alberto
2014-01-01
We shall go through Bohr's talk about complementary features of quantum theory at the Volta Conference in September 1927, by collating a manuscript that Bohr wrote in Como with the unpublished stenographic report of his talk. We shall conclude - also with the help of some unpublished letters - that Bohr gave a very concise speech in September. Only at the fifth Solvay Meeting, in Bruxelles in October, did he make in public a substantial exposition of his ideas. The unpublished stenographic report of the Solvay Conference adds more detail to Bohr's working out of his 1928 papers. Our conclusion is that discussions with colleagues had a decisive role for Bohr and his final presentation of complementary sides of atomic physics.
The relativistic Scott correction for atoms and molecules
Solovej, Jan Philip; Spitzer, Wolfgang L
2008-01-01
We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [Sorensen], as well as the correction given here are of semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [Solovej-Spitzer]. The paper contains a unified treatment of the relativistic as well as the non-relativistic case.
K-shell ionization in relativistic ion-atom collisions
Mehler, G.; Soff, G.; Rumrich, K.; Greiner, W.
1989-08-01
We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed. (orig.).
K-shell ionization in relativistic ion-atom collisions
Mehler, G.; Rumrich, K.; Greiner, W.; Soff, G.
1989-02-01
We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed.
Relativistic Ionization of Hydrogen Atoms by Positron Impact
Amal Chahboune
2016-03-01
Full Text Available Relativistic triple differential cross-sections (TDCS for ionization of hydrogen atoms by positron impact have been calculated in the symmetric coplanar geometry. We have used Dirac wave functions to describe free electron’s and positron’s sates. The relativistic formalism is examined by taking the non relativistic limit. Present results are compared with those for the corresponding electron-impact case. In the first Born approximation, we found that the TDCS for positron impact ionization exceeds that for electron impact for all energies in accordance with the result obtained by several other theories.
Indirect Relativistic Effect in Electron-Alkali-Atom Collision
LIU Yi-Bao; PANG Wen-Ning; DING Hai-Bing; SHANG Ren-Cheng
2005-01-01
@@ We present detailed studies on the differential cross section (DCS) and total cross section (TCS) in electronalkali-atom collision processes by using two types of distorted wave methods, the ordinary distorted wave method and the indirect-relativistic distorted wave method. We find that the indirect relativistic effect in the target atom can be neglected in the TCS calculation in the processes; however, with an increase of the atomic number, this effect becomes significant in the DCS calculation. Then, based on the density matrix theory, the orientation and alignment parameters of excited caesium P states scattered by electrons at low incident energy are calculated,and comparisons are made for the two series between the two methods. The results show that accordance is reached at scattering angles smaller than 45°, but considerable difference appears at angles larger than 45° due to the relativistic effect.
The relativistic Scott correction for atoms and molecules
Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.
We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here are of s......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here...... are of semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains...
Workshop on foundations of the relativistic theory of atomic structure
None
1981-03-01
The conference is an attempt to gather state-of-the-art information to understand the theory of relativistic atomic structure beyond the framework of the original Dirac theory. Abstracts of twenty articles from the conference were prepared separately for the data base. (GHT)
Thinking on the Theory of Bohr Atom Model%对玻尔原子模型理论的若干思考
兰花艳; 朱平
2013-01-01
In this paper,we use the survey techniques to get the students’difficulties of learn-ing the Bohr's theory.On this basis,the physical nature and the inner relations of Bohr atom model theory are analyzed deeply in order to solve the students’confusions in learning the theory.%通过调查的方法了解学生学习玻尔理论的困难，在此基础上，对玻尔理论的物理本质和内在联系进行了深入的分析研究，以解决学生在学习该理论时的困惑。
Atomic frequency standard relativistic Doppler shift experiment
Peters, H. E.; Reinhardt, V. S.
1974-01-01
An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.
Relativistic semi-classical theory of atom ionization in ultra-intense laser
无
2001-01-01
A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.
The Hydrogen Atom in Relativistic Motion
Jarvinen, M
2004-01-01
The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the Hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the Hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Foc...
Relativistic and QED corrections for the beryllium atom.
Pachucki, Krzysztof; Komasa, Jacek
2004-05-28
Complete relativistic and quantum electrodynamics corrections of order alpha(2) Ry and alpha(3) Ry are calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated Gaussian functions is used, with exponents optimized against nonrelativistic binding energies. The results for Bethe logarithms ln(k(0)(Be)=5.750 34(3) and ln(k(0)(Be+)=5.751 67(3) demonstrate the availability of high precision theoretical predictions for energy levels of the beryllium atom and light ions. Our recommended value of the ionization potential 75 192.514(80) cm(-1) agrees with equally accurate available experimental values.
Relativistic Corrections to the Zeeman Effect of Helium Atom
关晓旭; 李白文; 王治文
2002-01-01
The high-order relativistic corrections to the Zeeman g-factors of the helium atom are calculated. AII the relativistic correction terms and the term describing the motion of the mass centre are treated as perturbations. Most of our results are in good agreement with those of Yah and Drake [Phys. Rev. A 50 (1994)R1980/, who used the wavefunctions constructed by Hylleraas coordinates. For the correction δg of the g-factor of the 3 3P state in 4He, our result, 2.91415 × 10-7 a.u., should be more reasonable and accurate, although there are no experimental data available in the literature to compare.
Relativistic heavy-atom effects on heavy-atom nuclear shieldings
Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha
2006-11-01
The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal
Pasachoff, Jay M.
2004-01-01
The attempt to bring students to critical thinking about topics in contemporary astronomy is a goal shared by many teachers. Since the rise of astrophysics in the early 20th century, spectroscopy has been the defining technique. Various techniques have been tried to give students a concrete understanding of emission lines and absorption lines in the hydrogen spectrum.1 Spectroscopy of hydrogen plays an important part of most textbooks in elementary astronomy.2 After years of jumping off lecture-room steps and trying (but never succeeding) in hovering between stair levels, I still find too many students drawing equally spaced hydrogen energy levels on exams. I thus arranged for carpenters to build a five-step staircase with the spacing matching that of the actual hydrogen energy levels. I can now use the staircase to demonstrate the Bohr atom3 in a memorable manner. ``Bohr staircase'' is therefore a suitable name for it. If a teacher wants to stress the visible spectrum rather than the energy levels, ``Balmer staircase'' is an alternate name.
Spectral fine structure of the atomic ground states based on full relativistic theory
Zhenghe Zhu; Yongjian Tang
2011-01-01
@@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.
Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.
Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W
2017-01-15
The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The grasp2K relativistic atomic structure package
Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I. P.
2007-10-01
This paper describes grasp2K, a general-purpose relativistic atomic structure package. It is a modification and extension of the GRASP92 package by [F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249]. For the sake of continuity, two versions are included. Version 1 retains the GRASP92 formats for wave functions and expansion coefficients, but no longer requires preprocessing and more default options have been introduced. Modifications have eliminated some errors, improved the stability, and simplified interactive use. The transition code has been extended to cases where the initial and final states have different orbital sets. Several utility programs have been added. Whereas Version 1 constructs a single interaction matrix for all the J's and parities, Version 2 treats each J and parity as a separate matrix. This block structure results in a reduction of memory use and considerably shorter eigenvectors. Additional tools have been developed for this format. The CPU intensive parts of Version 2 have been parallelized using MPI. The package includes a "make" facility that relies on environment variables. These make it easier to port the application to different platforms. The present version supports the 32-bit Linux and ibmSP environments where the former is compatible with many Unix systems. Descriptions of the features and the program/data flow of the package will be given in some detail in this report. Program summaryProgram title: grasp2K Catalogue identifier: ADZL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 213 524 No. of bytes in distributed program, including test data, etc.: 1 328 588 Distribution format: tar.gz Programming language: Fortran and C Computer: Intel
Relativistic Approach to the Hydrogen Atom in a Minimal Length Scenario
Francisco, Ronald Oliveira; Oakes, Thiago Luiz Antonacci; Fabris, Julio Cesar; Nogueira, Jose Alexandre, E-mail: jose.nogueira@ufes.br [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Fisica
2014-07-01
We show that relativistic contributions to the ground-state energy of the hydrogen atom from a minimal length introduced by a Lorentz-covariant algebra are more important than non-relativistic contributions; the nonrelativistic approach is therefore unsuitable. We compare our result with experimental data to estimate an upper bound of the order 10{sup -20}m for the minimal length. (author)
Coupling of (ultra- relativistic atomic nuclei with photons
M. Apostol
2013-11-01
Full Text Available The coupling of photons with (ultra- relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare nuclei (fully stripped of electrons are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance, or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.
Coupling of (ultra-)relativistic atomic nuclei with photons
Apostol, M
2013-01-01
The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ~1TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers \\simeq1eV -radiation (envisaged by ELI-NP project, for instance), or free-electron laser ~10keV -radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyse the nuclear transitions induced by the radiation, including both one- and two-photon processes, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity...
Corda, Christian
2015-01-01
The idea that black holes (BHs) result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.
Relativistic calculations of screening parameters and atomic radii of neutral atoms
Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.
2017-09-01
Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.
Radiationless transitions to atomic M 1,2,3 shells - Results of relativistic theory
Chen, M. H.; Crasemann, B.; Mark, H.
1983-01-01
Radiationless transitions filling vacancies in atomic M1, M2, and M3 subshells have been calculated relativistically with Dirac-Hartree-Slater wave functions for ten elements with atomic numbers 67-95. Results are compared with those of nonrelativistic calculations and experiment. Relativistic effects are found to be significant. Limitations of an independent-particle model for the calculation of Coster-Kronig rates are noted.
Pankovic, Vladan
2010-01-01
In this work we consider some consequences of the Bohr-Sommerfeld-Hansson (Old or quasi-classical) quantum theory of the Newtonian gravity, i.e. of the "gravitational atom". We prove that in this case (for gravitational central force and quantized angular momentum) centrifugal acceleration becomes formally-theoretically dependent (proportional to fourth degree) of the mass of "gravitational electron" rotating around "gravitational nucleus" for any quantum number (state). It seemingly leads toward a paradoxical breaking of the relativistic equivalence principle which contradicts to real experimental data. We demonstrate that this equivalence principle breaking does not really appear in the (quasi classical) quantum theory, but that it necessary appears only in a hypothetical extension of the quantum theory that needs a classical like interpretation of the Bohr-Sommerfeld angular momentum quantization postulate. It is, in some sense, similar to Bell-Aspect analysis that points out that a hypothetical determinis...
Poszwa, A.; Rutkowski, A.
2007-03-01
The binding energies and magnetic susceptibilities for states evolving from 1s1/2 , 2s1/2 , 2p1/2 , 2p3/2 , 3s1/2 , 3d3/2 , and 3d5/2 are calculated using power-series solutions of the Dirac equation for hydrogenic atoms in static and uniform magnetic B . The accuracy of the binding energies for low and medium magnetic fields exceeds that of previous variational calculations. In the low-magnetic-field limit the highly accurate values of energies are used to determine the relativistic Paschen-Back effect and relativistic magnetic susceptibilities by expansion of the fully relativistic energy into power series of the parameter B/Z2 . The linear term of this series is related to the relativistic Paschen-Back effect and the square term is proportional to the relativistic dipole magnetic susceptibility of the atom.
Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory
Dall'Acqua, Anna; Solovej, Jan Philip
2010-01-01
We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....
Excess Charge for Pseudo-relativistic Atoms in Hartree-Fock Theory
Dall'Acqua, Anna; Solovej, Jan Philip
2010-01-01
We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded.......We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal negative ionization charge and the ionization energy of an atom remain bounded independently of the nuclear charge $Z$ and the fine structure constant $\\alpha$ as long as $Z\\alpha$ is bounded....
O centenário da molécula de Bohr
Carlos A. L. Filgueiras
2013-01-01
Full Text Available A hundred years ago, a twenty-eight year old Danish scientist published a series of three papers in which electron motion was quantized. The Bohr atomic model is surely known by every chemistry student. Nevertheless in this same 1913 trilogy, Bohr studied atoms with several electrons as well as molecules. Chemistry students, in general, are not aware of the Bohr molecule. The present paper aims at rescuing this important classical model. A review of the Bohr atomic model for both one and several electrons is discussed, together with a theoretical presentation of the Bohr molecule.
Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms
Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)
2006-04-24
We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.
Relativistic Dirac-Fock atom properties for Z = 121 to Z = 138
Zhou, Z.; Kas, J. J.; Rehr, J. J.; Ermler, W. C.
2017-03-01
We present relativistic Dirac-Fock calculations of atomic properties for atomic numbers Z = 121- 138, extending a previous tabulation of Desclaux. The calculations assume a single LS ground state configuration and include a correction for finite nuclear size, with an approximation for the mean nuclear mass A(Z) based on the liquid-drop model.
Bohr-Sommerfeld Theory of the Magnetic Monopole
Pankovic, Vladan
2010-01-01
In this work we consider a simple, Bohr-Sommerfeld (Old quantum atomic) theory of the magnetic monopole. We consider the system, simply called magnetic monopole "atom", consisting of the practically standing, massive magnetic monopole as the "nucleus" and electron rotating around magnetic monopole. At this system we apply quasi-classical, Bohr-Sommerfeld quantum atomic theory. Precisely, we apply firstly, by the electron rotation, Bohr-Sommerfeld momentum quantization postulate. Secondly we use equivalence between total centrifugal force acting at rotating electron and classical magnetostatic interaction between rotating electron and magnetic monopole. It yields result practically equivalent to the Dirac quantization relation between electrical and magnetic charge.
K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms
Khabibullaev, P. K.
2000-01-01
A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.
K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms
KHABIBULLAEV, P. K.
2000-01-01
A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.
Generalized quantum similarity in atomic systems: A quantifier of relativistic effects
Martín, A. L.; Angulo, J. C.; Antolín, J.; López-Rosa, S.
2017-02-01
Quantum similarity between Hartree-Fock and Dirac-Fock electron densities reveals the depth of relativistic effects on the core and valence regions in atomic systems. The results emphasize the relevance of differences in the outermost subshells, as pointed out in recent studies by means of Shannon-like functionals. In this work, a generalized similarity functional allows us to go far beyond the Shannon-based analyses. The numerical results for systems throughout the Periodic Table show that discrepancies between the relativistic and non-relativistic descriptions are patently governed by shell-filling patterns.
Reading Bohr physics and philosophy
Plotnitsky, Arkady
2006-01-01
Reading Bohr: Physics and Philosophy offers a new perspective on Niels Bohr's interpretation of quantum mechanics as complementarity, and on the relationships between physics and philosophy in Bohr's work, which has had momentous significance for our understanding of quantum theory and of the nature of knowledge in general. Philosophically, the book reassesses Bohr's place in the Western philosophical tradition, from Kant and Hegel on. Physically, it reconsiders the main issues at stake in the Bohr-Einstein confrontation and in the ongoing debates concerning quantum physics. It also devotes greater attention than in most commentaries on Bohr to the key developments and transformations of his thinking concerning complementarity. Most significant among them were those that occurred, first, under the impact of Bohr's exchanges with Einstein and, second, under the impact of developments in quantum theory itself, both quantum mechanics and quantum field theory. The importance of quantum field theory for Bohr's thi...
Ralston, J P
2003-01-01
Recently Buniy and Kephart made an astonishing empirical observation, which anyone can reproduce at home. Measure the {\\it lengths} of closed knots tied from ordinary rope. The ``double do-nut'', and the beautiful trefoil knot are examples. Tie the knots tightly, and glue or splice the tails into a seamless unity. Compare two knots with corresponding members of the mysterious particle states known as ``glueball'' candidates in the literature. Propose that the microscopic glueball mass ought to be proportional to the macroscopic mass of the corresponding knot. Fit two parameters, then {\\it predict} 12 of 12 remaining glueball masses with extraordinary accuracy, knot by knot. Here we relate these observations to the fundamental gauge theory of gluons, by recognizing a hidden gauge symmetry bent into the knots. As a result the existence and importance of a gluon mass parameter is clarified. Paradoxically forbidden by the usual framework, the gluon mass cannot be expressed in the usual coordinates, but has a natu...
Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact
Attaourti, Y
2004-01-01
Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the $(e,2e)$ reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.
袁立新
2012-01-01
用玻尔原子模型轨道能量与光子能量比的方式,对精细结构常数值的求解作了论证；对以玻尔原子模型轨道速度V与光速c比的精细结构常数值求解,与玻尔原子模型轨道能量与光子能量比的同值性作了分析；并论证了由速度比定义的精细结构常数,是一般式玻尔原子模型轨道能量与光子能量比的特解.%The fine structure constant has been analysed by the ratio of the Bohr atom model energy to photon energy. That the phenomenon of same value of the ratio of the Bohr atom model energy to photon energy and the ratio of the velocity v of the the Bohr atom model to the velocity c has been analysed. That the fine structure constant is given by the ratio of the velocity v of the the Bohr atom model to velocity c is a characteristic solution from the general formula of the ratio of the Bohr atom model energy to photon energy.
Relativistic calculations of the non-resonant two-photon ionization of neutral atoms
Hofbrucker, Jiri; Fritzsche, Stephan
2016-01-01
The non-resonant two-photon one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section, for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold, for the case of Ne, for example, the cross section drops there by a factor of three.
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
Amour, Laurent
2011-01-01
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.
Vayenas, Constantinos G
2012-01-01
This book shows that the strong interaction forces, which keep hadrons and nuclei together, are relativistic gravitational forces exerted between very small particles in the mass range of neutrinos. First, this book considers the problematic motion of two charged particles under the influence of electrostatic and gravitational forces only, which shows that bound states are formed by following the same semi-classical methodology used by Bohr to describe the H atom. This approach is also coupled with Newton's gravitational law and with Einstein's special relativity. The results agree with experi
The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.
Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena
2016-07-21
The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy.
Production of relativistic antihydrogen atoms by pair production with positron capture
Munger, Charles T.; Brodsky, Stanley J.; Schmidt, Ivan
1994-04-01
A beam of relativistic antihydrogen atoms, the bound state (p¯e+), can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton that passes through the Coulomb field of a nucleus of charge Z will create e+e- pairs, and antihydrogen will form when a positron is created in a bound rather than a continuum state about the antiproton. The cross section for this process is calculated to be ~4Z2 pb for antiproton momenta above 6 GeV/c. The gas target of Fermilab Accumulator experiment E760 has already produced ~34 unobserved antihydrogen atoms, and a sample of ~760 is expected in 1995 from the successive experiment E835. No other source of antihydrogen exists. A simple method for detecting relativistic antihydrogen is proposed and a method outlined of measuring the antihydrogen Lamb shift to ~1%.
New version: GRASP2K relativistic atomic structure package
Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.
2013-09-01
A revised version of GRASP2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in LSJ and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an LSJ expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in ATSP2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture. Program SummaryProgram title: GRASP2K, version 1_1 Catalogue identifier: ADZL_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_1.html Program obtainable from: CPC Program Library
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)
2010-04-26
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Applications of Bohr's correspondence principle
Crawford, Frank S.
1989-07-01
The Bohr correspondence-principle (cp) formula dE/dn=ℏω is presented (ω is the classical angular frequency) and its predicted energy levels En are compared to those given by the stationary state solutions of the Schrödinger equation, first for several examples in one dimension (1D), including the ``quantum bouncer,'' and then for several examples in three dimensions (3D), including the hydrogen atom and the isotropic harmonic oscillator. For the 3-D cases, the cp predictions based on classical circular orbits are compared with the ``circlelike'' Schrödinger solutions (those with the lowest energy eigenvalue for a given l) and the cp predictions based on classical ``needle'' orbits (having zero angular momentum) with the Schrödinger l=0 solutions. For the H atom and the isotropic oscillator, the cp prediction does not depend on the classical orbit chosen because of a ``degeneracy'': the fact that for these systems ω is independent of the orbit. As a more stringent test of the cp, analogous nondegenerate systems V=-k/r3/2 in place of the H-atom potential V=-e2/r and V=kr4 in place of the oscillator potential V=(1/2)mω2r2 are therefore considered. An interesting anomaly that occurs for the harmonic oscillator and its nondegenerate analog V=kr4 is encountered (but not for the H atom nor its nondegenerate analog V=-k/r3/2), wherein half of the states predicted by application of the cp to the needle orbits are ``spurious'' in that there are no corresponding Schrödinger l=0 states. The assumption that generated the spurious cp states is uncovered—a plausible, but erroneous factor of 2 in calculating the classical frequency—and thus the spurious states are eliminated.
