On numerical relativistic hydrodynamics and barotropic equations of state
Ibáñez, José María; Miralles, Juan Antornio
2012-01-01
The characteristic formulation of the relativistic hydrodynamic equations (Donat et al 1998 J. Comput. Phys. 146 58), which has been implemented in many relativistic hydro-codes that make use of Godunov-type methods, has to be slightly modified in the case of evolving barotropic flows. For a barotropic equation of state, a removable singularity appears in one of the eigenvectors. The singularity can be avoided by means of a simple renormalization which makes the system of eigenvectors well defined and complete. An alternative strategy for the particular case of barotropic flows is discussed.
Line Emission from Optically Thick RelativisticAccretion Tori
Fuerst, Steven V.; /KIPAC, Menlo Park /Mullard Space Sci. Lab.; Wu, Kinwah; /Mullard Space Sci. Lab.
2007-09-14
We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered as single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the torus lines, but they are effective only at high inclination angles. If inner and outer radii of an accretion torus are the same as those of an accretion disk, their line profiles show substantial differences only when inclination angles are close to 90{sup o}, and those differences are manifested mostly at the central regions of the lines instead of the wings.
Harko, T
2016-01-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equa...
Harko, T.; Mak, M. K.
2016-09-01
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.
Heil, Konstantin; Moroianu, Andrei; Semmelmann, Uwe
2017-07-01
We show that Killing tensors on conformally flat n-dimensional tori whose conformal factor only depends on one variable, are polynomials in the metric and in the Killing vector fields. In other words, every first integral of the geodesic flow polynomial in the momenta on the sphere bundle of such a torus is linear in the momenta.
Magnetogenesis through convection in barotropic fluids
Miller, E., E-mail: evan.d.miller@dartmouth.edu; Rogers, B., E-mail: barret.n.rogers@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States)
2015-04-15
It is shown that an unmagnetized plasma with non-uniform bulk velocity can generate magnetic fields through consideration of the non-relativistic isentropic two-fluid equations, even when the initial conditions contain with no fields or currents, uniform densities and pressures, and a divergence-free bulk velocity. This effect does not depend on the baroclinicity of the plasma and is therefore relevant even in barotropic flows, where the Biermann battery is absent. It also does not rely on kinetic effects or shear discontinuities. Instead, our magnetogenesis effect arises from convection terms proportional to the electron mass in the generalized Ohm's law. The resulting magnetic fields are typically weak but may still serve as seed fields for dynamo mechanisms.
Barotropic FRW cosmologies with Chiellini damping
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
On Embeddings of Tori in Euclidean Spaces
Matija CENCELJ; Du(s)an REPOV(S)
2005-01-01
Using the relation between the set of embeddings of tori into Euclidean spaces modulo ambient isotopies and the homotopy groups of Stiefel manifolds, we prove new results on embeddings of tori into Euclidean spaces.
van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.
2010-01-01
Aims: We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods: Using VISIR on the VLT, we acquired sub-arcsecond (~0.40 arcsec) resolution N-band images, at a wavelength of 11.85 μm, of the nuclei of a sample of 27 radio gala
Rationality problem for algebraic tori
Hoshi, Akinari
2017-01-01
The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...
ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION
WANG Yue-peng; SHI Wei-hui
2008-01-01
The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.
Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid
Marto, Joao; Moniz, Paulo Vargas
2013-01-01
We consider a spherically symmetric gravitational collapse with a tachyon field coupled with a barotropic fluid, as matter source. The tachyonic potential is assumed to be of an inverse square form. By employing the holonomy correction imported from loop quantum gravity, we study the dynamics of the collapse within a semiclassical description. We find that the classical black hole and naked singularities, appearing in the corresponding standard general relativistic collapse, are avoided by quantum gravity induced effects.
Sibeyn, J.; Rao, P; Juurlink, B.
1996-01-01
Algorithms for performing gossiping on one- and higher dimensional meshes are presented. As a routing model, we assume the practically important worm-hole routing. For one-dimensional arrays and rings, we give a novel lower bound and an asymptotically optimal gossiping algorithm for all choices of the parameters involved. For two-dimensional meshes and tori, several simple algorithms composed of one-dimensional phases are presented. For an important range of packet and mesh sizes it gives cle...
Instability of Magnetic Equilibria in Barotropic Stars
Mitchell, J P; Reisenegger, A; Spruit, H; Valdivia, J A; Langer, N
2014-01-01
In stably stratified stars, numerical magneto-hydrodynamics simulations have shown that arbitrary initial magnetic fields evolve into stable equilibrium configurations, usually containing nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work, we test the hypothesis that stable stratification is a requirement for the existence of such stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields in barotropic (and thus neutrally stable) stars, starting from two different types of initial conditions, namely random disordered magnetic fields, as well as linked poloidal-toroidal configurations resembling the previously found equilibria. With many trials, we always find a decay of the magnetic field over a few Alfv\\'en times, never a stable equilibrium. This strongly suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the assumption of barotropic equations of state often imposed on the search of magneti...
Tori Hobune 2011 & Eesti Hobune 2011 / Krista Sepp
Sepp, Krista
2011-01-01
14. mail korraldas Tori Hobusekasvanduse ratsaspordiklubi XVI Tori hobuse päeva ja esimese ettapi karikasarjas Tori Hobune 2011, kus avastardi takistussõidus tegid ka eesti tõugu hobused, ning 15. mail toimus koolisõidu etapp
Tori Hobune 2011 & Eesti Hobune 2011 / Krista Sepp
Sepp, Krista
2011-01-01
14. mail korraldas Tori Hobusekasvanduse ratsaspordiklubi XVI Tori hobuse päeva ja esimese ettapi karikasarjas Tori Hobune 2011, kus avastardi takistussõidus tegid ka eesti tõugu hobused, ning 15. mail toimus koolisõidu etapp
Baroclinic-Barotropic Interaction in Teleconnections
Ji, Xuan
Teleconnections are remote impacts from one location to another, which are transmitted through planetary-scale wave motions, e.g., Rossby waves. Teleconnections can be forced by tropical heat sources, for example, El Nino/Southern Oscillation (ENSO), and result in many societally important impacts in remote ocean basins and continents. It is thus important to understand the complex pathway and wave dynamics in teleconnections. This dissertation discusses the role of baroclinic-barotropic interaction in three different aspects of atmospheric teleconnections. The first major question addressed is what mechanisms control the interhemispheric teleconnections from tropical heat sources. These are investigated using an intermediate complexity model [a Quasi-equilibrium Tropical Circulation Model (QTCM)] and a simple linear two-level model with dry dynamics. Illustrating the interhemispheric teleconnection process with an Atlantic Warm Pool principal case, the heat source directly excites a baroclinic response that spreads across the equator. Three processes involving baroclinic-barotropic interactions---shear advection, surface drag, and vertical advection---then force a cross-equatorial barotropic Rossby wave response. An analysis of these processes in QTCM simulations indicates that: (1) shear advection has a pattern that roughly coincides with the baroclinic signal in the tropics and subtropics; (2) surface drag has large amplitude and spatial extent, and can be very effective in forcing barotropic motions around the globe; (3) vertical advection has a significant contribution locally and remotely where large vertical motions and vertical shear occur. A simple model is modified to perform experiments in which each of these three mechanisms may be included or omitted. By adding surface drag and vertical advection, and comparing each to shear advection, the effects of the three mechanisms on the generation and propagation of the barotropic Rossby waves are shown to be
van der Wolk, G; Peletier, R F; Pel, J W
2009-01-01
We investigate the validity of the quasar - radio galaxy unification scenario and determine the presence of dust tori among radio galaxies of various types. Actively accreting supermassive black holes in the centres of radio galaxies may be uncovered through their dust tori reradiating the optical and ultraviolet continuum in mid-infrared bands. Using VISIR on the VLT, we have obtained sub-arcsecond (~0.40") resolution N-band images, at a wavelength of 11.85 micron, of the nuclei of a sample of 27 radio galaxies of four types in the redshift range z=0.006-0.156. The sample consists of 8 edge-darkened, low-power Fanaroff-Riley class I (FR-I) radio galaxies, 6 edge-brightened, class II (FR-II) radio galaxies displaying low-excitation optical emission, 7 FR-IIs displaying high-excitation optical emission, and 6 FR-II broad emission line radio galaxies. Out of the sample of 27 objects, 10 nuclei are detected and several have constraining non-detections at 10 sigma sensitivities of 7 mJy. On the basis of the core ...
Quasi-periodic oscillations of perturbed tori
Parthasarathy, Varadarajan; Kluzniak, Wlodek
2015-01-01
We performed axisymmetric hydrodynamic simulations of perturbed tori orbiting a black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Klu{\\'z}niak-Lee). Epicyclic motions were triggered by adding sub-sonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured $L_{2}$ norm of density and obtained the power spectrum of $L_{2}$ norm which manifested eigenfrequencies of tori modes. We observe a pair of modes which occur in an approximate 3:2 ratio. Results from our simulations are relevant in the context of high-frequency quasi-periodic oscillations (HF QPOs) observed in stellar-mass black hole binaries.
Ferry Kwakkel
2011-12-01
Full Text Available Given a closed Riemannian manifold (M, g, i.e. compact and boundaryless, there is a partition of its tangent bundle TM = ∪iΣi called the focal decomposition of TM. The sets Σi are closely associated to focusing of geodesics of (M, g, i.e. to the situation where there are exactly i geodesic arcs of the same length joining points p and q in M. In this note, we study the topological structure of the focal decomposition of a closed Riemannian manifold and its relation with the metric structure of the manifold. Our main result is that flat n-tori, n > 2, are focally rigid in the sense that if two flat tori are focally equivalent then the tori are isometric up to rescaling. The case n = 2 was considered before by F. Kwakkel.Dada uma variedade Riemanniana (M, g fechada, isto é, compacta e sem bordo, existe uma partição de seu fibrado tangente TM = ∪iΣi chamada decomposição focal de TM. Os conjuntos Σi estão intimamente associados ao modo como focalizam as geodésicas de (M,g, isto é, à situação em que existem exatamente i arcos de geodésica de mesmo comprimento unindo pontos p e q em M. Nesta nota, estudamos a estrutura topológica da decomposição focal de uma variedade Riemanniana fechada e sua relação com a estrutura métrica de M. Nosso principal resultado é que n-toros planos, n > 2, são focalmente rigidos, isto é, se dois toros planos são focalmente equivalentes, então os dois toros são isométricos módulo mudança de escala. O caso n = 2 foi considerado anteriormente por F. Kwakkel.
Gravitational collapse of barotropic spherical fluids
Giambo, R; Magli, G; Piccione, P; Giambo', Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo
2003-01-01
The gravitational collapse of spherical, barotropic perfect fluids is analyzed here. For the first time, the final state of these systems is characterized without resorting to simplifying assumptions - such as self-similarity - using a new approach based on non-linear o.d.e. techniques. Formation of naked singularities is shown to occur for solutions such that the mass function is sufficiently regular in a neighborhood of the spacetime singularity.
Instability of magnetic equilibria in barotropic stars
Mitchell, J. P.; Braithwaite, J.; Reisenegger, A.; Spruit, H.; Valdivia, J. A.; Langer, N.
2015-02-01
In stably stratified stars, numerical magnetohydrodynamics simulations have shown that arbitrary initial magnetic fields evolve into stable equilibrium configurations, usually containing nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work, we test the hypothesis that stable stratification is a requirement for the existence of such stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields in barotropic (and thus neutrally stable) stars, starting from two different types of initial conditions, namely random disordered magnetic fields, as well as linked poloidal-toroidal configurations resembling the previously found equilibria. With many trials, we always find a decay of the magnetic field over a few Alfvén times, never a stable equilibrium. This strongly suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the assumption of barotropic equations of state often imposed on the search of magnetic equilibria. It also supports the hypothesis that, as dissipative processes erode the stable stratification, they might destabilize previously stable magnetic field configurations, leading to their decay.
Matrix theory compactifications on twisted tori
Chatzistavrakidis, Athanasios
2012-01-01
We study compactifications of Matrix theory on twisted tori and non-commutative versions of them. As a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited and the previously known results are supplemented with a background of a non-commutative torus with non-constant non-commutativity and an underlying non-associative structure on its phase space. Next we turn our attention to 3- and 6-dimensional twisted tori and we describe consistent backgrounds of Matrix theory on them by stating and solving the conditions which describe the corresponding compactification. Both commutative and non-commutative solutions are found in all cases. Finally, we comment on the correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity, as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.
Rabaey, D.; Huysmans, S.; Lens, F.; Smets, E.; Jansen, S.
2008-01-01
Recent studies on the functional significance of pit membranes in water conducting cells have renewed general interest in their micromorphology. At least two types of pit membrane thickenings have been described in angiosperm families, i.e. genuine tori and pseudo-tori. This study explores the distr
Numerical Simulation of Barotropic Tides around Taiwan
Chih-Kai Hu
2010-01-01
Full Text Available A 1/12°, 2-D barotropic tide model was used to examine the characteristics of barotropic tides and to improve the accuracy of predicting tidal sea levels and currents in the seas around Taiwan. The form ratio suggests that tides are predominantly semidiurnal in the northern reaches of the Taiwan Strait and mixed of diurnal and semidiurnal elsewhere around Taiwan. When the dominant M2 wave enters the Strait from the north, its amplitude is magnified to ~2 m in the middle, and then decreases rapidly toward the south end of the Strait. The predominance of diurnal tides along the southwest to the south coast of Taiwan is attributed to the quasi-resonance of diurnal waves in the South China Sea. The tidal range is small and tidal currents are weak off the east coast of Taiwan. Barotropic tidal energy is mostly dissipated on the shallow banks of the southwestern Strait. Results summarized from sensitivity tests on the bottom drag coefficient (CD and horizontal eddy viscosity (AM indicate that CD = 0.0015 - 0.00175 and AM = 150 m2 s-1 lead to the best model-data fit when compared to the observed tidal sea levels at ten reference tide-gauge stations around Taiwan. The averaged root-mean-squared (RMS differences of the simulated tidal sea level for the six principal constituents of O1, P1, K1, N2, M2, and S2 are significantly reduced to 1.3, 0.7, 2.0, 1.6, 5.1, and 3.1 cm, respectively, compared to that calculated from a 0.5° resolution global tide harmonic constant database, NAO.99b (Matsumoto et al. 2000. The averaged RMS differences of barotropic tidal currents (U, V for O1, K1, M2, and S2 are (0.92, 1.64, (1.17, 0.61, (3.88, 2.37, and (1.52, 1.20 cm s-1. A database of tidal sea levels and current harmonic constants, TWTIDE08, for Q1, O1, P1, K1, J1, OO1, 2N2, μ2, N2, ν2, M2, L2, T2, S2, and K2 is established with this study.
Barotropic local instability and severe storm process
杨大升; 孙岚
1997-01-01
By means of barotropic model, the characteristic and initial value problems are investigated to reveal the local two-dimensional barotropic instability of the nonuniform current to the dynamic mechanism of the formation of the Yangtze-Huaihe River severe storm in July 1991. Analytical theory and numerical experiment show that (i) the unstable developing modes are chiefly the two periods of about 44d and 10 d, which are fundamentally consistent with that of the precipitation change of the Yangtze-Huaihe River, (ii) The growth rate of the local perturbation is dominated by the meridional wave number n = 1-5 and zonal wave number k = 1-12, i.e. the severe storm over the Yangtze-Huaihe River results from the interaction of the systems at different latitudes and waves of different scales, (iii) The perturbation over the Yangtze-Huaihe River possesses the property of local intensification, which slowly migrates westward over the lower and middle reaches of the Yangtze-Huaihe River, (iv) The growth rate of the
Cascade of period doublings of tori
Arneodo, A.; Coullet, P. H.; Spiegel, E. A.
1983-02-01
A three-dimensional map is proposed to model the effects of periodic forcing on a system displaying a transition to chaos through a cascade of period-doubling bifurcations. The study outlined here raises the problem of the existence and bifurcation of invariant tori. A principal feature of the simulations of both the differential equations and the discrete dynamical systems is that it is possible to disrupt period-doubling sequences (and inverse sequences as well) by periodic external forcing. Even though the way in which this abortion works is not understood, the mechanism is thought to be associated with the destruction of tori (Aronson et al., 1982) when the system is on the verge of bifurcation. The simulations therefore suggest that in moving farther along the cascade, the tori become more fragile. It is suspected that for arbitrarily weak driving, the cascade will eventually be disrupted after the cascade has proceeded through a sufficient number of steps.
GENERALIZED ENERGY CONSERVATION AND UNSTABLE PERTURBATION PROPERTY IN BAROTROPIC VORTEX
HUANG Hong; ZHANG Ming
2006-01-01
Based on a barotropic vortex model, generalized energy-conserving equation was derived and two necessary conditions of basic flow destabilization are gained. These conditions correspond to generalized barotropic instability and super speed instability. They are instabilities of vortex and gravity inertial wave respectively. In order to relate to practical situation, a barotropic vortex was analyzed, the basic flow of which is similar to lower level basic wind field of tropical cyclones and the maximum wind radius of which is 500 km.The results show that generalized barotropic instability depending upon the radial gradient of relative vorticity can appear in this vortex. It can be concluded that unstable vortex Rossby wave may appear in barotropic vortex.
Maximum mass of a barotropic spherical star
Fujisawa, Atsuhito; Yoo, Chul-Moon; Nambu, Yasusada
2015-01-01
The ratio of total mass $M$ to surface radius $R$ of spherical perfect fluid ball has an upper bound, $M/R < B$. Buchdahl obtained $B = 4/9$ under the assumptions; non-increasing mass density in outward direction, and barotropic equation of states. Barraco and Hamity decreased the Buchdahl's bound to a lower value $B = 3/8$ $(< 4/9)$ by adding the dominant energy condition to Buchdahl's assumptions. In this paper, we further decrease the Barraco-Hamity's bound to $B \\simeq 0.3636403$ $(< 3/8)$ by adding the subluminal (slower-than-light) condition of sound speed. In our analysis, we solve numerically Tolman-Oppenheimer-Volkoff equations, and the mass-to-radius ratio is maximized by variation of mass, radius and pressure inside the fluid ball as functions of mass density.
THE DIABATIC WAVES IN BAROTROPIC MODEL
无
2000-01-01
The equations of barotropic model are used to discuss the effects of diabatic factors such as heating of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low latitudes we have obtained the angular frequency and analyzed the period and stability of waves. The result shows the existence of the diabatic factors not only enlarges the period of adiabatic waves but also changes the stability of waves. Thus we think that the so-called intraseasonal oscillation and some other low-frequency oscillations are a kind of diabatic waves which are important factors producing the long-term weather changes and short-term climatic evolution.
Gravitational microlensing of AGN dusty tori
Stalevski, Marko; Popovic, Luka C; Baes, Maarten
2012-01-01
We investigated gravitational microlensing of AGN dusty tori in the case of lensed quasars in the infrared domain. The dusty torus is modeled as a clumpy two-phase medium. To obtain spectral energy distributions and images of tori at different wavelengths, we used the 3D Monte Carlo radiative transfer code SKIRT. A ray-shooting technique has been used to calculate microlensing magnification maps. We simulated microlensing by the stars in the lens galaxy for different configurations of the lensed system and different values of the torus parameters, in order to estimate (a) amplitudes and timescales of high magnification events, and (b) the influence of geometrical and physical properties of dusty tori on light curves in the infrared domain. We found that, despite their large size, dusty tori could be significantly affected by microlensing in some cases, especially in the near-infrared domain (rest-frame). The very long timescales of such events, in the range from several decades to hundreds of years, are limit...
Liouville quantum gravity on complex tori
David, François; Rhodes, Rémi; Vargas, Vincent
2016-02-01
In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere ["Liouville quantum gravity on the Riemann sphere," e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.
Liouville quantum gravity on complex tori
David, François [Institut de Physique Théorique, CNRS, URA 2306, CEA, IPhT, Gif-sur-Yvette (France); Rhodes, Rémi [Université Paris-Est Marne la Vallée, LAMA, Champs sur Marne (France); Vargas, Vincent [ENS Paris, DMA, 45 rue d’Ulm, 75005 Paris (France)
2016-02-15
In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere [“Liouville quantum gravity on the Riemann sphere,” e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.
Algebraic treatment of compactification on noncommutative tori
Casalbuoni, R.
1998-07-01
In this paper we study the compactification conditions of the M theory on D-dimensional noncommutative tori. The main tool used for this analysis is the algebra A(ZD) of the projective representations of the abelian group ZD. We exhibit the explicit solutions in the space of the multiplication algebra of A(ZD), that is the algebra generated by right and left multiplications.
NADA: A new code for studying self-gravitating tori around black holes
Montero, Pedro J; Shibata, Masaru
2008-01-01
We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 (ADM) system, the so-called BSSN approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing scheme...
Exploring potential Pluto-generated neutral tori
Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph
2015-11-01
The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.
The catalytic role of beta effect in barotropization processes
Venaille, Antoine; Griffies, S M
2012-01-01
The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the $\\beta$-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing $\\beta$ increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale $2\\pi E_{0}^{1/4}/\\beta^{1/2}$. As this parameter decreases (beta increases) then barotropization can progress further, because...
Are there any stable magnetic fields in barotropic stars?
Lander, S K
2012-01-01
We construct barotropic stellar equilibria, containing magnetic fields with both poloidal and toroidal field components. We extend earlier results by exploring the effect of different magnetic field and current distributions. Our results suggest that the boundary treatment plays a major role in whether the poloidal or toroidal field component is globally dominant. Using time evolutions we provide the first stability test for mixed poloidal-toroidal fields in barotropic stars, finding that all these fields suffer instabilities due to one of the field components: these are localised around the pole for toroidal-dominated equilibria and in the closed-field line region for poloidal-dominated equilibria. Rotation provides only partial stabilisation. There appears to be very limited scope for the existence of stable magnetic fields in barotropic stars. We discuss what additional physics from real stars may allow for stable fields.
Shifted Riccati procedure: Application to conformal barotropic FRW cosmologies
Rosu, H C
2010-01-01
In the case of barotropic FRW cosmologies, the Hubble parameter is the solution of a simple Riccati equation of constant coefficients. We therefore consider these cosmologies in the framework of nonrelativistic supersymmetry that has been so effective in the area of supersymmetric quantum mechanics. Recalling that in 1999 Faraoni showed how to reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations, we set the latter equations in the supersymmetric approach and divide their solutions into two classes of `bosonic' (nonsingular) and `fermionic' (singular) cosmological zero-mode solutions. The fermionic equations can be considered as representing cosmologies of Stephani type, i.e., of topology changing in the conformal time. We next apply the so-called shifted Riccati procedure by introducing a constant parameter, denoted by S, in the common Riccati solution of these supersymmetric partner cosmologies and obtain barotropic Stephani cosmologies with periodic...
A Hamiltonian KAM theorem for bundles of Lagrangean tori
Broer, HW; Cushman, RH; Fasso, F; Dumortier, F; Broer, H; Mawhin, J; Vanderbauwhede, A; Lunel, SV
2005-01-01
The classical KAM theorem deals with Lagrangean invariant tori in nearly integrable Hamiltonian systems. The stability formulation of the KAM theorem states that, when restricting to a large measure Diophantine "Cantor set" of such tori, the integrable approximation is smoothly conjugate to the near
Curved noncommutative tori as Leibniz quantum compact metric spaces
Latrémolière, Frédéric, E-mail: frederic@math.du.edu [Department of Mathematics, University of Denver, Denver, Colorado 80208 (United States)
2015-12-15
We prove that curved noncommutative tori are Leibniz quantum compact metric spaces and that they form a continuous family over the group of invertible matrices with entries in the image of the quantum tori for the conjugation by modular conjugation operator in the regular representation, when this group is endowed with a natural length function.
Curved noncommutative tori as Leibniz quantum compact metric spaces
Latrémolière, