Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam
Gupta, D. N.; Kulagin, V. V.; Suk, H.
2017-10-01
We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.
Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)
2017-03-15
The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.
Beam transfer functions for relativistic proton bunches with beam–beam interaction
Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)
2015-03-21
We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.
High density ultrashort relativistic positron beam generation by laser-plasma interaction
Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.
2016-11-01
A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.
Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets
Fill, E; Eder, D; Eidmann, K; Saemann, A
1999-01-01
When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...
Collisional effects on the oblique instability in relativistic beam-plasma interactions
Hao, B.; Ding, W. J.; Sheng, Z. M.; Ren, C.; Kong, X.; Mu, J.; Zhang, J.
2012-07-01
The general oblique instability for a relativistic electron beam propagating through a warm and resistive plasma is investigated fully kinetically by a variable rotation method. Analysis shows that the electrostatic part of the oblique instability is attenuated and eventually stabilized by collisional effects. However, the electromagnetic part of the oblique instability (EMOI) is enhanced. Since the current-filamentation instability as a special case of the EMOI has a larger growth rate, it becomes dominant in the collisional case as shown in our two-dimensional particle-in-cell simulations. While the beam diverges in the collisionless case, it can become magnetically collimated in the collisional case due to stabilization of the electrostatic instabilities when the initial beam spreading angle is less than certain magnitude such as a dozen degrees.
Artru, X. [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Collaboration: IPN-Lyon, IRMM (Gell), LURE (Orsay); Collaboration: IPN-Lyon, LAL and IEF (Orsay), HIP (Helsinki), INFN (Frascati, Milan)
1998-12-31
We have studied different effects related to electromagnetic interaction of relativistic electrons in matter and investigated their use in beam profile measurements. (authors) 4 refs. Short communication
Relativistic electron beams above thunderclouds
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-05-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Ardaneh, Kazem; Cai, DongSheng; Nishikawa, Ken-Ichi
2014-11-01
On the basis of a three-dimensional relativistic electromagnetic particle-in-cell (PIC) code, we have analyzed the Weibel instability driven by a relativistic electron-ion beam propagating into an unmagnetized ambient electron-ion plasma. The analysis is focused on the ion contribution in the instability, considering the earliest evolution in shock formation. Simulation results demonstrate that the Weibel instability is responsible for generating and amplifying the small-scale, fluctuating, and dominantly transversal magnetic fields. These magnetic fields deflect particles behind the beam front both perpendicular and parallel to the beam propagation direction. Initially, the incoming electrons respond to field fluctuations growing as the result of the Weibel instability. Therefore, the electron current filaments are generated and the total magnetic energy grows linearly due to the mutual attraction between the filaments, and downstream advection of the magnetic field perturbations. When the magnetic fields become strong enough to deflect the much heavier ions, the ions begin to get involved in the instability. Subsequently, the linear growth of total magnetic energy decreases because of opposite electron-ion currents and topological change in the structure of magnetic fields. The ion current filaments are then merged and magnetic field energy grows more slowly at the expense of the energy stored in ion stream. It has been clearly illustrated that the ion current filaments extend through a larger scale in the longitudinal direction, while extension of the electron filaments is limited. Hence, the ions form current filaments that are the sources of deeply penetrating magnetic fields. The results also reveal that the Weibel instability is further amplified due to the ions streaming, but on a longer time scale. Our simulation predictions are in valid agreement with those reported in the literature.
High-repetition rate relativistic electron beam generation from intense laser solid interactions
Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl
2015-05-01
Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.
Beam-beam observations in the Relativistic Heavy Ion Collider
Luo, Y. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Laboratory (BNL), Upton, NY (United States); White, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)
2015-06-24
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-08-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10^{−3} Am^{−2} associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Deibele, C. E. [Univ. of Wisconsin, Madison, WI (United States)
1996-01-01
The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.
Recent progresses in relativistic beam-plasma instability theory
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Coherent instabilities of a relativistic bunched beam
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.
Studies of beam dynamics in relativistic klystron two- beam accelerators
Lidia, Steven Michael
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka-band (~30-35 GHz) frequency regions. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. A mapping algorithm is used so that tens or hundreds of thousands of macroparticles can be pushed from the solution of a few hundreds of differential equations. This is a great cost-savings device from the standpoint of CPU cycles. It can increase by several orders of magnitude the number of macroparticles that take place in the simulation, enabling more accurate modeling of the evolution of the beam distribution and enhanced sensitivity to effects due to the beam's halo. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split- operator algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The beam-cavity interaction is analyzed and divided naturally into two distinct times scales. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 TW of power from 40 input, gain
Microengineering laser plasma interactions at relativistic intensities
Jiang, S; Audesirk, H; George, K M; Snyder, J; Krygier, A; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U
2015-01-01
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).
Microengineering Laser Plasma Interactions at Relativistic Intensities.
Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U
2016-02-26
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.
Relativistic atomic beam spectroscopy II
NONE
1991-12-31
We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.
Beam loss mechanisms in relativistic heavy-ion colliders
Bruce, Roderik; Gilardoni, S; Wallén, E
2009-01-01
The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...
Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures
Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Legg, R; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S
2013-01-01
High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.
Helical relativistic electron beam and THz radiation
Son, S
2011-01-01
A THz laser generation utilizing a helical relativistic electron beam propagating through a strong magnetic field is discussed. The initial amplification rate in this scheme is much stronger than that in the conventional free electron laser. A magnetic field of the order of Tesla can yield a radiation in the range of 0.5 to 3 THz, corresponding to the total energy of mJ and the duration of tens of pico-second, or the temporal power of the order of GW.
Cooling of Relativistic Electron-Beams
Bazylev, V. A.; Tulupov, A. V.
1993-01-01
A method of reducing the energy spread of an electron beam in a free-electron laser is suggested. The electron beam compression is based on a nonlinear mechanism of electron interactions with a ponderomotive wave in the presence of a constant and uniform magnetic field perpendicular to the electron
Multidimensional electron beam-plasma instabilities in the relativistic regime
BRET, ANTOINE; Gremillet, Laurent; Dieckmann, Mark Eric
2010-01-01
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture ...
Radiative cooling of relativistic electron beams
Huang, Zhirong [Stanford Univ., CA (United States)
1998-05-01
Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.
Cooling of relativistic electron beams in chirped laser pulses
Yoffe, Samuel R; Kravets, Yevgen; Jaroszynski, Dino A
2015-01-01
The next few years will see next-generation high-power laser facilities (such as the Extreme Light Infrastructure) become operational, for which it is important to understand how interaction with intense laser pulses affects the bulk properties of a relativistic electron beam. At such high field intensities, we expect both radiation reaction and quantum effects to play a significant role in the beam dynamics. The resulting reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction depends only on the energy of the laser pulse. Quantum effects suppress this cooling, with the dynamics additionally sensitive to the distribution of energy within the pulse. Since chirps occur in both the production of high-intensity pulses (CPA) and the propagation of pulses in media, the effect of using chirps to modify the pulse shape has been investigated using a semi-classical extension to the Landau--Lifshitz theory. Results indicate that even la...
Controlling multiple filaments by relativistic optical vortex beams in plasmas
Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.
2016-09-01
Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.
Aperiodic magnetic turbulence produced by relativistic ion beams
Niemiec, Jacek; Bret, Antoine; Stroman, Thomas
2009-01-01
Magnetic-field generation by a relativistic ion beam propagating through an electron-ion plasma along a homogeneous magnetic field is investigated with 2.5D high-resolution particle-in-cell (PIC) simulations. The studies test predictions of a strong amplification of short-wavelength modes of magnetic turbulence upstream of nonrelativistic and relativistic parallel shocks associated with supernova remnants, jets of active galactic nuclei, and gamma-ray bursts. We find good agreement in the properties of the turbulence observed in our simulations compared with the dispersion relation calculated for linear waves with arbitrary orientation of ${\\vec k}$. Depending on the parameters, the backreaction on the ion beam leads to filamentation of the ambient plasma and the beam, which in turn influences the properties of the magnetic turbulence. For mildly- and ultra-relativistic beams, the instability saturates at field amplitudes a few times larger than the homogeneous magnetic field strength. This result matches our...
Beaming of particles and synchrotron radiation in relativistic magnetic reconnection
Kagan, Daniel; Piran, Tsvi
2016-01-01
Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given freq...
Waves in relativistic electron beam in low-density plasma
Sheinman, I.; Sheinman (Chernenco, J.
2016-11-01
Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.
Andonian, G; Barber, S; O'Shea, F H; Fedurin, M; Kusche, K; Swinson, C; Rosenzweig, J B
2017-02-03
Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.
Andonian, G.; Barber, S.; O'Shea, F. H.; Fedurin, M.; Kusche, K.; Swinson, C.; Rosenzweig, J. B.
2017-02-01
Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.
Causal categories: relativistically interacting processes
Coecke, Bob
2011-01-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study t...
Broadband lasercooling of relativistic ion beams at ESR
Bussmann, Michael; Seltmann, Michael; Siebold, Matthias; Schramm, Ulrich [HZDR (Germany); Wen, Weiqiang; Zhang, Dacheng; Ma, Xinwen [IMPCAS, Lanzhou (China); Winters, Danyal; Clark, Colin; Kozhuharov, Christophor; Steck, Markus; Dimopoulou, Christina; Nolden, Fritz; Stoehlker, Thomas [GSI (Germany); Beck, Tobias; Rein, Benjamin; Walther, Thomas; Tichelmann, Sascha; Birkl, Gerhard [TU Darmstadt (Germany); Sanchez-Alarcon, Rodolfo; Ullmann, Johannes; Lochmann, Matthias; Noertershaeuser, Wilfried [GSI (Germany); Univ. Mainz (Germany)
2013-07-01
We present new results on laser cooling of relativistic C{sup 3+} ion beams at the Experimental Storage Ring at GSI. For the first time we could show laser cooling of bunched relativistic ion beams using fast scanning of the frequency of the cooling laser over a range larger than the momentum acceptance of the bucket. Unlike previously employed cooling schemes where the bucket frequency was scanned relatively to a fixed laser frequency, scanning of the laser frequency can be readily applied to future high energy storage rings such as HESR or SIS100 at FAIR.
Causal Categories: Relativistically Interacting Processes
Coecke, Bob; Lal, Raymond
2013-04-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.
Optical principles of beam transport for relativistic electron cooling
A. Burov
2000-09-01
Full Text Available In conventional low energy electron coolers, the electron beam is immersed in a continuous solenoid, which provides a calm and tightly focused beam in a cooling section. While suitable for low energies, the continuity of the accompanying magnetic field is hardly realizable at relativistic energies. We consider the possibility of using an extended solenoid in the gun and the cooling section only, applying lumped focusing for the rest of the electron transport line.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Relativistic Klystron Two-Beam Accelerator Simulation Code Development
Lidia, Steven; Ryne, Robert
1997-05-01
We present recent work on the development and testing of a 3-D simu- lation code for relativistic klystron two-beam accelerators (RK-TBAs). This new code utilizes symplectic integration techniques to push macro- particles, coupled to a circuit equation framework that advances the fields in the cavities. Space charge effects are calculated using a Green's function approach, and pipe wall effects are included in the electrostatic approximation. We present simulations of the LBNL/LLNL RK-TBA device, emphasizing cavity power development and beam dynamics, including the high- and low-frequency beam break-up instabilities.
Sironi, Lorenzo
2013-01-01
The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the non-linear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors gamma_b>>1 and beam-to-plasma density ratios alpha 0.2 (as typically expected for blazar-induced beams), the fraction of beam energy deposited into the IGM is much smaller than ~10%. It follows that at least ~90% of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the Cosmic Microwave Background by the beam pairs.
Lysenko, Alexander V.; Volk, Iurii I.; Serozhko, A.
2017-01-01
We elaborate a quadratic nonlinear theory of plural interactions of growing space charge wave (SCW) harmonics during the development of the two-stream instability in helical relativistic electron beams. It is found that in helical two-stream electron beams the growth rate of the two-stream instab...
Beam dynamics studies for the relativistic klystron two-beam accelerator experiment
Lidia, Steven M.
2001-04-01
Two-beam accelerators (TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band \\(~8-12 GHz\\) through Ka-band \\(~30-35 GHz\\) frequency regions. The relativistic klystron two-beam accelerator project, whose aim is to study TBAs based upon extended relativistic klystrons, is described, and a new simulation code is used to design the latter portions of the experiment. Detailed, self-consistent calculations of the beam dynamics and of the rf cavity output are presented and discussed together with a beam line design that will generate nearly 1.2 GW of power from 40 rf cavities over a 10 m distance. The simulations show that beam current losses are acceptable and that longitudinal and transverse focusing techniques are sufficiently capable of maintaining a high degree of beam quality along the entire beam line.
Relativistic Beaming Effect in Fermi Blazars
J. H. Fan; D. Bastieri; J. H. Yang; Y. Liu; D. X. Wu; S. H. Li
2014-09-01
The most identified sources observed by Fermi/LAT are blazars, based on which we can investigate the emission mechanisms and beaming effect in the -ray bands for blazars. Here, we used the compiled around 450 Fermi blazars with the available X-ray observations to estimate their Doppler factors and compared them with the integral -ray luminosity in the range of 1–100 GeV. It is interesting that the integral -ray luminosity is closely correlated with the estimated Doppler factor, log = (2.95 ± 0.09) log + 43.59 ± 0.08 for the whole sample. When the dependence of the correlation between them and the X-ray luminosity is removed, the correlation is still strong, which suggests that the -ray emissions are strongly beamed.
Microwave Emission from Relativistic Electron Beams.
1984-11-27
Davis, Phys. Fluids 25, 2337 (1982). 6. G.J. Caporaso. W.A. Barletta, D.L. Birx, R.J. Briggs, Y.P. Chong, A.G. Cole, T.J. Fessenden . R.E. Hester, E.J...Lauer, V.K. Neil, A.C. Paul, D.S. Prono, and K.W. Struve. Proc. of the Fifth Int. Conf. on High-Power Particle Beams, p.427 (1983); T.J. Fessenden
Relativistic electron mirrors from high intensity laser nanofoil interactions
Kiefer, Daniel
2012-12-21
The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those
Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations
B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3
2013-04-01
Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma
Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory
Duviryak, A A; Tretyak, V I
1998-01-01
The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.
Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan
2011-01-01
A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.
Relativistic electron vortex beams in a laser field
Bandyopadhyay, Pratul; Chowdhury, Debashree
2015-01-01
The orbital angular momentum Hall effect and spin Hall effect of electron vortex beams (EVB) have been studied for the EVBs interacting with laser field. In the scenario of paraxial beam, the cumulative effect of the orbit-orbit interaction of EVBs and laser fields drives the orbital Hall effect, which in turn produces a shift of the center of the beam from that of the field-free case towards the polarization axis of photons. Besides, for non-paraxial beams one can also perceive a similar shift of the center of the beam owing to spin Hall effect involving spin-orbit interaction. Our analysis suggests that the shift in the paraxial beams will always be larger than that in non-paraxial beams.
All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam
D. Xiang
2011-11-01
Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.
Microengineering laser plasma interactions at relativistic intensities
S. Jiang; Ji,L.L.; Audesirk, H.; George, K M; Snyder, J.; Krygier, A.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2015-01-01
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microw...
Relativistic Beaming and Orientation Effects in BL Lacertae Objects
F. C. Odo; A. A. Ubachukwu; A. E. Chukwude
2012-09-01
We use the correlation between the core-to-lobe radio luminosity ratio () and the linear size () of a sample of BL Lacertae objects to investigate the relativistic beaming and radio source orientation paradigm for high peaked and low-peaked BL Lacs (X-ray and radio selected BL Lacs respectively) and to constrain relativistic beaming model for this extreme class of active galactic nuclei. We show that the - distributions of the BL Lac populations contradict blazar orientation sequence, with the X-ray selected BL Lacs (XBLs) being more consistent with the beaming and orientation model. On the premise that Fanaroff-Riley Type I radio galaxies are the unbeamed parent population of these objects, we derive the bulk Lorentz factor of the jets, ∼ 7-20 corresponding to a critical cone angle for optimum boosting, c of ∼ 1° - 4°, while on average, these objects are inclined at 5° - 12° to the line-of-sight. The implications of these results for the blazar unification sequence are discussed.
BEAM LIFETIME DEPENDENCE ON THE BEAM-GAS INTERACTIONS IN RHIC.
TRBOJEVIC,D.; HSUEH,H.C.; MACKAY,W.; DREES,A.; FLILLER,R.
2001-06-18
In the Relativistic Heavy ion Collider (RHIC) much larger background signals were occurring at BRAMS, one of the four experiments. This was especially pronounced at the time when vacuum conditions deteriorated due to the beam ionization profile monitor replacements. Recording the beam intensities during the store provided the beam lifetime. Predictions from the beam gas interactions to the above measured values are compared The ionization gauges simultaneously recorded the vacuum pressure data.
Excitement tem-horn antenna by impulsive relativistic electron beam
Balakirev, V A; Egorov, A M; Lonin, Y F
2000-01-01
In the given operation the opportunity of reception powerful electromagnetic irradiation (EMI) is observationally explored by excitation by a impulsive relativistic electronic beam (IREB) of a TEM-horn antenna. It is revealed, that at such expedient of excitation of the TEM-horn antenna, the signal of radiation of the antenna contains three various components caused by oscillation of radiation by forward front IREB, high-voltage discharge between plates irradiation of TEM-horn antenna a and resonant properties of the antenna devices.
Coulex-multipolarimetry with relativistic heavy-ion beams
Stahl, C., E-mail: stahl@ikp.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Rainovski, G. [Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia (Bulgaria); Reese, M. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany)
2015-01-11
We present a method suitable to measure E2/M1 multipole mixing ratios of nuclear ground-state transitions by comparison of relativistic Coulomb-excitation cross-sections at different ion velocities. The observation of the Coulomb-excitation at different ion velocities can be performed with high-resolution γ-ray detectors in one single experiment by using two targets mounted at a few centimeters distance along the beam axis. Excitation in either of the targets is distinguished by different observed Doppler-shifts.
Mokhov, N. V. [Fermilab; Cerutti, F. [CERN
2016-01-01
Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.
Mokhov, N.V.
2016-01-01
Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina
2014-01-01
Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...
Design of a relativistic klystron two-beam accelerator prototype
Westenskow, G.; Caporaso, G.; Chen, Y. [and others
1995-10-01
We are designing an experiment to study physics, engineering, and costing issues of an extended Relativistic Klystron Two-Beam Accelerator (RK-TBA). The experiment is a prototype for an RK-TBA based microwave power source suitable for driving a 1 TeV linear collider. Major components of the experiment include a 2.5-MV, 1.5-kA electron source, a 11.4-GHz modulator, a bunch compressor, and a 8-m extraction section. The extraction section will be comprised of 4 traveling-wave output structures, each generating about 360 MW of rf power. Induction cells will be used in the extraction section to maintain the average beam energy at 5 MeV. Status of the design is presented.
Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses
Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A
2015-01-01
With the emergence in the next few years of a new breed of high power laser facilities, it is becoming increasingly important to understand how interacting with intense laser pulses affects the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of electrons indicates that, classically, equal contributions to the phase space contraction occur in the transverse and longitudinal directions. In the weakly quantum regime, in addition to an overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in the longitudinal than the transverse directions. By introducing an efficient new technique for studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just the total energy as in the classical case.
The Sagnac Phase Shift Suggested by the Aharonov-Bohm Effect for Relativistic Matter Beams
Rizzi, Guido; Ruggiero, Matteo Luca
2003-10-01
The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a formal analogy with the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and Newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.
The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams
Rizzi, G; Rizzi, Guido; Ruggiero, Matteo Luca
2003-01-01
The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.
Adapting High Brightness Relativistic Electron Beams for Ultrafast Science
Scoby, Cheyne Matthew
blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.
Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider
Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2014-09-09
To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.
A reduced model for relativistic electron beam transport in solids and dense plasmas
Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.
2014-07-01
A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.
A ground-based measurement of the relativistic beaming effect in a detached double WD binary
Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi
2010-01-01
We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...
A monolithic relativistic electron beam source based on a dielectric laser accelerator structure
McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)
2012-12-21
Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.
2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma
Shukla, Chandrashekhar; Patel, Kartik
2015-01-01
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...
Whistler wave generation by non-gyrotropic, relativistic, electron beams
Skender, Marina; Tsiklauri, David
2014-05-01
]. In this study [5], for the first time, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented. Features of the wave component propagating backwards from the front of the non-gyrotropic, relativistic, beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile are studied by using the Particle-In-Cell code EPOCH. Magnetic field in the 1.5-dimensional system is varied in order to prove that the backwards propagating wave is harmonic of the electron cyclotron frequency. The analysis has lead to the identification of the backwards travelling waves as whistlers. Moreover, the whistlers are shown to be generated by the normal and anomalous Doppler resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011). [2] D. Tsiklauri, H. Schmitz, Geophys. Res. Abs. 15, EGU2013-5403 (2013). [3] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013). [4] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012). [5] M. Skender, D. Tsiklauri, submitted to Phys. Plasmas (2013): http://astro.qmul.ac.uk/ tsiklauri/
Fedele, Renato; De Nicola, Sergio; Shukla, P K; Jovanovic, Dusan
2011-01-01
Thermal Wave Model is used to study the strong self-consistent Plasma Wake Field interaction (transverse effects) between a strongly magnetized plasma and a relativistic electron/positron beam travelling along the external magnetic field, in the long beam limit, in terms of a nonlocal NLS equation and the virial equation. In the linear regime, vortices predicted in terms of Laguerre-Gauss beams characterized by non-zero orbital angular momentum (vortex charge). In the nonlinear regime, criteria for collapse and stable oscillations is established and the thin plasma lens mechanism is investigated, for beam size much greater than the plasma wavelength. The beam squeezing and the self-pinching equilibrium is predicted, for beam size much smaller than the plasma wavelength, taking the aberrationless solution of the nonlocal Nonlinear Schroeding equation.
The q overlineq relativistic interaction in the Wilson loop approach
Brambilla, N.; Vairo, A.
1998-05-01
We study the q overlineq relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.
2016-10-01
Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Gamp, A
2011-01-01
We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
Electroweak interactions between intense neutrino beams and dense electron-positron magneto-plasmas
Tsintsadze, N L; Stenflo, L
2003-01-01
The electroweak coupling between intense neutrino beams and strongly degenerate relativistic dense electron-positron magneto-plasmas is considered. The intense neutrino bursts interact with the plasma due to the weak Fermi interaction force, and their dynamics is governed by a kinetic equation. Our objective here is to develop a kinetic equation for a degenerate neutrino gas and to use that equation to derive relativistic magnetohydrodynamic equations. The latter are useful for studying numerous collective processes when intense neutrino beams nonlinearly interact with degenerate, relativistic, dense electron-positron plasmas in strong magnetic fields. If the number densities of the plasma particles are of the order of 10 sup 3 sup 3 cm sup - sup 3 , the pair plasma becomes ultra-relativistic, which strongly affects the potential energy of the weak Fermi interaction. The new system of equations allows several neutrino-driven streaming instabilities involving new types of relativistic Alfven-like waves, The re...
Design of a C-band relativistic extended interaction klystron with coaxial output cavity
WU Yang; ZHAO De-Kui; CHEN Yong-Dong
2015-01-01
In order to overcome the disadvantages of conventional high frequency relativistic klystron amplifiers in power capability and RF conversion efficiency,a C-band relativistic extended interaction klystron amplifier with coaxial output cavity is designed with the aid of PIC code MAGIC.In the device,disk-loaded cavities are introduced in the input and intermediate cavity to increase the beam modulation depth,and a coaxial disk-loaded cavity is employed in the output cavity to enhance the RF conversion efficiency.In PIC simulation,when the beam voltage is 680 kV and current is 4 kA,the device can generate 1.11 GW output power at 5.64 GHz with an efficiency of 40.8％.
Solitons in relativistic laser-plasma interactions
XIE Bai-song; DU Shu-cheng
2007-01-01
Single or/and multipeak solitons in plasma under relativistic electromagnetic field are reviewed.The incident electromagnetic field iS allowed to have a zero or/and nonzero initial constant amplitude.Some interesting numerical results are obtained that include a high-number multipeak laser pulse and single or/and low-number multipeak plasma wake structures.It is also shown that there exists a combination of soliton and oscillation waves for plasma wake field.Also,the electron density exhibits multi-caviton structure or the combination of caviton and oscillation.A complete eigenvalue spectrum of parameters is given wherein some higher peak numbers of multipeak electromagnetic solitons in the plasma are included.Moreover, some interesting scaling laws are presented for field energy via numerical approaches.Some implications of results are discussed.
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert Matthias
2016-01-01
Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert, Matthias
2016-11-01
In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Studies of beam dynamics in relativistic klystron two-beam accelerators
Lidia, Steven M.
1999-11-01
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also
Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation
Yoffe, S.R., E-mail: sam.yoffe@strath.ac.uk; Noble, A., E-mail: adam.noble@strath.ac.uk; Macleod, A.J., E-mail: alexander.macleod@strath.ac.uk; Jaroszynski, D.A., E-mail: d.a.jaroszynski@strath.ac.uk
2016-09-01
Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra. - Highlights: • Classical theories of radiation reaction predict electron beam cooling in high fields. • Quantum effects lead to a reduction in electron beam cooling. • Quasi-classical model agrees with predictions from a single-emission stochastic model. • Negative frequency chirp found to increase photon emission, but not maximum energy.
Three dimensional filamentary structures of a relativistic electron beam in Fast Ignition plasmas
Karmakar, Anupam; Pukhov, Alexander
2008-01-01
The filamentary structures and associated electromagnetic fields of a relativistic electron beam have been studied by three dimensional particle-in-cell (PIC) simulations in the context of Fast Ignition fusion. The simulations explicitly include collisions in return plasma current and distinctly examine the effects of beam temperature and collisions on the growth of filamentary structures generated.
Relativistic bound-state equations for fermions with instantaneous interactions
Suttorp, L.G.
1979-01-01
Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Intense terahertz radiation from relativistic laser-plasma interactions
Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.
2017-01-01
The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.
Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T
2006-01-01
The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.
Fernandez, Juan C.
2016-10-01
Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.
Simulation of planar FEL-amplifier with tape relativistic electron beam
Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitskij, S L
2001-01-01
The simulation of the planar microwave (4 mm) amplifier on the basis of the powerful laser on free electrons (FEL- amplifier) is carried out. The tape relativistic electron beam with the energy up to 1 MeV and operating current up to 2 kA is formed by the Y-3 accelerators. The complete nonaveraging system of the self-consistent equations describing the process of interaction of the particles, moving in the plane ondulator field is obtained. Thereafter the averaging of the above-mentioned equations was carried out and the linear and nonlinear stages of the amplification process were studied. The additional simulation of the FEL-amplifier is carried out on the basis of the two-dimensional version of the KARAT PIC-code. It is shown that the applied approaches give sufficiently close results
Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam
Ratner, Daniel; Stupakov, Gennady; /SLAC
2012-06-19
Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.
Gillingham, David R.
2007-12-01
The ability to preserve the quality of relativistic electron beams through transport bend elements such as a bunch compressor chicane is increasingly difficult as the current increases because of effects such as coherent synchrotron radiation (CSR) and space-charge. Theoretical CSR models and simulations, in their current state, often make unrealistic assumptions about the beam dynamics and/or structures. Therefore, we have developed a model and simulation that contains as many of these elements as possible for the purpose of making high-fidelity end-to-end simulations. Specifically, we are able to model, in a completely self-consistent, three-dimensional manner, the sustained interaction of radiation and space-charge from a relativistic electron beam in a toroidal waveguide with rectangular cross-section. We have accomplished this by combining a time-domain field solver that integrates a paraxial wave equation valid in a waveguide when the dimensions are small compared to the bending radius with a particle-in-cell dynamics code. The result is shown to agree with theory under a set of constraints, namely thin rigid beams, showing the stimulation resonant modes and including comparisons for waveguides approximating vacuum, and parallel plate shielding. Using a rigid beam, we also develop a scaling for the effect of beam width, comparing both our simulation and numerical integration of the retarded potentials. We further demonstrate the simulation calculates the correct longitudinal space-charge forces to produce the appropriate potential depression for a converging beam in a straight waveguide with constant dimensions. We then run fully three-dimensional, self-consistent end-to-end simulations of two types of bunch compressor designs, illustrating some of the basic scaling properties and perform a detailed analysis of the output phase-space distribution. Lastly, we show the unique ability of our simulation to model the evolution of charge/energy perturbations on a
Stopping of a relativistic electron beam in a plasma irradiated by an intense laser field
Nersisyan, Hrachya B
2014-01-01
The effects of a radiation field (RF) on the interaction process of a relativistic electron beam (REB) with an electron plasma are investigated. The stopping power of the test electron averaged with a period of the RF has been calculated assuming an underdense plasma, $\\omega_{0} >\\omega_{p}$, where $\\omega_{0}$ is the frequency of the RF and $\\omega_{p}$ is the plasma frequency. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. In particular, it has been shown that the weak RF increases the mean energy loss for small angles between the velocity of the REB and the direction of polarization of the RF while decreasing it at large angles. Furthermore, the relative deviation of the energy loss from the field-free value is strongly reduced with increasing the beam energy. Special case of the parallel orientation of the polarization of the RF with respect to the beam velocity has been also cons...
Slow down of a globally neutral relativistic $e^-e^+$ beam shearing the vacuum
Alves, E P; Silveirinha, M G; Fonseca, R A; Silva, L O
2015-01-01
The microphysics of relativistic collisionless sheared flows is investigated in a configuration consisting of a globally neutral, relativistic $e^-e^+$ beam streaming through a hollow plasma/dielectric channel. We show through multidimensional PIC simulations that this scenario excites the Mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the $e^-e^+$ beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam's kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.
Schächter, L; Kimura, W D
2015-05-15
Relativistic electrons counterpropagating through the center of a radially polarized J_{1} optical Bessel beam in vacuum will emit radiation in a manner analogous to the channeling radiation that occurs when charged particles traverse through a crystal lattice. However, since this interaction occurs in vacuum, problems with scattering of the electrons by the lattice atoms are eliminated. Contrary to inverse Compton scattering, the emitted frequency is also determined by the amplitude of the laser field, rather than only by its frequency. Adjusting the value of the laser field permits the tuning of the emitted frequency over orders of magnitude, from terahertz to soft X rays. High flux intensities are predicted (~100 MW/cm^{2}). Extended interaction lengths are feasible due to the diffraction-free properties of the Bessel beam and its radial field, which confines the electron trajectory within the center of the Bessel beam.
Halo formation from mismatched beam-beam interactions
Qiang, Ji
2003-05-23
In this paper, we report on the halo formation and emittance growth driven by a parametric resonance during mismatched beam-beam collisions. In the regime of the weak-strong beam-beam interaction, if two beams have the same machine tunes, on-axis head-on collisions between a mismatched strong beam and a weak beam will not cause the formation of halo. However, if the two beams collide with an initial offset, the beam-beam force from the mismatched strong beam can cause halo formation and emittance growth in the weak beam. Meanwhile, if two beams have different machine tunes, for opposite charged colliding beams, when the machine tune of the weak beam is smaller than that of strong beam, there is emittance growth in the weak beam. When the machine tune of the weak beam is larger than that of the strong beam, there is little emittance growth. In the regime of strong-strong beam-beam interaction, halo is formed in both beams even when the two beams collide head-on on the axis with equal machine tunes. This puts a strong requirement for a good beam match during the injection to colliders in order to avoid the emittance growth.
Bailly-Grandvaux, M; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J -L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marques, J -R; Morace, A; Nicolai, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z
2016-01-01
High-energy-density flows through dense matter are needed for effective progress in the production of laser-driven intense sources of energetic particles and radiation, in driving matter to extreme temperatures creating state regimes relevant for planetary or stellar science as yet inaccessible at the laboratory scale, or in achieving high-gain laser-driven thermonuclear fusion. When interacting at the surface of dense (opaque) targets, intense lasers accelerate relativistic electron beams which transport a significant fraction of the laser energy into the target depth. However, the overall laser-to-target coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. By imposing a longitudinal 600T laser-driven magnetic-field, our experimental results show guided >10MA-current of MeV-electrons in solid matter. Due to the applied magnetic field, the transported energy-density and the peak background electron temperature at the 60micron-thick targets re...
Mono Energetic Beams from Laser Plasma Interactions
Geddes, Cameron G; Esarey, Eric; Leemans, Wim; Nieter, Chet; Schröder, Carl B; Toth, Csaba; Van Tilborg, Jeroen
2005-01-01
A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100% electron energy spread. In the present experiments on the LOASIS laser,* the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200pC charge above 80 MeV and with normalized emittance estimated at < 2 pi -mm-mrad were produced.** Data and simulations (VORPAL***) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was g...
Coherent X-ray radiation excited by a diverging relativistic electron beam in a single crystal
Blazhevich, S. V., E-mail: noskovbupk@mail.ru; Noskov, A. V. [Belgorod State National Research University (Russian Federation)
2015-05-15
We develop a dynamic theory of coherent X-rays generated in a single-crystal wafer by a diverging relativistic electron beam. The dependence of the spectral-angular density of coherent X-ray radiation on the angle of divergence is analyzed for the case when the angular spread can be described by the 2D Gaussian distribution. The theory constructed here makes it possible to analyze coherent radiation for an arbitrary angular distribution of electrons in the beam as well.
Self-Guiding of Electromagnetic Beams in Degenerate Relativistic Electron-Positron Plasma
Berezhiani, V I
2016-01-01
The possibility of self-trapped propagation of electromagnetic beams in the fully degenerate relativistic electron-positron plasma has been studied applying Fluid-Maxwell model; it is shown that dynamics of such beams can be described by the generalized Nonlinear Schr\\"odinger equation with specific type of saturating nonlinearity. Existence of radially symmetric localized solitary structures is demonstrated. It is found that stable solitary structures exist for the arbitrary level of degeneracy.
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2015-11-15
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.
EFFECT OF INTERACTING RAREFACTION WAVES ON RELATIVISTICALLY HOT JETS
Matsumoto, Jin; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Kyoto (Japan); Masada, Youhei, E-mail: jin@kusastro.kyoto-u.ac.jp [Graduate School of System Informatics, Department of Computational Science, Kobe University, Kobe (Japan)
2012-06-01
The effect of rarefaction acceleration on the propagation dynamics and structure of relativistically hot jets is studied through relativistic hydrodynamic simulations. We emphasize the nonlinear interaction of rarefaction waves excited at the interface between a cylindrical jet and the surrounding medium. From simplified one-dimensional (1D) models with radial jet structure, we find that a decrease in the relativistic pressure due to the interacting rarefaction waves in the central zone of the jet transiently yields a more powerful boost of the bulk jet than that expected from single rarefaction acceleration. This leads to a cyclic in situ energy conversion between thermal and bulk kinetic energies, which induces radial oscillating motion of the jet. The oscillation timescale is characterized by the initial pressure ratio of the jet to the ambient medium and follows a simple scaling relation, {tau}{sub oscillation}{proportional_to}(P{sub jet,0}/P{sub amb,0}){sup 1/2}. Extended two-dimensional simulations confirm that this radial oscillating motion in the 1D system manifests as modulation of the structure of the jet in a more realistic situation where a relativistically hot jet propagates through an ambient medium. We find that when the ambient medium has a power-law pressure distribution, the size of the reconfinement region along the propagation direction of the jet in the modulation structure {lambda} evolves according to a self-similar relation {lambda}{proportional_to}t{sup {alpha}/2}, where {alpha} is the power-law index of the pressure distribution.
Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport
Phadte, D.; Patidar, C. B.; Pal, M. K.
2017-04-01
A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.
Multiple Interactions and Beam Remnants
Sjöstrand, Torbjörn
2004-01-01
Open issues on the structure of multiple interactions are outlined. An improved model is summarized, with a new approach to correlated parton densities in flavour, colour, longitudinal and transverse momenta, for both hard-scattering partons and beam-remnant ones.
Geloni, G; Schneidmiller, E; Yurkov, M V
2004-01-01
Longitudinal plasma oscillations are becoming a subject of great interest for XFEL physics in connection with LSC microbunching instability[1] and certain pump-probe synchronization schemes[2]. In the present paper we developed the first exact analytical treatment for longitudinal oscillations within an axis-symmetric, (relativistic) electron beam, which can be used as a primary standard for benchmarking space-charge simulation codes. Also, this result is per se of obvious theoretical relevance as it constitutes one of the few exact solutions for the evolution of charged particles under the action of self-interactions.
Storage-ring Electron Cooler for Relativistic Ion Beams
Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Johnson, Rolland P. [Muons Inc., Batavia, IL (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.
Relativistic electron beam driven longitudinal wake-wave breaking in a cold plasma
Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita
2016-01-01
Space-time evolution of relativistic electron beam driven wake-field in a cold, homogeneous plasma, is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradu- ally evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [1]. It is shown here that the excited wakefield is a longitudi- nal Akhiezer-Polovin mode [2] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented in ref.[3].
On the Relativistic Beaming and Orientation Effects in Core-Dominated Quasars
A. A. Ubachukwu; A. E. Chukwude
2002-09-01
In this paper, we investigate the relativistic beaming effects in a well-defined sample of core-dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of core- to lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-II radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, opt ∼ 6—16, and also highly anisotropic, with an average viewing angle, ∼ 9°-16°. Furthermore, the largest boosting occurs within a critical cone angle of ≈ 4°-10°.
Overview of Phase Space Manipulations of Relativistic Electron Beams
Xiang, Dao; /SLAC
2012-08-31
Phase space manipulation is a process to rearrange beam's distribution in 6-D phase space. In this paper, we give an overview of the techniques for tailoring beam distribution in 2D, 4D, and 6D phase space to meet the requirements of various applications. These techniques become a new focus of accelerator physics R&D and very likely these advanced concepts will open up new opportunities in advanced accelerators and the science enabled by them.
Storage-ring Electron Cooler for Relativistic Ion Beams
Lin, F; Douglas, D; Guo, J; Johnson, R P; Krafft, G; Morozov, V S; Zhang, Y
2016-01-01
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the...
High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator
Sudar, Nicholas; Duris, Joe; Gadjev, Ivan; Polyaniy, Mikhail; Pogorelsky, Igor; Fedurin, Mikhail; Swinson, Christina; Babzien, Marcus; Kusche, Karl; Gover, Avi
2016-01-01
We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54 cm long strongly tapered helical magnetic undulator, extracting over 30$\\%$ of the initial electron beam energy to coherent radiation. These results demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.
High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator
Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.
2016-10-01
We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.
Kurayev, Alexander A.; Rak, Alexey O.; Sinitsyn, Anatoly K., E-mail: kurayev@bsuir.by [Belarusian State University of Informatics and Radioelectronics, P. Brovka Str., Minsk (Belarus)
2011-07-01
On the basis of the exact nonlinear theory relativistic TWT and BWO on irregular hollow waveguides with cathode filters-modulators with the account as propagating, and beyond cut-off waves, with the account of losses in walls of a waveguide and inhomogeneity directing an electronic beam magnetostatic fields finds out influence of dynamic stratification influence on efficiency of the generator. Possibility of almost fill compensation the electronic beam dynamic stratification influence on efficiency by optimization of an electronic beam arrangement in inhomogeneous high frequency and magnetic fields and characteristics of the irregular corrugated waveguide is shown. (author)
Dubenskiy, V P; CERN. Geneva; Tsimbal, F A
1995-01-01
Here we present the results of our estimates of upper limits for heating induced by the relativistic beams of charged particles at the future LHC in the MCP detector placed inside the beam pipe. The energy losses are small for the uppermost intensities of the beams to be expected: less than 0.0033 Wt for the conductive cromium MCP cladding and not greater than 0.02 Wt for the dialectric MCP body (for the whole MCP disk of 100 sq.cm area). The special measurements of the dispersion law e(w) of the MCP dialectric material have been performed in order to get the reference data to the analytical calculations. The approaches outlined here could be applied to any detector positioned in the vicinity of the beams. The possible problems of the beam induced electrical signal in the detector circuits are touched also.
Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions
Chen, Hui; Wilks, S. C.; Meyerhofer, D. D.; Bonlie, J.; Chen, C. D.; Chen, S. N.; Courtois, C.; Elberson, L.; Gregori, G.; Kruer, W.; Landoas, O.; Mithen, J.; Myatt, J.; Murphy, C. D.; Nilson, P.; Price, D.; Schneider, M.; Shepherd, R.; Stoeckl, C.; Tabak, M.; Tommasini, R.; Beiersdorfer, P.
2010-07-01
Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ˜2×10-4. The jets have ˜20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ˜1MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.
Hydrodynamical interaction of mildly relativistic ejecta with an ambient medium
Suzuki, Akihiro; Shigeyama, Toshikazu
2016-01-01
Hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semi-analytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium is well represented by a steady wind at a constant mass-loss rate having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and circumstellar medium are swept by the reverse and forward shocks, leading to the formation of a geometrically thin shell. We present a semi-analytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. while it is optically thick. We develop an emission model for the expected emission from th...
Skin Depth vs. Relativistics Self-focusing at ps Laser-Plasma Interaction
Hora, Heinrich; Peng, Hansheng; Zhang, Weiyan; Osman, Frederick
2002-03-01
Highly charged MeV ions from target irradiated by laser longer than 0.1 ns, can be explained by relativistic self-focusing and subsequent acceleration by the nonlinear (ponderomotive) force [1]. In strong contrast to this, same laser intensities of ps pulses produced hundred times less energetic ions if the contrast ratio for suppression of prepulses was sufficiently high [1]. It was remarkable that the number of ions was constant and the ion energy linear on the laser intensity. We developed a model to explain the measurements as interactions within the skin layer of the target in contrast to relativistic self-focusing. However, if there is an appropriate prepulse applied, the MeV ions appear as before with the ns pulses which can be explained by the then possible relativistic self focusing. Consequences for the fast ignitor laser fusion scheme are elaborated. [1] J. Badziak, et al. Laser and Particle Beams 17, 323 (1999); E. Woryna, J. Wolowski, B. Kralikowa, J. Kraska, L. Laska, M. Pfeifer, K. Rohlena, J. Skala, V. Perina, R. Höpfl, & H. Hora, Rev. Scient. Instrum. 71, 949 (2000).
Progress on the relativistic klystron two-beam accelerator prototype
Westenskow, G. A.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Lidia, S. M.; Vanecek, D. L.; Yu, S. S.
1999-07-01
The technical challenge for making two-beam accelerators into realizable power sources lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, electron induction prototype injector as a collaborative effort between LBL and LLNL. The electron source will be a 3.5″-diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 120-ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive-wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepper-pot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.
Gray, R. J.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Powell, H. W.; Carroll, D. C.; Murphy, C. D.; Stockhausen, L. C.; Rusby, D. R.; Scott, G. G.; Wilson, R.; Booth, N.; Symes, D. R.; Hawkes, S. J.; Torres, R.; Borghesi, M.; Neely, D.; McKenna, P.
2014-09-01
Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.
Li, En-Kun; Geng, Jin-Ling
2014-01-01
The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...
Shokri, B. [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, Tehran (Iran, Islamic Republic of) and Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-1795, Tehran (Iran, Islamic Republic of)]. E-mail: b-shokri@cc.sbu.ac.ir; Khorashadizadeh, S.M. [Physics Department of Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2005-09-19
The possibility of the dissipative instability of a relativistic electron beam streaming near a conducting medium is investigated. The development of this dissipative beam instability through the surface wave excitation slightly disturbs the beam leading to the slightly heating of the conducting medium.
Godfrey, Brendan B
2013-01-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained....
Explosive Emission and Gap Closure from a Relativistic Electron Beam Diode
2013-06-01
voltage rises on the blumlein. Second, the intrinsic impedance of the BPM and E-dot are most certainly different. The BPM is a short at low frequency...was supported by the National Nuclear Security Administration of the U.S. Department of Energy under ξ email: jecoleman@lanl.gov Abstract...These electrons are either accelerated and extracted to produce an intense relativistic electron beam, or they are terminated into a solid or
Relativistic collision rate calculations for electron-air interactions
Graham, G. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States); Roussel-Dupre, R. [Los Alamos National Lab., NM (United States). Space Science and Technologies
1992-12-16
The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.
Ion acceleration beyond 100MeV/amu from relativistic laser-matter interactions
Jung, Daniel; Gautier, Cort; Johnson, Randall; Letzring, Samuel; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Fernandez, Juan; Hegelich, Manuel; Yin, Lin; Albright, Brian; Habs, Dieter
2012-10-01
In the past 10 years laser acceleration of protons and ions was mainly achieved by laser light interacting with micrometer scaled solid matter targets in the TNSA regime, favoring acceleration of protons. Ion acceleration based on this acceleration mechanism seems to have stagnated in terms of particle energy, remaining too low for most applications. The high contrast and relativistic intensities available at the Trident laser allow sub-micron solid matter laser interaction dominated by relativistic transparency of the target. This interaction efficiently couples laser momentum into all target ion species, making it a promising alternative to conventional accelerators. However, little experimental research has up to now studied conversion efficiency or beam distributions, which are essential for application, such as ion based fast ignition (IFI) or hadron cancer therapy. We here present experimental data addressing these aspects for C^6+ ions and protons in comparison with the TNSA regime. Unique measurements of angularly resolved ion energy spectra for targets ranging from 30 nm to 25 micron are presented. While the measured conversion efficiency for C^6+ reaches up to ˜7%, peak energies of 1 GeV and 120 MeV have been measured for C^6+ and protons, respectively.
Exploring novel structures for manipulating relativistic laser-plasma interaction
Ji, Liangliang
2016-10-01
The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).
Single-shot divergence measurements of a laser-generated relativistic electron beam
Perez, F.; Baton, S. D.; Koenig, M.; Chen, C. D.; Hey, D.; Key, M. H.; Le Pape, S.; Ma, T.; McLean, H. S.; MacPhee, A. G.; Patel, P. K.; Ping, Y.; Beg, F. N.; Higginson, D. P.; Murphy, C. W.; Sawada, H.; Westover, B.; Yabuuchi, T.; Akli, K. U.; Giraldez, E.; Hoppe, M.; Shearer, C.; Stephens, R. B.; Gremillet, L.; Lefebvre, E.; Freeman, R. R.; Kemp, G. E.; Krygier, A. G.; Van Woerkom, L. D.; Fedosejevs, R.; Friesen, R. H.; Tsui, Y. Y.; Turnbull, D.
2010-11-01
The relativistic electron transport induced by an ultraintense picosecond laser is experimentally investigated using an x-ray two-dimensional imaging system. Previous studies of the electron beam divergence [R. B. Stephens et al. Phys. Rev. E 69, 066414 (2004), for instance] were based on an x-ray imaging of a fluorescence layer buried at different depths in the target along the propagation axis. This technique required several shots to be able to deduce the divergence of the beam. Other experiments produced single-shot images in a one-dimensional geometry. The present paper describes a new target design producing a single-shot, two-dimensional image of the electrons propagating in the target. Several characteristics of the electron beam are extracted and discussed and Monte Carlo simulations provide a good understanding of the observed beam shape. The proposed design has proven to be efficient, reliable, and promising for further similar studies.
R. J. England
2005-01-01
Full Text Available We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field accelerator.
Shporer, Avi; Kaplan, David L.; Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.; Mazeh, Tsevi
2010-12-01
We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass-ratio and low-luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during three nights at the 2.0 m Faulkes Telescope North with the SDSS-g' filter and fitted the data simultaneously for the beaming, ellipsoidal, and reflection effects. Our fitted relative beaming amplitude is (3.0 ± 0.4) × 10-3, consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity (RV) amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic RV amplitude in NLTT 11748 and similar systems. We did not identify any variability due to the ellipsoidal or reflection effects, consistent with their expected undetectable amplitude for this system. Low-mass, helium-core WDs are expected to reside in binary systems, where in some of those systems the binary companion is a faint C/O WD and the two stars are detached and non-interacting, as in the case of NLTT 11748. The beaming effect can be used to search for the faint binary companion in those systems using wide-band photometry.
On the quasinormal modes of relativistic stars and interacting fields
Macedo, Caio F B; Crispino, Luís C B; Pani, Paolo
2016-01-01
The quasinormal modes of relativistic compact objects encode important information about the gravitational response associated to astrophysical phenomena. Detecting such oscillations would provide us with a unique understanding of the properties of compact stars, and may give definitive evidence for the existence of black holes. However, computing quasinormal modes in realistic astrophysical environments is challenging, due to the complexity of the spacetime background and of the dynamics of the perturbations. We discuss two complementary methods to compute the quasinormal modes of spherically-symmetric astrophysical systems, namely: the direct integration method and the continued fraction method. We extend these techniques to deal with generic coupled systems of linear equations, with the only assumption that the interaction between different fields is effectively localized within a finite region. In particular, we adapt the continued fraction method to include cases where a series solution can be obtained o...
Hramov, A E; Koronovskii, A A; Filatova, A E; 10.1063/1.4765062
2013-01-01
The report is devoted to the results of the numerical study of the virtual cathode formation conditions in the relativistic electron beam under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.
Godfrey, Brendan B.; Vay, Jean-Luc
2013-09-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
Relativistic high-power laser-matter interactions
Salamin, Yousef I. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Physics Department, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Hu, S.X. [Group T-4, Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hatsagortsyan, Karen Z. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Department of Quantum Electronics, Yerevan State University, A. Manoukian 1, Yerevan 375025 (Armenia); Keitel, Christoph H. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany)]. E-mail: keitel@mpi-hd.mpg.de
2006-04-15
Recent advances in laser technology have pushed the frontier of maximum intensity achieved to about 10{sup 22}W/cm{sup 2} and investigators currently believe even higher intensities may be reached in the near future. This, combined with other breakthroughs on the fronts of short pulse generation and high repetition rates, have stimulated considerable progress, theoretical as well as experimental, in the field of laser-matter interactions. It is now possible to laser-accelerate electrons to a few hundred MeV and laser-induced pair-production and nuclear physics experiments have made significant progress. This article is devoted to a review of the recent advances in the field and stresses quantum phenomena that require laser field intensities in excess of the relativistic threshold of {approx}10{sup 18}W/cm{sup 2}. Interactions with free electrons, with highly-charged ions and with atoms and clusters, are reviewed. Electron laser acceleration, atomic quantum dynamics, high harmonic generation, quantum electrodynamical effects and nuclear interactions in plasmas and ions, are among the important topics covered in the article.
Low emittance pion beams generation from bright photons and relativistic protons
Serafini, L; Petrillo, V
2015-01-01
Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via photo-production in a highly relativistic Lorentz boosted frame: the main advantage is the low emittance attainable and a TeV-class energy for the generated pions, that may be an interesting option for the production of low emittance muon and neutrino beams. We will describe the kinematics of the two classes of dominant events, i.e. the pion photo-production and the electron/positron pair production, neglecting other small cross-section possible events like Compton and muon pair production. Based on the phase space distributions of the pion and muon beams we will analyze the pion beam brightness achievable in three examples, based on advanced high efficiency high repetition rate FELs coupled to LHC or Future Circular Collider (FCC) proton beams, together with the stud...
Transverse phase space mapping of relativistic electron beams using optical transition radiation
G. P. Le Sage
1999-12-01
Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.
Enhanced relativistic-electron-beam energy loss in warm dense aluminum.
Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J
2015-03-01
Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.
A table-top laser-based source of femtosecond, collimated, ultra-relativistic positron beams
Sarri, G; Di Piazza, A; Vargas, M; Dromey, B; Dieckmann, M E; Chvykov, V; Maksimchuk, A; Yanovsky, V; He, Z H; Hou, B X; Nees, J A; Thomas, A G R; Keit, C H; Zepf, M; Krushelnick, K
2013-01-01
The generation of ultra-relativistic positron beams with short duration ($\\tau_{e^+} \\leq 30$ fs), small divergence ($\\theta_{e^+} \\simeq 3$ mrad), and high density ($n_{e^+} \\simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and $\\gamma$-rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Relativistic nonlinearity and wave-guide propagation of rippled laser beam in plasma
R K Khanna; K Baheti
2001-06-01
In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.
Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions
Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie
2016-05-01
Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.
Dieckmann, M E; Markoff, S; Borghesi, M; Zepf, M
2015-01-01
The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined a...
Simulations of beam-beam and beam-wire interactions in RHIC
Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven
2009-02-01
The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.
Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma
CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang
2008-01-01
We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.
FAST TRACK COMMUNICATION: Relativistic echo dynamics and the stability of a beam of Landau electrons
Sadurní, E.; Seligman, T. H.
2008-03-01
We extend the concepts of echo dynamics and fidelity decay to relativistic quantum mechanics, specifically in the context of Klein-Gordon and Dirac equations under external electromagnetic fields. In both cases, we define similar expressions for the fidelity amplitude under perturbations of these fields and a covariant version of the echo operator. Transformation properties under the Lorentz group are established. An alternate expression for fidelity is given in the Dirac case in terms of a 4-current. As an application, we study a beam of Landau electrons perturbed by field inhomogeneities.
Relativistic echo dynamics and the stability of a beam of Landau electrons
SadurnI, E; Seligman, T H [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)], E-mail: sadurni@fis.unam.mx, E-mail: seligman@fis.unam.mx
2008-03-14
We extend the concepts of echo dynamics and fidelity decay to relativistic quantum mechanics, specifically in the context of Klein-Gordon and Dirac equations under external electromagnetic fields. In both cases, we define similar expressions for the fidelity amplitude under perturbations of these fields and a covariant version of the echo operator. Transformation properties under the Lorentz group are established. An alternate expression for fidelity is given in the Dirac case in terms of a 4-current. As an application, we study a beam of Landau electrons perturbed by field inhomogeneities. (fast track communication)
Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton
WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].
The interaction of relativistic spacecrafts with the interstellar medium
Hoang, Thiem; Burkhart, Blakesley; Loeb, Abraham
2016-01-01
The Breakthrough Starshot initiative aims to launch a gram-scale spacecraft to a speed of $v\\sim 0.2$c, capable of reaching the nearest star system, $\\alpha$ Centauri, in about 20 years. However, a critical challenge for the initiative is the damage to the spacecraft by interstellar gas and dust during the journey. In this paper, we quantify the interaction of a relativistic spacecraft with gas and dust in the interstellar medium. For gas bombardment, we find that damage by track formation due to heavy elements is an important effect. We find that gas bombardment can potentially damage the surface of the spacecraft to a depth of $\\sim 0.1$ mm for quartz material after traversing a gas column of $N_{\\rm H}\\sim 2\\times 10^{18}\\rm cm^{-2}$ along the path to $\\alpha$ Centauri, whereas the effect is much weaker for graphite material. The effect of dust bombardment erodes the spacecraft surface and produces numerous craters due to explosive evaporation of surface atoms. For a spacecraft speed $v=0.2c$, we find that...
Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields.
Kar, S; Robinson, A P L; Carroll, D C; Lundh, O; Markey, K; McKenna, P; Norreys, P; Zepf, M
2009-02-06
Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak, Phys. Plasmas 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.
The Beam-Density Effect on Energy Loss of a Relativistic Charged Particle Beam.
1983-09-01
media. t iU NSWC TR 83-348 Folloving the method developed by Sternheimer 24 in his calculations of the Fermi density effect, i l L2 -2in.v-v 2 (2.16...where Z 2v 2 + f.. The Sternheimer factor P is chosen so that the i i i value of the Bethe logarithm, InI, obtained in non-relativistic experiments, is...first three eigenfrequencies were taken from Reference 25. A more recent set has been given by Sternheimer and Peierls,2 6 but the ones of Reference 25
The triple GEM detector as beam monitor for relativistic hadron beams
Aza, E; Murtas, F; Puddu, S; Silari, M
2014-01-01
triple GEM detector was tested at the CERF facility at CERN as an on-line beam imaging monitor and as a counting reference device. It was exposed to a 120 GeV/c positively charged hadron beam (approximately 2/3 pions and 1/3 protons), which hits a copper target gen- erating a wide spectrum of different kinds of particles used for various experiments. The flux of beam particles ranged over three orders of magnitude, from 8 10 4 s 1 to 8 10 7 s 1 . The profile of the beam acquired with the GEM was compared to the one measured with a MWPC and no satu- ration was observed. In addition, the count rate measured with the GEM was compared to the one measured with an Ionization Chamber, which is routinely used for monitoring the beam intensity. Another way of monitoring the intensity of the beam was also explored, which is based on the total current driven from the GEM foils. The digital readout allows making a 2D online image of the beam for the alignment with the copper target in the CERF facility. A low residual ac...
Relativistic-Klystron two-beam accelerator as a power source for future linear colliders
Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Houck, T. L.; Westenskow, G. A.; Vanecek, D. L.; Yu, S. S.
1999-05-01
The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.
Mitigating the hosing instability in relativistic laser-plasma interactions
Ceurvorst, L.; Ratan, N.; Levy, M. C.; Kasim, M. F.; Sadler, J.; Scott, R. H. H.; Trines, R. M. G. M.; Huang, T. W.; Skramic, M.; Vranic, M.; Silva, L. O.; Norreys, P. A.
2016-05-01
A new physical model of the hosing instability that includes relativistic laser pulses and moderate densities is presented and derives the density dependence of the hosing equation. This is tested against two-dimensional particle-in-cell simulations. These simulations further examine the feasibility of using multiple pulses to mitigate the hosing instability in a Nd:glass-type parameter space. An examination of the effects of planar versus cylindrical exponential density gradients on the hosing instability is also presented. The results show that strongly relativistic pulses and more planar geometries are capable of mitigating the hosing instability which is in line with the predictions of the physical model.
Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu
2009-01-01
This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation,the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures.
Higher harmonic emission by a relativistic electron beam in a longitudinal magnetic wiggler
Davidson, Ronald C.; McMullin, Wayne A.
1982-10-01
The classical limit of the Einstein-coefficient method is used in the low-gain regime to calculate the stimulated emission from a tenuous relativistic electron beam propagating in the combined solenoidal and longitudinal wiggler fields (B0+δB k0z)e^z produced near the axis of a multiple-mirror (undulator) field configuration. Emission is found to occur at all harmonics of the wiggler wave number k0 with Doppler upshifted output frequency given by ω=(lk0Vb+ωcb)(1+Vbc)γ2b(1+γ2bV2⊥c2), where l>=1. The emission is compared to the low-gain cyclotron maser with δB=0 and to the low-gain free-electron laser (operating at higher harmonics) utilizing a transverse linearly polarized wiggler field.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)
2015-11-15
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
Regimes of enhanced electromagnetic emission in beam-plasma interactions
Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.
2015-11-01
The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.
Observations and open questions in beam-beam interactions
Sen, Tanaji; /Fermilab
2010-08-01
The first of the hadron colliders, ISR, started operation in 1970. In the following years, the hadron colliders to follow were the SPS (started 1980), the Tevatron (started 1987 first as a fixed target machine), RHIC (started 2000) and most recently the LHC, which started in 2008. HERA was a hybrid that collided electrons and protons. All of these accelerators had or have their performance limited by the effects of the beam-beam interactions. That has also been true for the electron-positron colliders such as LEP, CESR, KEKB and PEPII. In this article I will discuss how the beam-beam limitations arose in some of these machines. The discussion will be focused on common themes that span the different colliders. I will mostly discuss the hadron colliders but sometimes discuss the lepton colliders where relevant. Only a handful of common accelerator physics topics are chosen here, the list is not meant to be exhaustive. A comparative review of beam-beam performance in the ISR, SPS and Tevatron (ca 1989) can be found in reference. Table 1 shows the relevant parameters of colliders (excluding the LHC), which have accelerated protons.
Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan
2017-07-01
The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam.
Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode
Babykin, V. M.; Gordeev, A. V.; Golovin, G. T.; Korolev, V. D.; Kopchikov, A. V.; Tulupov, M. V.; Chernenko, A. S.; Shuvaev, V. Iu.
1991-09-01
The generation of a 130-kA electron beam with a pulse width of 60 ns is investigated experimentally and analytically. In particular, attention is given to the volt-ampere characteristics of knife-edge cathodes of different geometries, angular scatter dynamics, and beam structure. A study of the relativistic electron beam dynamics shows that diode operation in these experiments can be approximated by a formula allowing for the finite thickness of the knife-edge cathode and for plasma and ion motion in the diode gap.
The $q\\overline{q}$ relativistic interaction in the Wilson loop approach
Brambilla, Nora; Brambilla, Nora; Vairo, Antonio
1997-01-01
We study the $q \\bar{q}$ relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
The $q \\bar{q}$ relativistic interaction in the Wilson loop approach
Brambilla, Nora; Vairo, Antonio
1997-01-01
We study the $q \\bar{q}$ relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
Agostino Marinelli
2010-11-01
Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.
Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B
2012-09-01
Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.
PIC simulations of the production of high-quality electron beams via laser-plasma interaction
Benedetti, C. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)], E-mail: carlo.benedetti@bo.infn.it; Londrillo, P. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Petrillo, V.; Serafini, L. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Sgattoni, A. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy); Tomassini, P. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Turchetti, G. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)
2009-09-01
We present some numerical studies and parameter scans performed with the electromagnetic, relativistic, fully self-consistent Particle-In-Cell (PIC) code ALaDyn (Acceleration by LAser and DYNamics of charged particles), concerning the generation of a low emittance, high charge and low momentum spread electron bunch from laser-plasma interaction in the Laser WakeField Acceleration (LWFA) regime, in view of achieving beam brightness of interest for FEL applications.
Dunning, Michael
2012-07-19
We report generation of density modulation at terahertz (THz) frequencies in a relativistic electron beam through laser modulation of the beam longitudinal phase space. We show that by modulating the energy distribution of the beam with two lasers, density modulation at the difference frequency of the two lasers can be generated after the beam passes through a chicane. In this experiment, density modulation around 10 THz was generated by down-converting the frequencies of an 800 nm laser and a 1550 nm laser. The central frequency of the density modulation can be tuned by varying the laser wavelengths, beam energy chirp, or momentum compaction of the chicane. This technique can be applied to accelerator-based light sources for generation of coherent THz radiation and marks a significant advance toward tunable narrow-band THz sources.
An introduction to relativistic processes and the standard model of electroweak interactions
Becchi, Carlo Maria
2014-01-01
These lectures are meant to be a reference and handbook for an introductory course in Theoretical Particle Physics, suitable for advanced undergraduates or beginning graduate students. Their purpose is to reconcile theoretical rigour and completeness with a careful analysis of more phenomenological aspects of the physics. They aim at filling the gap between quantum field theory textbooks and purely phenomenological treatments of fundamental interactions. The first part provides an introduction to scattering in relativistic quantum field theory. Thanks to an original approach to relativistic processes, the relevant computational techniques are derived cleanly and simply in the semi-classical approximation. The second part contains a detailed presentation of the gauge theory of electroweak interactions with particular focus to the processes of greatest phenomenological interest. The main novelties of the present second edition are a more complete discussion of relativistic scattering theory and an expansion of ...
Fast ion beam-plasma interaction system.
Breun, R A; Ferron, J R
1979-07-01
A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).
Energy shift of interacting non-relativistic fermions in noncommutative space
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
Relativistic electron beams from cathodes at 1 GV/m gradient
Srinivasan-Rao, T.; Smedley, J.; Schill, J.
1998-05-01
In the past decade, there has been extensive research in the development of low emittance, high brightness electron injectors for linear collider and free electron laser applications. RF injectors with a few nC charge in a few ps, with an emittance of {approximately}1--5 {pi}mm mrad are operational in a number of facilities. In these devices, a laser beam irradiates a photocathode embedded in an RF cavity. The photoelectrons released by the laser are immediately accelerated to relativistic velocities, thereby reducing the space charge effects. The frequency of the RF and the design of the cavity are chosen to minimize the RF and space charge effects on the electron bunch so that low emittance, high brightness electron beam could be generated. Minimization of RF effects on emittnce growth require a low RF frequency while minimizing the space charge effects require high field and hence high RF frequency. The design is hence a compromise between these two conflicting requirements. Some of these limitations could be overcome by using a large pulsed electric field at the cathode rather than a RF field. The duration of the pulsed field should be chosen so that it is longer than the electron bunch length and the transit time in the accelerating region, but short enough to avoid breakdown problems. Development of a high brightness electron source using this scheme requires a pulse generator, a laser pulse of sufficient energy to trigger and synchronize the electrical pulses, and a short laser pulse to irradiate the photocathode and generate electron pulses to be accelerated. The designs of these components are described.
Hale, Alison C
2009-01-01
The spectrum of electromagnetic fields satisfying perfectly conducting boundary conditions in a segment of a straight beam pipe with a circular cross-section is discussed as a function of various source models. These include charged bunches that move along the axis of the pipe with constant speed for which an exact solution to the initial-boundary value problem for Maxwell's equations in the beam pipe is derived. In the ultra-relativistic limit all longitudinal components of the fields tend to zero and the spectral content of the transverse fields and average total electromagnetic energy crossing any section of the beam pipe are directly related to the properties of the ultra-relativistic source. It is shown that for axially symmetric ultra-relativistic bunches interference effects occur that show a striking resemblance to those that occur due to CSR in cyclic machines despite the fact that in this limit the source is no longer accelerating. The results offer an analytic description showing how such enhanced ...
Kozák, Martin; Leedle, Kenneth J; Deng, Huiyang; Schönenberger, Norbert; Ruehl, Axel; Hartl, Ingmar; Hoogland, Heinar; Holzwarth, Ronald; Harris, James S; Byer, Robert L; Hommelhoff, Peter
2016-01-01
We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution achievable by this technique are demonstrated.
Development of a 300-kV Marx generator and its application to drive a relativistic electron beam
Y Choyal; Lalit Gupta; Preeti Vyas; Prasad Deshpande; Anamika Chaturvedi; K C Mittal; K P Maheshwari
2005-12-01
We have indigenously developed a twenty-stage vertical structure type Marx generator. At a matched load of $90-100 \\Omega$, for 25 kV DC charging, an output voltage pulse of 230 kV, and duration 150 ns is obtained. This voltage pulse is applied to a relativistic electron beam (REB) planar diode. For a cathode-anode gap of 7·5 mm, an REB having beam voltage 160 kV and duration 150 ns is obtained. Brass as well as aluminum explosive electron emission-type cathodes have been used.
Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)
2016-01-15
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka [Department of Physics, Laser-Plasma Computational Laboratory, DAV PG College, Dehradun, Uttarakhand (India); Chauhan, Prashant [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh (India); Mahmoud, Saleh T. [Department of Physics, College of Science, UAE University, PO Box 17551 Al-Ain (United Arab Emirates)
2015-05-15
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...
Faure, Jérôme; Guénot, Diego; Gustas, Dominykas; Vernier, Aline; Beaurepaire, Benoît; Böhle, Frederik; López-Martens, Rodrigo; Lifschitz, Agustin
2017-05-01
Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of 30 %. Charges in the 100's fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, 20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6
Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design
Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.
Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.
1982-01-01
The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.
Hramov, Alexander E; Morozov, Mikhail; Mushtakov, Alexander
2008-01-01
In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [High Power Microwave Sources. Artech House Microwave Library, 1987. Chapter~13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.
Controlling Second Harmonic Efficiency of Laser Beam Interactions
Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)
2011-01-01
A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.
Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins
Niederle, J
2001-01-01
New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins $s$ interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank $2n$ ($n=s-\\frac12$) antisymmetric w.r.t. $n$ pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles.
Vasilev, S. E.; Vishnevskiy, A. V.; Kadykov, M. G.; Makankin, A. M.; Tyutyunnikov, S. I.; Shurygin, A. A.
2014-11-01
Test samples of detectors and electronics for them constructed for the purpose of monitoring the "intense" relativistic ion beams extracted from the accelerator of the Nuclotron-M accelerator complex in real time are described. The system was tested in a series of acceleration runs with deuteron beams with an intensity of up to 1010 1/s and beams of carbon nuclei. The system allows one to perform multiple measurements of the two-dimensional distribution of the beam intensity in the plane perpendicular to it and the beam position in this plane during the beam dump and measure the two-dimensional distribution of the target irradiation dose after each beam dump.
Relativistic temperature and Higgs-like coupling of thermodynamic interactions
JIANG Wei-zhou
2006-01-01
The thermodynamic interaction at thermodynamic equilibrium in the free fermion gas is described in an alternative way by the coupling of particles with a scalar thermodynamic field that features self-interaction.This alternative coupling is similar to the Higgs coupling and is helpful in understanding the temperature transformation at thermodynamic equilibrium under the Lorentz boost.As this coupling is applied in the abelian interaction fermion gas,nothing nontrivial is obtained.However,an interesting thing happens in the nonabelian interaction fermion gas where the difference appears for the diagonal and off-diagonal intermediate bosons as the Higgs-like coupling is added.
Interaction of Oblique Incident Electromagnetic Wave with Relativistic Ionization Front
无
2005-01-01
Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection,transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.
Characteristics of Nucleus-Nucleus Interaction with Relativistic Heavy-Ions
Das, Gourisankar
A systematic study of relativistic heavy-ion collisions in nuclear emulsion, initiated by ('40)Ar, ('56)Fe at E = 1.8 GeV/N, ('56)Fe at 0.8 GeV/N, and ('12)C at 400 MeV/N, has been made. Projectile fragmentation reactions, where there is no visual indication of target excitation, are studied in terms of multiplicity and projected angular distributions. The standard deviation widths of the projected angular distributions are compared with the first order theory of Lepore and Riddell. In quasi-central collisions, where a part of both the projectile and target nuclei participate, we have undertaken a study of the space angle distributions of the relativistic alpha particles, emitted in ('40)Ar -emulsion interactions at E = 1.8 GeV/N and ('56)Fe-emulsion interactions at E = 0.8 GeV/N. The large angle alpha particle distributions are fitted with moving relativistic Boltzmann distributions, and compared with distributions obtained by Monte Carlo simulation of (alpha)-p hard scattering process. Mean free path of secondary relativistic projectile fragments, emitted in such collisions, are carefully studied to verify the presence of 'anomalous' mfp component among these fragments. This is followed by a study of the mean free path of secondary alpha particles. Finally, in central collisions, the angular distributions of singly charged particles with (beta) > 0.7 are studied with a view to observe collective phenomena, such as nuclear shock wave in nuclear matter.
Modeling of a planar FEL amplifier with a sheet relativistic electron beam
Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitsky, S L
2002-01-01
The paper is devoted to the modeling of a 75 GHz planar FEL-amplifier. This amplifier is driven by a sheet electron beam (1 MeV, 2 kA) produced by the U-3 accelerator (BINP). Different approaches based on non-averaged self-consistent system of equations as well as the averaged equations were used for the description of interaction between the electron beam and the TEM-mode of the planar waveguide. Both methods demonstrated similar results with maximum gains 24-25 db, corresponding to an output power of about 250-300 MW and an efficiency of 14-17%. The 2-D version of the PIC-code KARAT was used for additional modeling. KARAT-based simulations demonstrated a maximum gain up to 22 db, output power 160-170 MW and an efficiency of 9%. The reduction of gain can be explained by the space-charge effects.
Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan
2017-07-12
The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.
Lopez, Mike Rodriguez
2003-10-01
Relativistic magnetron experiments with a 6-vane, Titan tube have generated over 300 MW total microwave output power near 1 GHz. These experiments were driven by a long-pulse, e-beam accelerator. Parameters of the device were voltage = -0.3 to -0.4 MV, current = 1--10 kA, and pulselength = 0.5 microsecond. This body of work investigated pulse-shortening in the relativistic magnetron. Microwave generation with a conventional plastic insulator was compared to that with a new ceramic insulator. The ceramic insulator improved the vacuum by an order of magnitude (1 x 10-7 Torr) and increased voltage stability of the accelerator. The effect of RF breakdown in the waveguide on the intensity and duration of high power microwaves were also investigated. These experiments found that when SF6 gas was introduced into the waveguide, the measured efficiency, power, and pulselength of microwaves increased. Two different microwave extraction mechanisms were used. In the first system, two waveguides were connected to the magnetron pi-radians from each other. The second system used three waveguides to connect to the magnetron's extraction ports at 2pi/3 radians from each other. Microwaves were extracted into and measured from the waveguide. Pulselengths were found to be in the range of 10--200 ns. The theoretical investigation calculates the maximum injected current for a time-independent cycloidal flow in a relativistic, magnetically insulated diode. The analytical theory of Lovelace-Ott was extended by relaxing the space charge limited (SCL) assumption. This theory reduced to Christenson's results in the deeply non-relativistic regime, and to Lovelace-Ott under SCL. This theory has been successfully tested against relativistic PIC code simulations.
H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong
2008-01-01
@@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.
A new model for the collective beam-beam interaction
Ellison, J.A.; Sobol, A.V. [New Mexico Univ., Albuquerque, NM (United States); Vogt, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2006-09-15
The Collective Beam-Beam interaction is studied in the framework of maps with a ''kick-lattice'' model in 4-D phase space. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated lineralized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the {pi} and {sigma} modes. The {pi} and {sigma} modes are calculated from the third kind integral equation and results are compared with the kick-lattice model. (orig.)
Review of linear collider beam-beam interaction
Chen, P.
1989-01-01
Three major effects from the interaction of e/sup +/e/sup /minus// beams---disruption, beamstrahlung, and electron-positron pair creation---are reviewed. For the disruption effects we discuss the luminosity enhancement factor, the maximum and rms disruption angles, and the ''kink instability''. All the results are obtained from computer simulations. Scaling laws for the numerical results and theoretical explanations of the computer acquired phenomena are offered wherever possible. For the beamstrahlung effects we concentrate only on the final electron energy spectrum resulting from multiple photon radiation process, and the deflection angle associated with low energy particles. For the effects from electron-positron pair creation, both coherent and incoherent processes of beamstrahlung pair creation are discussed. In addition to the estimation on total number of such pairs, we also look into the energy spectrum and the deflection angle. 17 refs., 23 figs., 1 tab.
Sarkadi, L.
2017-03-01
The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.
Quantization of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L; Leal, Lorenzo
2005-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model comprises open-strings interacting through a Kalb-Ramond field in four dimensions. It is shown that a consistent geometric-representation can be built using a scheme of ``surfaces and lines of Faraday'', provided that the coupling constant (the ``charge'' of the string) is quantized.
Yerokhin, V A; Fritzsche, S
2014-01-01
Relativistic configuration-interaction calculations have been performed for the energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop QED effects as obtained by two different methods, the screening-potential approach as well as the model QED operator approach. The calculations are supplemented by a systematic estimation of uncertainties of theoretical predictions.
Fragmentation of relativistic oxygen nuclei in interactions with a proton
Glagolev, V V; Lipin, V D; Lutpullaev, S L; Olimov, K K; Yuldashev, A A; Yuldashev, B S; Olimov, Kh.K.
2001-01-01
The data on investigation of inelastic interactions of 16O nuclei with a proton at 3.25 A GeV/c momentum by the bubble chamber method are presented. The separate characteristics as fragments isotopic composition and as topo-logical cross sections of fragmentation channels are given. The processes of light fragments formation and breakup of 16O nucleus on multicharge fragments have been investigated. The comparison of experimental data with the calculations by statistical multifragmentation model was conducted.
Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)
2013-01-01
Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic
Limitations due to strong head-on beam-beam interactions (MD 1434)
Buffat, Xavier; Iadarola, Giovanni; Papadopoulou, Parthena Stefania; Papaphilippou, Yannis; Pellegrini, Dario; Pojer, Mirko; Crockford, Guy; Salvachua Ferrando, Belen Maria; Trad, Georges; Barranco Garcia, Javier; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department
2017-01-01
The results of an experiment aiming at probing the limitations due to strong head on beam-beam interactions are reported. It is shown that the loss rates significantly increase when moving the working point up and down the diagonal, possibly due to effects of the 10th and/or 14th order resonances. Those limitations are tighter for bunches with larger beam-beam parameters, a maximum total beam-beam tune shift just below 0.02 could be reached.
Matsyuk, Roman
2015-01-01
A variational formulation for the geodesic circles in two-dimensional Riemannian manifold is discovered. Some relations with the uniform relativistic acceleration and the one-dimensional 'spin'-curvature interaction is investigated.
Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)
2014-04-15
Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.
Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar
2016-10-01
We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.
Alternative gauge for the description of the light-matter interaction in a relativistic framework
Kjellsson, Tor; Førre, Morten; Simonsen, Aleksander Skjerlie; Selstø, Sølve; Lindroth, Eva
2017-08-01
We present a generalized velocity gauge form of the relativistic laser-matter interaction. In comparison with the (equivalent) regular minimal coupling description, this form of light-matter interaction results in superior convergence properties for the numerical solution of the time-dependent Dirac equation. This applies both to the numerical treatment and, more importantly, to the multipole expansion of the laser field. The advantages of the alternative gauge is demonstrated in hydrogen by studies of the dynamics following the impact of superintense laser pulses of extreme ultraviolet wavelengths and subfemtosecond duration.
Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field
Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)
2012-10-20
The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.
Experimental demonstration of interaction region beam waist position knob for luminosity leveling
Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States); Bai, Mei [Inst. fuer Kernphysik, Juelich (Germany). Inst. for Advanced Simulation; Duan, Zhe [Inst. of High Energy Physics, Beijing (China); Luo, Yun [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, Aljosa [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, Guillaume [Brookhaven National Lab. (BNL), Upton, NY (United States); Shen, Xiaozhe [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-05-03
In this paper, we report the experimental implementation of the model-dependent control of the interaction region beam waist position (s^{* }knob) at Relativistic Heavy Ion Collider (RHIC). The s^{*} adjustment provides an alternative way of controlling the luminosity and is only known method to control the luminosity and reduce the pinch effect of the future eRHIC. In this paper, we will first demonstrate the effectiveness of the s^{*} knob in luminosity controlling and its application in the future electron ion collider, eRHIC, followed by the detail experimental demonstration of such knob in RHIC.
Spatial-domain interactions between ultra-weak optical beams
Khadka, Utsab; Xiao, Min
2013-01-01
We have observed the spatial interactions between two ultra-weak optical beams that are initially collinear and non-overlapping. The weak beams are steered towards each other by a spatially varying cross-Kerr refractive index waveguide written by a strong laser beam in a three-level atomic medium utilizing quantum coherence. After being brought together, the weak beams show controllable phase-dependent outcomes. This is the first observation of soliton-like interactions between weak beams and can be useful for all-optically tunable beam-combining, switching and gates for weak photonic signals.
Multi-transmission-line-beam interactive system
Figotin, Alexander; Reyes, Guillermo [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)
2013-11-15
We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.
Geometric Representation of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L
2013-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model consists of open-strings interacting through a Kalb-Ramond field in four dimensions. The geometric representation proposed uses lines and surfaces that can be interpreted as an extension of the picture of Faraday's lines of classical electromagnetism. This representation results to be consistent, provided the coupling constant (the "charge" of the string) is quantized. The Schr\\"odinger equation in this representation is also presented.
Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: mrgodef@ulb.ac.be [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)
2014-09-15
Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.
Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking
Gersten, A.; Thomas, A. W.; Weyrauch, M.
1990-04-01
We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.
Relativistic scalar-vector models of the N-N and N-nuclear interactions
Green, A.E.S.
1985-01-01
This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs.
Controlling hollow relativistic electron beam orbits with an inductive current divider
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)
2015-02-15
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.
Interactions of incoherent localized beams in a photorefractive medium
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Xu, Jianeng; Zhang, Yanpeng
2014-01-01
We investigate numerically interactions between two bright or dark incoherent localized beams in an strontium barium niobate photorefractive crystal in one dimension, using the coherent density method. For the case of bright beams, if the interacting beams are in-phase, they attract each other during propagation and form bound breathers; if out-of-phase, the beams repel each other and fly away. The bright incoherent beams do not radiate much and form long-lived well-defined breathers or quasi-stable solitons. If the phase difference is $\\pi/2$, the interacting beams may both attract or repel each other, depending on the interval between the two beams, the beam widths, and the degree of coherence. For the case of dark incoherent beams, in addition to the above the interactions also depend on the symmetry of the incident beams. As already known, an even-symmetric incident beam tends to split into a doublet, whereas an odd-symmetric incident beam tends to split into a triplet. When launched in pairs, the dark be...
Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions
Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim
2010-07-07
Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.
Dieckmann, M. E.; Sarri, G.; Markoff, S.; Borghesi, M.; Zepf, M.
2015-05-01
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims: Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. Methods: A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. Results: A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Sahai, Aakash A.
2013-10-01
Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from laser
Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator
Vieira, J; Mori, W B; Silva, L O; Muggli, P
2015-01-01
The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.
On quantum effects in spontaneous emission by a relativistic electron beam in an undulator
Geloni, Gianluca; Saldin, Evgeni
2012-01-01
Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-kno...
Charmonium-Nucleon Interaction from Quenched Lattice QCD with Relativistic Heavy Quark Action
Kawanai, Taichi; Sasaki, Shoichi; Hatsuda, Tetsuo
2009-10-01
Low energy charmonium-nucleon interaction is of particular interest in this talk. A heavy quarkonium state like the charmonium does not share the same quark flavor with the nucleon so that cc-nucleon interaction might be described by the gluonic van der Waals interaction, which is weak but attractive. Therefore, the information of the strength of cc-nucleon interaction is vital for considering the possibility of the formation of charmonium bound to nuclei. We will present the preliminary results for the scattering length and the interaction range of charmonium-nucleon s-wave scattering from quenched lattice QCD. These low-energy quantities can provide useful constraints on the phenomenological cc-nucleon potential, which is required for precise prediction of the binding energy of nuclear-bound charmonium in exact few body calculations. Our simulations are performed at a lattice cutoff of 1/a=2.0 GeV with the nonperturbatively O(a) improved Wilson action for the light quark and a relativistic heavy quark action for the charm quark. A new attempt of calculating the cc-nucleon potential through the Bethe-Salpeter wave function will be also discussed.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Demonstration of relativistic electron beam focusing by a laser-plasma lens.
Thaury, C; Guillaume, E; Döpp, A; Lehe, R; Lifschitz, A; Ta Phuoc, K; Gautier, J; Goddet, J-P; Tafzi, A; Flacco, A; Tissandier, F; Sebban, S; Rousse, A; Malka, V
2015-04-16
Laser-plasma technology promises a drastic reduction of the size of high-energy electron accelerators. It could make free-electron lasers available to a broad scientific community and push further the limits of electron accelerators for high-energy physics. Furthermore, the unique femtosecond nature of the source makes it a promising tool for the study of ultrafast phenomena. However, applications are hindered by the lack of suitable lens to transport this kind of high-current electron beams mainly due to their divergence. Here we show that this issue can be solved by using a laser-plasma lens in which the field gradients are five order of magnitude larger than in conventional optics. We demonstrate a reduction of the divergence by nearly a factor of three, which should allow for an efficient coupling of the beam with a conventional beam transport line.
Zhen Wang
2014-09-01
Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.
Radiative instability of a relativistic electron beam moving in a photonic crystal
Baryshevsky, V G
2010-01-01
The radiative instability of a beam moving in a photonic crystal of finite dimensions is studied. The dispersion equation is obtained. The law $\\Gamma\\sim \\rho ^{1/\\left( {s + 3} \\right)}$ is shown to be valid and caused by the mixing of the electromagnetic field modes in the finite volume due to the periodic disturbance from the photonic crystal.
Radiative instability of a relativistic electron beam moving in a photonic crystal
Baryshevsky, V.G.; Gurinovich, A. A.
2013-01-01
The radiative instability of a beam moving in a photonic crystal of finite dimensions is studied. The dispersion equation is obtained. The law $\\Gamma\\sim \\rho ^{1/\\left( {s + 3} \\right)}$ is shown to be valid and caused by the mixing of the electromagnetic field modes in the finite volume due to the periodic disturbance from the photonic crystal.
Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam
Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.
2008-09-02
Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.
Relativistic dynamics of interacting point particles: Central position of the Wheeler-Feynman scheme
Costa de Beauregard, O.
1985-06-01
The Wheeler-Feynman (WF) relativistic theory of interacting point particles, generalized by acceptance of an arbitrary spacelike interaction, is shown to possess a privileged status, reminiscent of the “central force” interactions occurring in Newtonian mechanics. This scheme is shown to be isomorphic to the classical one of the statics of interacting flexible current-carrying wires obeying the Ampère-Laplace (AL) formulas: to the tension T (T 2 =const) of the wire corresponds the momentum-energy pi (pipi=-c2m2) of the particle; to the Laplace linear force density -i H×dr corresponds the Lorentz force QHij drj; to the Laplace potential ir-1 dr corresponds the WF potential Qδ(r2) dri, etc. Among the differences, there is self-action in the AL scheme and no self-action in the WF scheme. A stationary energy principle in the AL scheme is isomorphic to Fokker's stationary action principle in the WF scheme.
Lienert, Matthias, E-mail: lienert@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany)
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to a relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.
Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A
2013-01-01
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.
Scott, R H H; Clark, E L; Pérez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H-P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A
2013-08-01
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.
On quantum effects in spontaneous emission by a relativistic electron beam in an undulator
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-02-15
Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)
Numerical Calculation of Coupling Impedances in Kicker Modules for Non-Relativistic Particle Beams
Doliwa, B
2004-01-01
In the context of heavy-ion synchrotrons, coupling impedances in ferrite-loaded structures (e.g. fast kicker modules) are known to have a significant influence on beam stability. While bench measurements are feasible today, it is desirable to have the coupling impedances in hands already during the design process of the respective components. To achieve this goal, as a first step, we have carried out numerical analyses of simple ferrite-containing test systems within the framework of the Finite Integration Technique[1]. This amounts to solving the full set of Maxwell's equations in frequency domain, the particle beam being represented by an appropriate excitation current. With the resulting electromagnetic fields, one may then readily compute the corresponding coupling impedances. Despite the complicated material properties of ferrites, our results show that their numerical treatment is possible, thus opening up a way to determine a crucial parameter of kicker devices before construction.
Chester, A; Bazin, D; Becerril, A; Campbell, C M; Cook, J M; Dewald, A; Dinca, D C; Miller, D; Moeller, V; Müller, W F; Norris, R P; Portillo, M; Starosta, K; Stolz, A; Terry, J R; Vaman, C; Zwahlen, H
2006-01-01
A novel method for picosecond lifetime measurements of excited gamma-ray emitting nuclear states has been developed for fast beams from fragmentation reactions. A test measurement was carried out with a beam of 124Xe at an energy of ~55 MeV/u. The beam ions were Coulomb excited to the first 2+ state on a movable target. Excited nuclei emerged from the target and decayed in flight after a distance related to the lifetime. A stationary degrader positioned downstream with respect to the target was used to further reduce the velocity of the excited nuclei. As a consequence, the gamma-ray decays from the 2+ excited state that occurred before or after traversing the degrader were measured at a different Doppler shift. The gamma-ray spectra were analyzed from the forward ring of the Segmented Germanium Array; this ring positioned at 37 deg. simultaneously provides the largest sensitivity to changes in velocity and the best energy resolution. The ratio of intensities in the peaks at different Doppler shifts gives inf...
Cotner, Eric
2016-01-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Interaction of Macro-particles with LHC proton beam
Zimmermann, F; Xagkoni, A
2010-01-01
We study the interaction of macro-particles residing inside the LHC vacuum chamber, e.g. soot or thermalinsulation fragments, with the circulating LHC proton beam. The coupled equations governing the motion and charging rate of metallic or dielectric micron-size macroparticles are solved numerically to determine the time spent by such “dust” particles close to the path of the beam as well as the resulting proton-beam losses, which could lead to a quench of superconducting magnets and, thereby, to a premature beam abort.
Beam interactions in one-dimensional saturable waveguide arrays
Stepic, M; Rueter, C E; Shandarov, V; Kip, D; Stepic, Milutin; Smirnov, Eugene; Rueter, Christian E.; Shandarov, Vladimir; Kip, Detlef
2006-01-01
The interaction between two parallel beams in one-dimensional discrete saturable systems has been investigated using lithium niobate nonlinear waveguide arrays. When the beams are separated by one channel and in-phase it is possible to observe soliton fusion at low power levels. This new result is confirmed numerically. By increasing the power, soliton-like propagation of weakly-coupled beams occurs. When the beams are out-of-phase the most interesting result is the existence of oscillations which resemble the recently discovered Tamm oscillations.
Bret, A.; Gremillet, L; Benisti, D.; Lefebvre, E.
2008-01-01
Besides being one of the most fundamental basic issues of plasma physics, the stability analysis of an electron beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation had not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed restricted to simplistic distribution functions and/or did not aim...
Rimbault, C.; Le Meur, G.; Blampuy, F.; Bambade, P.; Schulte, D.
2009-12-01
Depolarization is a new feature in the beam-beam simulation tool GUINEA-PIG++ (GP++). The results of this simulation are studied and compared with another beam-beam simulation tool, CAIN, considering different beam parameters for the International Linear Collider (ILC) with a centre-of-mass energy of 500 GeV.
Beam-Plasma Interaction in a 2D Complex Plasma
Kyrkos, Stamatios; Kalman, G. J.; Rosenberg, M.
2006-10-01
In a complex (dusty) plasma, penetrating ion or electron beams may lead to beam-plasma instabilities. The instability displays interesting new properties when either the plasma or the beam, or both, are strongly interacting^1. Foremost amongst them is the possible generation of transverse instabilities. We consider the case when a 2D plasma is in the crystalline phase, forming a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a realistic Yukawa potential. The beam particles are assumed to be weakly coupled to each other and to the lattice^2. Using the full phonon spectrum for a 2D hexagonal Yukawa lattice^3, we determine and compare the transverse and longitudinal growth rates. The behavior of the growth rates depends on the direction of the beam and on the relationship between the beam speed v and the longitudinal and transverse sound speeds sL, sT. For beam speeds between the longitudinal and transverse sound speeds, the transverse instability could be more important, because it appears at lower k values. ^1 G. J. Kalman and M. Rosenberg, J. Phys. A: Math. Gen. 36 5963 (2003) ^2 M. Rosenberg, G. J. Kalman, S. Kyrkos and Z. Donko, J. Phys. A: Math. Gen. 39 4613 (2006) ^3 T. Sullivan, G. J. Kalman, S. Kyrkos, P. Bakshi, M. Rosenberg and Z. Donko, J. Phys. A: Math. Gen. 39 4607 (2006)
Severin, L.; Richter, M.; Steinbeck, L.
1997-04-01
Local density calculations with self-interaction-corrected core states are reported for the transition-metal ferromagnets Fe, Co, and Ni. The hyperfine field matrix elements have been computed. Good agreement with measurements is obtained for Co, whereas for Fe and Ni the discrepancy between local density theory and experiment remains also in the self-interaction-corrected calculation. Possible changes in the core states due to relativistic exchange corrections are also discussed and found to be of minor importance.
Interaction of Airy-Gaussian beams in defected photonic lattices
Shi, Zhiwei; Zhu, Xing; Xiang, Ying; Li, Huagang
2016-01-01
We investigate interactions by means of direct numerical simulations between two finite Airy-Gaussian (AiG) beams in different media with the defected photonic lattices in one transverse dimension. We discuss different lattice structures in which the beams with different intensities and phases are launched into the medium, but accelerate in opposite directions. During interactions we see the interference fringe, breathers and soliton pairs generated that are not accelerating. In the linear media, the initial deflection direction of the accelerated beams is changed by adjusting the phase shift and the beam interval. For a certain lattice period, the periodic interference fringe can form. A constructive or destructive interference can vary with the defect depth and phase shift. While the nonlinearity is introduced, the breathers is generated. Especially, the appropriate beam amplitude and lattice depth may lead to the formation of soliton pairs.
Shvets, Gennady
2014-05-09
In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.
Walker, J.K. (ed.)
1977-01-01
The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)
Relativistic electron beams driven by kHz single-cycle light pulses
Guénot, D; Vernier, A; Beaurepaire, B; Böhle, F; Bocoum, M; Lozano, M; Jullien, A; Lopez-Martens, R; Lifschitz, A; Faure, J
2016-01-01
Laser-plasma acceleration is an emerging technique for accelerating electrons to high energies over very short distances. The accelerated electron bunches have femtosecond duration, making them particularly relevant for applications such as ultrafast imaging or femtosecond X-ray generation. Current laser-plasma accelerators are typically driven by Joule-class laser systems that have two main drawbacks: their relatively large scale and their low repetition-rate, with a few shots per second at best. The accelerated electron beams have energies ranging from 100 MeV to multi-GeV, however a MeV electron source would be more suited to many societal and scientific applications. Here, we demonstrate a compact and reliable laser-plasma accelerator producing high-quality few-MeV electron beams at kilohertz repetition rate. This breakthrough was made possible by using near-single-cycle light pulses, which lowered the required laser energy for driving the accelerator by three orders of magnitude, thus enabling high repet...
Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun
2014-11-06
Due to the vast application potential of graphene oxide (GO)-based materials in nuclear waste processing, it is of pivotal importance to investigate the interaction mechanisms between actinide cations such as Np(V) and Pu(IV, VI) ions and GO. In this work, we have considered four types of GOs modified by hydroxyl, carboxyl, and carbonyl groups at the edge and epoxy group on the surface, respectively. The structures, bonding nature, and binding energies of Np(V) and Pu(IV, VI) complexes with GOs have been investigated systematically using scalar-relativistic density functional theory (DFT). Geometries and harmonic frequencies suggest that Pu(IV) ions coordinate more easily with GOs compared to Np(V) and Pu(VI) ions. NBO and electron density analyses reveal that the coordination bond between Pu(IV) ions and GO possesses more covalency, whereas for Np(V) and Pu(VI) ions electrostatic interaction dominates the An-OG bond. The binding energies in aqueous solution reveal that the adsorption abilities of all GOs for actinide ions follow the order of Pu(IV) > Pu(VI) > Np(V), which is in excellent agreement with experimental observations. It is expected that this study can provide useful information for developing more efficient GO-based materials for radioactive wastewater treatment.
Seto, Keita; Nagatomo, Hideo; Koga, James; Mima, Kunioki
In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the “radiation reaction” or the “radiation damping”. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the “run-away”. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper.
Ghosh, D; Bhattacharya, S; Ghosh, J; Das, R
2003-01-01
This paper reports an investigation on the two-particle long-range angular correlation among the target fragments produced in sup 2 sup 8 Si-AgBr interactions at 14.5 AGeV, sup 1 sup 6 O-AgBr interactions at 60 AGeV and sup 3 sup 2 S-AgBr interactions at 200 AGeV. The experimental data have been compared with Monte Carlo simulated events to extract dynamical correlation. The data exhibit two-particle long-range correlation in emission angle space at all energies. (author)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Koronovskii, A. A. [Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Frolov, N. S.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation); Rak, A. O. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Kuraev, A. A. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)
2015-04-13
The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with the following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.
Bryant, H.C.
1992-07-01
This work supported by the Division of Chemical Sciences, Office of Basic Energy Services, Office of Energy Research, US Department of Energy during the period July 1, 1989 to June 30, 1992, resulted in noteworthy scientific results in three categories which we shall discuss in turn: The spectroscopy of high-lying doubly-excited states of H{sup {minus}}, interactions with thin foils, and multiphoton processes. Radiological safety concerns and slow beam studies are also briefly discussed.
Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking
Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria
One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...
Beam-Wall interaction in the LHC liner
Mostacci, A
2001-01-01
The beam pipe foreseen for the LHC is rather unconventional. To shield the cold bore of the magnets from the synchrotron radiation emitted by protons at 7 TeV, a beam screen (the so called "liner") has been introduced practically along all the machine. The present design of the liner is a compromise among beam stability issues, vacuum requirements, heat load on the cold bore, electron cloud effects and mechanical constraints. Three main potential sources of beam energy loss in the actual LHC liner are addressed, namely the interaction with the pumping holes, the (sawtooth) surface corrugation and the effect of an azimuthally inhomogeneous metallic beam pipe modelling the high resistivity of the welding. The losses are estimated through a detailed electromagnetic analysis (by means of standard theories) seeking for analytical expressions of electromagnetic fields and/or coupling impedance. An analytical (or semi-analytical) approach is considered for each problem, to better understand the relevant parameters t...
Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements
Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt
2016-01-01
Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.
Slow electrostatic fluctuations generated by beam-plasma interaction
Pommois, Karen; Pezzi, Oreste; Veltri, Pierluigi
2016-01-01
Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regime. In 1968, O'Neil and Malmberg [Phys. Fluids {\\bf 11}, 1754 (1968)] dubbed these waves "beam modes". In the present paper, it is shown that, in the presence of a cold and low density electron beam, these beam modes can become unstable and then survive Landau damping unlike the Langmuir waves. When an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, if the initial density perturbation is setup in the form of a low amplitude rand...
Doornenbal, P.
2007-10-23
A two-step fragmentation experiment has been performed at GSI with the RISING setup. It combines the fragment separator FRS, which allows for the production of radioactive heavy ions at relativistic energies, with a high resolution {gamma}-spectrometer. This combination offers unique possibilities for nuclear structure investigations like the test of shell model predictions far from stability. Within the present work the question if the N=14(16) shell stabilisation in Z=8 oxygen isotopes and the N=20 shell quenching in {sup 32}Mg are symmetric with respect to the isospin projection quantum number Tz has been addressed. New {gamma}-ray decays were found in the neutron deficient {sup 36}Ca and {sup 36}K by impinging a radioactive ion beam of {sup 37}Ca on a secondary {sup 9}Be target. The fragmentation products were selected with the calorimeter telescope CATE and the emitted {gamma}-rays were measured with Ge Cluster, MINIBALL, and BaF{sub 2} HECTOR detectors. For {sup 36}Ca the 2{sub 1}{sup +}{yields}0{sub g.s.}{sup +} transition energy was determined to be 3015(16) keV, which is the heaviest T=2 nucleus from which {gamma}-spectroscopic information has been obtained so far. A comparison between the experimental 2{sub 1}{sup +} energies of {sup 36}Ca and its mirror nucleus {sup 36}S yielded a mirror energy difference of {delta}E{sub M}=-276(16) keV. In order to understand the large {delta}E{sub M} value, the experimental single-particle energies from the A=17, T=1/2 mirror nuclei were taken and applied onto modified isospin symmetric USD interactions in shell model calculations. These calculations were in agreement with the experimental result and showed that the experimental single-particle energies may account empirically for the one body part of Thomas-Ehrman and/or Coulomb effects. A method to extract the lifetime of excited states in fragmentation reactions was investigated. Therefore, the dependence between the lifetime of an excited state and the average de
Arzeliès, Henri
1972-01-01
Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int
Suo, Bingbing; Han, Huixian
2014-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest states for four spin-orbit components 1/2, 3/2, 5/2, and 7/2 are calculated intensively to clarify the ground state of IrO. Our calculation suggests that the ground state is of 1/2 spin-orbit component, which is highly mixed with $^4\\Sigma^-$ and $^2\\Pi$ states in $\\Lambda-S$ notation. The two low-lying states of the 5/2 and 7/2 spin-orbit components are nearly degenerate with the ground state and locate only 234 and 260 cm$^{-1}$ above, respectively. The equilibrium bond length 1.712 \\AA \\ and harmonic vibrational frequency 903 cm$^{-1}$ of the 5/2 spin-orbit component are close to the experimental measurement of 1.724 \\AA \\ and 909 cm$^{-1}$, which suggests the 5/2 state should be the low-lying state contributed to spectra in experimental study. Moreover, the electronic states that give rise to the observed trans...
Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma
Tannenbaum, M.J.
1989-12-01
The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.
Cao, Shanshan; Bass, Steffen A
2015-01-01
We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...
KRISHNA KUMAR SONI; K P MAHESHWARI
2016-11-01
We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.
Kuzichev, Ilya; Shklyar, David
2016-04-01
One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of
Effect of a spectrometer magnet on the beam-beam interaction
Cornacchia, M; Parzen, G
1981-01-01
The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.
Abdelmadjid Maireche
2016-01-01
In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t.) potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS). The exact corrections for excited states are found straightforwardly for interactions...
Holmes, Jeffrey A [ORNL; Zhang, Yan [ORNL; Kang, Yoon W [ORNL; Galambos, John D [ORNL; Hassan, Mohamed H [ORNL; Wilson, Joshua L [ORNL
2009-01-01
Investigations of the RF properties of certain twisted waveguide structures show that they support favorable accelerating fields. This makes them potential candidates for accelerating cavities. Using the particle tracking code, ORBIT, We examine the beam - RF interaction in the twisted cavity structures to understand their beam transport and acceleration properties. The results will show the distinctive properties of these new structures for particle transport and acceleration, which have not been previously analyzed.
Beam-machine Interaction at the CERN LHC
Boccone, V; Brugger, M; Calviani, M; Cerutti, F; Esposito, L S; Ferrari, A; Lechner, A; Mereghetti, A; Nowak, E; Shetty, N V; Skordis, E; Versaci, R; Vlachoudis, V
2014-01-01
The radiation field generated by a high energy and intensity accelerator is of concern in terms of element functionality threat, component damage, electronics reliability, and material activation, but also provides signatures that allow actual operating conditions to be monitored. The shower initiated by an energetic hadron involves many different physical processes, down to slow neutron interactions and fragment de-excitation, which need to be accurately described for design purposes and to interpret operation events. The experience with the transport and interaction Monte Carlo code FLUKA at the Large Hadron Collider (LHC), operating at CERN with 4 TeV proton beams (and equivalent magnetic rigidity Pb beams) and approaching nominal luminosity and energy, is presented. Design, operation and upgrade challenges are reviewed in the context of beam-machine interaction account and relevant benchmarking examples based on radiation monitor measurements are shown.
Neutrino beam plasma instability
Vishnu M Bannur
2001-10-01
We derive relativistic ﬂuid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these ﬂuid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino ﬂux, but becomes stronger for weakly relativistic neutrino ﬂux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.
Interaction of Photon Vortex Beams with Atomic Matter
Solyanik, Maria; Afanasev, Andrei; Carlson, Carl E.
2017-01-01
In our work we consider helical Bessel beams' (BB's) propagation and interaction with isotropic matter. Dynamical properties of the beams with non-zero orbital angular momentum (OAM), which are determined by spatial degrees of freedom and polarization, modify the fundamental processes in light-matter interactions. Circular dichroism of BBs propagating in hydrogen gas was considered within the frame of studying the vortex beams' attenuation due to photoabsorption in hydrogen gas. In this case, the phenomenon is due to the topology of the wave front, contrary to the zero OAM case, when the change in polarization state is due to matter inhomogeneity. The effect of circular dichroism has been predicted by calculating the beam ellipticity evolution when traversing an isotropic target. According to our results, the BBs' transverse ellipticity profile has a structure of concentric circular maxima which correspond to minima of the intensity. The characteristic polarization singularity arises on the beam axis as the result of interaction with matter. It is shown, that even for the case of the paraxial approximation the effect of circular dichroism takes place. These signatures can be used for theoretical and experimental analysis of the interactions of optical vortices with atomic matter.
Bret, A; Benisti, D; Lefebvre, E
2008-01-01
Besides being one of the most fundamental basic issues of plasma physics, the stability analysis of an electron beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation had not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed restricted to simplistic distribution functions and/or did not aim at a complete mapping of the beam-plasma parameter space. The present paper comprehensively tackles this problem by implementing an exact linear model. We show that three kinds of modes compete in the linear phase, which can be classified according to the direction of their wavenumber with respect to the beam. We then determine their respective domain of preponderance in a three-dimensional parameter space. All these results are supported by multidimensional particle-in-cell simulations.
Development of a 2 MW relativistic backward wave oscillator
Yaduvendra Choyal; Lalit Gupta; Prasad Deshpande; Krishna Prasad Maheshwari; Kailash Chander Mittal; Suresh Chand Bapna
2008-12-01
In this paper, a high power relativistic backward wave oscillator (BWO) experiment is reported. A 230 keV, 2 kA, 150 ns relativistic electron beam is generated using a Marx generator. The beam is then injected into a hollow rippled wall metallic cylindrical tube that forms a slow wave structure. The beam is guided using an axial pulsed magnetic field having a peak value 1 T and duration 1 ms. The field is generated by the discharge of a capacitor bank into a solenoidal coil. A synchronization circuit ensures the generation of the electron beam at the instant when the axial magnetic field attains its peak value. The beam interacts with the SWS modes and generates microwaves due to Cherenkov interaction. Estimated power of 2 MW in TM 01 mode is observed.
Dynamic stiffness matrix of partial-interaction composite beams
Guangjian Bao
2015-03-01
Full Text Available Composite beams have a wide application in building and bridge engineering because of their advantages of mechanical properties, constructability and economic performance. Unlike static characteristics, the methods of studying the dynamic characteristics of partial-interaction composite beams were limited, especially dynamic stiffness matrix method. In this article, the dynamic stiffness matrix of partial-interaction composite beams was derived based on the assumption of the Euler–Bernoulli beam theory, and then it was used to predict the frequencies of the free vibration of the single-span composite beams with various boundary conditions or different axial forces. The corresponding vibration modes and buckling loads were also obtained. From the comparison with the existing results, the numerical results obtained by the proposed method agreed reasonably with those in the literatures. The dynamic stiffness matrix method is an accurate method which can determine natural vibration frequencies and vibration mode shapes in any precision theoretically. As a result, when the higher precision or natural frequencies of higher order are required, the dynamic stiffness matrix method is superior when compared to other approximate and numerical methods. The dynamic stiffness matrix method can also be combined with the finite-element method to calculate the free vibration frequencies and natural mode shapes of composite beams in complex conditions.
Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C
2014-01-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.
2016-03-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu [INFN-RM1 and SBAI, Università di Roma “La Sapienza,” Via Scarpa 16, 00161 Roma (Italy); INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [INFN-RM1 and SBAI, Università di Roma “La Sapienza,” Via Scarpa 16, 00161 Roma (Italy); Papaphilippou, Y. [CERN, CH 1211 Geneva 23 (Switzerland)
2016-03-07
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
Babatunde J.Falaye; Sameer M.Ikhdair
2013-01-01
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric P(o)schl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ ± 1)r-2.In view of spin and pseudo-spin (p-spin) symmetries,the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM).We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ.The non-relativistic limit is also obtained.
Savukov, I.; Safronova, U. I.; Safronova, M. S.
2015-11-01
Excitation energies, term designations, g factors, transition rates, and lifetimes of U2 + are determined using a relativistic configuration interaction (CI) + linearized-coupled-cluster (LCC) approach. The CI-LCC energies are compared with CI + many-body-perturbation-theory (MBPT) and available experimental energies. Close agreement has been found with experiment, within hundreds of cm-1. In addition, lifetimes of higher levels have been calculated for comparison with three experimentally measured lifetimes, and close agreement has been found within the experimental error. CI-LCC calculations constitute a benchmark test of the CI + all-order method in complex relativistic systems such as actinides and their ions with many valence electrons. The theory yields many energy levels, g factors, transition rates, and lifetimes of U2 + that are not available from experiment. The theory can be applied to other multivalence atoms and ions, which would be of interest to many applications.
Effets radiatifs et d'électrodynamique quantique dans l'interaction laser-matière ultra-relativiste
Lobet, Mathieu
2015-01-01
This PhD thesis is concerned with the regime of extreme-intensity laser-matter interaction that should be accessed on upcoming multi-petawatt facilities (e.g. CILEX-Apollon, ELI, IZEST). At intensities IL > 1022 Wcm-2, the relativistic dynamics of the laser-driven electrons becomes significantly modified by high-energy radiation emission through nonlinear inverse Compton scattering. For IL > 1023 Wcm-2, the emitted-ray photons can, in turn, interact with the laser field and decay into electro...
Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg
2011-06-01
The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.
Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others
1995-02-22
A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.
H. K. Avetissian
2010-10-01
Full Text Available The nonlinear threshold phenomena of particle reflection and capture of electrons in the induced Compton process that have previously been revealed in the case of plane monochromatic counterpropagating waves, take place also with the actual nonplane laser pulses of ultrashort duration and lead to particle acceleration. In contrast to analogous phenomena in the induced Cherenkov and undulator processes, the Compton reflection-capture mechanism with laser pulses of relativistic intensities practically may be realized for arbitrary initial energies of particles. The acceleration effect for particles initially in rest is explored numerically, taking into account the significance of this case connected with the relativistic electron bunches of high densities, which currently may be realized by relativistic lasers on the ultrathin solid foils where the electrons initially are almost in rest.
New developments in energy transfer and transport studies in relativistic laser-plasma interactions
Norreys, P. A.; Green, J. S.; Lancaster, K. L.; Robinson, A. P. L.; Scott, R. H. H.; Perez, F.; Schlenvoight, H.-P.; Baton, S.; Hulin, S.; Vauzour, B.; Santos, J. J.; Adams, D. J.; Markey, K.; Ramakrishna, B.; Zepf, M.; Quinn, M. N.; Yuan, X. H.; McKenna, P.; Schreiber, J.; Davies, J. R.; Higginson, D. P.; Beg, F. N.; Chen, C.; Ma, T.; Patel, P.
2010-12-01
Two critical issues related to the success of fast ignition inertial fusion have been vigorously investigated in a co-ordinated campaign in the European Union and the United States. These are the divergence of the fast electron beam generated in intense, PW laser-plasma interactions and the fast electron energy transport with the use of high intensity contrast ratio laser pulses. Proof is presented that resistivity gradient-induced magnetic fields can guide fast electrons over significant distances in (initially) cold metallic targets. Comparison of experiments undertaken in both France and the United States suggests that an important factor in obtaining efficient coupling into dense plasma is the irradiation with high intensity contrast ratio laser pulses, rather than the colour of the laser pulse itself.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Deriglazov, Alexei A.; Pupasov-Maksimov, Andrey M.
2016-10-01
In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy-Wouthuysen transformation.
Frequency conversion of probe wave produced by 2D interaction with relativistic ionization front
Yan Li-Xin; Zhang Yong-Sheng; Liu Jing-Ru; Lü Min
2005-01-01
Frequency conversion of probe electromagnetic wave induced by relativistic ionization front is theoretically analysed based on ray-tracing equations in different regimes. Downshifting as well as upshifting in frequency produced by the front is predicted. The reflected and transmitted angles can be also dramatically changed in certain cases.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Alexei A. Deriglazov
2016-10-01
Full Text Available In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Deriglazov, Alexei A
2016-01-01
In the framework of vector model of spin, we discuss the problem of a covariant formalism \\cite{Pomeranskii1998} concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy-Wouthuysen transformation.
Drescher, H.J
1999-06-11
In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.
Observation of relativistic antihydrogen atoms
Blanford, Glenn Delfosse, Jr.
1997-09-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Mastoridis, Themistoklis [Stanford Univ., CA (United States)
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
"Tomography" of the cluster structure of light nuclei via relativistic dissociation
Zarubin, P I
2013-01-01
These lecture notes present the capabilities of relativistic nuclear physics for the development of the physics of nuclear clusters. Nuclear track emulsion continues to be an effective technique for pilot studies that allows one, in particular, to study the cluster dissociation of a wide variety of light relativistic nuclei within a common approach. Despite the fact that the capabilities of the relativistic fragmentation for the study of nuclear clustering were recognized quite a long time ago, electronic experiments have not been able to come closer to an integrated analysis of ensembles of relativistic fragments. The continued pause in the investigation of the "fine" structure of relativistic fragmentation has led to resumption of regular exposures of nuclear emulsions in beams of light nuclei produced for the first time at the Nuclotron of the Joint Institute for Nuclear Research (JINR, Dubna). To date, an analysis of the peripheral interactions of relativistic isotopes of beryllium, boron, carbon and nitr...
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
Simulations on pair creation from beam-beam interaction in linear colliders
Chen, P.; Tauchi, T. (Stanford Linear Accelerator Center, Menlo Park, CA (USA)); Yokoya, K. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))
1991-05-01
It has been recognized that e{sup +}e{sup {minus}} pair creation during the collision of intense beams in linear colliders will cause potential background problems for high energy experiments. Detailed knowledge of the angular-momentum spectrum of these low energy pairs is essential to the design of the interaction region. In this paper, we modify the computer code ABEL (Analysis of Beam-beam Effects in Linear colliders) to include the pair creation processes, using the equivalent photon approximation. Special care has been taken on the non-local nature of the virtual photon exchanges. The simulation results are then compared with known analytic formulas, and applied to the next generation colliders such as JLC. 10 refs., 2 figs.
A semi-relativistic model for tidal interactions in BH-NS coalescing binaries
Ferrari, V; Gualtieri, L; Pannarale, F [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
2009-06-21
We study the tidal effects of a Kerr black hole on a neutron star in black hole-neutron star (BH-NS) binary systems by using a semi-analytical approach which describes the neutron star as a deformable ellipsoid. Relativistic effects on the neutron star self-gravity are taken into account by employing a scalar potential resulting from relativistic stellar structure equations. We calculate quasi-equilibrium sequences of BH-NS binaries and the critical orbital separation at which the star is disrupted by the black hole tidal field: the latter quantity is of particular interest because when it is greater than the radius of the innermost stable circular orbit, a short gamma-ray burst scenario may develop.
Relativistic dipole interaction and the topological nature for induced HMW and AC phases
He, Xiao-Gang
2016-01-01
In this work we construct relativistic Lagrangian density for the AC and HMW topological phases by induced electric and magnetic dipoles and clarify some of the conditions for producing topological phases which have not been properly discussed in previous studies. We also found that in both cases, the topological phases are induced by the cross product of electric and magnetic fields in the form $\\bm{B} \\times \\bm{E}$ which reinforces the dual nature of these two topological phases.
Sahai, Aakash A
2014-01-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime ($a_0>1$). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-$\\beta$ traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators (LIA). In Relativistically Induced Transparency Acceleration (RITA) scheme the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. I...
Strong-field relativistic processes in highly charged ions
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
Multiple Interactions and the Structure of Beam Remnants
Sjöstrand, Torbjörn
2004-01-01
Recent experimental data have established some of the basic features of multiple interactions in hadron-hadron collisions. The emphasis is therefore now shifting, to one of exploring more detailed aspects. Starting from a brief review of the current situation, a next-generation model is developed, wherein a detailed account is given of correlated flavour, colour, longitudinal and transverse momentum distributions, encompassing both the partons initiating perturbative interactions and the partons left in the beam remnants. Some of the main features are illustrated for the Tevatron and the LHC.
Beck, Tobias
2015-02-15
Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results
Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.
2016-06-01
In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.
Probabilistic model of beam-plasma interaction and electromagnetic radioemission
Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii
2016-07-01
In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.
Sellem, F
1997-10-21
This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.) 139 refs.
Mulser, P. (ed.)
2008-04-15
The following topics are dealt with: The PHELIX laser-plasma facility, coupling of nuclear matter to intense photon fields, QED effects in strong laser fields, relativistic critical density increase in a linearly polarized laser beam, absorption of ultrashort laser pulses in strongly overdense targets, Coulomb focusing in electron-ion collisions in a strong laser field, quasiperiodic waves in relativistic plasmas, high-energy-density physics studied by intense particle beams, heavy ions in a high-power laser beam, Monte-Carlo study of electron dynamics in silicon during irradiation with an ultrashort VUV laser pulse. (HSI)
Mulser, P.; Schlegel, T. (eds.)
2007-02-15
The following topics are dealt with:QED, nuclear and high energy processes in extremely strong laser pulses, waves with constant phase velocity in relativistic plasmas, the effective critical electron density and its relativistic increase in an intense laser field, acceleration of electrons by laser pulses in vacuum, electron capture acceleration in a slit laser beam, laser acceleration of ion beams, collisionless high-power laser beam absorption, vacuum heating vs skin layer absorption of intense fs laser pulses, timescales of laser-induced phase transitions, quasi-static electron equilibria of laser-heted clusters, correlations in multi-electronic satellite spectra, radiation transport in the CAVEAT code. (HSI)
Relativistic Hotspots in FR II Radio Sources
Chartrand, Alex M.; Miller, B. P.; Brandt, W. N.; Gawronski, M. P.; Cederbloom, S. E.
2011-01-01
We present a list of six FR II radio sources that are candidates to possess hotspots with modestly relativistic (v/c > 0.2) bulk velocities, in contrast to the vast majority of FR II radio sources that possess non-relativistic hotspot bulk velocities (e.g., v/c = 0.03+/- 0.02 from Scheuer 1995). These objects display arm- length and flux-ratio asymmetries between lobes that self-consistently indicate relativistic motion. The candidates are selected from the FIRST 1.4 GHz survey (including but not limited to the catalog of FR II quasars of de Vries et al. 2006) with the requirement that the radio core have a spectroscopic SDSS counterpart. We find no significant difference in the number of neighboring sources within 300 projected kpc of the candidate sources and randomly selected nearby regions. The deprojected and light travel-time corrected lobe distances are not abnormal for FR II sources, and neither are the core-to-lobe flux ratios after correcting for lobe beaming. We briefly consider four possibilities for these type of objects: (i) environmental interactions randomly mimicking relativistic effects, (ii) a restarted jet causing the near hotspot to brighten while the far hotspot still appears faint, (iii) observation during a short interval common to FR II lifetimes during which the hotspot decelerates from relativistic to non-relativistic velocities, and (iv) innately unusual characteristics (e.g., a mass-loaded jet) driving relativistic bulk velocities in the hotspots of a small fraction (< 1%) of FR II objects. We favor the last interpretation but cannot rule out the alternatives. We also comment on the useful external constraints such objects provide to the evaluation of hotspot X-ray emission mechanisms.
Blazhevich, S. V.; Noskov, A. V.; Nemtsev, S. N.
2016-11-01
A dynamic theory of coherent x-radiation emitted by a divergent beam of relativistic electrons traversing a thin single-crystal plate is developed which takes into account multiple scattering of the electrons on the target atoms. The case is considered in which the target is quite thin, so that it is not necessary to take absorption of radiation into account, but the electron path in the target is quite long, so that it is necessary to take multiple scattering into account. Expressions are obtained which describe the spectral-angular characteristics of parametric x-radiation and diffracted transient radiation under these conditions. Conditions are described under which diffracted bremsstrahlung radiation can be neglected. The possibility of manifesting the effects of dynamic diffraction is investigated.
Radiation of relativistic electrons in a periodic wire structure
Soboleva, V.V., E-mail: sobolevaveronica@mail.ru; Naumenko, G.A.; Bleko, V.V.
2015-07-15
We present in this work the experimental investigation of the interaction of relativistic electron field with periodic wire structures. We used two types of the targets in experiments: flat wire target and sandwich wire target that represent the right triangular prism. The measurements were done in millimeter wavelength region (10–40 mm) on the relativistic electron beam with energy of 6.2 MeV in far-field zone. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. The experiments with flat wire target were carried out in two geometries. In the first geometry the electron beam passed close to the flat wire target surface. In the second case the electron beam passed through the flat wire structure with generation of a coherent backward transition radiation (CBTR). The comparison of the Cherenkov radiation intensity and BTR intensity from the flat wire target and from the flat conductive target (conventional BTR) was made.
M.E. Dieckmann; G. Sarri; S. Markoff; M. Borghesi; M. Zepf
2015-01-01
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of
Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories
Bastianello, Alvise
2016-01-01
We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a Generalised Gibbs Ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. Here we address the question whether the latter can be equivalently described by a GGE constructed with only local charges. We show that, in marked contrast to the lattice case, this is always impossible in continuous field theories and instead the recently discovered quasilocal charges are necessary. In particular we show that the discrepancy between the exact steady state and the local GGE is clearly manifested as a difference in the large distance behaviour of the two point correlation functio...
Lu, Wenbin; Krolik, Julian; Crumley, Patrick; Kumar, Pawan
2017-10-01
Reverberation observations yielding a lag spectrum have uncovered an Fe K α fluorescence line in the tidal disruption event (TDE) Swift J1644+57. The discovery paper used the lag spectrum to argue that the source of the X-ray continuum was located very close to the black hole (∼30 gravitational radii) and moved subrelativistically. We reanalyse the lag spectrum, pointing out that dilution effects cause it to indicate a geometric scale an order of magnitude larger than inferred by Kara et al. If the X-ray continuum is produced by a relativistic jet, as suggested by the rapid variability, high luminosity and hard spectrum, this larger scale predicts an Fe ionization state consistent with efficient K α photon production. Moreover, the momentum of the jet X-rays impinging on the surrounding accretion flow on this large scale accelerates a layer of gas to speeds ∼0.1-0.2c, consistent with the blueshifted line profile. Implications of our results on the global picture of jetted TDEs are discussed. A power-law γ/X-ray spectrum may be produced by external ultraviolet (UV)-optical photons being repetitively inverse-Compton scattered by cold electrons in the jet, although our model for the K α reverberation does not depend on the jet radiation mechanism (magnetic reconnection in a Poynting jet is still a viable mechanism). The non-relativistic wind driven by jet radiation may explain the late-time radio rebrightening in Swift J1644+57. This energy injection may also cause the thermal UV-optical emission from jetted TDEs to be systematically brighter than in non-jetted ones.
Relativistic Stern-Gerlach Deflection
Talman, Richard
2016-01-01
Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.
Interaction of Intense Lasers and Relativistic Electron Beams with Solids, Gases and Plasmas
1993-06-01
June 18, 1993. The main subject was the identification of research opportunities and needs that are at- tractive for investigation using the HAARP ...warming and global change. Highly leveraged cooperative or collaborative programs exploring the HAARP facility and diagnostic complement in conjunction...1. Diagnostic issues - HF diagnostics. 1.1 Possible use of HAARP transmitter as a receiving antenna. 1.2 Possible addition of a "big" receiving
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Wallin, Erik; Marklund, Mattias
2014-01-01
We model the emission of high energy photons due to relativistic particles in a plasma interacting with a super-intense laser. This is done in a particle-in-cell code where the high frequency radiation normally cannot be resolved, due to the unattainable demands it would place on the time and space resolution. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend to previous work by accounting acceleration due to arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present estimations of the validity of the method. Finally we perform a rigorous comparison to the mechanism of radiation reaction, with the emitted energy very well in agreement with the radiation reaction loss.
Gao, J
2000-12-01
Physically speaking, the delta function like beam-beam nonlinear forces at interaction points (IPs) act as a sum of delta function nonlinear multipoles. By applying the general theory established in ref. [1], in this paper we investigate analytically the beam-beam interaction limited dynamic apertures and the corresponding beam lifetimes for both the round and the flat beams. Relations between the beam-beam limited beam lifetimes and the beam-beam tune shifts are established, which show clearly why experimentally one has always a maximum beam-beam tune shift, {zeta}{sub y,max}, around 0.045 for e{sup +}e{sup -} circular colliders, and why one can use round beams to double this value approximately. Comparisons with some machine parameters are given. Finally, we discuss the mechanism of the luminosity reduction due to a definite collision crossing angle. (author)
Two-source emission of relativistic alpha particles in 16O-Em interactions at 3.7 A GeV
Song Fu; Zhang Dong-Hai; Li Jun-Sheng
2005-01-01
The emission of alpha projectile fragments has been studied in 16O-emulsion interactions at 3.7 A GeV. The angular distributions of relativistic alphas cannot be explained by a clean-cut participant-spectator model. Therefore it is assumed that alphas originate from two distinct sources differing in their temperatures.
HE Xin-Kui; SHUAI Bin; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan
2004-01-01
@@ We investigate the influence of the initial laser phase on the interaction between relativistic electron and ultraintense linear polarized laser field in a strong uniform magnetic field. It is found that the dynamic behaviour of the relativistic electron and the emission spectrum varies dramatically with different initial laser field phases.The effect of changing initial phase is contrary in the two parameter regions divided by the resonance condition.The phase dependence of the electron energy and velocity components are also studied. Some beat structure is found when the initial laser phase is zero and this structure is absent when the initial laser phase is a quarter of a period.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-08-01
Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.
Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction
Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2017-05-15
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)
Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories
Bastianello, Alvise; Sotiriadis, Spyros
2017-02-01
We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a generalized Gibbs ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. We first address the question whether the latter can be written directly in terms of local charges and we find that, in contrast to the lattice case, this is not possible in continuous field theories. We then investigate the less stringent requirement of the existence of a sequence of truncated local GGEs that converges to the correct steady state, in the sense of the expectation values of the local observables. While we show that such a sequence indeed exists, in order to unequivocally determine the so-defined GGE, we find that information about the expectation value of the recently discovered quasi-local charges is in the end necessary, the latter being the suitable generalization of the local charges while passing from the lattice to the continuum. Lastly, we study the locality properties of the GGE and show that the latter is completely determined by the knowledge of the expectation value of a countable set of suitably defined quasi-local charges.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Towards manipulating relativistic laser pulses with 3D printed materials
Ji, L L; Pukhov, A; Freeman, R R; Akli, K U
2015-01-01
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.
Zare, S.; Yazdani, E.; Rezaee, S.; Anvari, A.; Sadighi-Bonabi, R.
2015-04-01
Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.
Infinite matter properties and zero-range limit of non-relativistic finite-range interactions
Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.
2016-12-01
We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin-orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin-orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.
Infinite matter properties and zero-range limit of non-relativistic finite-range interactions
Davesne, D. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, F-69622 Villeurbanne cedex (France); Becker, P., E-mail: pbecker@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, F-69622 Villeurbanne cedex (France); Pastore, A. [Department of Physics, University of York, Heslington, York, Y010 5DD (United Kingdom); Navarro, J. [IFIC (CSIC-Universidad de Valencia), Apartado Postal 22085, E-46.071-Valencia (Spain)
2016-12-15
We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin–orbit terms from the spin–isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin–orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.
Dense monoenergetic proton beams from chirped laser-plasma interaction
Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H
2011-01-01
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.
Dense monoenergetic proton beams from chirped laser-plasma interaction.
Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H
2011-10-28
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).
Dense monoenergetic proton beams from chirped laser-plasma interaction
Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)
2012-07-01
Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.
Dense monoenergetic proton beams from chirped laser-plasma interaction
Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)
2013-07-01
Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.
Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)
2016-05-15
The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Experimental beam system studies of plasma-polymer interactions
Nest, Dustin George
Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling
Ion beam profiling from the interaction with a freestanding 2D layer
Ivan Shorubalko
2017-03-01
Full Text Available Recent years have seen a great potential of the focused ion beam (FIB technology for the nanometer-scale patterning of a freestanding two-dimensional (2D layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.
Chester, A. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Adrich, P. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States); Becerril, A. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, 164 S. Shaw Lane, East Lansing, MI 48825-1321 (United States)] (and others)
2006-06-15
A novel method for picosecond lifetime measurements of excited {gamma}-ray emitting nuclear states has been developed for fast beams from fragmentation reactions. A test measurement was carried out with a beam of {sup 124}Xe at an energy of {approx}55MeV/u. The beam ions were Coulomb excited to the 2{sub 1}{sup +} state on a movable target. Excited nuclei emerged from the target and decayed in flight after a distance related to the lifetime. A stationary degrader positioned downstream with respect to the target was used to further reduce the velocity of the excited nuclei. As a consequence, the {gamma}-ray decays from the 2{sub 1}{sup +} excited state that occurred before or after traversing the degrader were measured at a different Doppler shift. The {gamma}-ray spectra were analyzed from the forward ring of the Segmented Germanium Array; this ring positioned at 37{sup -}bar simultaneously provides the largest sensitivity to changes in {beta} and the best-energy resolution. The ratio of intensities in the peaks at different Doppler shifts gives information about the lifetime if the velocity {beta} is measured. The results and range of the application of the method are discussed.
Investigation for interaction between residual gas and proton beam
Park, K. M.; Kim, H. S.; Yoon, S. P.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
The electromagnet, vacuum, and radio frequency (RF) are fundamental building blocks of accelerator. Most of the accelerators demands ultra-high vacuum except for linear accelerator in which particles travels to the target 1 time. The linear accelerators and normal vacuum devices are usually operated between 10{sup -7} and 10{sup -8} Torr. We have also tried to set up test stand for ion source generated in the pressure range from 10{sup -7} to 10{sup -8} Torr. As basic research for base pressure, we have examined the interactions between the accelerated particles and the residual gas in high vacuum based on the results of residual gas analysis (RGA). Based on RGA result, the interaction between residual gas and accelerated ion was examined. The residual gases were Ar, CO{sub 2}, H{sub 2}, H{sub 2}O, C{sub x}H{sub x}, N{sub 2}/CO, and O{sub 2} and most of residual gas was considered as H{sub 2}O. When number of collisions per second was considered, 1 neutron in 10{sup 11} had collision while traversing the target at 4 x 10{sup -8} Torr. Beam loss wasn't generated and energy loss and position distribution was calculated by using SRIM code.
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
Monte Carlo studies of the interaction of relativistic ions with nuclear emulsion
Hashemi-Nezhad, S. R.; Brandt, R.; Ditlov, V. A.; Firu, E.; Ganssauge, E.; Haiduc, M.; Neagu, A. T.; Westmeier, W.
2017-01-01
Interaction of high energy heavy ions with nuclear emulsion simulated using MCNPX 2.7 and its associated Monte Carlo codes. The simulations were performed for interactions of 4.1 AGeV/c 22Ne ions with nuclear emulsion event by event via batch files written for this purpose. It is shown that MCNPX correctly simulates the spallation as well as "complete destruction" interactions using the same physics principles and models. Cross-sections for interaction of 4.1 AGeV/c 22Ne ions with emulsion, Ag and Br in emulsion and rest of the nuclei in the emulsion were determined. Good agreements between calculations and experimental results were obtained.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Fortov, V E; Piriz, A R; Deutsch, C; Hoffmann, D H H
2009-01-01
In this paper we present numerical simulations of interaction of 450 GeV/c proton beam that is generated by Super Proton Synchrotron (SPS) at CERN, with a solid copper target. These simulations have been carried out using a two-dimensional hydrodynamic computer code, BIG2. This study has been done to assess the damage caused by these highly relativistic protons to equipment including collimators, absorbers and others in case of an uncontrolled accidental release of the beam. In fact a dedicated experimental facility named HiRadMat is under construction at CERN that will allow one to study these problems experimentally. The simulations presented in this paper will be very useful in designing these experiments and later to interpret the experimental results.
The relativistic spherical δ -shell interaction in R3: Spectrum and approximation
Mas, Albert; Pizzichillo, Fabio
2017-08-01
This note revolves on the free Dirac operator in R3 and its δ -shell interaction with electrostatic potentials supported on a sphere. On one hand, we characterize the eigenstates of those couplings by finding sharp constants and minimizers of some precise inequalities related to an uncertainty principle. On the other hand, we prove that the domains given by Dittrich et al. [J. Math. Phys. 30(12), 2875-2882 (1989)] and by Arrizabalaga et al. [J. Math. Pures Appl. 102(4), 617-639 (2014)] for the realization of an electrostatic spherical shell interaction coincide. Finally, we explore the spectral relation between the shell interaction and its approximation by short range potentials with shrinking support, improving previous results in the spherical case.
Simulation for Interaction of Linearly Polarized Relativistic Laser Pulses with Foil Targets
LIU Shi-Bing; TU Qin-Fen; YU Wei; CHEN Zhi-Hua; ZHANG Jie
2001-01-01
One-dimensional particle-in-cell simulation is presented for the interaction of ultra-short, linearly polarized intense laser pulses with thin foil targets. The results indicate that the strong competition between electromagnetic and electrostatic ponderomotive forces produced, respectively, by the laser and the electrostatic fields leads to novel behaviours of target electrons. It shows that the interaction is dominated by the 2ω (ω is laser frequency) component of the electrostatic ponderomotive force as well as that of the electromagnetic ponderomotive force.
Malaya K Nayak; Rajat K Chaudhuri
2009-09-01
Restricted active space (RAS) configuration interaction (CI) approach is employed to compute the , -odd interaction constant d for the ground ($^{2} \\sum_{1/2}$ ) state of YbF molecule. The present estimate of d = −1.164 × 1025 Hz/e-cm is expected to provide a reliable limit on the electron's electric dipole moment (EDM), e.
Lacey, Roy A
2014-01-01
The flow harmonic $v_{n}$ and the emission source radii $R_{\\text{out}}$, $R_{\\text{side}}$ and $R_{\\text{long}}$ are studied for a broad range of centrality selections and beam collision energies in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions at RHIC and the LHC respectively. They validate the acoustic scaling patterns expected for hydrodynamic-like expansion over the entire range of beam energies studied. The combined data sets allow estimates for the \\sqsn\\ dependence of the mean expansion speed $\\left$, emission duration $\\left$ and the viscous coefficients $\\left$ that encode the magnitude of the specific shear viscosity $\\left$. The estimates indicate initial-state model independent values of $\\left$ which are larger for the plasma produced at 2.76 TeV (LHC) compared to that produced at 200 GeV (RHIC) ($\\left_{\\text{LHC}}=2.2\\pm 0.2$ and $\\left_{\\text{RHIC}}=1.3\\pm 0.2$). They also show a non-monotonic \\sqsn\\ dependence for $\\left$, $\\left$ and $\\left$, with m...
Non-Hermitian interaction representation and its use in relativistic quantum mechanics
Znojil, Miloslav
2017-10-01
The textbook interaction-picture formulation of quantum mechanics is extended to cover the unitarily evolving systems in which the Hermiticity of the observables is guaranteed via an ad hoc amendment of the inner product in Hilbert space. These systems are sampled by the Klein-Gordon equation with a space- and time-dependent mass term.
Ohnishi, Akira; Furumoto, Takenori
2015-01-01
We investigate $\\Lambda\\Lambda$ interaction dependence of the $\\Lambda\\Lambda$ intensity correlation in high-energy heavy-ion collisions. By analyzing the correlation data recently obtained by the STAR collaboration based on theoretically proposed $\\Lambda\\Lambda$ interactions, we give a constraint on the $\\Lambda\\Lambda$ scattering length, $-1.25~\\text{fm} < a_0 < 0$, suggesting that $\\Lambda\\Lambda$ interaction is weakly attractive and there is no loosely bound state. In addition to the fermionic quantum statistics and the $\\Lambda\\Lambda$ interaction, effects of collective flow, feed-down from $\\Sigma^0$, and the residual source are also found to be important to understand the data. We demonstrate that the correlation data favor negative $\\Lambda\\Lambda$ scattering length with the pair purity parameter $\\lambda=(0.67)^2$ evaluated by using experimental data on the $\\Sigma^0/\\Lambda$ ratio, while the positive scattering length could be favored when we regard $\\lambda$ as a free fitting parameter.
Abdelmadjid Maireche
2016-11-01
Full Text Available In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t. potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS. The exact corrections for excited states are found straightforwardly for interactions in one-electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimal parameter ,which induced by position-position noncommutativity, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number and we have also shown that, the usual states in ordinary two and three dimensional spaces are canceled and has been replaced by new degenerated sub-states in the new quantum symmetries of (NC: 3D-RS and we have also applied our obtained results to the case of modified Krazer-Futes potential.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Sahai, Aakash A., E-mail: aakash.sahai@gmail.com [Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)
2014-05-15
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.
Sahai, Aakash A.
2014-05-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a0>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-12-01
Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.
Soliton pair generation in the interactions of Airy and nonlinear accelerating beams
Zhang, Yiqi; Wu, Zhenkun; Zheng, Huaibin; Lu, Keqing; Li, Yuanyuan; Zhang, Yanpeng
2013-01-01
We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as single solitons, can form in such interactions. If the interval between two incident beams is large relative to the width of their first lobes, the generated soliton pairs just propagate individually and do not interact. However, if the interval is comparable to the widths of the maximum lobes, the pairs interact and display varied behavior. In the in-phase case, they attract each other and exhibit stable bound, oscillating, and unbound states, after shedding some radiation initially. In the out-of-phase case, they repel each other and after an initial interaction, fly away as individual solitons. While the incident beams display acceleration, the solitons or soliton pairs generated from those beams do not.
Beam-beam simulation code BBSIM for particle accelerators
Kim, Hyung J.; Sen, Tanaji; /Fermilab
2011-01-01
A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.
Beam-beam simulation code BBSIM for particle accelerators
Kim, Hyung J.; Sen, Tanaji; /Fermilab
2011-01-01
A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. They also present results from the studies of stwo schemes proposed to compensate the beam-beam interactions: (a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current carrying wire, (b) the use of a low energy electron beam to compensate the head-on interactions in RHIC.
Cheng, Roseanne M
2013-01-01
We consider tidal encounters between a white dwarf and an intermediate mass black hole. Both weak encounters and those at the threshold of disruption are modeled. The numerical code combines mesh-based (PPM) hydrodynamics, a spectral method (FFT) solution of the self-gravity, and a general relativistic Fermi normal coordinate (FNC) system that follows the star and debris. FNCs provide an expansion of the black hole tidal field that includes quadrupole and higher multipole moments and relativistic corrections. We compute the mass loss from the white dwarf that occurs in weak tidal encounters. Secondly, we compute carefully the energy deposition onto the star, examining the effects of non-radial and radial mode excitation, surface layer heating, mass loss, and relativistic orbital motion. We find evidence of a slight relativistic suppression in tidal energy transfer. Tidal energy deposition is compared to orbital energy loss due to gravitational bremsstrahlung and the combined losses are used to estimate tidal ...
Beam interactions with surface waves and higher-order modes in oversized backward wave oscillators
Ogura, Kazuo; Kojima, Akihiko; Kawabe, Fumiaki; Yambe, Kiyoyuki [Niigata University, Niigata (Japan); Amin, Ruhul [Islamic University of Technology, Gazipur (Bangladesh)
2014-10-15
Beam interactions with surface waves and higher-order modes in an oversized backward wave oscillator (BWO) are studied. In addition to the well-known Cherenkov interaction, the slow cyclotron interaction occurs due to transverse perturbations of the electron beam. The Cherenkov interaction dominates the slow cyclotron interaction. Growth rates of both the interactions for the higher order modes are small compared with those for the surface-wave modes in an oversized BWO. The coaxial slow-wave structure exhibits a reduced number of higher-order modes, which consequently reduces the mode competition problem and improves beam interactions with higher order modes. For higher values of beam currents, the slow cyclotron wave grows at a faster rate than the Cherenkov waves.
Accidental Beam Losses during Injection in the Interaction Region IRI
Bocian, D
2004-01-01
In this note some of the mechanisms that could lead to beam losses at the LHC are described. Events with beam losses in the ATLAS experimental cavern are discussed. Some possible accident scenarios during injection (Eb=450 GeV) are presented. The aim of this paper is to show the most probable regions of the beam impact in the ATLAS cavern due to the discussed accident scenarios.
Long wavelength unstable modes in the far upstream of relativistic collisionless shocks
Rabinak, Itay; Waxman, Eli
2010-01-01
The growth rate of long wavelength kinetic instabilities arising due to the interaction of a collimated beam of relativistic particles and a cold unmagnetized plasma are calculated in the ultra relativistic limit. For sufficiently culminated beams, all long wave-length modes are shown to be Weibel-unstable, and a simple analytic expression for their growth rate is derived. For large transverse velocity spreads, these modes become stable. An analytic condition for stability is given. These analytic results, which generalize earlier ones given in the literature, are shown to be in agreement with numerical solutions of the dispersion equation and with the results of novel PIC simulations in which the electro-magnetic fields are restricted to a given k-mode. The results may describe the interaction of energetic cosmic rays, propagating into the far upstream of a relativistic collisionless shock, with a cold unmagnetized upstream. The long wavelength modes considered may be efficient in deflecting particles and co...
Spin-orbit interaction of light and diffraction of polarized beams
Bekshaev, Aleksandr Ya
2017-08-01
The edge diffraction of a homogeneously polarized light beam is studied theoretically based on the paraxial optics and Fresnel-Kirchhoff approximation, and the dependence of the diffracted beam pattern of the incident beam polarization is predicted. If the incident beam is circularly polarized, the trajectory of the diffracted beam center of gravity exhibits a small angular deviation from the geometrically expected direction. The deviation is parallel to the screen edge and reverses the sign with the polarization handedness; it is explicitly calculated for the case of a Gaussian incident beam with a plane wavefront. This effect is a manifestation of the spin-orbit interaction of light and can be interpreted as a revelation of the internal spin energy flow immanent in circularly polarized beams. It also exposes the vortex character of the weak longitudinal field component associated with the circularly polarized incident beam.
The Effect of Tensor Interaction in Splitting the Energy Levels of Relativistic Systems
Mohammad Reza Shojaei
2016-01-01
Full Text Available We solve approximately Dirac equation for Eckart plus Hulthen potentials with Coulomb-like and Yukawa-like tensor interaction in the presence of spin and pseudospin symmetry for k≠0. The formula method is used to obtain the energy eigenvalues and wave functions. We also discuss the energy eigenvalues and the Dirac spinors for Eckart plus Hulthen potentials with formula method. To show the accuracy of the present model, some numerical results are shown in both pseudospin and spin symmetry limits.
Pirnia, Alireza; Hu, Jiacheng; Peterson, Sean; Erath, Byron
2016-11-01
Energy can be extracted from flow instabilities in the environment for powering low consumption devices. When vortices pass tangentially over a flexible beam the lower pressure in the vortex core causes the beam to deflect, and induces sustained oscillations which can be converted into energy via piezoelectric materials. The beam dynamics can be parameterized according to the beam properties (nondimensional mass and stiffness ratios) as well as the vortex properties (size, vortex circulation strength and advection velocity). Recently, inviscid models have been developed to solve this fluid-structure interaction problem but they do not capture viscous interactions; features that become more prominent when the beam is positioned close to the vortex core. In this study the interaction of a vortex ring passing tangentially over a flexible beam as a function of circulation strength, beam properties, and offset distance are investigated to identify how viscous interactions influence the energy exchange process. Particle image velocimetry is acquired in tandem with the beam dynamics. The velocity and pressure fields, and transient beam dynamics are compared and contrasted with an inviscid model to identify the role of viscous interactions. This work was supported by the National Science Foundation Grant CBET #1511761.
Thomas, Alexander; Ridgers, Christopher; Bulanov, Stepan; Griffin, Blake; Mangles, Stuart
2012-10-01
We present numerical calculations of the angularly resolved radiation spectrum from a relativistic electron beam interacting with an ultrashort laser pulse. These calculations include the effect of semi-classical radiation reaction forces including a Gaunt factor for synchrotron radiation. For a laser of 5x10^21 Wcm-2 intensity interacting with a 200 MeV electron beam with an emittance similar to that in laser wakefield acceleration experiments, radiation reaction does not produce a significant change in the angular and energy distribution of photons. However the effects of radiation reaction are clear when observing the electron beam properties. The result is that near-term experiments using such a counter-propagating beam-laser geometry should be able to measure the effects of quantum effects in radiation reaction. The calculations also show that the brilliance of this source is very high, with a peak spectral brilliance exceeding 10^29 photons,s-1mm-2mrad-2(0.1% bandwidth)-1 with approximately 2% efficiency and with a peak energy of 10 MeV.
Cavity-Beam-Transmitter Interaction Formula Collection with Derivation
Tückmantel, J
2010-01-01
The fundamental beam-cavity-transmitter relations for accelerating and deflecting/crab cavities are presented for steady state and time-varying situations. For completeness a compact proof of the Panofsky-Wenzel theorem is given and the fundamental beam loading theorem is derived.Also the determination of relative bunch form factors is shown.
Interactions of $B_{c}$ Meson in Relativistic Heavy-Ion Collisions
Irfan, Shaheen; Masud, Bilal
2015-01-01
We calculate the absorbtion cross-sections of $B_{c}$ mesons by $\\pi$ and $\\rho$ mesons including anomalous processes using an effective hadronic Lagrangian. The enhancement of Bc production is expected due to QGP formation in heavy-ion experiments. However it is also expected that the production rate of Bc meson can be affected due to the interaction with comovers. These processes are relevant for experiments at RHIC. Thermal average cross-sections of $B_{c}$ are evaluated with form factor when a cut off parameter in it is 1 and 2 GeV. Using these thermal average cross-sections in the kinetic equation we investigate the time evolution of $B_{c}$ mesons due to dissociation in the hadronic matter formed at RHIC.
Current scaling and plasma heating in relativistic laser-solid interaction
Kluge, Thomas; Huang, Lingen; Metzkes, Josefine; Cowan, Thomas E; Schramm, Ulrich
2015-01-01
Intense and energetic electron currents can be generated by ultra-intense lasers interacting with solid density targets. Especially for ultra-short laser pulses their temporal evolution needs to be taken into account for many non-linear processes as instantaneous currents may differ significantly from the average. Hence, a dynamic model including the temporal variation of the electron currents which goes beyond a simple bunching with twice the laser frequency but otherwise constant current is needed. Here we present a new time-dependent model to describe the laser generated currents and obtain simple expressions for the temporal evolution and resulting corrections of averages. To exemplify the model and its predictive capabilities we show the impact of temporal evolution, spectral distribution and spatial modulations on Ohmic heating of the bulk target material.
Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V
2012-12-21
We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.
Beam, vacuum and walls, a 3-body interaction; Faisceau et vide, un melodrame a trois
Arianer, J
2002-11-01
The interactions between beams of accelerated particles, residual gas and walls involve complex physical processes. In most cases these interactions affect the quality of the vacuum and the value of the pressure. This course reviews all these interactions in a pedagogical and practical way that may be useful for any user of devices involving beams of particles. This document is made up of 6 chapters: 1) basic notions (Maxwell-Boltzmann distribution, kinematics of charged particles, collisions, excitation and ionization), 2) properties of beams (emittance, local effects, and synchrotron radiation), 3) interactions between residual gas and particle beams (Bremsstrahlung radiation, energy loss due to ionization, charge shift of ion beams, photo-absorption and photo-ionization, and slowing-down in a plasma), 4) surface properties (crystal structure, and interaction between surface and the residual gas), 5) interaction between the beam and walls (reflection and diffraction of electrons, secondary emission of electrons, desorption induced by electron and ion impacts, photon production, ion-wall interaction, sputtering, ion penetration, surface ionization and thermal-ionization), and 6) radiation-wall interaction (diffusion, damping, photo-electric effect, desorption induced by photons, pair production and laser-surface interaction). (A.C.)
Geissel, H.
1997-03-01
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.
Geant4 simulations on Compton scattering of laser photons on relativistic electrons
Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)
2015-02-24
Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.
Relativistic cosmology; Cosmologia Relativista
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST
LLNL; Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.
2012-04-09
To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self
A laser-based beam profile monitor for the SLC/SLD interaction region
Ross, M. C.; Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.
1997-01-01
Beam size estimates made using beam-beam deflections are used for optimization of the Stanford Linear Collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1×0.6 μm (x,y) at 4.0×1010 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. Since the beam-beam deflection does not provide single beam size information, another method is needed for interaction point (IP) beam size optimization. The laser-based profile monitor uses a finely focused, 350-nm, wavelength-tripled yttrium-lithium-flouride (YLF) laser pulse that traverses the particle beam path about 29 cm away from the e+/e- IP. Compton scattered photons and degraded e+/e- are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. This is adequate for present or planned SLC beams. Design and preliminary results will be presented.
Gemard, M
2014-01-01
The centrality dependence of spectra of identified particles in collisions between ultrarelativistic heavy ions with a center of mass energy ($\\sqrt{s}$) of 39 and 11.5 $AGeV$ is analyzed in the core - corona model. We show that at these energies the spectra can be well understood assuming that they are composed of two components whose relative fraction depends on the centrality of the interaction: The core component which describes an equilibrated quark gluon plasma and the corona component which is caused by nucleons close to the surface of the interaction zone which scatter only once and which is identical to that observed in proton-proton collisions. The success of this approach at 39 and 11.5 $AGeV$ shows that the physics does not change between this energy and $\\sqrt{s}=200~ AGeV$ for which this model has been developed (Aichelin 2008). This presents circumstantial evidence that a quark gluon plasma is also created at center of mass energies as low as 11.5 $AGeV$.
Coherent radiation of relativistic electrons in wire metamaterial
Soboleva, V.; Naumenko, G.; Bleko, V.
2016-07-01
We present in this work the experimental investigation of the interaction of relativistic electron field with wire metamaterial. The measurements of the spectral-angular characteristics of coherent radiation were done in millimeter wavelength region in far-field zone at the relativistic electron beam with energy of 6 MeV. Used target represent the right triangular prism that consist of periodic placed copper wires. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. Spectral angular characteristics of radiation from the wire target were compared with the characteristics of Cherenkov radiation generated in similar experimental conditions in a dielectric target (Teflon prism) that has the same form and sizes.
Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity
Ignatyeva, Daria O.; Sukhorukov, Anatoly P. [Lomonosov Moscow State University, Moscow (Russian Federation)
2012-12-15
We present a novel theory of surface plasmon polariton interaction on the surface of dielectric with saturable Kerr nonlinearity. The effect of the total internal reflection of a weak signal plasmon beam from a high-power reference beam is discussed. Both ray and wave theories are used to describe signal propagation. The effect of the signal tunneling through the narrow inhomogeneity induced by the reference beam is considered. (orig.)
Management of the orbital angular momentum of vortex beams in a quadratic nonlinear interaction
Bovino, Fabio A; Bertolotti, Mario; Sibilia, Concita
2011-01-01
Light intensity control of the orbital angular momentum of the fundamental beam in a quadratic nonlinear process is theoretically and numerically presented. In particular we analyzed a seeded second harmonic generation process in presence of orbital angular momentum of the interacting beams due both to on axis and off axis optical vortices. Examples are proposed and discussed.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC
Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.
2011-03-28
Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.
Beam Interaction with Thin Materials: Heat Deposition, Cooling Phenomena and Damage Limits
Sapinski, M
2012-01-01
Thin targets, inserted into particle beams can serve various purposes, starting from beam emittance measurements like in wire scanner or scintillating screens up to beam content modifications like in case of stripper foils. The mechanisms of energy deposition in a thin target for various beam types are discussed, together with properties of particles produced in this kind of interaction. The cooldown processes, from heat transfer up to cooling by sublimation, and their efficiencies are presented. Finally, damage conditions are discussed and conclusions about typical damage limits are drawn. The experiments performed with the wire scanners at CERN accelerators and a mathematical model of heating and cooling of a wire are presented.
Interactions of space-variant polarization beams with Zeeman-shifted rubidium vapor
Szapiro, Anat; Levy, Uriel
2015-01-01
Space variant beams are of great importance as a variety of applications have emerged in recent years. As such, manipulation of their degrees of freedom is highly desired. Here, by exploiting the circular dichroism and circular birefringence in a Zeeman-shifted Rb medium, we study the general interaction of space variant beams with such a medium. We present two particular cases of radial polarization and hybrid polarization beams where the control of the polarization states is demonstrated experimentally. Moreover, we show that a Zeeman-shifted atomic system can be used as an analyzer for such space variant beams
Fardad, Shima; Mills, Matthew S; Zhang, Peng; Man, Weining; Chen, Zhigang; Christodoulides, D N
2013-09-15
We demonstrate optical interactions between stable self-trapped optical beams in soft-matter systems with pre-engineered saturable self-focusing optical nonlinearities. Our experiments, carried out in dilute suspensions of particles with negative polarizabilities, show that optical beam interactions can vary from attractive to repulsive, or can display an energy exchange depending on the initial relative phases. The corresponding observations are in good agreement with theoretical predictions.
Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma
Kyrkos, S.; Kalman, G.; Rosenberg, M.
2008-11-01
In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).
Optical Gaussian beam interaction with one-dimensional thermal wave in the Raman-Nath configuration.
Bukowski, Roman J
2009-03-01
Optical Gaussian beam interaction with a one-dimensional temperature field in the form of a thermal wave in the Raman-Nath configuration is analyzed. For the description of the Gaussian beam propagation through the nonstationary temperature field the complex geometric optics method was used. The influence of the refractive coefficient modulation by thermal wave on the complex ray phase, path, and amplitude was taken into account. It was assumed that for detection of the modulated Gaussian beam parameters two types of detector can be used: quadrant photodiodes or centroidal photodiodes. The influence of such parameters as the size and position of the Gaussian beam waist, the laser-screen (detector) distance, the thermal wave beam position and width, as well as thermal wave frequency and the distance between the probing optical beam axis and source of thermal waves on the so-called normal signal was taken into account.
Robb, G R M
2012-01-01
In arXiv:1202.0691, Geloni et al. criticise our recent work describing the spontaneous emission by a relativistic, undulating electron beam. In particular they claim that our prediction of a quantum regime in which evolution of the electron momentum distribution occurs as a sequential population of discrete momentum groups rather than in terms of a drift-diffusion process is unphysical and artificial. We show that the criticism of our model contained in arXiv:1202.0691 is unfounded.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Wagner, F; Deppert, O; Brabetz, C; Fiala, P; Kleinschmidt, A; Poth, P; Schanz, V A; Tebartz, A; Zielbauer, B; Roth, M; Stöhlker, T; Bagnoud, V
2016-05-20
We present a study of laser-driven ion acceleration with micrometer and submicrometer thick plastic targets. Using laser pulses with high temporal contrast and an intensity of the order of 10^{20} W/cm^{2} we observe proton beams with cutoff energies in excess of 85 MeV and particle numbers of 10^{9} in an energy bin of 1 MeV around this maximum. We show that applying the target normal sheath acceleration mechanism with submicrometer thick targets is a very robust way to achieve such high ion energies and particle fluxes. Our results are backed with 2D particle in cell simulations furthermore predicting cutoff energies above 200 MeV for acceleration based on relativistic transparency. This predicted regime can be probed after a few technically feasible adjustments of the laser and target parameters.
Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory
2012-06-19
Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.
Ali, Muddassir; Henda, Redhouane
2017-02-01
A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.
Classical simulation of relativistic Zitterbewegung in photonic lattices.
Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander
2010-10-01
We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.
Observation of relativistic antihydrogen atoms
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
KARSCH, F.
2006-03-26
At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density.
Transverse relativistic effects in paraxial wave interference
Bliokh, Konstantin Y; Nori, Franco
2013-01-01
We consider relativistic deformations of interfering paraxial waves moving in the transverse direction. Owing to superluminal transverse phase velocities, noticeable deformations of the interference patterns arise when the waves move with respect to each other with non-relativistic velocities. Similar distortions also appear on a mutual tilt of the interfering waves, which causes a phase delay analogous to the relativistic time delay. We illustrate these observations by the interference between a vortex wave beam and a plane wave, which exhibits a pronounced deformation of the radial fringes into a fork-like pattern (relativistic Hall effect). Furthermore, we describe an additional relativistic motion of the interference fringes (a counter-rotation in the vortex case), which become noticeable at the same non-relativistic velocities.
Investigation of plasma–surface interaction at plasma beam facilities
Kurnaev, V., E-mail: kurnaev@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Vizgalov, I.; Gutorov, K. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I. [Institute of Atomic Energy, National Nuclear Center the Republic of Kazakhstan, Street Krasnoarmejsky, 10, 071100 Kurchatov (Kazakhstan); Klimov, N. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, 142190 Moscow (Russian Federation)
2015-08-15
The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m{sup 2}. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ⋅ 10{sup 22} m{sup −2} s{sup −1}. Initial tests of the KTM PBF’s capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF)
Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783
Pramanik, Souvik; Ghosh, Subir
2013-10-01
We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.
Beam dynamics of the interaction region solenoid in a linear collider due to a crossing angle
P. Tenenbaum
2003-06-01
Full Text Available Future linear colliders may require a nonzero crossing angle between the two beams at the interaction point (IP. This requirement in turn implies that the beams will pass through the strong interaction region solenoid with an angle, and thus that the component of the solenoidal field perpendicular to the beam trajectory is nonzero. The interaction of the beam and the solenoidal field in the presence of a crossing angle will cause optical effects not observed for beams passing through the solenoid on axis; these effects include dispersion, deflection of the beam, and synchrotron radiation effects. For a purely solenoidal field, the optical effects which are relevant to luminosity exactly cancel at the IP when the influence of the solenoid’s fringe field is taken into account. Beam size growth due to synchrotron radiation in the solenoid is proportional to the fifth power of the product of the solenoidal field, the length of the solenoid, and the crossing angle. Examples based on proposed linear collider detector solenoid configurations are presented.
Binary collision rates of relativistic thermal plasmas. I Theoretical framework
Dermer, C. D.
1985-01-01
Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.
Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis
2014-05-01
Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how
石金水; 林郁正; 丁伯南
2001-01-01
分析了螺线管场下影响强流相对论电子束聚焦的主要因素，并给出了各影响因素所限制的最小焦斑。计算结果表明，当发射度和能散度的值分别控制在0.397mm*rad和1%以内, 单个螺线管磁轴的偏心不大于0.54mrad；初始注入束偏心不大于1mrad时，对于20MeV、3kA的电子束和15MeV、2.5kA的电子束，最终打靶束焦斑均可小于1.5mm。%High-resolution X-ray photographing needs to focus intense relativistic electron beams of several thousand amperes on the bremsstrahlung converter target, thereon forming a small and stable spot. In the ideal case, electron beams cn be focused to a point. However, due to the influence of such factrs as the space charge effect, the beam emittance, the spherical aberration of the lens, and the chromatic aberration, the minimization of the spot size of electron beams is limited. Furthermore, the corkscrew oscillation of the beam centroid not only leads to the increase of the spot size but also to the distortion of the spot shape.The effects of solenoidal field on the spot size of intense relativistic electronic beams are analyzed and the minimal spot sizes limited by various factors are given. The results of the numerical calculation show that if the emittance ≤0.397mm*rad and the energy sweep ≤1%,the ultimate minimal spot size for 20MeV, 3kA and 15MeV, 3kA intense beams is less than 1.5mm when the tilt of each solenoid ≤1mrad and the injection tilt of beams ≤1mrad．
Kmiecik, M.; Maj, A.; Ciemala, M.; Grebosz, J.; Lach, M.; Maier, K.H.; Mazurek, K.; Meczynski, W.; Myalski, S.; Styczen, J.; Zieblinski, M. [H. Niewodniczanski Inst. of Nuclear Physics PAN, Krakow (Poland); Gerl, J.; Becker, F.; Caceres, L.; Doornenbal, P.; Gorska, M.; Grawe, H.; Kojuharov, I.; Prokopowicz, W.; Saito, N.; Saito, T.R.; Wollersheim, H.J. [GSI, Darmstadt (Germany); Neyens, G.; Mallion, S.; Vermeulen, N. [Inst. voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Atanasova, L.; Detistov, P. [Univ. of Sofia ' St. Kl. Ohridski' (Bulgaria). Faculty of Physics; Balabanski, D.L. [Univ. degli Studi di Camerino (Italy); INFN sez. Perugia, Dipt. di Fisica, Camerino (Italy); Bulgarian Academy of Sciences, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Bednarczyk, P. [H. Niewodniczanski Inst. of Nuclear Physics PAN, Krakow (Poland); GSI, Darmstadt (Germany); Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Wieland, O. [INFN Sez. di Milano (Italy); Bracco, A.; Camera, F.; Crespi, F.C.L.; Leoni, S.; Montanari, D. [INFN Sez. di Milano (Italy); Univ. degli Studi di Milano (Italy); Chamoli, S.K.; Hass, M.; Lakshmi, S. [Weizman Inst. of Science, Rehovot (Israel); Chmel, S. [Fraunhofer INT, Euskirchen (Germany); Daugas, J.M. [CEA, DAM, DIF, Arpajon Cedex (France); Georgiev, G. [Univ. Paris-Sud 11, CNRS/IN2P3, CSNSM, Orsay-Campus (France); Gladnishki, K. [Univ. of Sofia ' St. Kl. Ohridski' (Bulgaria). Faculty of Physics; Univ. degli Studi di Camerino (Italy); INFN sez. Perugia, Dipt. di Fisica, Camerino (Italy); Hoischen, R.; Rudolph, D. [Lund Univ., Dept. of Physics, Lund (Sweden); Ilie, G. [Univ. zu Koeln, Inst. fuer Kernphysik, Koeln (Germany); National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Ionescu-Bujor, M. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Jolie, J. [Univ. zu Koeln, Institut fuer Kernphysik, Koeln (Germany)] [and others
2010-08-15
The feasibility of measuring g -factors using the TDPAD method applied to high-energy, heavy fragmentation products is explored. The 2623keV I{sup {pi}}=12{sup +} isomer in {sup 192}Pb with {tau}=1.57{mu}s has been produced using the fragmentation of a 1A GeV {sup 238}U beam. The results presented demonstrate for the first time that such heavy nuclei produced in a fragmentation reaction with a relativistic beam are sufficiently well spin-aligned. Moreover, the rather large value of the alignment, 28(10)% of the maximum possible, is preserved during the separation process allowing the determination of magnetic moments. The measured values of the lifetime, {tau}=1.54(9) {mu}s, and the g-factor, g=-0.175(20), agree with the results of previous investigations using fusion-evaporation reactions. (orig.)
Hunting for Contact Interactions at HERA with polarized lepton and proton beams
Virey, J M
1999-01-01
We explore the discovery and analysis potentials of the HERA collider, with and without polarized beams, in search for electron-quark contact interactions in the neutral current channel. We find that the sensitivity to contact interactions when both beams are polarized is similar to the unpolarized case, and is better than in the case where one has only lepton polarization. We emphasize that the measurement of spin asymmetries in such a polarized context could give some crucial informations on the chiral structure of these postulated new interactions. The experimental conditions are carefully taken into account.
Interaction of the ATA beam with the TM/sub 030/ mode of the accelerating cells
Neil, V.K.
1985-02-14
The interaction of the electron beam in the Advanced Test Accelerator with an azimuthally symmetric mode of the accelerating cells is investigated theoretically. The interaction possibly could cause modulation of the beam current at the resonant frequency of the mode. Values of the shunt impedance and Q value of the mode were obtained from previous measurement and analysis. Lagranian hydrodynamics is employed and a WKB solution to the equation of motion is obtained. Results indicate that the interaction will not be a problem in the accelerator.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT
Friedlander, Erwin M.; Heckman, Harry H.
1982-04-01
Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.
Probing the short range spin dependent interactions by polarized {sup 3}He atom beams
Yan, H. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Sun, G.A.; Gong, J.; Pang, B.B.; Wang, Y.; Yang, Y.W.; Zhang, J.; Zhang, Y. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China)
2014-10-15
Experiments using polarized {sup 3}He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size {sup 3}He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by μ-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ∝ 10{sup 4}. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ∝ 10{sup 2} to ∝ 10{sup 8} over the current experiments at the millimeter range. (orig.)
Chaitanya, N Apurv; Banerji, J; Samanta, G K
2016-01-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.
2016-09-01
Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.
Wu, D; Luan, S X; Yu, W
2015-01-01
As a continuation of the previous work "Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser-matter interaction at relativistic intensities [arXiv: 1512.02411]", we have investigated the role of circularly polarized (CP) laser pulses while keeping other conditions the same. It is found that in the presence of large scale pre-formed plasmas, super-high energetic electrons can be generated at relativistic CP laser-solid interactions. For laser of intensity 10$^{20}\\ $W$/$cm$^2$ and pre-plasma scale-length 10$\\ \\mu$m, the cut-off energy of electron by CP laser is 120$\\ $MeV compared with 100$\\ $MeV in the case of linearly polarized (LP) laser. The unexpected super-high energetic electron acceleration can also be explained by the two-stage acceleration model, by considering the polarization transition of the reflected laser from CP to elliptically polarized (EP). The polarization state transition is addressed, and a modified scaling law in the presence of EP laser is obt...
Wu, D; Luan, S X; Yu, W
2016-01-01
The two stage electron acceleration model [arXiv: 1512.02411 and arXiv: 1512.07546] is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the cut-off electron kinetic energy is controllable by the external magnetic field strength and directions. Further studies indicate that for a right-hand circularly polarized laser (RH-CP) of intensity $10^{20}\\ \\text{W}/\\text{cm}^2$ and pre-plasma scale length $10\\ \\mu\\text{m}$, the cut-off electron kinetic energy can be as high as $500\\ \\text{MeV}$, when a homogeneous external magnetic field of exceeding $10000\\ \\text{T}$ (or $B=\\omega_{c}/\\omega_0>1$) is loaded along the laser propagation direction, which is a significant increase compared with that $120\\ \\text{MeV}$ without external magnetic field. A laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions with $B=\\omega_{c}/\\omega_0>1$, which is responsible for thes...
Marcos, S [Departamento de FIsica Moderna, Universidad de Cantabria, E-39005 Santander (Spain); Savushkin, L N [Department of Physics, St Petersburg University for Telecommunications, 191065 St Petersburg (Russian Federation); Fomenko, V N [Department of Mathematics, St Petersburg University for Railway Engineering, 190031 St Petersburg (Russian Federation); Lopez-Quelle, M [Departamento de FIsica Aplicada, Universidad de Cantabria, E-39005 Santander (Spain); Niembro, R [Departamento de FIsica Moderna, Universidad de Cantabria, E-39005 Santander (Spain)
2004-06-01
An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities including products of six and eight fermion fields. This type of NLSI corresponds to the zero-range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies with a strong isovector dependence. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
King, M.; Gray, R.J.; Powell, H.W.; MacLellan, D.A.; Gonzalez-Izquierdo, B. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L.C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Hicks, G.S.; Dover, N.P. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Rusby, D.R. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Carroll, D.C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Padda, H. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Torres, R. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Kar, S. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.J.; Musgrave, I.O. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Najmudin, Z. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
2016-09-01
At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Many fields interaction: Beam splitters and waveguide arrays
Mar-Sarao, R.; Soto-Eguibar, F.; Moya-Cessa, H. [INAOE, Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51 y 216, 72000, Puebla, Pue. (Mexico)
2011-05-15
We study the interaction of many fields. We obtain an effective Hamiltonian for this system by using a method recently introduced that produces a small rotation to the Hamiltonian that allows to neglect some terms in the rotated Hamiltonian. We show that coherent states remain coherent under the action of a quadratic Hamiltonian and by solving the eigenvalue and eigenvector problem for tridiagonal matrices we also show that a system of n interacting harmonic oscillators, initially in coherent states, remain coherent during the interaction. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions
Scott, R H H
2015-01-01
A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.
Goncalves Jorge, Patrik
The Future Circular hadron-hadron Collider (FCC-hh) is a design study for a 100 TeV centre-of-mass energy. The dynamics of the beams in such a collider poses many challenges, in particular the amount of energy stored in each beam (8.4 GJ) makes them very destructive and therefore requires a tight control of the machine and beam parameters during the full cycle in order to avoid damages and reach the collider designed performances. The FCC-hh features an increase of the beam brightness during the cycle due to the presence of synchrotron radiation damping at high energy. As a result, the electromagnetic forces that the two beams exert on each other, the so-called beam-beam forces, are enhanced and might become an issue for the safe operation of the machine. In this new regime, the impact of the beam-beam interaction on the optics becomes non-negligible. In this master thesis, for the first time, the impact of the beam-beam interaction on the optics ($\\beta$-beating) is measured in a hadron collider (LHC). The e...
Propagation and interaction of cos-Gaussian beams in photorefractive crystals
Jiang, Qichang; Su, Yanli; Nie, Hexian; Ma, Ziwei; Li, Yonghong
2017-07-01
Investigate numerically the propagation and interaction of cos-Gaussian beams in a biased photorefractive crystal by the finite difference method. The results show that the single cos-Gaussian beam can evolve into Y-type breathing solitons when the self-focusing nonlinearity is small, and the soliton properties can be controlled by adjusting the nonlinear parameter or cos modulation parameter. The distance between two components of Y-type breathing solitons will decrease with increasing the nonlinear parameter or decreasing the cos modulation parameter. The breathing soliton with two weak sidebands can form when the self-focusing nonlinearity is big. Moreover, two internal components of two cos-Gaussian beams have obvious interaction but two outside components have tiny interaction.
贺妮妮; 刘笑兰
2012-01-01
The relativistic electrostatic two-stream instability can take place in the fast ignition process of in-ertial confinement fusion, which has an important influence on the fast electron propagation and energy deposition. From the full covariant relativistic hydrodynamic equations of electromagnetism,the relativistic electrostatic two-stream instability has been investigated both (delete) analytically and numerically. The dispersion relation for cold relativistic electron beams was derived. The numerical results indicated that a-long with the fast-electron beam density increasing,the electron two-stream instability growth rate would become larger,while the unstable range would become smaller and shift to the smaller wave number region. By contrast, as the speed of fast stream increases, the growth rate and unstable region decrease. In brief,the two-stream instability is restrained.%激光核聚变的“快点火”过程中高能电子的产生会引起相对论性静电双流不稳定性,它对相对论性电子的传输和能量沉积有重要影响.从完全协变相对论性电磁流体力学方程出发,研究了相对论性冷电子束流激发的静电双流不稳定性.研究表明,快电子束流速度越大,对不稳定的增长率和不稳定区域的抑制性越强,即相对论性越强,越能抑制双流不稳定性的产生;而快电子束密度越大,越易于引发双流不稳定性；随着快电子束流速度以及束流密度的增大,不稳定性最大增长率都向小波数区域移动.
A Theory of Interaction Mechanism between Laser Beam and Paper Material
Piili, Heidi
Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.
Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi
2016-08-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ˜1% of electrons and ˜8% of the electron energy. Its power-law index is -2.6. The acceleration efficiency is ˜23% by number and ˜50% by energy, and the power-law index is -1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.
Ardaneh, Kazem; Nishikawa, Ken-Ichi
2016-01-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of relativistic jet into ambient plasma, leading to two distinct shocks (named as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of ion kinetic energy. The double layers formed in the trailing and leading edges then accelerated the electrons by the ion kinetic energy. The electron distribution function in the leading edge shows a clear non-thermal power-law tail which contains $\\sim1\\%$ of electrons and $\\sim8\\%$ of electron energy. Its power-law index is -2.6. The acceleration efficiency is $\\sim23\\%$ by number and $\\sim50\\%$ by energy and the power-law index is -1.8 for electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing results of 3D simulation w...
Interaction of Airy-Gaussian beams in saturable media
Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei
2016-08-01
Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
A relativistic correction to semiclassical charmonium
Weiss, J.
1995-09-01
It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.
A QMD description of the interaction of ion beams with matter
Garzelli, M V; Battistoni, G.; Cerutti, F.; Ferrari, A.; Gadioli, E.; Ballarini, F.; Ottolenghi, A.; Fasso, A.; Pinsky, Lawrence S.; Ranft, J.
2006-01-01
Heavy-ion collisions can be simulated by means of comprehensive approaches, to include the many different reaction mechanisms which may contribute. QMD models and their relativistic extensions are examples of these approaches based on Monte Carlo techniques. In this paper are shown some results obtained by coupling a new QMD code, which describes the fast stage of ion-ion collisions, to the evaporation /fission/Fermi break-up and photon de-excitation routines present in the FLUKA multipurpose Monte Carlo transport and interaction code. In particular, we compare the predicted neutron spectra to available experimental data from thin and thick target irradiations. We show also some predictions of particle and charged fragment fluences for the interaction of C and Fe ions with a thick PMMA target, which may be useful to assess the risk of side-effects in the hadron therapy of tumours.
Sydorenko, Dmytro; Kaganovich, Igor D.; Ventzek, Peter L. G.
2016-10-01
Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam- plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system.
High and Low Energy Particle Beams Interactions with Solids.
1986-01-01
1985). Laser Ablation of Organic Polymers: Microscopic Models for Photochemical and Thermal Processes, B. J. Garrison and R. Srinivasan, Journal of...746-748 (1985). Partial support from NSF. Cluster Desorbed, Ejected and Ablated from Solid Surfaces B. J. Garrison, Symposium of Atomic and Surface...Interaction of Silane /Phosphine/Silicon System, B. S. Meyerson and M. L. Yu, J. Electroche. Soc. 131, 2366 (1984). Partial IBM support. The Origin of Oxidation
Deuteron beam interaction with lithium jet in a neutron source test facility
Hassanein, A.
1996-10-01
Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium—lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥ 14 MeV) neutrons required to simulate a fusion environment via the Li (d, n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities.
Interaction of ion-acoustic solitons with electron beam in warm plasmas with superthermal electrons
Esfandyari-Kalejahi, A R
2012-01-01
Propagation of ion-acoustic solitary waves (IASWs) is studied using the hydrodynamic equations coupled with the Poisson equation in a warm plasma consisting of adiabatic ions and superthermal (Kappa distributed) electrons in presence of an electron-beam component. In the linear limit, the dispersion relation for ion-acoustic (IA) waves is obtained by linearizing of basic equations. On the other hand, in the nonlinear analysis, an energy-balance like equation involving Sagdeev's pseudo-potential is derived in order to investigate arbitrary amplitude IA solitons. The Mach number range is determined in which, propagation and characteristics of IA solitons are analyzed both parametrically and numerically. The variation of amplitude and width of electrostatic (ES) excitations as a result of superthermality (via) and also the physical parameters (ion temperature, soliton speed, electron-beam density and electron-beam velocity) are examined. A typical interaction between IASWs and the electron-beam in plasma is conf...
A. Gover
2006-06-01
Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Quantum beam generations via the laser-cluster interactions
Fukuda, Yuji; Faenov, Anatoly; Pikuz, Tania; Tampo, Motonobu; Yogo, Akifumi; Kando, Masaki; Hayashi, Yukio; Kameshima, Takeshi; Homma, Takayuki; Pirozhkov, Alexander; Kato, Yoshiaki; Tajima, Toshiki; Daido, Hiroyuki; Bulanov, Sergei
2008-11-01
The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO2 clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm^2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.
Analytical Approach to the Beam-Beam Interaction with the Hourglass Effect
AUTHOR|(CDS)2090622; Appleby, Robert Barrie
2015-01-01
The hourglass effect arises due to a coupling between the longitudinal and transverse bunch planes. This coupling will result in a charge density distribution that will vary parabolically through the Interaction Point (IP). Here a method of analytically determining the electric field a particle receives from a charge density distribution which varies parabolically when centred at the IP, is derived for a 2D transverse model of a Gaussian bunch.
Ibnouzahir, M.
1995-03-01
The study of relativistic heavy ion collisions permit an approach of the properties of dense and not hadronic matter, and an analysis of the reaction mechanisms. Such studies are also interesting on the biological point of view, since there exist now well defined projects concerning the radiotherapy with high LET particles as neutrons, protons, heavy ions. It is thus necessary to have a good understanding of the processes which occur in the propagation of a relativistic heavy ion beam (E{>=} 100 A.MeV) in matter. We have elaborated a three dimensional transport code, using a Monte Carlo method, in order to describe the propagation of Ne and Ar ions in water. Violent nuclear collisions giving fragmentation process have been taken into account by use of the FREESCO program. We have tested the validity of our transport model and we show an important change of the energy deposition at the vicinity of the Bragg peak; such a distortion, due mainly to fragmentation reactions, is of a great interest for biological applications. (author).
Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)
2016-02-15
We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.
Forman, William
2011-09-01
We propose a 310 ks ACIS-I observation of the merging cluster A115 whose northern subcluster, A115-N, hosts 3C28 which shows two wispy "tails" pointing in the direction of subcluster motion! With 360 ks (310 ks new, plus 50 ks archival), we can study the hydrodynamics of the gas flow in and around A115-N to determine flow velocities that are traced by the radio plasma. We will measure and compare the circulation time of the gas to the aging time of the radio emitting electrons, understand the structure of the relativistic plasma (i.e., thin sheath or filled cavity) by measuring distortions in the X-ray surface brightness, investigate magnetic draping, and develop a 3D model for the merger using extensive optical spectroscopy with the velocity of A115-N measured from the X-ray analysis.
Ion beam modification of solids ion-solid interaction and radiation damage
Wesch, Werner
2016-01-01
This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...
Interaction of highly focused vector beams with a metal knife-edge
Quabis, S
2011-01-01
We investigate the interaction of highly focused linearly polarized optical beams with a metal knife-edge both theoretically and experimentally. A high numerical aperture objective focusses beams of various wavelengths onto samples of different sub-wavelength thicknesses made of several opaque and pure materials. The standard evaluation of the experimental data shows material and sample dependent spatial shifts of the reconstructed intensity distribution, where the orientation of the electric field with respect to the edge plays an important role. A deeper understanding of the interaction between the knife-edge and the incoming highly focused beam is obtained by extending previous studies on diffraction through a finite slit and incorporating plasmonic modes into the theoretical model.We achieve good qualitative agreement of our numerical simulations with the experimental findings.
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Leitgab, M
2014-01-01
In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m$^2$ with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to d...
Experimental investigation of electron beam wave interactions utilising short pulses
Wiggins, S M
2000-01-01
Experiments have investigated the production of ultra-short electromagnetic pulses and their interaction with electrons in various resonant structures. Diagnostic systems used in the measurements included large bandwidth detection systems for capturing the short pulses. Deconvolution techniques have been applied to account for bandwidth limitation of the detection systems and to extract the actual pulse amplitudes and durations from the data. A Martin-Puplett interferometer has been constructed for use as a Fourier transform spectrometer. The growth of superradiant electromagnetic spikes from short duration (0.5-1.0 ns), high current (0.6-2.0 kA) electron pulses has been investigated in a Ka-band Cherenkov maser and Ka- and W-band backward wave oscillators (BWO). In the Cherenkov maser, radiation spikes were produced with a peak power = 70 ps and a bandwidth <= 19 %. It is shown that coherent spontaneous emission from the leading edge of the electron pulse drives these interactions, giving rise to self-amp...
Verdebout, S.; Nazé, C. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Jönsson, P., E-mail: per.jonsson@mah.se [Faculty of Technology and Society, Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden); Rynkun, P. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania); Godefroid, M. [Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, B 1050 Brussels (Belgium); Gaigalas, G. [Institute of Theoretical Physics and Astronomy, Vilnius University, LT-01108 Vilnius (Lithuania)
2014-09-15
Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.
Kolmogorov, A., E-mail: anton.kolmogorov@gmail.com; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Atoian, G.; Ritter, J.; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Davydenko, V.; Ivanov, A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation)
2014-02-15
The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance
Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu
2012-01-01
The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…
Study of plasma formation in CW CO2 laser beam-metal surface interaction
Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.
1994-04-01
An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.
The Interaction of Functional and Dysfunctional Emotions during Balance Beam Performance
Cottyn, Jorge; De Clercq, Dirk; Crombez, Geert; Lenoir, Matthieu
2012-01-01
The interaction between functional and dysfunctional emotions, as one of the major tenets of the Individual Zones of Optimal Functioning (IZOF) model (Hanin, 2000), was studied in a sport specific setting. Fourteen female gymnasts performed three attempts of a compulsory balance beam routine at three different heights. Heart rate and self-report…
DeVolder, B.G.; Kwan, T.J.T.; Fulton, R.D.; Moir, D.C.; Oro, D.M.; Prono, D.S. [Los Alamos National Lab., NM (United States)
1997-12-31
The conversion of an intense relativistic electron beam into x-rays for radiographic imaging is achieved through the bremsstrahlung process of electrons in a target of optimal thickness. To achieve desirable resolution for thick objects, an extremely high-brightness electron beam is used, and a significant amount of beam energy can be deposited in a small area of the target. Vaporization of the target material and expansion of the resultant plasma can occur. In a multi-pulsing design, which will resolve dynamic behavior of the object, the expanding plasma can have an effect on the quality of subsequent electron beam pulses. The evolution of the plasma was investigated using a two-dimensional Eulerian magnetohydrodynamic code. The driving, or initial, condition for the plasma is the energy deposited in the target by the electron beam. Because the spatial and temporal beam energy deposition profiles can affect the plasma dynamics several deposition models were tested. Experiments at Los Alamos` Integrated Test Stand (ITS) have characterized the expanding plasma for several target materials using a 5.25-MeV, 3.8-kA, 4-mm-diameter electron beam. Measurements such as axial expansion velocity helped benchmark the code and validate the deposition modes. Using the models that showed best agreement with the ITS experiments, calculations were done for a planned upgraded facility (20-MeV, 4.5-kA beam, spot size reduced by 1/4) to evaluate a multi-pulsing scheme in which the beam is moved to clean sections of the target for subsequent pulses. To minimize electron beam steering, means of confining the target plasma were also explored.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Energy loss of a fast-electron beam due to the excitation of collective oscillation in hot plasma
Ma Jin-Yi; Qiu Xi-Jun; Zhu Zhi-Yuan
2004-01-01
Energy loss due to a fast-electron beam interacting with the hot plasma at a high density is analysed theoretically.By splitting the particle density fluctuations into the individual part due to the random thermal motion of the individual electrons and the collective part due to plasma-wave excitation, we are concerned with the collective interaction of the relativistic plasma electrons resulting from the Coulomb interactions. Consequently, we derive the frequency of the hot plasma and the "Debye length" with the modification of the relativistic effect. And finally we calculate the energy loss of a fast-electron beam due to the excitation of collective oscillation in the hot plasma.
Cáceres, J O; Morato, M; González Ureña, A
2006-12-28
The interaction between a NO supersonic beam and a resonant radio frequency (RF) field is investigated using laser ionization coupled to imaging techniques. It is shown how the resonant interaction leads to a beam splitting of +/-0.2 degrees toward both positive and negative direction perpendicular to the beam propagation axis. This phenomenon is rationalized using a model based on molecular interferences produced by the action of the resonant RF electric field.
Arzhannikov, A. V.; Burmasov, V. S.; Ivanov, I. A.; Kuznetsov, S. A.; Postupaev, V. V.; Sinitsky, S. L.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russian Federation); Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Ave., Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Mekler, K. I.; Rovenskikh, A. F. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Polosatkin, S. V.; Sklyarov, V. F. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Ave., Novosibirsk 630092 (Russian Federation)
2014-08-15
The paper presents results of measurements of sub-terahertz electromagnetic emission from magnetized plasma during injection of a powerful relativistic electron beam of microsecond duration in plasma with the density of 3 × 10{sup 14 }cm{sup −3}. It was found that the spectrum of the radiation concentrated in three distinct regions with high level of spectral power density. The first region is located near f{sub 1} = 100 GHz; the second one is in the vicinity of 190 GHz, and the third region is in the frequency interval f{sub 3} = 280–340 GHz. Polarization vectors of the emission in the first and third regions (f{sub 1} and f{sub 3}) are directed mainly perpendicular to the magnetic field in the plasma. At the same time, the polarization of the radiation in the vicinity of f{sub 2} = 190 GHz is parallel to the magnetic field. The most likely mechanism of electromagnetic wave generation in the frequency regions f{sub 1} and f{sub 2} is the linear conversion of the plasma oscillations into the electromagnetic waves on strong gradients of the plasma density. The third region is situated in the vicinity of second harmonic of electron plasma frequency, and we explain this emission by the coalescence of the upper-hybrid oscillations at high level turbulence in plasma.
Attosecond Control of Relativistic Electron Bunches using Two-Colour Fields
Yeung, M; Bierbach, J; Li, L; Eckner, E; Kuschel, S; Woldegeorgis, A; Rödel, C; Sävert, A; Paulus, G G; Coughlan, M; Dromey, B; Zepf, M
2016-01-01
Energy coupling during relativistically intense laser-matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma-vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light-matter interaction physics and applications. These include research areas right at the forefront of extreme laser-plasma science such as laser-driven ion acceleration1, bright attosecond pulse generation2,3 and efficient energy coupling for the generation and study of warm dense matter4. Here we demonstrate attosecond control over the trajectories of relativistic electron bunches formed during such interactions by studying the emission of extreme ultraviolet (XUV) harmonic radiation. We describe how the precise addition of a second laser beam operating at the second harmonic of the driving laser pulse can significantly transform the interaction by modifying the accelerating potential provided by the fundamental ...
Probing the interaction between two microspheres in a single Gaussian beam optical trap
Parthasarathi, Praveen; Iyengar, Shruthi Subhash; Lakkegowda, Yogesha; Bhattacharya, Sarbari; Ananthamurthy, Sharath
2016-09-01
Interactions between trapped microspheres have been studied in two geometries so far: (i) using line optical tweezers and (ii) in traps using two counter propagating laser beams. In both trap geometries, the stable inter bead separations have been attributed to optical binding. One could also trap two such beads in a single beam Gaussian laser trap. While there are reports that address this configuration through theoretical or simulation based treatments, there has so far been no detailed experimental work that measures the interactions. In this work, we have recorded simultaneously the fluctuation spectra of two beads trapped along the laser propagation direction in a single Gaussian beam trap by measuring the back scattered signal from the trapping and a tracking laser beam that are counter propagating . The backscattering from the trapping laser monitors the bead encountered earlier in the propagation path. The counter propagating tracking laser, on the other hand, is used to monitor the fluctuations of the second bead. Detection is by using quadrant photo detectors placed at either end. The autocorrelation functions of both beads reveal marked departures from that obtained when there is only one bead in the trap. Moreover, the fall-off profiles of the autocorrelation indicates the presence of more than one relaxation time. This indicates a method of detecting the presence of a second bead in a trap without directly carrying out measurements on it. Further, a careful analysis of the relaxation times could also reveal the nature of interactions between the beads.
A Novel Method for Fundamental Interaction Studies with Electrostatic Ion Beam Trap
Vaintraub, S; Aviv, O; Heber, O; Mardor, I
2010-01-01
Trapped radioactive atoms present exciting opportunities for the study of fundamental interactions and symmetries. For example, detecting beta decay in a trap can probe the minute experimental signal that originates from possible tensor or scalar terms in the weak interaction. Such scalar or tensor terms affect, e.g., the angular correlation between a neutrino and an electron in the beta-decay process, thus probing new physics of "beyond-the-standard-model" nature. In particular, this article focuses on a novel use of an innovative ion trapping device, the Electrostatic Ion Beam Trap (EIBT). Such a trap has not been previously considered for Fundamental Interaction studies and exhibits potentially very significant advantages over other schemes. These advantages include improved injection efficiency of the radionuclide under study, an extended field-free region, ion-beam kinematics for better efficiency and ease-of-operation and the potential for a much larger solid angle for the electron and recoiling atom co...
Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation
Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)
2015-10-28
Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.
Extension of Pierce model to multiple transmission lines interacting with an electron beam
Tamma, Venkata Ananth
2013-01-01
A possible route towards achieving high power microwave devices is through the use of novel slow-wave structures employing multiple coupled transmission lines (MTLs) whose behavior when coupled to electron beams have not been sufficiently explored. We present the extension of the one-dimensional linearized Pierce theory to MTLs coupled to a single electron beam. We develop multiple formalisms to calculate the k-{\\omega} dispersion relation of the system and find that the existence of a growing wave solution is always guaranteed if the electron propagation constant is larger than or equal to the largest propagation constant of the MTL system. We verify our findings with illustrative examples which bring to light unique properties of the system in which growing waves were found to exist within finite bands of the electron propagation constant and discuss possible approach to improve the gain. By treating the beam-MTL interaction as distributed dependent current generators in the MTL, we derive relations charact...
Sydorenko, D; Chen, L; Ventzek, P L G
2015-01-01
Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...
Giant Amplification in Degenerate Band Edge Slow-Wave Structures Interacting with an Electron Beam
Othman, Mohamed A K; Figotin, Alexander; Capolino, Filippo
2015-01-01
We advance here a new amplification regime based on synchronous operation of four degenerate electromagnetic (EM) modes and the electron beam referred to as super synchronization. These four EM modes arise in a Fabry-Perot cavity (FPC) when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures allowing for synchronization with only a single EM mode. We construct a mutli transmission line (MTL) model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using generalized Pierce model.
Gu, X.; Altinbas, F. Z.; Beebe, E.; Fischer, W.; Frak, B. M.; Gassner, D. M.; Hamdi, K.; Hock, J.; Hoff, L.; Kankiya, P.; Lambiase, R.; Luo, Y.; Mapes, M.; Mi, J.; Miller, T.; Montag, C.; Nemesure, S.; Okamura, M.; Olsen, R. H.; Pikin, A. I.; Raparia, D.; Rosas, P. J.; Sandberg, J.; Tan, Y.; Theisen, C.; Tuozzolo, J.; Zhang, W.
2014-04-01
To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an yttrium aluminum garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.
Diffraction radiation from relativistic heavy ions
Potylitsyna, N. A.
2001-01-01
In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.
Relativistic Flows at the Hotspots of Radio Galaxies and Quasars?
Georganopoulos, M; Georganopoulos, Markos; Kazanas, Demosthenes
2003-01-01
We review the broad band properties of X-ray detected hotspots in radio galaxies and quasars. We show that their collective properties can be unified in a framework involving frequency dependent relativistic beaming and varying orientations to the observer's line of sight. The simplest dynamic model consistent with this picture is a slowing-down relativistic flow downstream from the hotspot shock, suggesting that the jet flow remains relativistic to the hotspot distances.
Spin-orbit photonic interaction engineering of Bessel beams (Conference Presentation)
Aleksanyan, Artur; Brasselet, Etienne
2016-09-01
Interaction between the polarization and spatial degrees of freedom of a light field has become a powerful tool to tailor the amplitude and phase of light beams. This usually implies the use of space-variant photonic elements involving sophisticated fabrication technologies. Here we report on the optical spin-orbit engineering of the intensity, phase, and polarization structure of Bessel light beams using a homogeneous birefringent axicon. Various kinds of spatially modulated free-space light fields are predicted depending on the nature of the incident light field impinging on the birefringent axicon. In particular, we present the generation of bottle beam arrays, hollow beams with periodic modulation of the core size, and hollow needle beams with periodic modulation of the orbital angular momentum. An experimental attempt is also reported. The proposed structured light fields may find applications in long-distance optical manipulation endowed with self-healing features, periodic atomic waveguides, contactless handling of high aspect ratio micro-objects, and optical shearing of matter.
Beam-plasma instability in charged plasma in the absence of ions
Dubinov, Alexander E. [National Research Nuclear University “MEPhI,” Kashirskoe Highway, 31, Moscow 115409, Russia and Sarov State Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Dukhova Str., 6, Sarov, Nizhni Novgorod Region 607186 (Russian Federation); Petrik, Alexey G. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E., E-mail: hramovae@gmail.com [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)
2016-04-15
We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.
Study of interaction of high-power Ar$^+$ laser beam with Ag$^+$-doped glass
Nahal, A; Payami, M
2003-01-01
In this work, we have investigated the interaction of a high-power Ar$^+$ laser beam, in a continuous multi-line regime, with Ag$^+$-doped glass samples. The samples were subjected to the irradiation after the ion-exchange step. As a result of the irradiation, a peak appears in the absorption spectrum; its evolution depends on both the exposure time and the laser beam power. Interaction of the beam with the clusters causes them break into smaller ones which has been confirmed by optical absorption spectroscopy. Depending on the increment steps of the laser-beam power, different results are obtained. It is found that, in addition to the fragmentations of the nano-clusters, clusters of micro-meter size ($d\\sim 3\\mu m$) are formed in the sample, if the laser power is increased in a fast regime. The fragmentation processes have been explained in the framework of the density-functional theory with stabilized jellium model.
Ana-Raluca Chiriac
2006-01-01
Full Text Available Between structure, infrastructure (foundation and soil there is an effective interaction, which has to be taken into account as correctly as possible every time we do the calculation. This effective interaction can be analysed in a global form, considering on one hand the entire building, and on the other hand the soil -- establishment surface, or in an analytical form: we consider first the soil -- infrastructure (foundation interaction and then the structure -- infrastructure one. Without considering the interaction, we cannot make neither the calculation (for the soil according to the limiting deformation state which has to be compatible with the structure’s resistance system, nor calculation for the limiting resistance state, because the correct distribution of efforts along the contact surface between the soil and the structure is unknown, so we cannot determine the zones of plastical equilibrium in the soil massive and the conditions of limited equilibrium. Also, without considering the infrastructure, we cannot correctly calculate the efforts and the deformations which may occur in all resistance elements of the building. Therefore, we cannot talk about limiting state calculation without considering the interaction between the soil and the structure itself. The problem of interaction between building, on one hand and soil foundation, on the other hand, is not approached very much in the specialized literature, because of the big difficulties raised by summarizing all the factors that describe the structure and the environment, which would be more accessible to a practical calculation. A lot of buildings or elements of buildings standing on the soil or on another environment with finite rigidity can be taken into account as beams supported on a straining environment, (continuous foundations, resistance walls, longitudinal and transversal membranes of civil and industrial buildings, hydrotechnic works. Therefore, in the present paper we
Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows
Bernstein, J. P.; Hughes, P. A.
2009-09-01
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors
Soederstroem, P.-A., E-mail: P-A.Soderstrom@physics.uu.s [Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala (Sweden); Recchia, F. [Dipartimento di Fisica dell' Universita, Sezione di Padova, I-35122 Padova (Italy); INFN, Sezione di Padova, I-35122 Padova (Italy); Nyberg, J., E-mail: Johan.Nyberg@physics.uu.s [Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala (Sweden); Al-Adili, A. [Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala (Sweden); Atac, A. [Department of Physics and Astronomy, Uppsala University, SE-75121 Uppsala (Sweden); Department of Physics, Faculty of Science, Ankara University, 06100 Tandogan, Ankara (Turkey); Aydin, S. [INFN, Sezione di Padova, I-35122 Padova (Italy); Department of Physics, Faculty of Science and Art, Aksaray University, Aksaray 68100 (Turkey); Bazzacco, D. [INFN, Sezione di Padova, I-35122 Padova (Italy); Bednarczyk, P. [The Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow (Poland); Birkenbach, B. [Institut fuer Kernphysik, Universitaet zu Koeln Zuelpicher Strasse 77, D-50937 Koeln (Germany); Bortolato, D. [Dipartimento di Fisica dell' Universita, Sezione di Padova, I-35122 Padova (Italy); INFN, Sezione di Padova, I-35122 Padova (Italy); Boston, A.J.; Boston, H.C. [Oliver Lodge Lab., University of Liverpool, Liverpool L69 7ZE (United Kingdom); Bruyneel, B. [Institut fuer Kernphysik, Universitaet zu Koeln Zuelpicher Strasse 77, D-50937 Koeln (Germany); Bucurescu, D. [National Institute for Physics and Nuclear Engineering, RO-77125 Bucharest-Magurele (Romania); Calore, E. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Colosimo, S. [Oliver Lodge Lab., University of Liverpool, Liverpool L69 7ZE (United Kingdom); Crespi, F.C.L. [INFN Sezione di Milano, Universita di Milano, I-20133 Milano (Italy); Dipt. di Fisica, Universita di Milano, I-20133 Milano (Italy)
2011-05-11
The interaction position resolution of the segmented HPGe detectors of an AGATA triple cluster detector has been studied through Monte Carlo simulations and in an in-beam experiment. A new method based on measuring the energy resolution of Doppler-corrected {gamma}-ray spectra at two different target to detector distances is described. This gives the two-dimensional position resolution in the plane perpendicular to the direction of the emitted {gamma}-ray. The {gamma}-ray tracking was used to determine the full energy of the {gamma}-rays and the first interaction point, which is needed for the Doppler correction. Five different heavy-ion induced fusion-evaporation reactions and a reference reaction were selected for the simulations. The results of the simulations show that the method works very well and gives a systematic deviation of <1mm in the FWHM of the interaction position resolution for the {gamma}-ray energy range from 60 keV to 5 MeV. The method was tested with real data from an in-beam measurement using a {sup 30}Si beam at 64 MeV on a thin {sup 12}C target. Pulse-shape analysis of the digitized detector waveforms and {gamma}-ray tracking was performed to determine the position of the first interaction point, which was used for the Doppler corrections. Results of the dependency of the interaction position resolution on the {gamma}-ray energy and on the energy, axial location and type of the first interaction point, are presented. The FWHM of the interaction position resolution varies roughly linearly as a function of {gamma}-ray energy from 8.5 mm at 250 keV to 4 mm at 1.5 MeV, and has an approximately constant value of about 4 mm in the {gamma}-ray energy range from 1.5 to 4 MeV.
Three-dimensional numerical investigations of the laser-beam interactions in an undulator
DENG Hai-Xiao; LIN Tang-Yu; YAN Jun; WANG Dong; DAI Zhi-Min
2011-01-01
Laser-beam interaction in an undulator is commonly suggested in the development of free electron laser(FEL)schemes. In this paper, a three-dimensional algorithm is developed to assist in laser-beam interaction simulation in an undulator, which is built on the basis of the fundamentals of electrodynamics, i.e.the electron's behavior is determined by the magnetic field and the laser electric field in the time domain. On the basis of the algorithm, the detuning effect in a laser heater, the carrier envelope phase effect of a few-cycle laser in attosecond X-ray FEL schemes and output wavelength tuning in a high gain harmonic generation FEL are numerically discussed.
B Ananthanarayan; Monalisa Patra; Saurabh D Rindani
2012-11-01
The top polarization at the International Linear Collider (ILC) with transverse beam polarization is utilized in the + - → $t\\bar{t}$ process to probe interactions of the scalar and tensor type beyond the Standard Model and to disentangle their individual contributions. Confidence level limits of 90% are presented on the interactions with realistic integrated luminosity and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10−3 TeV-2 for real and imaginary parts of both scalar and tensor couplings at $\\sqrt{s} = 500$ and 800 GeV with an integrated luminosity of 500 fb-1 and completely polarized beams are shown to be possible.
Stefan, V. Alexander
2015-11-01
The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.
Multifragmentation calculated with relativistic forces
Feldmeier, H; Papp, G
1995-01-01
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density depe ndence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 -- 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. PACS: 25.70Mn, 25.75.+r
Knecht, Stefan; Jensen, Hans Jorgen Aa; Fleig, Timo
2008-01-07
We present a parallel implementation of a string-driven general active space configuration interaction program for nonrelativistic and scalar-relativistic electronic-structure calculations. The code has been modularly incorporated in the DIRAC quantum chemistry program package. The implementation is based on the message passing interface and a distributed data model in order to efficiently exploit key features of various modern computer architectures. We exemplify the nearly linear scalability of our parallel code in large-scale multireference configuration interaction (MRCI) calculations, and we discuss the parallel speedup with respect to machine-dependent aspects. The largest sample MRCI calculation includes 1.5x10(9) Slater determinants. Using the new code we determine for the first time the full short-range electronic potentials and spectroscopic constants for the ground state and for eight low-lying excited states of the weakly bound molecular system (Rb-Ba)+ with the spin-orbit-free Dirac formalism and using extensive uncontracted basis sets. The time required to compute to full convergence these electronic states for (Rb-Ba)+ in a single-point MRCI calculation correlating 18 electrons and using 16 cores was reduced from more than 10 days to less than 1 day.
The Nonlinear Interaction of Two-Crossed Focussed Ultrasonic Beams in the Presence of Turbulence
1988-06-10
in water or any fluid medium can be obtained by the vibration of a solid body in the fluid, such as the vibration of a vocal chord or guitar string . In... physical phenomenon due to the nonlinearity of sound arises from the interaction of two sound beams. Nonlinear acoustic theory predictions by Westervelt in...known experimental data for the turbulent velocity field. Goals of this research include mapping out the turbulence and studying the physical
Dragt, A.J.; Gluckstern, R.L.
1992-11-01
The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.
Relativistic quantum mechanics and introduction to field theory
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Very High Energy Electron-positron Colliding Beams for the Study of the Weak Interactions
Richter, B
1976-01-01
We consider the design of very high energy electron-positron colliding-beam storage rings for use primarily as a tool for investigating the weak interactions. These devices appear to be a very powerful tool for determining the properties of these interactions. Experimental possibilities are described, a cost minimization technique is developed, and a model machine is designed to operate at centre-of-mass energies of up to 200 GeV. Costs are discussed, and problems delineated that must be solved before such a machine can be finally designed.
Helical electron-beam microbunching by harmonic coupling in a helical undulator.
Hemsing, E; Musumeci, P; Reiche, S; Tikhoplav, R; Marinelli, A; Rosenzweig, J B; Gover, A
2009-05-01
Microbunching of a relativistic electron beam into a helix is examined analytically and in simulation. Helical microbunching is shown to occur naturally when an e beam interacts resonantly at the harmonics of the combined field of a helical magnetic undulator and an axisymmetric input laser beam. This type of interaction is proposed as a method to generate a strongly prebunched e beam for coherent emission of light with orbital angular momentum at virtually any wavelength. The results from the linear microbunching theory show excellent agreement with three-dimensional numerical simulations.
Jost, G.; Tran, T.M.; Appert, K. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Wuethrich, S. [CRAY Research, PATP/PSE, EPFL, Lausanne (Switzerland)
1996-12-01
A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented. The code is based on recently developed techniques for handling charge conservation and open boundaries and uses an electromagnetic field which is decomposed in its transverse magnetic (TM) and electric (TE) components. The code has been implemented on the massively parallel computer CRAY T3D, and on the CRAY Y-MP. (author) figs., tabs., refs.
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D
2010-01-01
The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.
2010-11-01
The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.
Gu, X., E-mail: xgu@bnl.gov; Altinbas, F.Z.; Beebe, E.; Fischer, W.; Frak, B.M.; Gassner, D.M.; Hamdi, K.; Hock, J.; Hoff, L.; Kankiya, P.; Lambiase, R.; Luo, Y.; Mapes, M.; Mi, J.; Miller, T.; Montag, C.; Nemesure, S.; Okamura, M.; Olsen, R.H.; Pikin, A.I.; and others
2014-04-11
To compensate for the beam–beam effects from the proton–proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an yttrium aluminum garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.
Microbunching of relativistic electrons using a two-frequency laser
Gordon, D.; Clayton, C. E.; Katsouleas, T.; Mori, W. B.; Joshi, C.
1998-01-01
A high power two-frequency laser can be used to modulate the axial momentum of a copropagating relativistic electron beam. The net work done on each electron is accounted for almost entirely by the axial electric field of the laser even when approaching the one-dimensional limit. After interacting with the laser, the electron beam can be bunched either by a long drift space or a dispersive optic. We give an example in which a 2.5-TW CO2 laser and a chicane compressor are used to transform a constant stream of 16-MeV electrons into a train of 60-fs microbunches, each containing 10 pC of charge.
Chaos and Maps in Relativistic Dynamical Systems
Horwitz, L P
1999-01-01
The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...
Thermal interaction of short-pulsed laser focused beams with skin tissues
Jiao Jian; Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)], E-mail: guo@jove.rutgers.edu
2009-07-07
Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.
Thermal interaction of short-pulsed laser focused beams with skin tissues
Jiao, Jian; Guo, Zhixiong
2009-07-01
Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Wu, D; Luan, S X; Yu, W
2015-01-01
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale-lengths of $1\\ \\mu\\text{m}$, $5\\ \\mu\\text{m}$, $10\\ \\mu\\text{m}$ and $15\\ \\mu\\text{m}$ are considered, showing an increase in both particle number and cut-off kinetic energy of energetic electrons with the increase of pre-plasma scale-length, and the obtained cut-off electron energies greatly exceeding the ponderomotive energies. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and laser pulse, with the efficiency depending on the pre-plasma scale-length. The fast electrons pre-accelerated in the first stage could build up an intense electrostatic potential with the potential energy several times as large of the initial electron kinetic energy. Par...
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; Yu, W.
2017-01-01
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser-matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling law is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.
Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode
Zengchao, Ji; Shixiu, Chen; Shen, Gao
2017-01-01
When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).
3-D Parallel Simulation Model of Continuous Beam-Electron Cloud Interactions
Ghalam, Ali F; Decyk, Viktor K; Huang Cheng Kun; Katsouleas, Thomas C; Mori, Warren; Rumolo, Giovanni; Zimmermann, Frank
2005-01-01
A 3D Particle-In-Cell model for continuous modeling of beam and electron cloud interaction in a circular accelerator is presented. A simple model for lattice structure, mainly the Quadruple and dipole magnets and chromaticity have been added to a plasma PIC code, QuickPIC, used extensively to model plasma wakefield acceleration concept. The code utilizes parallel processing techniques with domain decomposition in both longitudinal and transverse domains to overcome the massive computational costs of continuously modeling the beam-cloud interaction. Through parallel modeling, we have been able to simulate long-term beam propagation in the presence of electron cloud in many existing and future circular machines around the world. The exact dipole lattice structure has been added to the code and the simulation results for CERN-SPS and LHC with the new lattice structure have been studied. Also the simulation results are compared to the results from the two macro-particle modeling for strong head-tail instability. ...
Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron
Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh-225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005 (India)
2014-09-15
The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Relativistic Runaway Electrons
Breizman, Boris
2014-10-01
This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of
Scaling Calculations for a Relativistic Gyrotron.
2014-09-26
a relativistic gyrotron. The results of calculations are given in Section 3. The non- linear , slow-time-scale equations of motion used for these...corresponds to a cylindrical resonator and a thin annular electron beam ;, " with the beam radius chosen to coincide with a maximum of the resonator...entering the cavity. A tractable set of non- linear equations based on a slow-time-scale formulation developed previously was used. For this
Corbella, Carles; Kreiter, Oliver; Arcos, Teresa de los; Benedikt, Jan; von Keudell, Achim
2013-01-01
A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions. Atom and ion beams are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions and metal vapor. The heterogeneous surface processes are monitored in-situ and in real time by means of a quartz crystal microbalance (QCM) and Fourier transform infrared spectroscopy (FTIR). Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma treatment of polymers (PET, PP).
Ultrahigh-current proton beams from short-pulse laser-solid interactions
Badziak, J; Jablowski, S; Parys, P; Rosinski, M; Suchanska, R; Wolowski, J [Institute of Plasma Physics and Laser Microfusion, EURATOM Association, Warsaw (Poland); Antici, P; Fuchs, J; Lancia, L; Mancic, A [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau (France); Szydlowski, A [Andrzej Soltan Institute for Nuclear Studies, Warsaw (Poland)], E-mail: badziak@ifpilm.waw.pl
2008-05-01
The results of studies of high-current proton beam generation from thin (1-3{mu}m) solid targets irradiated by 0.35-ps laser pulse of intensity up to 2x10{sup 19} W/cm{sup 2} are reported. It is shown that the proton beams of multi-MA currents and multi-TA/cm{sup 2} current densities at the source can be produced when the laser-target interaction conditions approach the skin-layer ponderomotive acceleration requirements. The current and energy spectrum of protons remarkably depend on the target structure. In particular, using a double-layer Au/PS target (plastic covered by 0.1 - 0.2{mu}m Au front layer) results in two-fold higher proton currents and higher proton energies than in the case of a plastic target.
Latini; Satta; Guidoni; Piccirillo; Speranza
2000-03-17
One- and two-color, mass-selected R2PI spectra of the S13-pentanol, were recorded after a supersonic molecular beam expansion. Spectral analysis, coupled with theoretical calculations, indicate that several hydrogen-bonded [R.solv] conformers are present in the beam. The R2PI excitation spectra of [R.solv] are characterized by significant shifts of their band origin relative to that of bare R. The extent and direction of these spectral shifts depend on the structure and configuration of solv and are attributed to different short-range interactions in the ground and excited [R.solv] complexes. Measurement of the binding energies of [R.solv] in their neutral and ionic states points to a subtle balance between attractive (electrostatic and dispersive) and repulsive (steric) forces, which control the spectral features of the complexes and allow enantiomeric discrimination of chiral solv molecules.
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
Experimental study on interaction mechanism of small H-beams and a soil-cement retaining wall
WANG Suo-rong; CAO Bao-fei
2008-01-01
Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before crack-ing. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in practice.
Relativistic Binaries in Globular Clusters
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.