Laser-Assisted Semi Relativistic Excitation of Atomic Hydrogen by Electronic Impact
Taj, S; Idrissi, M El; Oufni, L
2012-01-01
The excitation of H ($1s-2s$) by electron impact in the presence and in the absence of the laser field is studied in the framework of the first Born approximation. The angular variation of the laser-assisted differential cross section (DCS) for atomic hydrogen by electronic impact is presented at various kinetic energies for the incident electron. The use of Darwin wave function as a semirelativistic state to represent the atomic hydrogen gives interesting results when the condition $z/c\\ll1$ is fulfilled. A comparison with the non relativistic theory and experimental data gives good agreement. It was observed that beyond (2700 $eV$) which represents the limit between the two approaches, the non relativistic theory does not yield close agreement with our theory and that, over certain ranges of energy, it can be in error by several orders of magnitude. The sum rule given by Bunkin and Fedorov and by Kroll and Watson \\cite{22} has been verified in both nonrelativistic and relativistic regimes.
Spectral line shifts of alkali atoms in liquid helium: a relativistic density functional approach
Anton, J [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Mukherjee, P K [Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032 (India); Fricke, B [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany); Fritzsche, S [Universitaet Kassel, Institut fuer Physik, 34109 Kassel (Germany)
2007-06-28
Excitation line shifts of the principal resonance transitions in alkali atoms sodium and cesium embedded inside the liquid helium environment have been calculated using four-component relativistic density functional theory. The effect of the liquid helium environment is assumed to be represented by a cluster of 14 atoms surrounding the central alkali atom. The estimated blue shift of the principal resonance line {sup 2}S {yields}{sup 2}P is 22.8 nm for Na and 16.7 nm for Cs. The result for Cs is in good agreement with the experimental shift of 18.2 nm. In the absence of the experimental data for Na, our result is compared with those of other theoretical estimates.
Chattopadhyay, S; Angom, D
2014-01-01
The perturbed relativistic coupled-cluster (PRCC) theory is applied to calculate the electric dipole polarizabilities of alkaline Earth metal atoms. The Dirac-Coulomb-Breit atomic Hamiltonian is used and we include the triple excitations in the relativistic coupled-cluster (RCC) theory. The theoretical issues related to the triple excitation cluster operators are described in detail and we also provide details on the computational implementation. The PRCC theory results are in good agreement with the experimental and previous theoretical results. We, then, highlight the importance of considering the Breit interaction for alkaline Earth metal atoms.
XIAO Hai; LI Jun
2008-01-01
Benchmark calculations on the molar atomization enthalpy, geometry, and vibrational frequencies of uranium hexafluoride (UF6) have been performed by using relativistic density functional theory (DFT) with various levels of relativistic effects, different types of basis sets, and exchange-correlation functionals. Scalar relativistic effects are shown to be critical for the structural properties. The spin-orbit coupling effects are important for the calculated energies, but are much less important for other calculated ground-state properties of closed-shell UF6. We conclude through systematic investigations that ZORA- and RECP-based relativistic DFT methods are both appropriate for incorporating relativistic effects. Comparisons of different types of basis sets (Slater, Gaussian, and plane-wave types) and various levels of theoretical approximation of the exchange-correlation functionals were also made.
Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field
Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)
1998-01-26
We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.
Niels Bohr and Complementarity An Introduction
Plotnitsky, Arkady
2012-01-01
This book offers a discussion of Niels Bohr’s conception of “complementarity,” arguably his greatest contribution to physics and philosophy. By tracing Bohr’s work from his 1913 atomic theory to the introduction and then refinement of the idea of complementarity, and by explicating different meanings of “complementarity” in Bohr and the relationships between it and Bohr’s other concepts, the book aims to offer a contained and accessible, and yet sufficiently comprehensive account of Bohr’s work on complementarity and its significance.
Model operator approach to the Lamb shift calculations in relativistic many-electron atoms
Shabaev, V M; Yerokhin, V A
2013-01-01
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
QED shift calculations in relativistic many-electron atoms and ions
Tupitsyn, I I; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-01-01
We incorporated quantum electrodynamics (QED) corrections into the broadly-applicable high-precision relativistic method that combines configuration interaction (CI) and linearized coupled-cluster approaches. With the addition of the QED, this CI+all-order method allows one to accurately predict properties of heavy ions of particular interest to the design of precision atomic clocks and tests of fundamental physics. To evaluate the accuracy of the QED contributions and test various QED models, we incorporated four different one-electron QED potentials. We demonstrated that all of them give consistent and reliable results. For the strongly bound electrons (i.e. inner electrons of heavy atoms, or valence electrons in highly-charged ions), the nonlocal potentials are more accurate, than the local one. Results are presented for cases of particular experimental interest.
LETTER TO THE EDITOR: Recurrence relations for relativistic atomic matrix elements
Martínez-y-Romero, R. P.; Núñez-Yépez, H. N.; Salas-Brito, A. L.
2000-05-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired by the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non-relativistic quantum mechanics. We first obtain the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use this relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus; Ruud, Kenneth
2009-02-01
We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.
Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway)], E-mail: kenneth.ruud@chem.uit.no
2009-02-17
We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.
A fully relativistic approach for calculating atomic data for highly charged ions
Sampson, Douglas H. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Honglin [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: zhang@lanl.gov; Fontes, Christopher J. [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: cjf@lanl.gov
2009-07-15
We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.
Relativistic Spectrum of Hydrogen Atom in Space-Time Non-Commutativity
Moumni, Mustafa; Zaim, Slimane; 10.1063/1.4715429
2012-01-01
We study space-time non-commutativity applied to the hydrogen atom via the Seiberg-Witten map and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r-3 part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter. N.B: In precedent works (arXiv:0907.1904, arXiv:1003.5732 and arXiv:1006.4590), we have used the Bopp Shift formulation of non-commutativity but here use it \\`a la Seiberg-Witten in the Relativistic case.
A fully relativistic approach for calculating atomic data for highly charged ions
Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV
2009-01-01
We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.
K--nucleus relativistic mean field potentials consistent with kaonic atoms
Friedman, E.; Gal, A.; Mareš, J.; Cieplý, A.
1999-08-01
K- atomic data are used to test several models of the K- nucleus interaction. The t(ρ)ρ optical potential, due to coupled channel models incorporating the Λ(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit K- optical potential is found to be strongly attractive, with a depth of 180+/-20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.
Magnetizabilities of relativistic hydrogenlike atoms in some arbitrary discrete energy eigenstates
Stefańska, Patrycja
2016-01-01
We present the results of numerical calculations of magnetizability ($\\chi$) of the relativistic one-electron atoms with a pointlike, spinless and motionless nuclei of charge $Ze$. Exploiting the analytical formula for $\\chi$ recently derived by us [P. Stefa{\\'n}ska, 2015], valid for an arbitrary discrete energy eigenstate, we have found the values of the magnetizability for the ground state and for the first and the second set of excited states (i.e.: $2s_{1/2}$, $2p_{1/2}$, $2p_{3/2}$, $3s_{1/2}$, $3p_{1/2}$, $3p_{3/2}$, $3d_{3/2}$, and $3d_{5/2}$) of the Dirac one-electron atom. The results for ions with the atomic number $1 \\leqslant Z \\leqslant 137$ are given in 14 tables. The comparison of the numerical values of magnetizabilities for the ground state and for each states belonging to the first set of excited states of selected hydrogenlike ions, obtained with the use of two different values of the fine-structure constant, i.e.: $\\alpha^{-1}=137.035 999 139$ (CODATA 2014) and $\\alpha^{-1}=137.035 999 074...
Cheng, Lan; Xiao, Yunlong; Liu, Wenjian
2009-12-28
It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.
Ioannou, J.G.
1977-12-01
The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.
Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas
2016-07-07
We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.
Brunori, Maurizio
2012-01-01
Before the outbreak of World War II, Jeffries Wyman postulated that the "Bohr effect" in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the…
Brunori, Maurizio
2012-01-01
Before the outbreak of World War II, Jeffries Wyman postulated that the "Bohr effect" in hemoglobin demanded the oxygen linked dissociation of the imidazole of two histidines of the polypeptide. This proposal emerged from a rigorous analysis of the acid-base titration curves of oxy- and deoxy-hemoglobin, at a time when the information on the…
GRASP92: a package for large-scale relativistic atomic structure calculations
Parpia, F. A.; Froese Fischer, C.; Grant, I. P.
2006-12-01
Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms
Zhu, Shi-Liang; Zhang, Dan-Wei; Wang, Z D
2009-05-29
We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.
Toyota, Koudai; Son, Sang-Kil; Santra, Robin
2017-04-01
In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.
Helmich-Paris, Benjamin; Visscher, Lucas
2016-01-01
We present a formulation of Laplace-transformed atomic orbital-based second-order M{\\o}ller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy con- tributions, which show the same long-range decay with the inter-electronic / atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the pro...
Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem
Webb, William
2013-04-01
Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!
Bohr's semiclassical model of the black hole thermodynamics
Panković V.
2008-01-01
Full Text Available We propose a simple procedure for evaluating the main attributes of a Schwarzschild's black hole: Bekenstein-Hawking entropy, Hawking temperature and Bekenstein's quantization of the surface area. We make use of the condition that the circumference of a great circle on the black hole horizon contains finite and whole number of the corresponding reduced Compton's wavelength. It is essentially analogous to Bohr's quantization postulate in Bohr's atomic model interpreted by de Broglie's relation. It implies the standard meaning of the black hole entropy corresponding to surface of the quantum variation of the great circles on the black hole horizon surface area. We present black hole radiation in the form conceptually analogous to Bohr's postulate on the photon emission by discrete quantum jump of the electron within the Old quantum theory. This enables us, in accordance with Heisenberg's uncertainty relation and Bohr's correspondence principle, to make a rough estimate of the time interval for black hole evaporation, which turns out very close to time interval predicted by the standard Hawking's theory. Our calculations confirm Bekenstein's semiclassical result for the energy quantization, in variance with Frasca's (2005 calculations. Finally we speculate about the possible source-energy distribution within the black hole horizon.
Relativistic calculations of quasi-one-electron atoms and ions using Laguerre and Slater spinors
Jiang, Jun; Cheng, Yongjun; Bromley, Michael W J
2016-01-01
A relativistic description of the structure of heavy alkali atoms and alkali-like ions using S-spinors and L-spinors has been developed. The core wavefunction is defined by a Dirac-Fock calculation using an S-spinors basis. The S-spinor basis is then supplemented by a large set of L-spinors for the calculation of the valence wavefunction in a frozen-core model. The numerical stability of the L-spinor approach is demonstrated by computing the energies and decay rates of several low-lying hydrogen eigenstates, along with the polarizabilities of a $Z=60$ hydrogenic ion. The approach is then applied to calculate the dynamic polarizabilities of the $5s$, $4d$ and $5p$ states of Sr$^+$. The magic wavelengths at which the Stark shifts between different pairs of transitions are zero are computed. Determination of the magic wavelengths for the $5s \\to 4d_{\\frac32}$ and $5s \\to 4d_{\\frac52}$ transitions near $417$~nm (near the wavelength for the $5s \\to 5p_j$ transitions) would allow a determination of the oscillator s...
Nahar, S N; Chen, G X; Pradhan, A K; Nahar, Sultana N.; Eissner, Werner; Chen, Guo-Xin; Pradhan, Anil K.
2003-01-01
An extensive set of fine structure levels and corresponding transition probabilities for allowed and forbidden transitions in Fe XVII is presented. A total of 490 bound energy levels of Fe XVII of total angular momenta 0 <= J <= 7 of even and odd parities with 2 <= n <= 10, 0 <= l <= 8, 0 <= L <= 8, and singlet and triplet multiplicities, are obtained. They translate to over 2.6 x 10^4 allowed (E1) transitions that are of dipole and intercombination type, and about 3000 forbidden transitions that include electric quadrupole (E2), magnetic dipole (M1), electric octopole (E3), and magnetic quadrupole (M2) type representing the most detailed calculations to date for the ion. Oscillator strengths f, line strengths S, and coefficients A of spontaneous emission for the E1 type transitions are obtained in the relativistic Breit-Pauli R-matrix approximation. A valus for the forbidden transitions are obtained from atomic structure calculations using codes SUPERSTRUCTURE and GRASP. The energy le...
Why We Should Teach the Bohr Model and How to Teach it Effectively
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2008-01-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…
Why We Should Teach the Bohr Model and How to Teach it Effectively
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2008-01-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…
Ehrenfest's adiabatic hypothesis in Bohr's quantum theory
Pérez, Enric
2015-01-01
It is widely known that Paul Ehrenfest formulated and applied his adiabatic hypothesis in the early 1910s. Niels Bohr, in his first attempt to construct a quantum theory in 1916, used it for fundamental purposes in a paper which eventually did not reach the press. He decided not to publish it after having received the new results by Sommerfeld in Munich. Two years later, Bohr published "On the quantum theory of line-spectra." There, the adiabatic hypothesis played an important role, although it appeared with another name: the principle of mechanical transformability. In the subsequent variations of his theory, Bohr never suppressed this principle completely. We discuss the role of Ehrenfest's principle in the works of Bohr, paying special attention to its relation to the correspondence principle. We will also consider how Ehrenfest faced Bohr's uses of his more celebrated contribution to quantum theory, as well as his own participation in the spreading of Bohr's ideas.
Keith, Todd A; Frisch, Michael J
2011-11-17
Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in
Bohr vs. Einstein: Fortolkning af kvantemekanikken
Andersen, Christian Kraglund; Wade, Andrew Christopher James
2013-01-01
Siden 1913, da Bohr fremlagde sin kvantemekaniske model for atomet, har fysikere diskuteret, hvordan kvan- temekanikken skal fortolkes. Specielt aktive i denne diskussion var Bohr og Einstein, som havde modstridende opfattelser af, hvordan kvantemekanikken skulle forstås. Kan katte være både leve...
Ravn, Ib
2002-01-01
Den filosofiske arv efter Niels Bohr rummer et tabu mod at prøve at forstå, hvordan den kvantefysiske virkelighed ser ud. Det er på tide vi lægger dette billedforbud bag os. Videnskabshistorikeren Mara Beller finder årsagen til Niels Bohrs succes i effektiv retorik snarere end overlegen videnskab....
[Christian Bohr and the Seven Little Devils].
Gjedde, Albert
2004-01-01
The author explores novel lessons emerging from the oxygen diffusion controversy between Christian Bohr on one side and August and Marie Krogh on the other. THe controversy found its emphatic expression in August and Marie Krogh's "Seven Little Devils", a series of papers published back-to-back in the 1910 volume of Skandinavisches Archiv für Physiologie. The Devils unjustifiably sealed the fate of Christian Bohr's theory of active cellular participation in the transport of oxygen from the lungs to the pulmonary circulation. The author's renewed examination of the original papers of Bohr and the Kroghs reveals that Bohr's concept of active cellular participation in diffusion is entirely compatible with the mechanism of capillary recruitment, for the discovery of which Krogh was later awarded Nobel's Prize, years after Bohr's untimely and unexpected death in 1911.
Munger, C. T.; Brodsky, S. J.; Schmidt, I.
1992-09-01
A beam of relativistic antihydrogen atoms - the bound state (bar-p)e(+) - can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e(+)e(-) pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 1 Z(exp 2) pb for antiproton momenta above 6 GeV/c. A sample of 200 antihydrogen atoms in a low-emittance, neutral beam will be made in 1994 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few 10(exp 4) atoms can be used to measure the antihydrogen Lamb shift to 1 percent.
Munger, Charles T.; Brodsky, Stanley J.; Schmidt, Ivan
1993-12-01
A beam of relativistic antihydrogen atoms — the bound state (bar pe+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e- pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3 Z 2 pb for antiproton momenta about 6 GeV/ c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %.
Projectile X-ray emission in relativistic ion-atom collisions
Salem, Shadi Mohammad Ibrahim
2010-03-16
This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two
A relativistic correction to semiclassical charmonium
Weiss, J.
1995-09-01
It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.
What Can the Bohr-Sommerfeld Model Show Students of Chemistry in the 21st Century?
Niaz, Mansoor; Cardellini, Liberato
2011-01-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. To increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study aims to elaborate a framework…
Lee, Y.S.
1977-11-01
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.
Discrete wave mechanics: The hydrogen atom.
Wall, F T
1986-08-01
The quantum mechanical problem of the hydrogen atom is treated by use of a finite difference equation in place of Schrödinger's differential equation. The exact solution leads to a wave vector energy expression that is readily converted to the Bohr-Rydberg formula. (The calculations here reported are limited to spherically symmetric states.) The wave vectors reduce to the familiar solutions of Schrödinger's equation as c --> infinity. The internal consistency and limiting behavior provide support for the view that the equations employed could well constitute an approach to a relativistic formulation of wave mechanics.
Process and Impact of Niels Bohr's Visit to Japan and China in 1937: A Comparative Perspective.
Wang, Lei; Yang, Jian
2017-03-01
At the beginning of the twentieth century, Japan and China, each for its own reasons, invited the famous physicist Niels Bohr to visit and give lectures. Bohr accepted their invitations and made the trip in 1937; however, the topics of his lectures in the two countries differed. In Japan, he mainly discussed quantum mechanics and philosophy, whereas in China, he focused more on atomic physics. This paper begins with a detailed review of Bohr's trip to Japan and China in 1937, followed by a discussion of the impact of each trip from the perspective of the social context. We conclude that the actual effect of Bohr's visit to China and Japan involved not only the spreading of Bohr's knowledge but also clearly hinged on the current status and social background of the recipients. Moreover, the impact of Bohr's trip to East Asia demonstrates that, as is the case for scientific exchanges at the international level, the international exchange of knowledge at the individual level is also powerful, and such individual exchange can even promote exchange on the international level.
Camilleri, Kristian
2015-01-01
Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem...
Nandy, D K; Sahoo, B K
2014-01-01
We report the implementation of equation-of-motion coupled-cluster (EOMCC) method in the four-component relativistic framework with the spherical atomic potential to generate the excited states from a closed-shell atomic configuration. This theoretical development will be very useful to carry out high precision calculations of varieties of atomic properties in many atomic systems. We employ this method to calculate excitation energies of many low-lying states in a few Ne-like highly charged ions, such as Cr XV, Fe XVII, Co XVIII and Ni XIX ions, and compare them against their corresponding experimental values to demonstrate the accomplishment of the EOMCC implementation. The considered ions are apt to substantiate accurate inclusion of the relativistic effects in the evaluation of the atomic properties and are also interesting for the astrophysical studies. Investigation of the temporal variation of the fine structure constant (\\alpha) from the astrophysical observations is one of the modern research problems...
Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED
Amour, L
2010-01-01
We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.
Hundrede år efter Bohr: Nobelprisen for fysik under gennemsnittet
Julsgaard, Brian; Mølmer, Klaus
2013-01-01
I 2012 blev nobelprisen i fysik givet for eksperimenter på enkelte atomer og fotoner. Eksperimenterne har bekræftet kvantemekanikkens helt basale forudsigelser om, hvad der sker, når man f.eks. måler på et kvantesystem. I denne artikel beskriver vi nogle af disse eksperimenter, som Niels Bohr og...
Lectures on ion-atom collisions from nonrelativistic to relativistic velocities
Eichler, Jörg
2005-01-01
Atomic collisions offer some unique opportunities to study atomic structure and reaction mechanisms in experiment and theory, especially for projectiles of high atomic number provided by modern accelerators. The book is meant as an introduction into the field and provides some basic theoretical understanding of the atomic processes occurring when a projectile hits another atom. It also furnishes the tools for a mathematical description, however, without going deeper into the technical details, which can be found in the literature given. With this aim, the focus is on reactions, in which only a single active electron participates. Collisional excitation, ionization and charge transfer are discussed for collision velocities ranging from slow to comparable to thespeed of light. For the highest projectile velocities, energy can be converted into mass, so that electron-positron pairs are created. In addition to the systematic treatment, a theoretical section specializes on electron-electroncorrelations and three...
Probing the (empirical quantum structure embedded in the periodic table with an effective Bohr model
Wellington Nardin Favaro
2013-01-01
Full Text Available The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z shows a quasi-smoothed dependence of Z, i.e., u(Z ≈ Z2/5 - 1.
Camilleri, Kristian; Schlosshauer, Maximilian
2015-02-01
Niels Bohr's doctrine of the primacy of "classical concepts" is arguably his most criticized and misunderstood view. We present a new, careful historical analysis that makes clear that Bohr's doctrine was primarily an epistemological thesis, derived from his understanding of the functional role of experiment. A hitherto largely overlooked disagreement between Bohr and Heisenberg about the movability of the "cut" between measuring apparatus and observed quantum system supports the view that, for Bohr, such a cut did not originate in dynamical (ontological) considerations, but rather in functional (epistemological) considerations. As such, both the motivation and the target of Bohr's doctrine of classical concepts are of a fundamentally different nature than what is understood as the dynamical problem of the quantum-to-classical transition. Our analysis suggests that, contrary to claims often found in the literature, Bohr's doctrine is not, and cannot be, at odds with proposed solutions to the dynamical problem of the quantum-classical transition that were pursued by several of Bohr's followers and culminated in the development of decoherence theory.
Relativistic all-order calculations of Th, Th$^{+}$ and Th$^{2+}$ atomic properties
Safronova, M S; Clark, Charles W
2014-01-01
Excitation energies, term designations, and $g$-factors of Th, Th$^{+}$ and Th$^{2+}$ are determined using a relativistic hybrid configuration interaction (CI) + all-order approach that combines configuration interaction and linearized coupled-cluster methods. The results are compared with other theory and experiment where available. We find some "vanishing" $g$-factors, similar to those known in lanthanide spectra. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for Th$^{2+}$. To estimate the uncertainties of our results, we compared our values with the available experimental lifetimes for higher $5f7p\\ ^3G_{4}$, $7s7p\\ ^3P_{0}$, $7s7p\\ ^3P_{1}$, and $6d7p\\ ^3F_{4}$ levels of Th$^{2+}$. These calculations provide a benchmark test of the CI+all-order method for heavy systems with several valence electrons and yield recommended values for transition rates and lifetimes of Th$^{2+}$.
Calculation of the relativistic Bethe logarithm in the two-center problem
Korobov, Vladimir I; Karr, Jean-Philippe
2013-01-01
We present a variational approach to evaluate relativistic corrections of order \\alpha^2 to the Bethe logarithm for the ground electronic state of the Coulomb two center problem. That allows to estimate the radiative contribution at m\\alpha^7 order in molecular-like three-body systems such as hydrogen molecular ions H_2^+ and HD^+, or antiprotonic helium atoms. While we get 10 significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved especially for small values of bond length R. We were able to achieve a level of 3-4 significant digits starting from R=0.2 bohr, that will allow to reach 10^{-10} relative uncertainty on transition frequencies.
Calculation of the relativistic Bethe logarithm in the two-center problem
Korobov, Vladimir I.; Hilico, L.; Karr, J.-Ph.
2013-06-01
We present a variational approach to evaluate relativistic corrections of order α2 to the Bethe logarithm for the ground electronic state of the Coulomb two-center problem. That allows us to estimate the radiative contribution at mα7 order in molecular-like three-body systems such as hydrogen molecular ions H2+ and HD+ or antiprotonic helium atoms. While we get ten significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved, especially for small values of bond length R. We were able to achieve a level of three to four significant digits starting from R=0.2 bohr, which will allow us to reach 10-10 relative uncertainty on transition frequencies.
Why we should teach the Bohr model and how to teach it effectively
S. B. McKagan
2008-03-01
Full Text Available Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students’ ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school to graduate school. We present results from a study designed to test this claim by developing a curriculum on models of the atom, including the Bohr and Schrödinger models. We examine student descriptions of atoms on final exams in transformed modern physics classes using various versions of this curriculum. We find that if the curriculum does not include sufficient connections between different models, many students still have a Bohr-like view of atoms rather than a more accurate Schrödinger model. However, with an improved curriculum designed to develop model-building skills and with better integration between different models, it is possible to get most students to describe atoms using the Schrödinger model. In comparing our results with previous research, we find that comparing and contrasting different models is a key feature of a curriculum that helps students move beyond the Bohr model and adopt Schrödinger’s view of the atom. We find that understanding the reasons for the development of models is much more difficult for students than understanding the features of the models. We also present interactive computer simulations designed to help students build models of the atom more effectively.
Rüdiger, Mogens
2005-01-01
Anmeldelse af David Favrholdt: Spaltningen. Niels Bohr og Werner Heisenberg i videnskab og politik.......Anmeldelse af David Favrholdt: Spaltningen. Niels Bohr og Werner Heisenberg i videnskab og politik....
Abdelmadjid Maireche
2016-11-01
Full Text Available In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t. potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS. The exact corrections for excited states are found straightforwardly for interactions in one-electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimal parameter ,which induced by position-position noncommutativity, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number and we have also shown that, the usual states in ordinary two and three dimensional spaces are canceled and has been replaced by new degenerated sub-states in the new quantum symmetries of (NC: 3D-RS and we have also applied our obtained results to the case of modified Krazer-Futes potential.
Existence of a ground state for the confined hydrogen atom in non-relativistic QED
Amour, Laurent; Faupin, Jeremy
2008-01-01
We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literat......We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review...
Systematic Measurements of the Bohr-Weisskopf Effect at ISOLDE
2002-01-01
Nuclear electric and magnetic structure properties are measurable by high-resolution atomic spectroscopy through isotope shifts and the Bohr-Weisskopf effect (hyperfine structure anomalies). \\\\ \\\\ The greatest value of these measurements is when made systematically over a large number of isotopes. This has been done in the case of isotopes shifts most extensively by the experiment at ISOLDE. To date the magnetic distribution studies are few and isolated. Here we propose to intitiate a program at ISOLDE to measure hfs anomalies systematically. The experiments, requiring high-precision data on magnetic dipole constants as well as on nuclear g-factors, will be done by atomic-beam magnetic resonance with the use of laser excitation for polarization of the beam and a sixpole magnet acting as an analyser. \\\\ \\\\ The heavy alkali elements are the most promising candidates for hfs anomaly studies because of the large effect expected, the high production yields at ISOLDE and most importantly, the interesting variations...
Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms
Gravejat, Philippe; Sere, Eric
2007-01-01
We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, re...
Bohr Hamiltonian with time-dependent potential
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
What classicality? Decoherence and Bohr's classical concepts
Schlosshauer, Maximilian
2010-01-01
Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...
Why we should teach the Bohr model and how to teach it effectively
McKagan, S B; Wieman, C E
2007-01-01
Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school to graduate school. We present results from a study designed to test this claim by developing curriculum on models of the atom, including the Bohr and Schrodinger models. We examine student descriptions of atoms on final exams in transformed modern physics classes using various versions of this curriculum. We find that if the curriculum does not include sufficient connections between different models, many students still have a Bohr-like view of atoms, rather than a more accurate Schrodinger model. However, with an improved curriculum designed to develop model-building skills and with better integration between different models, it is possible to get nearly all stud...
Matveev, Alexei V; Rösch, Notker
2008-06-28
We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n
El modelo semicuántico de Bohr en los libros de texto The Bohr's quantum model in the textbook
Jorge Eliécer Moreno Ramírez
2010-01-01
Full Text Available La didáctica de las ciencias naturales está cuestionando la transposición de los modelos científicos en modelos didácticos. Otras investigaciones muestran que el conocimiento científico convertido en conocimiento escolar produce deformaciones de la actividad científica y la simplificación de modelos, contribuyendo con la actitud negativa de los estudiantes hacia las ciencias y al fracaso escolar reportado por algunos estudios. Se pregunta si el modelo atómico de Bohr que se muestra en los textos se corresponde histórica y epistemológicamente con las actividades científicas y cuáles son las posibles deformaciones que de ésta se hace cuando se muestra el modelo en los libros. Los resultados de la investigación muestran una clara diferencia entre la propuesta de Bohr (1913 y la transposición del modelo, lo que invita a una reflexión profunda acerca de la confiabilidad que pueden tener los textos utilizados para la enseñanza de la ciencia químicaNatural science teaching is questioning the transposition that is made of scientific models into didactic models, because research has shown that when scientific knowledge is transformed into scholarly knowledge in order to be taught it causes the deformation of the scientific activity and the simplification of the models. This contributes to the negative attitude of students towards science, and student failure shown in some studies. This research inquired if the transposition of Bohr's atomic model that is shown in textbooks corresponds historically and epistemologically to scientific activity and what the possible deformations are that, coming from this model, are made to the scientific activity that comes from the transposition. The research results show differences between what Bohr (1913 proposed and the transposition of the model in textbooks. This information will contribute to the analysis that is being done regarding the dependability of textbooks.
Relativistic spectrum of hydrogen atom in the space-time non-commutativity
Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane [Matter Sciences Department, Faculty of SE and SNV, University of Biskra (Algeria); Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria); Matter Sciences Department, Faculty of Sciences, University of Batna (Algeria)
2012-06-27
We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.
Chaudhuri, Rajat K; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha
2013-11-27
The coupled cluster based linear response theory (CCLRT) with four-component relativistic spinors is employed to compute the electric field gradients (EFG) of (35)Cl, (79)Br, and (127)I nuclei. The EFGs resulting from these calculations are combined with experimental nuclear quadrupole coupling constants (NQCC) to determine the nuclear quadrupole moments (NQM), Q of the halide nuclei. Our estimated NQMs [(35)Cl = -81.12 mb, (79)Br = 307.98 mb, and (127)I = -688.22 mb] agree well with the new atomic values [(35)Cl = -81.1(1.2), (79)Br = 302(5), and (127)I = -680(10) mb] obtained via Fock space multireference coupled cluster method with the Dirac-Coulomb-Breit Hamiltonian. Although our estimated Q((79)Br) value deviates from the accepted reference value of 313(3) mb, it agrees well with the recently recommended value, Q((79)Br) = 308.7(20) mb. Good agreement with current reference data indicates the accuracy of the proposed value for these halogen nuclei and lends credence to the results obtained via CCLRT approach. The electron affinities yielded by this method with no extra cost are also in good agreement with experimental values, which bolster our belief that the NQMs values for halogen nuclei derived here are reliable.
Loring, FH
2014-01-01
Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec
Electron loss to continuum in near-relativistic ion-atom collisions
Hagmann, Siegbert [GSI, Darmstadt (Germany)]|[Inst. f. Kernphysik, Univ. Frankfurt (Germany); Nofal, Muaffaq [Max Planck Inst. f. Kernphysik, Heidelberg (Germany)]|[GSI, Darmstadt (Germany)]|[Inst. f. Kernphysik, Univ. Frankfurt (Germany); Stoehlker, Thomas; Fritzsche, Stefan [GSI, Darmstadt (Germany)]|[Physikal. Institut, Univ. Heidelberg (Germany); Surzhykov, Andrey; Moshammer, Robert; Ullrich, Joachim [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Kozhuharov, Christophor; Gumberidze, Alexander; Spillmann, Uwe; Reuschl, Regina; Hess, Sebastian; Trotsenko, Sergej; Bosch, Fritz; Liesen, Dieter [GSI, Darmstadt (Germany); Doerner, Reinhard [Inst. f. Kernphysik, Univ. Frankfurt (Germany); Rothard, Hermann [CIRIL, GANIL, Caen (France)
2008-07-01
In fast ion-atom collisions the projectile electron loss to continuum (ELC) permits to study the dynamics of ionization very close to threshold; it is a test of unparalleled sensitivity for first order theories. We have studied forward electron emission in two collision systems of different projectile Compton profile, U88+ +N2 and Sn47+ +N2 using the forward electron spectrometer at the supersonic jet-target of the ESR storage ring. We report first results for 90 AMeV U88+ and 300 AMeV Sn47+ measuring coincidences between electrons around ve=vProj and charge-exchanged projectiles having lost one electron; results are compared with theory.
Systematic measurements of the Bohr-Weisskopf effect at ISOLDE
Nojiri, Y; Matsuki, S; Ragnarsson, I; Neugart, R; Redi, O; Stroke, H H; Duong, H T; Marescaux, D; Pinard, J; Juncar, P; Ekstrom, C; Pellarin, M; Vialle, J-L; Inamura, T
2002-01-01
The " Bohr-Weisskopf " effect, or " hyperfine structure (hfs) anomaly ", which results from the effect of the distribution of nuclear magnetization on the electro-nuclear interaction, will be measured systematically at the PS Booster ISOLDE, first for a long chain of radioactive cesium isotopes, analogously to previous isotope shift and hfs studies. In addition to the direct measurement of magnetic moment values, the results are expected to provide independent data for testing nuclear wavefunctions, these will be of importance for interpreting systematic parity non-conservation experiments, complementary to the single isotope study which requires a high precision knowledge of the electron wavefunction. Substantial progress in these calculations has been achieved recently. Precision measurements of the hfs splittings and nuclear magnetic moments are required, with sensitivity adequate for the radioactive isotopes produced. A triple resonance atomic beam magnetic resonance apparatus with optical pumping state s...
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Stefańska, Patrycja
2016-01-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
Stefańska, Patrycja
2016-02-01
We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; J. Phys. B 30, 2747 (1997), 10.1088/0953-4075/30/11/023], We derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.
Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant
Thylwe, Karl-Erik [KTH-Mechanics, Royal Institute of Technology, S-10044 Stockholm (Sweden); McCabe, Patrick [CCDC, 12 Union Road, CB2 1EZ Cambridge (United Kingdom)
2013-05-15
It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.
Making It Visual: Creating a Model of the Atom
Pringle, Rose M.
2004-01-01
This article describes a lesson in which students construct Bohr's planetary model of the atom. Niels Bohr's atomic model provides a framework for discussing with middle and high school students the historical development of our understanding of the structure of the atom. The model constructed in this activity will enable students to visualize the…
Bohr Inequality for Multiple Op erators
LIAN Tie-yan; TANG Wei
2016-01-01
An absolute value equation is established for linear combinations of two operators. When the parameters take special values, the parallelogram law of operator type is given. In addition, the operator equation in literature [3] and its equivalent deformation are obtained. Based on the equivalent deformation of the operator equation and using the properties of conjugate number as well as the operator, an absolute value identity of multiple operators is given by means of mathematical induction. As Corollaries, Bohr inequalities are extended to multiple operators and some related inequalities are reduced to, such as inequalities in [2] and [3].
Bohr-Sommerfeld Quantization of Space
Bianchi, Eugenio
2012-01-01
We introduce semiclassical methods into the study of the volume spectrum in loop gravity. The classical system behind a 4-valent spinnetwork node is a Euclidean tetrahedron. We investigate the tetrahedral volume dynamics on phase space and apply Bohr-Sommerfeld quantization to find the volume spectrum. The analysis shows a remarkable quantitative agreement with the volume spectrum computed in loop gravity. Moreover, it provides new geometrical insights into the degeneracy of this spectrum and the maximum and minimum eigenvalues of the volume on intertwiner space.
S Dhar; M R Alam
2007-09-01
The triple differential cross-section for K-shell ionization of silver and copper atoms by relativistic electrons have been computed in the coplanar symmetric geometry with the inclusion of exchange effects following the multiple scattering theory of Das and Seal [1] multiplied by suitable spinors. Present computed results are marginally improved in some cases from the previous computed results [2]. Present results are compared with measured values [3] and with previous computation results [2]. Some other theoretical computational results are also presented here for comparison.
Liu, Xiaobin; Shi, Yinglong; Xing, Yongzhong; Lu, Feiping; Chen, Zhanbin
2017-02-01
We investigate the 2p photoelectron spectra of sodium atoms with the initial state 2{p}63p at a photon energy of 54 eV. The analysis is performed based on the multi-configuration Dirac–Fock method. Special attention is given to the influences of correlation and relativistic effects on the spectra structures. To explore the nature and importance of such influences, calculations were performed based on detailed analyses of the thresholds, relative intensities and corresponding data calculated in the nonrelativistic limit.
Calculation of the relativistic Bloch correction to stopping power
Ahlen, S. P.
1982-01-01
Bloch's technique of joining the nonrelativistic Bethe and Bohr stopping-power expressions by taking into account wave-packet effects for close collisions is extended to the relativistic case. It is found that Bloch's nonrelativistic correction term must be modified and that charge asymmetric terms appear. Excellent agreement is observed by comparing the results of these calculations to recent data on the stopping power of relativistic heavy ions.
On quasi-normal modes, area quantization and Bohr correspondence principle
Corda, Christian
2015-01-01
In Int. Journ. Mod. Phys. D 14, 181 (2005) Khriplovich verbatim claims that "the correspondence principle does not dictate any relation between the asymptotics of quasinormal modes and the spectrum of quantized black holes" and that "this belief is in conflict with simple physical arguments". In this paper we analyze Khriplovich's criticisms and realize that they work only for the original proposal by Hod, while they do not work for the improvements suggested by Maggiore and recently finalized by the author and collaborators through a connection between Hawking radiation and black hole (BH) quasi-normal modes (QNMs). This is a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. Thus, QNMs can be really interpreted as BH quantum levels (the "electrons" of the "Bohr-like BH model"). Our results have also important implications on the BH information puzzle.
Placing molecules with Bohr radius resolution using DNA origami
Funke, Jonas J.; Dietz, Hendrik
2016-01-01
Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures.
Bohr effect of hemoglobins: Accounting for differences in magnitude.
Okonjo, Kehinde O
2015-09-01
The basis of the difference in the Bohr effect of various hemoglobins has remained enigmatic for decades. Fourteen amino acid residues, identical in pairs and located at specific 'Bohr group positions' in human hemoglobin, are implicated in the Bohr effect. All 14 are present in mouse, 11 in dog, eight in pigeon and 13 in guinea pig hemoglobin. The Bohr data for human and mouse hemoglobin are identical: the 14 Bohr groups appear at identical positions in both molecules. The dog data are different from the human because three Bohr group positions are occupied by non-ionizable groups in dog hemoglobin; the pigeon data are vastly different from the human because six Bohr group positions are occupied by non-ionizable groups in pigeon hemoglobin. The guinea pig data are quite complex. Quantitative analyses showed that only the pigeon data could be fitted with the Wyman equation for the Bohr effect. We demonstrate that, apart from guinea pig hemoglobin, the difference between the Bohr effect of each of the other hemoglobins and of pigeon hemoglobin can be accounted for quantitatively on the basis of the occupation of some of their Bohr group positions by non-ionizable groups in pigeon hemoglobin. We attribute the anomalous guinea pig result to a new salt-bridge formed in its R2 quaternary structure between the terminal NH3(+) group of one β-chain and the COO(-) terminal group of the partner β-chain in the same molecule. The pKas of this NH3(+) group are 6.33 in the R2 and 4.59 in the T state.
Mani, B. K.; Chattopadhyay, S.; Angom, D.
2017-04-01
We report the development of a parallel FORTRAN code, RCCPAC, to solve the relativistic coupled-cluster equations for closed-shell and one-valence atoms and ions. The parallelization is implemented through the use of message passing interface, which is suitable for distributed memory computers. The coupled-cluster equations are defined in terms of the reduced matrix elements, and solved iteratively using Jacobi method. The ground and excited states of coupled-cluster wave functions obtained from the code could be used to compute different properties of closed-shell and one-valence atom or ion. As an example we compute the ground state correlation energy, attachment energies, E1 reduced matrix elements and hyperfine structure constants.
Safronova, M S; Derevianko, S A
1999-01-01
Removal energies and hyperfine constants of the lowest four $ns, np_{1/2}$ and $np_{3/2}$ states in Na, K, Rb and Cs are calculated; removal energies of the n=7--10 states and hyperfine constants of the n=7 and 8 states in Fr are also calculated. The calculations are based on the relativistic single-double (SD) approximation in which single and double excitations of Dirac-Hartree-Fock (DHF) wave functions are included to all-orders in perturbation theory. Using SD wave functions, accurate values of removal energies, electric-dipole matrix elements and static polarizabilities are obtained, however, SD wave functions give poor values of magnetic-dipole hyperfine constants for heavy atoms. To obtain accurate values of hyperfine constants for heavy atoms, we include triple excitations partially in the wave functions. The present calculations provide the basis for reevaluating PNC amplitudes in Cs and Fr.
Stefańska, Patrycja
2016-01-01
The Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\\/~Szmytkowski, J.\\ Phys.\\ B \\textbf{30}, 825 (1997); \\textbf{30}, 2747(E) (1997)] is exploited to derive a closed-form expression for the magnetizability of the relativistic one-electron atom in an arbitrary discrete state, with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric functions ${}_3F_2$ of the unit argument. Our general expression agrees with formulas obtained analytically earlier by other authors for some particular states of the atom. We present also numerical values of the magnetizability for some excited states of selected hydrogenlike ions with $1 \\leqslant Z \\leqslant 137$ and compare them with data available in the literature.
Relativistic corrections to the ground state energies of the carbon-like atoms%类碳体系基态能量的相对论修正
马堃; 黄时中; 倪秀波; 吴长义; 胡健
2008-01-01
Based on the tensor expression for the Breit-Pauli Hamiltonian, and with the aid of irreducible tensor theory, the theory of relativistic corrections to the non-relativistic energies of many-electron atoms has been generalized to the case in which Racah wave functions are the linear combinations of multi-Slater wave functions, analytic formulism for calculating the relativistic corrections, which include mass correction, one-and two-body Darwin correction and spin-spin contact interaction, has been derived, all the angular interactions and spin sums involved in the problem have been worked out explicitly by using irreducible theory. The theory is applied to the ground state of carbon-like atoms.%以Breit-Pauli哈密顿的球张量形式为基础,借助不可约张量理论,将多电子原子能量的相对论修正理论拓展到了原子的拉卡波函数为多个Slater基函数的线性组合的情形,导出了此情形下多电子原子能量相对论修正(包括相对论质量修正项、单体和双体迭尔文修正项、自旋-自旋接触相互作用项)的解析表达式,完成了所有角向积分和自旋求和计算.利用所建立的理论,对类碳体系基态能量的相对论修正进行了具体计算.
The solution of the Bohr Hamiltonian with Hulthen potential%用Hulthen势解Bohr Hamiltonian
张伦东; 方向正; 郭建友
2009-01-01
在解Bohr Hamihonian的过程中出现了很多种方法,且有很多在最后都是用不同的势来得到不同的解析解,典型的有Coulomb-like和Kratzer-like势、Linear势、Davidson势.除此之外,还有Bohr's Harmonic-Oscillator解法、Wilets and Jean解法、Elliott-Evans-Park's解法等.这些解法都给出了与实验室比较接近的光谱,但其中有一个普遍现象:很多最后的解析能谱都比实验能谱低.在该文中用Hulthen势来作出它的修正能谱,以更好地与实验值接近.最后,用240U和240Pu作为例子来进行比较.
Magnetic Sublevel Population Studied for H- and He-like Uranium in Relativistic Ion-Atom Collisions
Gumberidze, A.; Stoehlker, T. [GSI-Darmstadt (Germany); Bednarz, G. [Cracow University, Institute of Physics (Poland); Bosch, F. [GSI-Darmstadt (Germany); Fritzsche, S. [University of Kassel (Germany); Hagmann, S. [Kansas State University (United States); Ionescu, D. C.; Klepper, O.; Kozhuharov, C.; Kraemer, A.; Liesen, D.; Ma, X.; Mann, R.; Mokler, P. H. [GSI-Darmstadt (Germany); Sierpowski, D. [Cracow University, Institute of Physics (Poland); Stachura, Z. [INP (Poland); Steck, M.; Toleikis, S. [GSI-Darmstadt (Germany); Warczak, A. [Cracow University, Institute of Physics (Poland)
2003-03-15
An experimental study for K-shell excitation of helium-like uranium in relativistic collisions with low-Z gaseous target is presented. Within this experiment information about the population of the magnetic sublevels has been obtained via a photon angular differential study of the decay photons associated with the excitation process. The preliminary results presented show, for the particular case of the {sup 3}P{sub 1} level, a surprisingly strong population of the magnetic sublevels with {mu}={+-}1.
Abdelmadjid Maireche
2016-01-01
In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t.) potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS). The exact corrections for excited states are found straightforwardly for interactions...
Najjari, B
2012-01-01
We present a theory for excitation of heavy hydrogen-like projectile-ions by light target-atoms in collisions where the momentum transfers to the atom are very large on the atomic scale. It is shown that in this process the electrons and the nucleus of the atom behave as (quasi-) free particles with respect to each other and that their motion is governed by the field of the nucleus of the ion. The effect of this field on the atomic particles can be crucial for the contribution to the excitation of the ion caused by the electrons of the atom. Due to comparatively very large nuclear mass, however, this field can be neglected in the calculation of the contribution to the excitation due to the nucleus of the atom.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
2013-01-01
Há cem anos o físico dinamarquês Niels Bohr publicava um dos mais importantes trabalhos da física do século vinte. Nesse trabalho Bohr apresentava um modelo do átomo construído a partir de fatos experimentais e da hipótese de quantização de energia de Max Planck. Embora o modelo de Bohr e a sua extensão devida a Sommerfeld tenham sido suplantados pelas mecânicas quânticas de Heisenberg e Schrödinger, o modelo de Bohr, para muitos estudantes, ainda é a porta de entrada para o mundo fascinante ...
Priti; Dipti; Gangwar, R. K.; Srivastava, R.
2017-01-01
Electron impact excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma, which is relevant to the negative ion based neutral beam injectors for the ITER project. As an application, the calculated detailed cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. Other processes such as radiative population transfer, electron impact ionization and mutual neutralization of Cs+ ion with negative hydrogen ion along with their reverse processes are also taken into account. The calculated cross-sections and the extracted plasma parameters from the present model are compared with the available experimental and theoretical results.
Artemiev, A N; Yerokhin, V A
1995-01-01
The relativistic nuclear recoil corrections to the energy levels of low-laying states of hydrogen-like and high Z lithium-like atoms in all orders in \\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low Z the results of the calculation are in good agreement with the \\alpha Z -expansion results. It is found that the nuclear recoil contribution, additional to the Salpeter's one, to the Lamb shift (n=2) of hydrogen is -1.32(6)\\,kHz. The total nuclear recoil correction to the energy of the (1s)^{2}2p_{\\frac{1}{2}}-(1s)^{2}2s transition in lithium-like uranium constitutes -0.07\\,eV and is largely made up of QED contributions.
Stefańska, Patrycja
2016-01-01
In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities ($\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge $Ze$. Numerical values of this susceptibility for the hydrogen atom ($Z=1$) and for hydrogenic ions with $2 \\leqslant Z \\leqslant 137$ are computed from the general analytical formula, recently derived by us [P. Stefa{\\'n}ska, Phys. Rev. A 93 (2016) 022504], valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of $\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$ for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s$_{1/2}$, 2p$_{1/2}$, 2p$_{3/2}$, 3s$_{1/2}$, 3p$_{1/2}$, 3p$_{3/2}$, 3d$_{3/2}$, 3d$_{5/2}$, 4s$_{1/2}$, 4p$_{1/2}$, 4p$_{3/2}$, 4d$_{3/2}$, 4d$_{5/2}$, 4f$_{5/2}$ and 4f$_{7/2}$) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the...
Solutions of the Bohr Hamiltonian, a compendium
Fortunato, L.
2005-10-01
The Bohr Hamiltonian, also called collective Hamiltonian, is one of the cornerstones of nuclear physics and a wealth of solutions (analytic or approximated) of the associated eigenvalue equation have been proposed over more than half a century (confining ourselves to the quadrupole degree of freedom). Each particular solution is associated with a peculiar form for the V(β,γ) potential. The large number and the different details of the mathematical derivation of these solutions, as well as their increased and renewed importance for nuclear structure and spectroscopy, demand a thorough discussion. It is the aim of the present monograph to present in detail all the known solutions in γ-unstable and γ-stable cases, in a taxonomic and didactical way. In pursuing this task we especially stressed the mathematical side leaving the discussion of the physics to already published comprehensive material. The paper contains also a new approximate solution for the linear potential, and a new solution for prolate and oblate soft axial rotors, as well as some new formulae and comments. The quasi-dynamical SO(2) symmetry is proposed in connection with the labeling of bands in triaxial nuclei.
Tanona, Scott Daniel
I develop a new analysis of Niels Bohr's Copenhagen interpretation of quantum mechanics by examining the development of his views from his earlier use of the correspondence principle in the so-called 'old quantum theory' to his articulation of the idea of complementarity in the context of the novel mathematical formalism of quantum mechanics. I argue that Bohr was motivated not by controversial and perhaps dispensable epistemological ideas---positivism or neo-Kantianism, for example---but by his own unique perspective on the difficulties of creating a new working physics of the internal structure of the atom. Bohr's use of the correspondence principle in the old quantum theory was associated with an empirical methodology that used this principle as an epistemological bridge to connect empirical phenomena with quantum models. The application of the correspondence principle required that one determine the validity of the idealizations and approximations necessary for the judicious use of classical physics within quantum theory. Bohr's interpretation of the new quantum mechanics then focused on the largely unexamined ways in which the developing abstract mathematical formalism is given empirical content by precisely this process of approximation. Significant consistency between his later interpretive framework and his forms of argument with the correspondence principle indicate that complementarity is best understood as a relationship among the various approximations and idealizations that must be made when one connects otherwise meaningless quantum mechanical symbols to empirical situations or 'experimental arrangements' described using concepts from classical physics. We discover that this relationship is unavoidable not through any sort of a priori analysis of the priority of classical concepts, but because quantum mechanics incorporates the correspondence approach in the way in which it represents quantum properties with matrices of transition probabilities, the
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Applications of Bohr's correspondence principle
Crawford, F. S.
1989-07-01
The Bohr correspondence-principle (cp) formula /ital dE///ital dn/=/h bar/..omega.. is presented (..omega.. is the classical angular frequency) and its predicted energy levels /ital E//sub /ital n// are compared to those given by the stationary state solutions of the Schr/umlt o/dinger equation, first for several examples in one dimension (1D), including the ''quantum bouncer,'' and then for several examples in three dimensions (3D), including the hydrogen atom and the isotropic harmonic oscillator. For the 3-D cases, the cp predictions based on classical circular orbits are compared with the ''circlelike'' Schr/umlt o/dinger solutions (those with the lowest energy eigenvalue for a given /ital l/) and the cp predictions based on classical ''needle'' orbits (having zero angular momentum) with the Schr/umlt o/dinger /ital l/=0 solutions. For the H atom and the isotropic oscillator, the cp prediction does not depend on the classical orbit chosen because of a ''degeneracy'': the fact that for these systems ..omega.. is independent of the orbit. As a more stringent test of the cp, analogous nondegenerate systems /ital V/=/minus//ital k///ital r//sup 3/2/ in place of the H-atom potential /ital V/=/minus//ital e//sup 2///ital r/ and /ital V/=/ital kr//sup 4/ in place of the oscillator potential /ital V/=(1/2)/ital m/..omega../sup 2//ital r2/ are therefore considered. Aninteresting anomaly that occurs for the harmonic oscillator and itsnondegenerate analog /ital V/=/ital kr//sup 4/ is encountered (but not for the H atomnor its nondegenerate analog /ital V/=/minus//ital k///ital r//sup 3/2/), wherein half of thestates predicted by application of the cp to the needle orbits are ''spurious''in that there are no corresponding Schr/umlt o/dinger /ital l/=0 states.
Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.
2012-06-01
The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.
When champions meet: Rethinking the Bohr--Einstein debate
Landsman, N P
2005-01-01
Einstein's philosophy of physics (as clarified by Fine and Howard) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed "physical thought" and "physical laws" to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic quantum theory that within a suitable class of physical theories Einstein's doctrine is mathematically equivalent to Bohr's, so that quantum mechanics accommodates Einstein's Trennungsprinzip if and only if it is interpreted a la Bohr through classical physics. Unfortunately, the protagonists themselves failed to discuss their differences in a constructive way, since in its early phase their debate was blurred by an undue emphasis on the uncertainty relations, whereas in its second stage it wa...
Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law
Bureš, Martin
2014-01-01
We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to $1/|x|^2$. The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius $R$. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if $R$ is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.
Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law
Bureš, Martin; Siegl, Petr
2015-03-01
We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2. The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Relativistic electronic dressing
Attaourti, Y
2002-01-01
We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.
Inspirations from the theories of Bohr and Mottelson: a Canadian perspective
Ward, D.; Waddington, J. C.; Svensson, C. E.
2016-03-01
The theories developed by Bohr and Mottelson have inspired much of the world-wide experimental investigation into the structure of the atomic nucleus. On the occasion of the 40th anniversary of the awarding of their Nobel prize, we reflect on some of the experimental developments made in understanding the structure of nuclei. We have chosen to focus on experiments performed in Canada, or having strong ties to Canada, and the work included here spans virtually the whole of the second half of the 20th century. The 8π Spectrometer, which figures prominently in this story, was a novel departure for funding science in Canada that involved an intimate collaboration between a Crown Corporation (Atomic Energy of Canada Ltd) and University research, and enabled many of the insights discussed here.
Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase.
Capitanio, N; Capitanio, G; De Nitto, E; Papa, S
1997-09-08
The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.
Complementarity in the Einstein-Bohr photon box
Dieks, D.G.B.J.; Lam, S
2008-01-01
The Bohr-Einstein photon box thought experiment is a forerunner of the EPR experiment: a packet of radiation escapes from a box, and the box-plus-radiation state remains entangled. Hence, a measurement on the box makes a difference for the state of the far-away radiation long after its escape. This
"Bohr and Einstein": A Course for Nonscience Students
Schlegel, Richard
1976-01-01
A study of the concepts of relativity and quantum physics through the work of Bohr and Einstein is the basis for this upper level course for nonscience students. Along with their scientific philosophies, the political and moral theories of the scientists are studied. (CP)
The Bohr-Heisenberg correspondence principle viewed from phase space
Dahl, Jens Peder
2002-01-01
Phase-space representations play an increasingly important role in several branches of physics. Here, we review the author's studies of the Bohr-Heisenberg correspondence principle within the Weyl-Wigner phase-space representation. The analysis leads to refined correspondence rules that can...
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n...
Bohr's Relational Holism and the classical-quantum Interaction
Dorato, Mauro
2016-01-01
In this paper I present and critically discuss the main strategies that Bohr used and could have used to fend off the charge that his interpretation does not provide a clear-cut distinction between the classical and the quantum domain. In particular, in the first part of the paper I reassess the main arguments used by Bohr to advocate the indispensability of a classical framework to refer to quantum phenomena. In this respect, by using a distinction coming from an apparently unrelated philosophical corner, we could say that Bohr is not a revisionist philosopher of physics but rather a descriptivist one in the sense of Strawson. I will then go on discussing the nature of the holistic link between classical measurement apparatuses and observed system that he also advocated. The oft-repeated conclusion that Bohr's interpretation of the quantum formalism is untenable can only be established by giving his arguments as much force as possible, which is what I will try to do in the following by remaining as faithful ...
A Quantum Model of Atoms (the Energy Levels of Atoms).
Rafie, Francois
2001-01-01
Discusses the model for all atoms which was developed on the same basis as Bohr's model for the hydrogen atom. Calculates the radii and the energies of the orbits. Demonstrates how the model obeys the de Broglie's hypothesis that the moving electron exhibits both wave and particle properties. (Author/ASK)
1985-01-01
An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Bohr and Ehrenfest: transformations and correspondences in the early 1920s
Pérez, Enric; Valls, Blai Pié i.
2016-06-01
We analyze the collaboration between Bohr and Ehrenfest on the quantum theory in the early 1920s (1920-1923). We focus on their reflections and developments around the adiabatic principle and the correspondence principle, the two pillars of Bohr's quantum theory of 1922-23. We argue that the evolution of Bohr's ideas after 1918 brought the two principles closer, subordinating the former to the latter. The examination of the weight Bohr attributed to each principle along the years illustrates very clearly the vicissitudes of Bohr's theory before the emergence of quantum mechanics, especially with regards to its rejection/inclusion of mechanics.
类氩体系基态能量的相对论修正%Relativistic corrections to the ground state energies of the agron-like atoms
张勇; 黄时中
2015-01-01
Based on the tensor expression for the Breit-Pauli Hamiltonian and with the aid of irreducible tensor theo-ry, the matrix elements in sets of Slater functions of the relativistic correction operators, which include mass correction term, one-and two-body Darwin correction terms, spin-spin contact interaction term and orbit-orbit interaction term, have been derived explicitly and presented by radial matrix elements.The theory is applied to the calculations of ground state energies of Agron-like atoms and all the relative differences are smaller than 0.046%.%以相对论修正哈密顿（包括质量修正、单体和双体达尔文修正、自旋－自旋接触相互作用）的张量形式为基础，借助不可约张量理论导出了类氩体系基态能量的相对论修正的解析表达式．在斯莱特表象中完成了所有的角向积分和自旋求和计算，能量的相对论修正式用径向矩阵元的线性组合来表示．对类氩体系基态能量的相对论修正值进行了具体计算，修正后基态能量与实验值的相对误差小于0.0459％．
Nagaoka's atomic model and hyperfine interactions.
Inamura, Takashi T
2016-01-01
The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.
The Compton Radius, the de Broglie Radius, the Planck Constant, and the Bohr Orbits
Daywitt W. C.
2011-04-01
Full Text Available The Bohr orbits of the hydrogen atom and the Planck constant can be derived classically from the Maxwell equations and the assumption that there is a variation in the electron’s velocity about its average value [1]. The resonant nature of the circulating electron and its induced magnetic and Faraday fields prevents a radiative collapse of the electron into the nuclear proton. The derived Planck constant is h = 2 e 2 = c , where e , , and c are the electronic charge, the fine structure constant, and the speed of light. The fact that the Planck vacuum (PV theory [2] derives the same Planck constant independently of the above implies that the two derivations are related. The following highlights that connection.
The Compton Radius, the de Broglie Radius, the Planck Constant, and the Bohr Orbits
Daywitt W. C.
2011-04-01
Full Text Available The Bohr orbits of the hydrogen atom and the Planck constant can be derived classically from the Maxwell equations and the assumption that there is a variation in the electron's velocity about its average value. The resonant nature of the circulating electron and its induced magnetic and Faraday fields prevents a radiative collapse of the electron into the nuclear proton. The derived Planck constant is $h=2pi e^2/alpha c$, where $e$, $alpha$, and $c$ are the electronic charge, the fine structure constant, and the speed of light. The fact that the Planck vacuum (PV theory derives the same Planck constant independently of the above implies that the two derivations are related. The following highlights that connection.
The Niels Bohr Archive is Placing Collections on its Website
Aaserud, Finn
2010-01-01
, and hope to make this material available in a year. Our flagship, the Niels Bohr Scientific Correspondence (BSC — about 400 correspondents), is part of the Archives for the History of Quantum Physics, which is available on microfilm at several institutions around the world. Digitizing this collection...... is therefore seen as less urgent. However, over the years many new scientific letters have come to light, so that there now exists a supplement to the BSC, with as many correspondents as the original collection, which has not been microfilmed. The NBA has recently received a grant from the Ministry to digitize......As some readers may have observed already, the Niels Bohr Archive (NBA) has made a good start at making information about its collections, and even some of the collections themselves, available on the internet. The work is still in progress, but just for this reason it may be useful at this point...
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n......Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components...
QBism, Bohr, and the quantum omelette tossed by de Ronde
Mohrhoff, Ulrich
2016-01-01
In his recent paper "QBism, FAPP and the Quantum Omelette" [1608.00548v1] de Ronde makes a variety of questionable claims concerning QBism, Bohr, and the present author's critical appraisal of QBism [1409.3312v1]. These claims are examined. Subsequently an outline is presented of what one might see if one looks into the quantum domain through the window provided by the quantum-mechanical correlations between outcome-indicating events in the classical domain.
Gjedde, Albert
2004-01-01
and the Kroghs reveals that Bohr's concept of active cellular participation in diffusion is entirely compatible with the mechanism of capillary recruitment, for the discovery of which Krogh was later awarded Nobel's Prize, years after Bohr's untimely and unexpected death in 1911. Udgivelsesdato: 2004-null...
Schmidt, L Ph H; Lower, J; Jahnke, T; Schößler, S; Schöffler, M S; Menssen, A; Lévêque, C; Sisourat, N; Taïeb, R; Schmidt-Böcking, H; Dörner, R
2013-09-01
We simultaneously measured the momentum transferred to a free-floating molecular double slit and the momentum change of the atom scattering from it. Our experimental results are compared to quantum mechanical and semiclassical models. The results reveal that a classical description of the slits, which was used by Einstein in his debate with Bohr, provides a surprisingly good description of the experimental results, even for a microscopic system, if momentum transfer is not ascribed to a specific pathway but shared coherently and simultaneously between both.
Relativistic atomic beam spectroscopy II
NONE
1991-12-31
We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome
Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín;
2011-01-01
Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...... is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous....
Bohr-Weisskopf effect influence of the distributed nuclear magnetization on hfs
Stroke, Hinko Henry; Pinard, J
2000-01-01
Nuclear magnetic moments provide a sensitive test of nuclear wave functions, in particular those of neutrons, which are not readily obtainable from other nuclear data. These are taking added importance by recent proposals to study parity non-conservation (PNC) effects in alkali atoms in isotopic series. By taking ratios of the PNC effects in pairs of isotopes, uncertainties in the atomic wave functions are largely cancelled out at the cost of knowledge of the change in the neutron wave function, the Bohr-Weisskopf effect (1950) in the hyperfine structure interaction of atoms measures the influence of the spatial distribution of the nuclear magnetization, and thereby provides an additional constraint on the determination of the neutron wave function. The added great importance of B-W in the determination of QED effects from the hfs in hydrogen-like ions of heavy elements, as measured recently at GSI, is noted, the B-W experiments require precision measurements of the hfs interactions and, independently, of the...
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Bohr Hamiltonian with Eckart potential for triaxial nuclei
Naderi, L.; Hassanabadi, H.
2016-05-01
In this paper, the Bohr Hamiltonian has been solved using the Eckart potential for the β-part and a harmonic oscillator for the γ-part of the Hamiltonian. The approximate separation of the variables has been possible by choosing the convenient form for the potential V(β,γ). Using the Nikiforov-Uvarov method the eigenvalues and eigenfunctions of the eigenequation for the β-part have been derived. An expression for the total energy of the levels has been represented.
Traffic restrictions on Routes Bloch, Maxwell and Bohr
TS Department
2008-01-01
Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Cipolla, Laura; Ferrari, Lia A.
2016-01-01
A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).
Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.
Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon
2016-01-25
Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.
De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome
Hoischen, Alexander; van Bon, Bregje W M; Rodríguez-Santiago, Benjamín;
2011-01-01
Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which...
Et møde med Niels Bohrs markante fysiklærer
Zwisler, Laila; Sørensen, Annette Buhl
2013-01-01
Danmarks berømte fysiker Niels Bohr offentliggjorde for 100 år siden den atommodel, som gav ham Nobelprisen i 1922. Her er en flig af historien om datidens danske fysikmiljø, som mødte den unge Bohr....
Numerical Relativistic Quantum Optics
2013-11-08
µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Abdelmadjid Maireche
2016-01-01
A novel study for the exact solvability of relativistic quantum spectrum systems for extended Cornell potential is discussed used both Boopp’s shift method and standard perturbation theory in non-commutativity three dimensional real space (NC-3DS), furthermore the exact corrections for the spectrum of studied potential was depended on infinitesimal parameter and a new discreet quantum numbers and we have also found the corresponding noncommutative Hamiltonian.
The Correspondence Principle and the Founding of the Atomic Quantum Theory.
Liu, Hua-Xiang
1995-01-01
Presents a brief historical review and a discussion of the Bohr theory aimed at helping readers understand more completely the development of atomic quantum physics and comprehend more precisely and profoundly the essence of the correspondence principle. (JRH)
Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation
Moon, Songky; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon
2015-01-01
Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of $0.41\\dot{6}\\eta^2$ for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of $\\eta$ much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained...
The quest for reality Bohr and Wittgenstein : two complementary views
Stenholm, Stig
2015-01-01
In both science and philosophy, the twentieth century saw a radical breakdown of certainty in the human worldview, as quantum uncertainty and linguistic ambiguity destroyed the comfortable certitudes of the past. As these disciplines form the foundation for a human position in the world, a major epistemological reorganization had to take place. In this book, quantum theorist Stig Stenholm presents Bohr and Wittgenstein, in physics and in philosophy, as central figures representing this revision. Each of them took up the challenge of replacing apparent order and certainty with a provisional understanding based on limited concepts in constant flux. Stenholm concludes that the modern synthesis created by their heirs is far from satisfactory, and the story is so far an unfinished one. The book will appeal to any researcher in either discipline curious about the foundation of modern science, and works to provoke a renewal of discussion, and the eventual emergence of a reformed clarity and understanding.
Challenges to the Bohr Wave Particle Complementarity Principle
Rabinowitz, Mario
2012-01-01
Contrary to the Bohr complementarity principle, in 1995 Rabinowitz proposed that by using entangled particles from the source it would be possible to determine which slit a particle goes through while still preserving the interference pattern in the Young two slit experiment. In 2000, Kim et al used spontaneous parametric down conversion to prepare entangled photons as their source, and almost achieved this. In 2012, Menzel et al. experimentally succeeded in doing this. When the source emits entangled particle pairs, the traversed slit is inferred from measurement of the entangled particle location by using triangulation. The violation of complementarity breaches the prevailing probabilistic interpretation of quantum mechanics, and benefits the Bohm pilot wave theory.
A systematic sequence of relativistic approximations.
Dyall, Kenneth G
2002-06-01
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
单位球Bn上的Bohr不等式%Bohr's Inequality on the Unit Ball Bn
王建飞; 刘太顺
2007-01-01
Bohr's type inequalities are studied in this paper: if / is a holomorphic mapping from the unit ball Bn to B", /(O) = p, then we have ∞∑k=0|Dψp(P)[Dkf(0)(zk)]|k!||Dψp(p)||＜1 for |z|＜ max{1/2+|p|,√1-|p|/2} and ψp ∈ Aut(Bn) such that ψp (p) = 0. As corollaries of theabove estimate, we obtain some sharp Bohr's type modulus inequalities. In particular, whenn=1 and |P| →1, then our theorem reduces to a classical result of Bohr.
Il danese tranquillo Niels Bohr, un fisico e il suo tempo, 1885-1962
Pais, Abraham
1993-01-01
Niels Bohr è una figura centrale nella fisica del Novecento, padre fondatore della teoria atomica e della meccanica quantistica. La storia della sua vita, ricca e piena anche sul piano affettivo e personale, non può dunque ridursi a un resoconto dei suoi successi scientifici e Pais, allievo e poi amico di Bohr, ne è perfettamente consapevole. Il libro si sviluppa su vari piani: capitoli strettamente biografici o storico-scientifici si alternano a discussioni sulle idee di Bohr in campo politico e filosofico, sui suoi rapporti con Einstein, sul suo ruolo nei drammatici anni della guerra e su molti altri aspetti della vicenda umana.
Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard
2017-03-01
The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.
Relativistic recursion relations for transition matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2004-01-01
We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.
Tupitsyn, I I; Shabaev, V M; Bondarev, A I; Deyneka, G B; Maltsev, I A; Hagmann, S; Plunien, G; Stoehlker, Th
2011-01-01
The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock...
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
New Insights? Heisenberg's visit to Copenhagen in 1941 and the Bohr letters
Gottstein, Klaus
2006-01-01
It is shown that, in contrast to many interpretations in the press, the drafts of Bohr's unsent letters to Heisenberg are not contradicting Heisenberg's description of his famous trip in 1941 to Copenhagen, but are complementary to it.
The Bohr Model and the Fifth Grade: A New Standards-Based Hands-On Physics Curriculum
Brock, Jeff; Springer, Russell; Goldberg, Bennett
2004-03-01
A semester-long, standards-based, hands-on physics curriculum appropriate for the fifth grade was developed. Previously available curricula were successful in using hands-on activities to teach basic fifth-grade physics skills and concepts, but did not attempt to foster understanding of the fundamental underlying physics. We expanded the role of inquiry-based instruction to expose students to the fundamental physics behind electricity, forces, energy, light and sound. Central to the course, the Bohr model of the atom was used as a key tool both to motivate exploration of these topics as well as to develop basic conceptual understanding of fundamental ideas in quantum and electromagnetic physics. The curriculum was designed to be compatible with both district and state-mandated standards in a high-stakes test environment. This work was supported by NSF grant DGE-0231909.
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2016-08-01
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
Niels Bohr on the wave function and the classical/quantum divide
Zinkernagel, Henrik
2016-02-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.
Martin, J M L; Martin, Jan M.L.; Sundermann, Andreas
2001-01-01
We propose large-core correlation-consistent pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to h...
Kolmogorov, A., E-mail: anton.kolmogorov@gmail.com; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Atoian, G.; Ritter, J.; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Davydenko, V.; Ivanov, A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation)
2014-02-15
The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
Relativistic effect of spin and pseudospin symmetries
Chen, Shou-Wan
2012-01-01
Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $\\lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.
Niels Bohr on the wave function and the classical/quantum divide
Zinkernagel, Henrik
2016-01-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on ho...
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Szmytkowski, Radosław
2016-01-01
The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite $2^{L}$-polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825, erratum: 30 (1997) 2747] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities --- the polarizabilities $\\alpha_{L}$, electric-to-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{M}(L\\mp1)}$ and electric-to-toroidal-magnetic cross-susceptibilities $\\alpha_{\\mathrm{E}L\\to\\mathrm{T}L}$ --- are found to be expressible in terms of one or two non-terminating generalized hypergeometric functions ${}_{3}F_{2}$ with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities --- the electric nuclear shielding constants $\\sigma_{\\mathrm{E}L\\to\\m...
Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.
2008-12-01
The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.
Stefańska, Patrycja
2011-01-01
The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive closed-form expressions for electric ($\\sigma_{\\mathrm{E}}$) and magnetic ($\\sigma_{\\mathrm{M}}$) dipole shielding constants for the ground state of the relativistic hydrogen-like atom with a point-like and spinless nucleus of charge $Ze$. It is found that $\\sigma_{\\mathrm{E}}=Z^{-1}$ (as it should be) and $$\\sigma_{\\mathrm{M}}=-(2Z\\alpha^{2}/27)(4\\gamma_{1}^{3}+6\\gamma_{1}^{2}-7\\gamma_{1}-12) /[\\gamma_{1}(\\gamma_{1}+1)(2\\gamma_{1}-1)],$$ where $\\gamma_{1}=\\sqrt{1-(Z\\alpha)^{2}}$ ($\\alpha$ is the fine-structure constant). This expression for $\\sigma_{\\mathrm{M}}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng \\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler'...
La topología de Bohr para grupos topológicos abelianos
2002-01-01
Para grupos topológicos abelianos maximalmente casi periódicos (en el sentido de von Neumann) es sencillo describir su compactación de Bohr, bG. En este caso puede identificarse bG con el conjunto de homomorfismos del dual de G en el toro de dimensión 1. La topología que G hereda como subgrupo de bG es la topología de Bohr de G. Resulta que la topología de Bohr es una topología totalmente acotada generada por el grupo de caracteres continuos de G. Con ese punto de partida y, utilizando el con...
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Theoretical study of the relativistic molecular rotational g-tensor
Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)
2014-11-21
An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
Exactly separable Bohr Hamiltonian with the Killingbeck potential for triaxial nuclei
Neyazi, H.; Rajabi, A. A.; Hassanabadi, H.
2016-01-01
After pioneering work by Bohr, Mottelson and their numerous colleagues, the essential framework for understanding collective model is introduced. One of the applications of this framework is the study of shape phase transition, vibrational and rotational energy spectrum of nuclei. We consider the Bohr Hamiltonian and solve the beta and gamma part equation of it, by considering that reduced potential and wave function are exactly separable. In the beta part equation we consider the Killingbeck potential and derive the wave function and energy spectrum of it.
New Derivation for Bohr Hamiltonian%Bohr哈密顿量的新推导
郭建友; 徐辅新; 阮图南
2000-01-01
We present an altemative approach for deriving the Bohr Hamiltonian, which is based on the quantized procedure proposed by Lee. The merit of this approach is the explicit form of the rotational operators is obtained with the corresponding rotational inertia.%利用李政道先生的正则量子化程序，给出了一个新的方法导出了Bohr 哈密顿量，并给出了转动算符和转动惯量的明显表达式。
Bohring-opitz syndrome - A case of a rare genetic disorder.
Visayaragawan, N; Selvarajah, N; Apparau, H; Kamaru Ambu, V
2017-08-01
The diagnostic challenge of Bohring-Opitz Syndrome, a rare genetic disorder has haunted clinicians for ages. Our patient was born at term via caesarean-section with a birth weight of 1.95 kilograms. She had mild laryngomalacia, gastroesophageal reflux disease and seizures. Physical signs included microcephaly, hemangioma, low set ears, cleft palate, micrognatia and the typical BOS posture. Chromosomal analysis showed 46 xx -Bohring-Opitz Syndrome overlapped with C- syndrome. Goal-directed holistic care with integration of parent/carer training was started very early. She succumbed to a Respiratory- Syncitial-Virus and Pseudomonas pneumonia complicated with sepsis at the age of two years and 11 months.
李明亮; 徐辅新
2003-01-01
在利用Harris两参数公式研究Bohr-Mottelson转动谱公式参数之间的关系的基础上,改用Harris三参数公式,并由此提出了Bohr-Mottelson转动谱公式参数之间的新关系式,进而用I(I+1)四参数展开式计算了A～60,80,130,140,150,190区超形变偶偶核的基带和锕系和稀土区正常形变核基带,讨论了参数之间的关系,发现新关系式与实验较好地符合.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Buganu, Petricǎ; Fortunato, Lorenzo
2016-09-01
We review and discuss several recent approaches to quadrupole collectivity and developments of collective models and their solutions with many applications, examples and references. We focus in particular on analytic and approximate solutions of the Bohr hamiltonian of the last decade, because most of the previously published material has been already reviewed in other publications.
Closed analytical solutions of Bohr Hamiltonian with Manning-Rosen potential model
Chabab, M; Oulne, M
2015-01-01
In the present work, we have obtained closed analytical expressions for eigenvalues and eigenfunctions of the Bohr Hamiltonian with the Manning-Rosen potential for {\\gamma}-unstable nuclei as well as exactly separable rotational ones with {\\gamma}=0. Some heavy nuclei with known \\b{eta} and {\\gamma} bandheads have been fitted by using two parameters in the {\
EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited
Nikolic, Hrvoje
2012-01-01
In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Anomalies and the crisis of the Bohr-Sommerfeld atomic theory
Kragh, Helge
2014-01-01
In: Scientific Cosmopolitanism and Local Cultures: Religions, Ideologies, Societies (5th ESHS Conference Proceedings, 2014), pp. 652-657.......In: Scientific Cosmopolitanism and Local Cultures: Religions, Ideologies, Societies (5th ESHS Conference Proceedings, 2014), pp. 652-657....
Graves N.
2013-01-01
Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
O'Sullivan, Colm
2016-03-01
The role of "semi-classical" (Bohr-Sommerfeld) and "semi-quantum-mechanical" (atomic orbital) models in the context of the teaching of atomic theory is considered. It is suggested that an appropriate treatment of such models can serve as a useful adjunct to quantum mechanical study of atomic systems.
Relativistic Doppler effect: universal spectra and zeptosecond pulses.
Gordienko, S; Pukhov, A; Shorokhov, O; Baeva, T
2004-09-10
We report on a numerical observation of the train of zeptosecond pulses produced by the reflection of a relativistically intense femtosecond laser pulse from the oscillating boundary of an overdense plasma because of the Doppler effect. These pulses promise to become unique experimental and technological tools since their length is of the order of the Bohr radius and the intensity is extremely high proportional, variant 10(19) W/cm(2). We present the physical mechanism, analytical theory, and direct particle-in-cell simulations. We show that the harmonic spectrum is universal: the intensity of nth harmonic scales as 1/n(p) for n<4gamma(2), where gamma is the largest gamma factor of the electron fluid boundary, and p=3 and p=5/2 for the broadband and quasimonochromatic laser pulses, respectively.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Moseley's Work on X-Rays and Atomic Number.
Haigh, C. W.
1995-01-01
Highlights the connection between the achievements of Moseley and the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants. Uses modern data to show that Moseley's equation is actually an approximation and discusses the significance of this fact. (JRH)
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
General relativistic observables for the ACES experiment
Turyshev, Slava G; Toth, Viktor T
2015-01-01
We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient $J_2$ and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudo-inertial at th...
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo
2002-01-01
Reports on a study aimed at facilitating freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. Hypothesizes that classroom discussions based on arguments/counterarguments of the heuristic principles on which these scientists based their atomic models can facilitate students'…
Relativistic calculation of dielectronic recombination for He-like krypton
Shi Xi-Heng; Wang Yan-Sen; Chen Chong-Yang; Gu Ming-Feng
2005-01-01
Dielectronic recombination (DR) cross sections and rate coefficients of He-like Kr are calculated employing the relativistic flexible atomic code, in which autoionization rates are calculated based on the relativistic distorted-wave approximation and the configuration interaction is considered. The Auger and total radiative rates of some strong resonances are listed and compared with the results from multiconfiguration Dirac-Fock and Hebrew University Lawrence Livermore Atomic Code methods. The n-3 scaling law is checked and used to extrapolate rate coefficients. We also show the variation of DR branching ratio with different DR resonances or atomic number Z. The effect of radiative cascades on DR cross sections are studied.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method
Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus
2015-04-01
Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d-1, Xe4d-1, and Rn5d-1 ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.
Virtual Visit to the ATLAS Control Room by Niels Bohr Institute - Kulturnatten, Copenhagen
ATLAS Experiment
2012-01-01
This ATLAS Virtual Visit will be part of outreach and education programme of the Niels Bohr Institute during a Copenhagen wide night of culture and science, Kulturnatten. Visitors of all ages and background will have the chance to get an introduction to the ATLAS Experiment, the LHC, and basic particle physics. The Virtual Visit will supplement an exhibition and give the opportunity to ask questions about anything related to ATLAS to a Danish physicist at CERN. The Niels Bohr Institute is a long time member of the ATLAS Collaboration and has contributed to Kulturnatten for many years now. http://atlas-live-virtual-visit.web.cern.ch/atlas-live-virtual-visit/2012/Copenhagen-2012.html
Matsuyanagi, Kenichi; Matsuo, Masayuki; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi
2016-06-01
We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schrödinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.
Quantum Humor: The Playful Side of Physics at Bohr's Institute for Theoretical Physics
Halpern, Paul
2012-09-01
From the 1930s to the 1950s, a period of pivotal developments in quantum, nuclear, and particle physics, physicists at Niels Bohr's Institute for Theoretical Physics in Copenhagen took time off from their research to write humorous articles, letters, and other works. Best known is the Blegdamsvej Faust, performed in April 1932 at the close of one of the Institute's annual conferences. I also focus on the Journal of Jocular Physics, a humorous tribute to Bohr published on the occasions of his 50th, 60th, and 70th birthdays in 1935, 1945, and 1955. Contributors included Léon Rosenfeld, Victor Weisskopf, George Gamow, Oskar Klein, and Hendrik Casimir. I examine their contributions along with letters and other writings to show that they offer a window into some issues in physics at the time, such as the interpretation of complementarity and the nature of the neutrino, as well as the politics of the period.
Darwinism in disguise? A comparison between Bohr's view on quantum mechanics and QBism.
Faye, Jan
2016-05-28
The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences. © 2016 The Author(s).
Matsuyanagi, Kenichi; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi
2016-01-01
We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schr\\"odinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.
Research on superdeformed bands with Bohr-Mottelson's formulas%Bohr-Mottelson公式对超形变带的比较研究
叶剑; 方向正; 郭建友
2006-01-01
用Bohr-Mottelson的两参数、三参数和四参数公式对150区30条超形变带进行了系统分析.结果显示:三个公式都能较好地拟合150区超形变带的E2跃迁谱,而且带首自旋的确定基本一致.大部分带Bohr-Mottelson的三参数数值关系符合ab公式的理论预期值,小部分带的三参数数值关系符合Harris公式的理论预期值.一半以上带的四参数数值关系与ab公式的预期值接近,而与Harris公式的预期值偏离较大.表明两参数ab公式比Harris公式具有更广泛的实用性.
Research on Superdeformed Bands with Bohr-Mottelson's Formulas%Bohr-Mottelson公式对超形变带的比较研究
郭建友; 徐辅新; 阮图南
2000-01-01
用Bohr-Mottelson的两参数、三参数和四参数公式对A～190区61条超形变带进行了系统分析. 结果显示:3个公式都能较好地拟合190区超形变带的E2跃迁谱,而且带首自旋的确定基本一致. 大部分带Bohr-Mottelson的三参数数值关系符合ab公式的理论预期值,小部分带的三参数数值关系符合Harris公式的理论预期值. 一半以上带的四参数数值关系与ab公式的预期值接近,而与Harris公式的预期值偏离较大. 表明两参数ab公式比Harris公式具有更广泛的实用性.
Alternative solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism
Alimohammadi, M.; Hassanabadi, H.
2017-01-01
The Bohr-Mottelson Hamiltonian on γ-rigid regime has been extended to the minimal length formalism for the infinite square well potential and the corresponding wave functions as well as the spectra are obtained. The effect of minimal length on energy spectra is studied via various figures and tables and numerical calculations are included for some nuclei and the results are compared with other results and existing experimental data.
Holographic principle versus Bohr's principle: eternal Schwarzschild-anti-de Sitter geometry
Emelyanov, Slava
2015-01-01
It is shown that Bohr's correspondence principle and the holographic principle are incompatible in the background of an eternal Schwarzschild-anti-de Sitter geometry. The argument is based on the observation that algebraic structures of local quantum field and CFT operators are not equivalent. A CFT Hilbert space representation is elaborated which may correspond to the AdS black hole in the dual theory.
Discreteness of the volume of space from Bohr-Sommerfeld quantization
Bianchi, Eugenio
2011-01-01
A major challenge for any theory of quantum gravity is to quantize general relativity while retaining some part of its geometrical character. We present new evidence for the idea that this can be achieved by directly quantizing space itself. We compute the Bohr-Sommerfeld volume spectrum of a tetrahedron and show that it reproduces the quantization of a grain of space found in loop gravity.
Lakatos und Bohrs Programm. Entgegnung auf eine Kritik von Hans Radder
Carrier, Martin
1983-01-01
In a paper published in this Journal, Hans Radder argues that a detailed analysis of the degenerating phase of Bohr's programme reveals the basic incorrectness of Lakatos' own reconstruction of this period. Furthermore the corrected version shows the impossibility to account for the development in Lakatosian concepts. In this reply I try to point out that a slight modification of Lakatos' reconstruction is sufficient for reconciling the theory with the historical data. It is not Lakatos's the...
Alkaline Bohr effect of bird hemoglobins: the case of the flamingo.
Sanna, Maria Teresa; Manconi, Barbara; Podda, Gabriella; Olianas, Alessandra; Pellegrini, Mariagiuseppina; Castagnola, Massimo; Messana, Irene; Giardina, Bruno
2007-08-01
The hemoglobin (Hb) substitution His-->Gln at position alpha89, very common in avian Hbs, is considered to be responsible for the weak Bohr effect of avian Hbs. Phoenicopterus ruber ruber is one of the few avian Hbs that possesses His at alpha89, but it has not been functionally characterized yet. In the present study the Hb system of the greater flamingo (P. ruber roseus), a bird that lives in Mediterranean areas, has been investigated to obtain further insight into the role played by the alpha89 residue in determining the strong reduction of the Bohr effect. Functional analysis of the two purified Hb components (HbA and HbD) of P. ruber roseus showed that both are characterized by high oxygen affinity in the absence of organic phosphates, a strong modulating effect of inositol hexaphosphate, and a reduced Bohr effect. Indeed, in spite of the close phylogenetic relationship between the two flamingo species, structural analysis based on tandem mass spectrometry of the alpha(A) chain of P. ruber roseus Hb showed that a Gln residue is present at position alpha89.
Are we living in a quantum world? Bohr and quantum fundamentalism
Zinkernagel, Henrik
2016-01-01
The spectacular successes of quantum physics have made it a commonplace to assert that we live in a quantum world. This idea seems to imply a kind of "quantum fundamentalism" according to which everything in the universe (if not the universe as a whole) is fundamentally of a quantum nature and ultimately describable in quantum-mechanical terms. Bohr's conception of quantum mechanics has traditionally been seen as opposed to such a view, not least because of his insistence on the necessity of the concepts of classical physics in the account of quantum phenomena. Recently, however, a consensus seems to be emerging among careful commentators on Bohr to the effect that he, after all, did subscribe to some version of quantum fundamentalism. Against this consensus, and by re-examining the historical record, I will defend a variant of the traditional reading of Bohr in which (1) the answer to what an object is (quantum or classical) depends on the experimental context; and (2) in principle, any physical system can b...
Des images et des paraboles : Niels Bohr et le discours descriptif en physique quantique
Ilias Yocaris
2011-01-01
Full Text Available Cette étude porte sur l’importance accordée aux images verbales dans le discours descriptif utilisé en mécanique quantique, et plus précisément sur la conception de la langue scientifique qui est celle de Niels Bohr (1885-1962 : en raison d’une série de considérations techniques, méthodologiques et épistémologiques que nous nous proposons d’analyser in extenso, Bohr considère effectivement que les phénomènes subatomiques ne peuvent être évoqués directement (sans référence au contexte observationnel, par le biais d’un langage dénotatif non figural, mais uniquement de manière métaphorique, détournée, ce qui réduit à ses yeux le discours descriptif des physiciens à « des images et des paraboles ». En examinant les textes de Bohr à la lumière d’un certain nombre de travaux épistémologiques, de commentaires et d’expérimentations auxquels ils ont donné lieu ultérieurement, nous nous proposons de décrire les implications conceptuelles d’une telle prise de position, qui constitue une vraie révolution sur le plan philosophique.
Nagaoka’s atomic model and hyperfine interactions
INAMURA, Takashi T.
2016-01-01
The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Exact Relativistic 'Antigravity' Propulsion
Felber, F S
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
基于Bohr-Sommerfeld量子理论的X射线光谱分析%Spectrum analysis of X-ray based on Bohr-Sommerfeld quantum theory
余志强; 谢泉; 肖清泉; 赵珂杰
2009-01-01
基于Bohr-Sommerfeld量子理论,研究了特征X射线的产生机理,导出了一个按原子序数来计算特征X射线波长的公式.同时对计算推导的波长值做了系统的误差分析,得到了相对误差的规律.结果表明,计算推导的波长值与实验得到的波长值非常接近,并且在实际应用中该公式也更为简便.
Bohr-Mottelson转动谱公式的参数研究%Research on prameters of Bohr-Mottelson rotational spectra formula
徐辅新; 李明亮; 温亚媛
2002-01-01
利用Bohr-Mottelson的I(I+1)四参数展开式分析了A～150,190偶偶核超形变带和锕系、稀土区偶偶核正常形变转动带.由最小二乘法拟合计算出参数,讨论参数之间的关系,发现ab公式、abc公式和Harris公式的预言存在不同程度的偏离.但相对而言,ab公式、abc公式的预言较好.而且超形变带的参数关系和正常形变带相似.
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Relativistic Quantum Communication
Hosler, Dominic
2013-01-01
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Redox Bohr effects and the role of heme a in the proton pump of bovine heart cytochrome c oxidase.
Capitanio, Giuseppe; Martino, Pietro Luca; Capitanio, Nazzareno; Papa, Sergio
2011-10-01
Structural and functional observations are reviewed which provide evidence for a central role of redox Bohr effect linked to the low-spin heme a in the proton pump of bovine heart cytochrome c oxidase. Data on the membrane sidedness of Bohr protons linked to anaerobic oxido-reduction of the individual metal centers in the liposome reconstituted oxidase are analysed. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a (and Cu(A)) and Cu(B) exhibit membrane vectoriality, i.e. protons are taken up from the inner space upon reduction of these centers and released in the outer space upon their oxidation. Redox Bohr protons coupled to anaerobic oxido-reduction of heme a(3) do not, on the contrary, exhibit vectorial nature: protons are exchanged only with the outer space. A model of the proton pump of the oxidase, in which redox Bohr protons linked to the low-spin heme a play a central role, is described. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Zhevago, N. K.; Glebov, V. I.
2017-06-01
We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.
Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice.
Jensen, Birgitte; Storz, Jay F; Fago, Angela
2016-05-01
An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading.
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
El modelo atómico de Bohr: una aplicación
Raul Garcia Llamas
2013-06-01
Full Text Available Se aplica la teoría atómica de Bohr cuyo centenario se celebra este 2013, utilizando la aproximación electrostática y un algoritmo numérico para resolver las ecuaciones clásicas de movimiento del núcleo y de los electrones en átomos complejos, con el fin de estudiar su dinámica. Se presentan resultados numéricos para el caso del átomo de Hidrogeno y el átomo de Helio.
Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2016-09-01
Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning-Rosen potential in the cases of γ-unstable nuclei and axially symmetric prolate deformed ones with γ ≈ 0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B (E 2) transition rates for 34 γ-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.
Electric quadrupole transitions of the Bohr Hamiltonian with Manning-Rosen potential
Chabab, M; Lahbas, A; Oulne, M
2016-01-01
Analytical expressions of the wave functions are derived for a Bohr Hamiltonian with the Manning{Rosen potential in the cases of {\\gamma}-unstable nuclei and axially symmetric prolate deformed ones with {\\gamma}=0. By exploiting the results we have obtained in a recent work on the same theme Ref. [1], we have calculated the B(E2) transition rates for 34 {\\gamma}-unstable and 38 rotational nuclei and compared to experimental data, revealing a qualitative agreement with the experiment and phase transitions within the ground state band and showing also that the Manning-Rosen potential is more appropriate for such calculations than other potentials.
van Dongen, Jeroen
2015-01-01
The Einstein-Rupp experiments have been unduly neglected in the history of quantum mechanics. While this is to be explained by the fact that Emil Rupp was later exposed as a fraud and had fabricated the results, it is not justified, due to the importance attached to the experiments at the time. This paper discusses Rupp's fraud, the relation between Albert Einstein and Rupp, and the Einstein-Rupp experiments, and argues that these experiments were an influence on Niels Bohr's development of complementarity and Werner Heisenberg's formulation of the uncertainty relations.
Bohr Hamiltonian with Hulthen plus ring-shaped potential for triaxial nuclei
Chabab, M.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Department of Physics, Faculty of Sciences Semlalia, P. O. B. 2390, Marrakesh (Morocco)
2015-10-15
In this paper, we solve the eigenvalues and eigenvectors problem with the Bohr collective Hamiltonian for triaxial nuclei. The β-part of the collective potential is taken to be equal to the Hulthen potential while the γ-part is defined by a new generalized potential obtained from a ring-shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature. (orig.)
Bohr Hamiltonian with Hulth?en plus Ring shaped potential for triaxial nuclei
Chabab, M; Oulne, M
2015-01-01
In this paper, we solve the eigenvalues and eigenvectors problem with Bohr collective Hamil- tonian for triaxial nuclei. The ? beta part of the collective potential is taken to be equal to Hulth?en potential while the gamma part is de?ned by a new generalized potential obtained from a ring shaped one. Analytical expressions for spectra and wave functions are derived by means of a recent version of the asymptotic iteration method and the usual approximations. The calculated energies and B(E2) transition rates are compared with experimental data and the available theoretical results in the literature.
Comment on breakdown of Bohr's Correspondence Principle by Bo Gao, In
Tannous, C
2001-01-01
Gao applied LeRoy and Bernstein semi-classical analysis for the energy levels in a potential of the form -C/r^n to sequences of scaled energy differences progressing towards low lying states and found a better agreement with the semi-classical prediction. We checked that for the energy levels obtained by Stwalley et al. with the same potential, the agreement with the semi-classical approximation is better for higher vibrational quantum numbers in agreement with Bohr's correspondence principle.
The language of Orthodox theology & quantum mechanics: St Gregory Palamas and Niels Bohr
2013-01-01
The objective of this chapter is to provide an analytical framework that would enable the comparison of the ways of using words and language in the cases of St. Gregory Palamas and Niels Bohr. The main motivation will be to explore Christos Yannaras’ point about the opportunity of using quantum...... mechanics as a source of a new language that could be useful in enhancing the power of theological statements. It is important to point out that the main goal here is to use the insights from existing studies to provide a preliminary comparative analysis. The novelty in such an approach should be sought...
Fabian, A C; Parker, M L
2014-01-01
Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
The special relativistic shock tube
Thompson, Kevin W.
1986-01-01
The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Two-Component Description for Relativistic Fermions
CHEN Yu-Qi; SANG Wen-Long; YANG Lan-Fei
2009-01-01
We propose a two-component form to describe massive relativistic fermions in gauge theories. Relations between the Green's functions in this form and those in the conventional four-component form are derived. It is shown that the S-matrix elements in both forms are exactly the same. The description of the fermion in the new form simplifies significantly the γ-matrix algebra in the four-component form. In particular, in perturbative calculations the propagator of the fermion is a scalar function. As examples, we use this form to reproduce the relativistic spectrum of hydrodron atom, the S-matrix of e+ e-→μ+ μ- and QED one-loop vacuum polarization of photon.
Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek
2016-01-01
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...
The influence of Niels Bohr on Max Delbrück: revisiting the hopes inspired by "light and life".
McKaughan, Daniel J
2005-12-01
The impact of Niels Bohr's 1932 "Light and Life" lecture on Max Delbrück's lifelong search for a form of "complementarity" in biology is well documented and much discussed, but the precise nature of that influence remains subject to misunderstanding. The standard reading, which sees Delbrück's transition from physics into biology as inspired by the hope that investigation of biological phenomena might lead to a breakthrough discovery of new laws of physics, is colored much more by Erwin Schrödinger's What Is Life? (1944) than is often acknowledged. Bohr's view was that teleological and mechanistic descriptions are mutually exclusive yet jointly necessary for an exhaustive understanding of life. Although Delbrück's approach was empirical and less self-consciously philosophical, he shared Bohr's hope that scientific investigation would vindicate the view that at least some aspects of life are not reducible to physico-chemical terms.
Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.;
2013-01-01
better convergence of magnetisabilities with respect to the basis set size is observed compared to calculations employing a common gauge origin. In fact, it is mandatory to use London atomic orbitals unless you want to use ridiculously large basis sets. Relativistic effects on magnetisabilities are found......The use of magnetic-field dependent London atomic orbitals, also called gauge including atomic orbitals, is known to be an efficient choice for accurate non-relativistic calculations of magnetisabilities. In this work, the appropriate formulas were extended and implemented in the framework...... of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...
Relativistic cosmology; Cosmologia Relativista
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic length agony continued
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
The theory of the Bohr-Weisskopf effect in the hyperfine structure
Karpeshin, F F
2015-01-01
For twenty years research into the anomalies in the HF spectra was going in a wrong direction by fighting the related Bohr-Weisskopf effect. As a way out, the model-independent way is proposed of estimating the nuclear radii from the hyper-fine splitting. The way is based on analogy of HFS to internal conversion coefficients, and the Bohr-Weisskopf effect - to the anomalies in the internal conversion coefficients. This makes transparent It is shown that the parameters which can be extracted from the data are the even nuclear moments of the magnetization distribution. The radii $R_2$ and (for the first time) $R_4$ are thus obtained by analysis of the experimental HFS for the H- and Li-like ions of $^{209}$Bi. The critical prediction of the HFS for the $2p_{1/2}$ state is discussed. The moments may be determined in this way only if the higher QED effects are properly taken into account. Therefore, this set of the parameters form a basis of a strict QED test. Experimental prospects are discussed, aimed at retrie...
Ougaard, Morten
2015-01-01
, ikke mindst med hensyn til værdirelativismen. Rasmussen viser, at komplementaritetsbegrebet i Bohrs vigtige men oversete filosofi kan bidrage væsentligt til at afklare teoretisk-metodiske problemer i statskundskab, herunder forholdet mellem struktur og handling og mellem mikro- og makroanalyse, samt...... ikke mindst forholdet mellem normative og kognitive udsagn. Efter mødet med Niels Bohrs filosofi står Rasmussens værdirelativisme både skarpere og stærkere end før, og Kasper Lippert-Rasmussens karakteristik af denne position som et ubegrundet dogme i dansk politologi er ikke overbevisende....
Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.
1982-12-01
Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Fully Relativistic Calculations of Magneto-Optical Kerr Effect
Li, Ming-Fang; Ariizumi, Toshihiro; Suzuki, Shugo
2007-05-01
We study the magneto-optical Kerr effect using fully relativistic calculations. Spin-orbit coupling is dealt with exactly solving the Dirac equation directly and the matrix elements of the Dirac matrices α are used in a fully relativistic expression of the Kubo formula for the optical conductivity derived with a relativistic sum rule. We also perform approximate calculations of the optical conductivity to examine the accuracy of a partly relativistic expression in which the matrix elements of the momentum operator p are used instead. As an example, we carry out calculations for bcc Fe and fcc Ni using the fully relativistic full-potential linear-combination-of-atomic-orbitals method. It is found that the partly relativistic treatment is good for the diagonal optical conductivity while it is not very good for the off-diagonal optical conductivity, the Kerr rotation angle, and the Kerr ellipticity. The results of the present study are compared to those of experimental and other theoretical studies.
Relativistic heavy ion reactions
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Dajnowicz, Steven; Seaver, Sean; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y; Mueser, Timothy C
2016-07-01
Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1 dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2 and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1 and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.
Relativistic gravity gradiometry
Bini, Donato; Mashhoon, Bahram
2016-12-01
In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Parker, Edward
2017-08-01
A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.
Fewster, Christopher J [Department of Mathematics, University of York, Heslington, York YO10 5DD (United Kingdom); Sahlmann, Hanno [Spinoza Institute, Universiteit Utrecht (Netherlands)
2008-11-21
We give a definition for the Wigner function for quantum mechanics on the Bohr compactification of the real line and prove a number of simple consequences of this definition. We then discuss how this formalism can be applied to loop quantum cosmology. As an example, we use the Wigner function to give a new quantization of an important building block of the Hamiltonian constraint.
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the "Seven Little Devils" in the predecessor of "Acta Physiologica". In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rather facilitated by a specific cellular activity…
Hastings, Rob; Cobben, Jan-Maarten; Gillessen-Kaesbach, Gabriele;
2011-01-01
Bohring-Opitz syndrome (BOS) is a rare congenital disorder of unknown etiology diagnosed on the basis of distinctive clinical features. We suggest diagnostic criteria for this condition, describe ten previously unreported patients, and update the natural history of four previously reported patien...
Fewster, C.J.; Sahlmann, H.
2008-01-01
We give a definition for the Wigner function for quantum mechanics on the Bohr compactification of the real line and prove a number of simple consequences of this definition. We then discuss how this formalism can be applied to loop quantum cosmology. As an example, we use the Wigner function to giv
Gjedde, Albert
2010-01-01
The year 2010 is the centennial of the publication of the “Seven Little Devils” in the predecessor of Acta Physiologica. In these seven papers, August and Marie Krogh sought to refute Christian Bohr's theory that oxygen diffusion from the lungs to the circulation is not entirely passive but rathe...
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Zhang, Yan; Kobayashi, Keiko; Kitazawa, Kazuki; Imai, Kiyohiro; Kobayashi, Michiyori
2006-01-01
By using published experimental values of the standard oxygen (O2) equilibrium curve and the in vivo arterial and venous O2 pressure (PO2) of fetal and maternal blood in five mammalian species (human, cow, pig, sheep, and horse), we investigated the relationship between the efficiency of O2 delivery and the effectiveness of the Bohr shift, and discussed the significance of cooperativity for mammalian Hb. The O2 delivery of fetal blood was more efficient than that of maternal blood, and the effectiveness of the Bohr shift at both O2 loading and release sites of fetal blood was high. A linear relationship was observed between the efficiency of O2 delivery and the effectiveness of the Bohr shift at O2 loading sites of the five mammalian species. In both fetal and maternal blood, the theoretically obtained optimal P50 value for O2 delivery (optP50(OD)) was nearly equal to the optimal P50 value for the effectiveness of the Bohr shift at the O2 loading site (optP50(BS)(loading)). This phenomenon was favorable for fetal blood to uptake O2 from maternal blood with the aid of the Bohr shift and to deliver a large amount of O2 to the tissues. The optP50s for the effectiveness of the Bohr shift at given arterial PO2 (PaO2) and venous PO2 (PvO2) were derived as follows: optP50(BS)(loading) = PaO2((n+1)/(n-1))(1/n), and optP50(BS)(release) = PvO2((n+1)/(n-1))(1/n). The relationship between in vivo PO2s and n, PaO2/PvO2 = ((n+1)/(n-1))(2/n), was derived by letting optP50 for the efficiency of O2 delivery be equal to that for the effectiveness of the Bohr shift.
Early Atomic Models - From Mechanical to Quantum (1904-1913)
Baily, Charles
2012-01-01
A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J. J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic {\\alpha}-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their...
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Bohr Hamiltonian with an energy dependent $\\gamma$-unstable Coulomb-like potential
Budaca, R
2016-01-01
An exact analytical solution for the Bohr Hamiltonian with an energy dependent Coulomb-like $\\gamma$-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic $U(5)$ dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second $0^{+}$ state known to exhibit competing prolate, oblate and spherical shapes.
Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential
Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
2016-10-15
An exact analytical solution for the Bohr Hamiltonian with an energy-dependent Coulomb-like γ-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic U(5) dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second 0{sup +} state known to exhibit competing prolate, oblate and spherical shapes. (orig.)
Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential
Chabab, M; Hamzavi, M; Lahbas, A; Oulne, M
2016-01-01
In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the {\\beta}-part of the nuclear collective potential plus harmonic oscillator one for the {\\gamma}-part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of {\\beta}-potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for {\\gamma}-unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the {\\beta}-potential beyond its minimum on transition rates calculations.
THEORETICAL CALCULATION OF THE RELATIVISTIC SUBCONFIGURATION-AVERAGED TRANSITION ENERGIES
张继彦; 杨向东; 杨国洪; 张保汉; 雷安乐; 刘宏杰; 李军
2001-01-01
A method for calculating the average energies of relativistic subconfigurations in highly ionized heavy atoms has been developed in the framework of the multiconfigurational Dirac-Fock theory. The method is then used to calculate the average transition energies of the spin-orbit-split 3d-4p transition of Co-like tungsten, the 3d-5f transition of Cu-like tantalum, and the 3d-5f transitions of Cu-like and Zn-like gold samples. The calculated results are in good agreement with those calculated with the relativistic parametric potential method and also with the experimental results.
On a Probabilistic Interpretation of Relativistic Quantum Mechanics
Gorobey, Natalia; Lukyanenko, Inna
2010-01-01
A probabilistic interpretation of one-particle relativistic quantum mechanics is proposed. Quantum Action Principle formulated earlier is used for to make the dynamics of the Minkowsky time variable of a particle to be classical. After that, quantum dynamics of a particle in the 3D space obtains the ordinary probabilistic interpretation. In addition, the classical dynamics of the Minkowsky time variable may serve as a tool for "observation" of the quantum dynamics of a particle. A relativistic analog of the hydrogen atom energy spectrum is obtained.
Electron correlation energies in atoms
McCarthy, Shane Patrick
This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Rössler, O E; Matsuno, K
1998-04-01
The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.
Aguiar, Joana G.; Correia, Paulo R. M.
2016-01-01
In this paper, we explore the use of concept maps (Cmaps) as instructional materials prepared by teachers, to foster the understanding of chemistry. We choose fireworks as a macroscopic event to teach basic chemical principles related to the Bohr atomic model and matter-energy interaction. During teachers' Cmap navigation, students can experience…
A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum
Bopegedera, A. M. R. P.
2011-01-01
A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…
Pseudospin symmetry as an accidental symmetry in the relativistic framework
Marcos, S.; Niembro, R. [Universidad de Cantabria, Departamento de Fisica Moderna, Santander (Spain); Lopez-Quelle, M. [Universidad de Cantabria, Departamento de Fisica Aplicada, Santander (Spain); Savushkin, L.N. [St. Petersburg University for Telecommunications, Department of Physics, St. Petersburg (Russian Federation)
2008-08-15
We analyse the arguments used in the relativistic context to base the quasi-degeneracy of pseudospin doublets (PSDs) observed in atomic nuclei on the smallness of the single-particle central potential ({sigma}{sub S}+{sigma}{sub 0}), discussing, especially, the implications of the results obtained in the limit {sigma}{sub S}+{sigma}{sub 0}=0. We study also the transition from a relativistic model, where {sigma}{sub S}+{sigma}{sub 0} is a harmonic-oscillator potential and exhibits degenerate PSDs, to a more realistic one with broken pseudospin symmetry. We examine, in particular, the effect of the corresponding pseudospin symmetry-breaking term on the Dirac spinors of the PSDs. An extension of the Nilsson model to the relativistic case is also considered. (orig.)
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
'Antigravity' Propulsion and Relativistic Hyperdrive
Felber, F S
2006-01-01
Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
A relativistic trolley paradox
Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.
2016-06-01
We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Quantization of the Atom plus Attempting to Answer Heilbron & Kuhn
Jeong, Yeuncheol; Datta, Timir
2013-01-01
The idea of atoms is old but X-rays provided the first probe into the physical atom. Photographs of X-ray scattering from crystals -Laue spots- were the first visual proof for the physical existence of atoms arranged in a perfect geometric pattern. Thereby conclusively established the stability and physical reality of atoms. The Braggs developed Laue technique to study atoms. Moseley applied (Bragg) X-ray spectroscopy to determine the nuclear charge number of Rutherford atom. We argue that Bohr also at Manchester and contemporary of Moseley likely was inspired by Laue discovery to get busy with the mechanics of the nuclear atom. Roentgens discovery was awarded the first Nobel prize ever in 1901, Laue was honored in 1914, the Braggs in 1915, making Lawrence Bragg then at 25 the youngest ever. Eleven of the cited authors (Bohr himself included) in the trilogy (but not Nicholson the most cited), were later recognized by ten Noble prize awards, seven Laureates in physics and four in chemistry. The ensuing synergy...
Strong-field relativistic processes in highly charged ions
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
Peng, Daoling; Weigend, Florian; Reiher, Markus
2013-01-01
We present an efficient algorithm for one- and two-component relativistic exact-decoupling calculations. The spin-orbit coupling was taken into account for the evaluation of relativistically transformed Hamiltonian. The relativistic decoupling transformation has to be evaluated with primitive functions so that the construction of the relativistic one-electron Hamiltonian becomes the bottleneck of the whole calculation for large molecules. We apply our recently developed local DLU scheme [J. Chem. Phys. 136 (2012) 244108] to accelerate this step. With our new implementation two-component relativistic density functional calculations can be performed invoking the resolution-of-identity density-fitting approximation and (Abelian as well as non-Abelian) point group symmetries to accelerate both the exact-decoupling and the two-electron part. The capability of our implementation is illustrated at the example of silver clusters with up to 309 atoms, for which the cohesive energy is calculated and extrapolated to the...
Reading and writing single-atom magnets
Natterer, Fabian D.; Yang, Kai; Paul, William; Willke, Philip; Choi, Taeyoung; Greber, Thomas; Heinrich, Andreas J.; Lutz, Christopher P.
2017-03-01
The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3–12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.
Reading and writing single-atom magnets.
Natterer, Fabian D; Yang, Kai; Paul, William; Willke, Philip; Choi, Taeyoung; Greber, Thomas; Heinrich, Andreas J; Lutz, Christopher P
2017-03-08
The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.
Chababa, M; lahbas, A; Oulne, M
2016-01-01
A prolate {\\gamma}-rigid regime of the Bohr-Mottelson Hamiltonian within the minimal length formalism, involving an infinite square well like potential in {\\beta} collective shape variable, is developed and used to describe the spectra of a variety of vibrational-like nuclei. The effect of the minimal length on the energy spectrum and the wave function is duly investigated. Numerical calculations are performed for some nuclei revealing a qualitative agreement with the available experimental data.
Bonatsos, Dennis [Institute of Nuclear Physics, NCSR ' Demokritos' GR-15310 Aghia Paraskevi, Attiki (Greece)]. E-mail: bonat@inp.demokritos.gr; Lenis, D. [Institute of Nuclear Physics, NCSR ' Demokritos' GR-15310 Aghia Paraskevi, Attiki (Greece)]. E-mail: lenis@inp.demokritos.gr; Petrellis, D. [Institute of Nuclear Physics, NCSR ' Demokritos' GR-15310 Aghia Paraskevi, Attiki (Greece)]. E-mail: petrellis@inp.demokritos.gr; Terziev, P.A. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigrad Road, BG-1784 Sofia (Bulgaria)]. E-mail: terziev@inrne.bas.bg; Yigitoglu, I. [Institute of Nuclear Physics, NCSR ' Demokritos' GR-15310 Aghia Paraskevi, Attiki (Greece) and Hasan Ali Yucel Faculty of Education, Istanbul University, TR-34470 Beyazit, Istanbul (Turkey)]. E-mail: yigitoglu@istanbul.edu.tr
2005-08-11
A {gamma}-rigid solution of the Bohr Hamiltonian for {gamma}=30 deg. is derived, its ground state band being related to the second order Casimir operator of the Euclidean algebra E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are in close agreement to the E(5) critical point symmetry, as well as to experimental data in the Xe region around A=130.
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I; Bonatsos, Dennis
2005-01-01
A gamma-rigid solution of the Bohr Hamiltonian for gamma = 30 degrees is derived, its ground state band being related to the second order Casimir operator of the Euclidean algebra E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are in close agreement to the E(5) critical point symmetry, as well as to experimental data in the Xe region around A=130.
On γ-rigid regime of the Bohr-Mottelson Hamiltonian in the presence of a minimal length
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2016-07-01
A prolate γ-rigid regime of the Bohr-Mottelson Hamiltonian within the minimal length formalism, involving an infinite square well like potential in β collective shape variable, is developed and used to describe the spectra of a variety of vibrational-like nuclei. The effect of the minimal length on the energy spectrum and the wave function is duly investigated. Numerical calculations are performed for some nuclei revealing a qualitative agreement with the available experimental data.
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Relativistic Gravothermal Instabilities
Roupas, Zacharias
2014-01-01
The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...
Lock, Maximilian P E
2016-01-01
The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Okonjo, Kehinde O; Olatunde, Abimbola M; Fodeke, Adedayo A; Babalola, J Oyebamiji
2014-06-01
We have measured the affinity of the CysF9[93]β sulfhydryl group of human deoxyhemoglobin and oxyhemoglobin for 5,5'-dithiobis(2-nitrobenzoate), DTNB, between pH ≈5.6 and 9 in order to understand the basis of the reported reduction of the Bohr effect induced by chemical modification of the sulfhydryl. We analyzed the results quantitatively on the basis of published data indicating that the sulfhydryl exists in two conformations that are coupled to the transition between two tertiary structures of hemoglobin in dynamic equilibrium. Our analyses show that the ionizable groups linked to the DTNB reaction have lower pKas of ionization in deoxyhemoglobin compared to oxyhemoglobin. So these ionizable groups should make negative contributions to the Bohr effect. We identify these groups as HisNA2[2]β, HisEF1[77]β and HisH21[143]β. We provide explanations for the finding that hemoglobin, chemically modified at CysF9[93]β, has a lower Bohr effect and a higher oxygen affinity than unmodified hemoglobin.
玻尔科学思想中的整体论%Bohr's Viewpoint on Holism
赵斌
2016-01-01
为了应对挑战量子力学完备性的EPR论文，玻尔以互补性为基础，以量子态表征关系和量子现象为主要内容，提出了整体论思想，该思想是其量子力学解释的一部分，尽管存在一定的模糊性，但在还原论的科学传统下仍有其独特的历史与哲学意义。%Bohr proposed holism in his response to EPR paper, which challenged the completeness of quantum mechanics. Bohr's viewpoint on holism is part of his interpretation of quantum mechanics, and it is based on quantum state phenetic re-lationship and quantum phenomenon. There are some ambiguities in Bohr's holism, but it is of special importance to reduc-tionism which has a long history in science.
Relativistic Runaway Electrons
Breizman, Boris
2014-10-01
This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of
What is "Relativistic Canonical Quantization"?
Arbatsky, D. A.
2005-01-01
The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.
Complementarity and the Nature of Uncertainty Relations in Einstein–Bohr Recoiling Slit Experiment
Shogo Tanimura
2015-07-01
Full Text Available A model of the Einstein–Bohr recoiling slit experiment is formulated in a fully quantum theoretical setting. In this model, the state and dynamics of a movable wall that has two slits in it, as well as the state of a particle incoming to the two slits, are described by quantum mechanics. Using this model, we analyzed complementarity between exhibiting an interference pattern and distinguishing the particle path. Comparing the Kennard–Robertson type and the Ozawa-type uncertainty relations, we conclude that the uncertainty relation involved in the double-slit experiment is not the Ozawa-type uncertainty relation but the Kennard-type uncertainty relation of the position and the momentum of the double-slit wall. A possible experiment to test the complementarity relation is suggested. It is also argued that various phenomena which occur at the interface of a quantum system and a classical system, including distinguishability, interference, decoherence, quantum eraser, and weak value, can be understood as aspects of entanglement.Quanta 2015; 4: 1–9.
A rigorous proof of the Bohr-van Leeuwen theorem in the semiclassical limit
Savoie, Baptiste
2015-10-01
The original formulation of the Bohr-van Leeuwen (BvL) theorem states that, in a uniform magnetic field and in thermal equilibrium, the magnetization of an electron gas in the classical Drude-Lorentz model vanishes identically. This stems from classical statistics which assign the canonical momenta all values ranging from -∞ to ∞ that makes the free energy density magnetic-field-independent. When considering a classical (Maxwell-Boltzmann) interacting electron gas, it is usually admitted that the BvL theorem holds upon condition that the potentials modeling the interactions are particle-velocities-independent and do not cause the system to rotate after turning on the magnetic field. From a rigorous viewpoint, when treating large macroscopic systems, one expects the BvL theorem to hold provided the thermodynamic limit of the free energy density exists (and the equivalence of ensemble holds). This requires suitable assumptions on the many-body interactions potential and on the possible external potentials to prevent the system from collapsing or flying apart. Starting from quantum statistical mechanics, the purpose of this paper is to give, within the linear-response theory, a proof of the BvL theorem in the semiclassical limit when considering a dilute electron gas in the canonical conditions subjected to a class of translational invariant external potentials.
Arbelo-Gonzalez, W., E-mail: wilmer@instec.cu [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Departamento de Fisica General, Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana 10600 (Cuba); Bonnet, L., E-mail: l.bonnet@ism.u-bordeaux1.fr [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Larregaray, P.; Rayez, J.-C. [Institut des Sciences Moleculaires, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France); Rubayo-Soneira, J. [Departamento de Fisica General, Instituto Superior de Tecnologias y Ciencias Aplicadas, Habana 10600 (Cuba)
2012-05-03
Graphical abstract: A recent classical description of photodissociation dynamics in a quantum spirit is applied for the first time to a realistic process, the fragmentation of NeBr{sub 2}. Highlights: Black-Right-Pointing-Pointer The photo-dissociation of NeBr{sub 2} is studied by means of two approaches. Black-Right-Pointing-Pointer The first is the standard classical one with Gaussian binning. Black-Right-Pointing-Pointer The second is a new method applied for the first time to a realistic system. Black-Right-Pointing-Pointer The new method leads to exactly the same results as the standard one. Black-Right-Pointing-Pointer However, it requires about 10 times less trajectories in the present case. - Abstract: The recent classical dynamical approach of photodissociations with Bohr quantization [L. Bonnet, J. Chem. Phys. 133 (2010) 174108] is applied for the first time to a realistic process, the photofragmentation of the van der Waals cluster NeBr{sub 2}. We illustrate the fact that this approach, formally equivalent to the standard one, may be numerically much more efficient.
Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum
Ольга Юрьевна Хецелиус
2014-11-01
Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.
Relativistic Effects in a QCD Inspired quark model and the necessity of a short distance scale
Pathak, Krishna Kingkar
2010-01-01
We study the masses and decay constants of heavy light flavoured mesons in a QCD Inspired Quark model. We modify the relativistic correction procedure by introducing a short distance scale r0 in analogy with relativistic Hydrogen atom and estimate the values of masses and decay constants of heavy-light mesons. Necessity of a short distance scale r0 \\leq 10-3 - 10-5 fm in the model is indicated. Keywords: heavy- light mesons, masses, decay constants
Relativistic corrections of order m{alpha}{sup 6} to the two-centre problem
Korobov, V I; Tsogbayar, Ts [Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation)
2007-07-14
Effective potentials of the relativistic m{alpha}{sup 6} order correction for the ground state of the Coulomb two-centre problem are calculated. They can be used to evaluate the relativistic contribution of that order to the energies of hydrogen molecular ions or metastable states of the antiprotonic helium atom, where precision spectroscopic data are available. In our studies we use the variational expansion based on randomly chosen exponents that permits us to achieve high numerical accuracy.
Angular dependence of Wigner time delay: Relativistic Effects
Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.
2016-05-01
Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).
Channeling of ultra-relativistic positrons in bent diamond crystals
R.G. Polozkov
2015-06-01
Full Text Available Results of numerical simulations of channeling of ultra-relativistic positrons are reported for straight and uniformly bent diamond crystals. The projectile trajectories in a crystal are computed using a newly developed module of the MBN Explorer package which simulates classical trajectories in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and the crystal atoms. The Monte Carlo method is employed to sample the incoming positrons and to account for thermal vibrations of the crystal atoms. The channeling parameters and emission spectra of incident positrons with a projecti le energy of 855 MeV along C(110 crystallographic planes are calculated for different bending radii of the crystal. Two features of the emission spectrum associated with positron oscillations in a channel and synchrotron radiation are studied as a function of crystal curvature.
Electron correlation within the relativistic no-pair approximation
Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa
2016-01-01
This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy....... In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding......-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets...
Relativistic extended coupled cluster method for magnetic hyperfine structure constant
Sasmal, Sudip; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav
2015-01-01
This article deals with the general implementation of 4-component spinor relativistic extended coupled cluster (ECC) method to calculate first order property of atoms and molecules in their open-shell ground state configuration. The implemented relativistic ECC is employed to calculate hyperfine structure (HFS) constant of alkali metals (Li, Na, K, Rb and Cs), singly charged alkaline earth metal atoms (Be+, Mg+, Ca+ and Sr+) and molecules (BeH, MgF and CaH). We have compared our ECC results with the calculations based on restricted active space configuration interaction (RAS-CI) method. Our results are in better agreement with the available experimental values than those of the RAS-CI values.
Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.
Dognon, Jean-Pierre; Pyykkö, Pekka
2017-08-14
A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulating relativistic binaries with Whisky
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Advances in Atomic Structure Calculations%原子结构计算的进展
Charlotte Froese Fischer
2007-01-01
Correlation and relativistic effects are both needed for accurate atomic structure calculations of energy levels and their atomic properties. For transition probabilities of radiative transitions between low-lying levels of an atom or ion, accurate wave functions for the outer region of are required. For lighter atoms, relativistic effects can be included through the Breit-Pauli approximation. This paper outlines the advances in the treatment of correlation and describes the current state of Breit-Pauli calculations for complex systems.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Relativistic formulation and reference frame
Klioner, Sergei A.
2004-01-01
After a short review of experimental foundations of metric theories of gravity, the choice of general relativity as a theory to be used for the routine modeling of Gaia observations is justified. General principles of relativistic modeling of astronomical observations are then sketched and compared to the corresponding Newtonian principles. The fundamental reference system -- Barycentric Celestial Reference System, which has been chosen to be the relativistic reference system underlying the f...
Transport coefficients of a relativistic plasma
Pike, O. J.; Rose, S. J.
2016-05-01
In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.
Quantum information processing and relativistic quantum fields
Benincasa, Dionigi M. T.; Borsten, Leron; Buck, Michel; Dowker, Fay
2014-04-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.
Electron correlation within the relativistic no-pair approximation
Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.; Dyall, Kenneth G.; Saue, Trond
2016-08-01
This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying
Rodriguez, Maria A.; Niaz, Mansoor
2004-01-01
Recent research in science education has recognized the importance of history and philosophy of science. The objective of this study is to evaluate the presentation of the Thomson, Rutherford, and Bohr models of the atom in general physics textbooks based on criteria derived from history and philosophy of science. Forty-one general physics…
Rodriguez, Maria A.; Niaz, Mansoor
2004-01-01
Recent research in science education has recognized the importance of history and philosophy of science. The objective of this study is to evaluate the presentation of the Thomson, Rutherford, and Bohr models of the atom in general physics textbooks based on criteria derived from history and philosophy of science. Forty-one general physics…
Relativistic tight-binding model: Application to Pt surfaces
Tchernatinsky, A.; Halley, J. W.
2011-05-01
We report a parametrization of a previous self-consistent tight-binding model, suitable for metals with a high atomic number in which nonscalar-relativistic effects are significant in the electron physics of condensed phases. The method is applied to platinum. The model is fitted to density functional theory band structures and cohesive energies and spectroscopic data on platinum atoms in five oxidation states, and is then shown without further parametrization to correctly reproduce several low index surface structures. We also predict reconstructions of some vicinal surfaces.
El pabellón Niels Bohr. Tradición Danesa y Modernidad
Carmen García Sánchez
2015-12-01
Full Text Available La casa de invitados de Niels Bohr fue el primer edificio del arquitecto danés Vilhelm Wohlert (1920-2007. Arraigado a la tradición danesa, representa una renovación basada en la absorción de influencias extranjeras: la arquitectura americana y la tradición japonesa. La caja de madera tiene el carácter sensible de un organismo vivo, siempre cambiante según las variaciones de luz del día o temperatura. Puertas plegables y contraventanas generan extensiones de las habitaciones. Cuando se abren, crean una prolongación del espacio interior, que se extiende a la naturaleza circundante, y se expande hacia el espacio exterior, permitiendo su movilización. Se establece una arquitectura de flujos. Protagoniza un ejemplo de la modernidad como refinamiento en la técnica de los límites y la idea de que la arquitectura no es un objeto material, sino el espacio generado en su interior. Podría ser visto como un ikebana; “el arte del espacio”, donde se produce una circulación de aire entre sus componentes; algo vivo que expresa la tercera dimensión, el equilibrio asimétrico, un interés por la materia, su textura y efecto emocional que emana. Hay armonía y equilibrio, que transmiten serenidad y belleza; un encuentro con la naturaleza; un mundo de relaciones amable al ser humano.
Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows
Bernstein, J. P.; Hughes, P. A.
2009-09-01
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
High-precision metrology of highly charged ions via relativistic resonance fluorescence.
Postavaru, O; Harman, Z; Keitel, C H
2011-01-21
Resonance fluorescence of laser-driven highly charged ions is investigated with regard to precisely measuring atomic properties. For this purpose an ab initio approach based on the Dirac equation is employed that allows for studying relativistic ions. These systems provide a sensitive means to test correlated relativistic dynamics, quantum electrodynamic phenomena and nuclear effects by applying x-ray lasers. We show how the narrowing of sidebands in the x-ray fluorescence spectrum by interference due to an additional optical driving can be exploited to determine atomic dipole or multipole moments to unprecedented accuracy.
L-shell Auger and Coster-Kronig spectra from relativistic theory
Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.
1979-01-01
The intensities of L-shell Auger and Coster-Kronig transitions in heavy atoms have been calculated relativistically. A detailed comparison is made with measured Auger spectra of Pt and U. The pertinent transition energies were computed from relativistic wave functions with inclusion of the Breit interaction, self-energy, a vacuum-polarization correction, and complete atomic relaxation. Multiplet splitting is found to distribute Auger electrons from certain transitions among several lines. The analysis leads to reassignment of a number of lines in the measured spectra. Lines originally identified as L2-L3Ni in the U spectrum are shown to arise from M4,5 Auger transitions instead.
Breit-Pauli and direct perturbation theory calculations of relativistic helium polarizability.
Cencek, W; Szalewicz, K; Jeziorski, B
2001-06-18
Large Gaussian-type geminal wave function expansions and direct perturbation theory (DPT) of relativistic effects have been applied to calculate the relativistic contribution to the static dipole polarizability of the helium atom. It has been demonstrated that DPT is superior for this purpose to traditional Breit-Pauli calculations. The resulting value of the molar polarizability of 4He is 0.517254(1) cm3 x mol(-1), including a literature estimate of QED effects. As a by-product, a very accurate value of the nonrelativistic helium second hyperpolarizability, gamma = 43.104227(1) atomic units (without the mass-polarization correction), has been obtained.
Tkalya, E. V.; Nikolaev, A. V.
2016-07-01
Background: The search for new opportunities to investigate the low-energy level in the 229Th nucleus, which is nowadays intensively studied experimentally, has motivated us to theoretical studies of the magnetic hyperfine (MHF) structure of the 5 /2+ (0.0 eV) ground state and the low-lying 3 /2+ (7.8 eV) isomeric state in highly charged 89+229Th and 87+229Th ions. Purpose: The aim is to calculate, with the maximal precision presently achievable, the energy of levels of the hyperfine structure of the 229Th ground-state doublet in highly charged ions and the probability of radiative transitions between these levels. Methods: The distribution of the nuclear magnetization (the Bohr-Weisskopf effect) is accounted for in the framework of the collective nuclear model with Nilsson model wave functions for the unpaired neutron. Numerical calculations using precise atomic density functional theory methods, with full account of the electron self-consistent field, have been performed for the electron structure inside and outside the nuclear region. Results: The deviations of the MHF structure for the ground and isomeric states from their values in a model of a pointlike nuclear magnetic dipole are calculated. The influence of the mixing of the states with the same quantum number F on the energy of sublevels is studied. Taking into account the mixing of states, the probabilities of the transitions between the components of the MHF structure are calculated. Conclusions: Our findings are relevant for experiments with highly ionized 229Th ions in a storage ring at an accelerator facility.
Empirical Foundations of Relativistic Gravity
Ni, W T
2005-01-01
In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...
范岱年
2012-01-01
中国早在20世纪20年代初就开始介绍玻尔的科学贡献。1929年，周培源最早访问了玻尔的研究所。1937年抗日战争前夕，玻尔应中国两所最高级的研究院和四所最重要的大学邀请，访问了上海、杭州、南京、北平，受到了最高规格的接待，会见了许多中国最重要的学术领导人、物理学家和学者。中国学者称玻尔是“现代科学思想的领袖”，“原子物理学的开拓者”，“世界今日最大的物理学家之一”。1938至1939年，张宗燧曾到玻尔的研究所工作，与玻尔一家建立了深厚的友谊。二次世界大战后，玻尔与中国学者断绝了来往。大战结束后，张宗燧恢复了与玻尔的通讯联系，胡宁访问了玻尔的研究所，哲学家罗忠恕在瑞典会见了玻尔。%In early 1920th, Neils Bohr and his work have been introduced into China. In 1929, Zhou Peiyuan visited Bohr＇ s institute as the first Chinese visitor. In 1937, before the Anti-Japanese War, Bohr came to China at the invitation of two of the most advanced research institutes and four of the most important universities of China. He visited Shanghai, Hangzhou, Nanjing and Beiping, received a high level reception and met with many of China＇ s academic leaders, important physicists and scholars. Bohr was evaluated as ＇ Thought leader of modem science＇ , ＇ Pioneer researcher in atomic physics＇ and ＇One of the greatest physicists in the world＇ by Chinese scholars. During 1938-1939, Zhang Zongsui has worked in Bohr＇ s institute; he established a profound friendship with Bohr. Because of the World War 2, contact between Bohr and Chinese scholars was stopped. After the war, Zhang Zongsui restarted the communication with Bohr, Hu Ning visited Bohr＇ s institute, philosopher Luo Zhongshu met with Bohr in Sweden.
Yoshitada Sakai
Full Text Available BACKGROUND: Carbon dioxide (CO(2 therapy refers to the transcutaneous administration of CO(2 for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2 in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb during transcutaneous application of CO(2in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2 using pure CO(2 gas, hydrogel, and a plastic adaptor. The validity of the CO(2 hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2 absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2 using phosphorus-31 magnetic resonance spectroscopy ((31P-MRS in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2. RESULTS: The rat skin experiment showed that CO(2 hydrogel enhanced CO(2 gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2. The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2 application, and deoxy-Hb concentration increased significantly 2 min. after CO(2 application in the CO(2-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2 application. CONCLUSIONS: Our novel transcutaneous CO(2 application facilitated an O(2 dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo.
Precision spectroscopy of the helium atom
Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN
2009-01-01
Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.
ERMAMATOV M J; YÉPEZ-MARTÍNEZ H; SRIVASTAVA P C
2016-05-01
The band structure of the proton-odd nuclei $^{153,155}$Eu, built on Nilsson orbitals, is investigated within the framework of a recently developed extended Bohr Hamiltonian model. The relative distance between spherical orbitals is taken into account by considering single-particle energies as a parameter which changes with increasing neutron number. Energy levels of each band and$B(E2)$ values inside the ground-state band are calculated and compared with the available experimental data. Thus, more comprehensive information on the structure of deformed nuclei can be obtained by studying the rotation–vibration spectra of odd nuclei built on Nilsson single-particle orbitals.
Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges
Liu, Ningyu; Dwyer, Joseph R.
2013-05-01
This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However
Atomic Reference Data for Electronic Structure Calculations
Kotochigova, S; Shirley, E L
We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).
Relativistic causality and clockless circuits
Matherat, Philippe; 10.1145/2043643.2043650
2011-01-01
Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...
Relativistic RPA in axial symmetry
Arteaga, D Pena; 10.1103/PhysRevC.77.034317
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Multifragmentation calculated with relativistic forces
Feldmeier, H; Papp, G
1995-01-01
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density depe ndence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 -- 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. PACS: 25.70Mn, 25.75.+r
Relativistic Stern-Gerlach Deflection
Talman, Richard
2016-01-01
Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special relativistic hydrodynamics with gravitation
Hwang, Jai-chan
2016-01-01
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.
Vector Theory in Relativistic Thermodynamics
刘泽文
1994-01-01
It is pointed out that five defects occur in Planck-Einstein’s relativistic thermodynamics (P-E theory). A vector theory in relativistic thermodynamics (VTRT) is established. Defining the internal energy as a 4-vector, and supposing the entropy and the number of. particles to be invariants we have derived the transformations of all quantities, and subsequently got the Lagrangian and 4-D forms of thermodynamic laws. In order to test the new theory, several exact solutions with classical limits are given. The VTRT is free from the defects of the P-E theory.
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
K-shell (e, 3e) double ionization of beryllium by relativistic electrons
Becher, M; Joulakian, B [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, Member FR CNRS 2843 Jean Barriol 1 Bd Arago, 57078 Metz Cedex 3 (France)
2009-03-28
The (e, 3e) process, producing hollow metastable Be{sup 2+}(2s{sup 2}) by very energetic electrons (>100 keV), is studied by using a relativistic procedure based on the application of the first term of the Born series for the determination of the corresponding fully differential cross section. The very fast projectile electron, impinging on the K shell of the neutral beryllium, is described by Dirac plane-wave solutions with the appropriate wave vectors. All atomic electrons and the two final-state-bound electrons are taken into account by non-relativistic Jastrow-type correlated functions. The two slow ejected electrons in the continuum are described by the fully correlated three-Coulomb (3C) function. The comparison of the results with those obtained by our recent non-relativistic approach shows the necessity of the introduction of the relativistic treatment.
Relativistic corrections to the central force problem in a generalized potential approach
Singh, Ashmeet
2014-01-01
We present a novel technique to obtain the relativistic corrections to the central force problem in the Lagrangian formulation, using a generalized potential energy. Throughout the paper, we focus on the attractive inverse square law central force. The generalised potential can be made a part of the regular classical lagrangian which can reproduce the relativistic force equation upto second order in $|\\vec{v}|/c$. We then go on to derive the relativistically corrected Hamiltonian from the Lagrangian and estimate the corrections to the total energy of the system. We employ our methodology to calculate the relativistic correction to the circular orbit in attractive gravitational force. We also estimate to the first order energy correction in the ground state of the hydrogen atom in the semi-classical approach. Our predictions in both problems give the reasonable agreement with the known results. Thus we feel that this work has pedagogical value and can be used by undergraduate students to better understand the ...
Semirelativistic $1s-2s$ excitation of atomic hydrogen by electron impact
Taj, S; Oufni, L
2012-01-01
In the framework of the first Born approximation, we present a semirelativistic theoretical study of the inelastic excitation ($1s_{1/2}\\longrightarrow 2s_{1/2}$) of hydrogen atom by electronic impact. The incident and scattered electrons are described by a free Dirac spinor and the hydrogen atom target is described by the Darwin wave function. Relativistic and spin effects are examined in the relativistic regime. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamic behavior of the DCS in the relativistic regime have been addressed.
Relativistic Hydrodynamics for Heavy-Ion Collisions
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Exact two-component relativistic energy band theory and application
Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)
2016-01-28
An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.
Exact two-component relativistic energy band theory and application.
Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian
2016-01-28
An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.
Irreversible degradation of quantum coherence under relativistic motion
Wang, Jieci; Jing, Jiliang; Fan, Heng
2016-01-01
We study the dynamics of quantum coherence under Unruh thermal noise and seek under which condition the coherence can be frozen in a relativistic setting. We find that the quantum coherence can not be frozen for any acceleration due to the effect of Unruh thermal noise. We also find that quantum coherence is more robust than entanglement under the effect of Unruh thermal noise and therefore the coherence type quantum resources are more accessible for relativistic quantum information processing tasks. Besides, the dynamic of quantum coherence is found to be more sensitive than entanglement to the preparation of the detectors' initial state and the atom-field coupling strength, while it is less sensitive than entanglement to the acceleration of the detector.
Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments
Kopeikin, Sergei
2014-08-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review
Microscopic Processes in Relativistic Jets
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.;
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
The Highest Redshift Relativistic Jets
Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.
2007-12-18
We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.
Circular polarization in relativistic jets
Macquart, JP
2003-01-01
Circular polarization is observed in some relativistic jet sources at radio wavelengths. It is largely associated with activity in the cores of the radio sources, is highly variable, and is strongest during ejection episodes. VLBI imaging and interstellar scintillation arguments show that the degree
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Light Fermion Finite Mass Effects in Non-relativistic Bound States
Eiras, D; Eiras, Dolors; Soto, Joan
2000-01-01
We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.
Islam, M. Fhokrul; Bohr, Henrik; Malik, F. B.
2008-01-01
Beyond the second row of elements in the Mendeleev periodic table, the consideration of the relativistic effect is important in determining proper configurations of atoms and ions, in many cases. Many important quantities of interest in determining physical and chemical properties of matter...
Relativistic calculation of the SeH{sub 2} and TeH{sub 2} photoelectron spectra
Pernpointner, Markus [Theoretische Chemie, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)], E-mail: Markus.Pernpointner@pci.uni-heidelberg.de
2006-10-26
Photoelectron (PE) spectra provide detailed insight into the electronic structure of atoms, molecules and solids. Hereby electron correlation and relativistic effects influence the structure of the PE spectrum in a complicated way necessitating a consistent theoretical treatment. By embedding the one-particle propagator technique in a four-component framework the interplay between relativistic and correlation effects can be described correctly. In this article the Dirac-Hartree-Fock algebraic diagrammatic construction scheme (DHF-ADC) together with recent applications is reviewed and fully relativistic PE spectra of SeH{sub 2} and TeH{sub 2} in combination with basis set studies are presented.
Photoelectron spectroscopy of heavy atoms and molecules
White, M.G.
1979-07-01
The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.
Relativistic electron beams above thunderclouds
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-05-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Volatility smile as relativistic effect
Kakushadze, Zura
2017-06-01
We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.
Double Relativistic Electron Accelerating Mirror
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Relativistic stars in bigravity theory
Aoki, Katsuki; Tanabe, Makoto
2016-01-01
Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in GR. On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
A relativistic symmetry in nuclei
Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)
2007-11-15
We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.
Fluctuations in Relativistic Causal Hydrodynamics
Kumar, Avdhesh; Mishra, Ananta P
2013-01-01
The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.
Project Physics Tests 5, Models of the Atom.
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…
Thermodynamic and relativistic uncertainty relations
Artamonov, A. A.; Plotnikov, E. M.
2017-01-01
Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
Hardy-Sobolev类上的Bohr型不等式%An Inequality of Bohr Type on Hardy-Sobolev Classes
李雪华
2009-01-01
Let β>0 and Sβ:={z ∈C:|Im z|0,denote by Bσ the class of functions f which have spectra in(-2πσ,2πσ).And let B⊥σ be the class of functions f which have no spectrum in(-2πσ,2πσ).We prove an inequality of Bohr type ||f||∞,≤πγ∧σγ∞∑κ0-(-1)k(r+1) (2k+1)r sinh((2k+1)2σβ),f ∈Hr∞,β∩B⊥σ,where λ∈(0,1),∧ and ∧'are the complete eniptic integrals of the first kind for the moduli λ and λ'=(1-λ2),respectively,and λ satisfies 4∧β-π∧'= 1-σ.The constant in the above inequality is exact.
Ougaard, Morten
2015-01-01
En svaghed ved Kasper Lippert-Rasmussens i øvrigt udmærkede bog om Erik Rasmussen er, at den forbigår den sene Rasmussens bog om komplementaritet og statskundskab. Bogen var vigtig for Rasmussen, og den bør indgå i hans faglige eftermæle. Den rummer videnskabsteoretiske argumenter af stor relevans...... ikke mindst forholdet mellem normative og kognitive udsagn. Efter mødet med Niels Bohrs filosofi står Rasmussens værdirelativisme både skarpere og stærkere end før, og Kasper Lippert-Rasmussens karakteristik af denne position som et ubegrundet dogme i dansk politologi er ikke overbevisende....
Relativistic Binaries in Globular Clusters
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Benacquista Matthew
2002-01-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Tennis Using Flying Mirror
Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.
2008-06-01
Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new
Relativistic effects in Lyman-alpha forest
Iršič, Vid; Viel, Matteo
2015-01-01
We present the calculation of the Lyman-alpha (Lyman-$\\alpha$) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range ($z = 2 - 5$). Furthermore, we show a comprehensive application of our calculations to the Quasar- Lyman-$\\alpha$ cross-correlation function. Our results indicate that the signal of relativistic effects can be as large as 30% at Baryonic Acoustic Oscillation (BAO) scale, which is much larger than anticipated and mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross- correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considerin...
Transverse relativistic effects in paraxial wave interference
Bliokh, Konstantin Y; Nori, Franco
2013-01-01
We consider relativistic deformations of interfering paraxial waves moving in the transverse direction. Owing to superluminal transverse phase velocities, noticeable deformations of the interference patterns arise when the waves move with respect to each other with non-relativistic velocities. Similar distortions also appear on a mutual tilt of the interfering waves, which causes a phase delay analogous to the relativistic time delay. We illustrate these observations by the interference between a vortex wave beam and a plane wave, which exhibits a pronounced deformation of the radial fringes into a fork-like pattern (relativistic Hall effect). Furthermore, we describe an additional relativistic motion of the interference fringes (a counter-rotation in the vortex case), which become noticeable at the same non-relativistic velocities.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer.
Albrecht, Ken; Hirabayashi, Yuki; Otake, Masaya; Mendori, Shin; Tobari, Yuta; Azuma, Yasuo; Majima, Yutaka; Yamamoto, Kimihisa
2016-12-01
The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. These poly(dendrimer) polymers could store Lewis acids (SnCl2) in their unoccupied orbitals, thus indicating that these poly(dendrimer) polymers consist of a series of nanocontainers.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic non-equilibrium thermodynamics revisited
García-Colin, L S
2006-01-01
Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.
Analogy betwen dislocation creep and relativistic cosmology
J.A. Montemayor-Aldrete; J.D. Muñoz-Andrade; Mendoza-Allende, A.; Montemayor-Varela, A.
2005-01-01
A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have been obtained for Relativistic Cosmology. From these four new equations, one may determine...
Relativistic soliton-like collisionless ionization wave
Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd
2014-10-01
It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
Xiong, Chi; Guo, Yulong; Liu, Xiaopei; Huang, Kerson
2014-01-01
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr\\"{o}dinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer
Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia;
2013-01-01
A newly developed code, implemented as a part of the MBN Explorer package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1] and [2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically...... by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random...
Relativistic Cyclotron Instability in Anisotropic Plasmas
López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.
2016-11-01
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Relativistic and non-relativistic solitons in plasmas
Barman, Satyendra Nath
This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields
Open quantum dots in graphene: Scaling relativistic pointer states
Ferry, D. K.; Huang, L.; Yang, R.; Lai, Y.-C.; Akis, R.
2010-04-01
Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not "washed out" through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.
Relativistic and Radiative Energy Shifts for Rydberg States
Jentschura, U D; Evers, J; Mohr, P J; Keitel, C H
2004-01-01
We investigate relativistic and quantum electrodynamic effects for highly-excited bound states in hydrogenlike systems (Rydberg states). In particular, hydrogenic one-loop Bethe logarithms are calculated for all circular states (l = n-1) in the range 20 20 to an accuracy of five to seven decimal digits, within the specified manifolds of atomic states. Within the numerical accuracy, the results constitute unified, general formulas for quantum electrodynamic corrections whose validity is not restricted to a single atomic state. The results are relevant for accurate predictions of radiative shifts of Rydberg states and for the description of the recently investigated laser-dressed Lamb shift, which is observable in a strong coherent-wave light field.
Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory
Caron-Huot, Simon; Henn, Johannes M.
2014-01-01
he classical Kepler problem, as well as its quantum mechanical version, the hydrogen atom, enjoys a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves...... this symmetry? In this Letter we show that the answer is positive: in the nonrelativistic limit, we identify the dual conformal symmetry of planar N=4 super Yang-Mills theory with the well-known symmetries of the hydrogen atom. We point out that the dual conformal symmetry offers a novel way to compute...... the spectrum of bound states of massive W bosons in the theory. We perform nontrivial tests of this setup at weak and strong coupling and comment on the possible extension to arbitrary values of the coupling....
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency
Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.
2015-11-01
3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.
Calculating the Finite-Speed-of-Light Effect in Atom Gravimeters with General Relativity
Tan, Yu-Jie
2016-01-01
This work mainly presents a relativistic analytical calculating method for the finite speed-of-light effect in atom gravimeters, which can simplify the deriva- tion and give a more complete expression for the associated correction.
Ionization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP
Chen, Jiunn-Wei; Liu, Chien-Fu; Wu, Chih-Liang
2013-01-01
We studied the ionization of hydrogen by scattering of neutrino magnetic moment, relativistic muon, and weakly-interacting massive particle with a QED-like interaction. Analytic results were obtained and compared with several approximation schemes often used in atomic physics. As current searches for neutrino magnetic moment and dark matter have lowered the detector threshold down to the sub-keV regime, we tried to deduce from this simple case study the influence of atomic structure on the the cross sections and the applicabilities of various approximations. The general features being found will be useful for cases where practical detector atoms are considered.
On the relativistic anisotropic configurations
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)
2016-06-15
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)
Simple waves in relativistic fluids.
Lyutikov, Maxim
2010-11-01
We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.
Einstein Toolkit for Relativistic Astrophysics
Collaborative Effort
2011-02-01
The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.
Density perturbations with relativistic thermodynamics
Maartens, R
1997-01-01
We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.
Thermodynamics of polarized relativistic matter
Kovtun, Pavel
2016-07-01
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Thermodynamics of polarized relativistic matter
Kovtun, Pavel
2016-01-01
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.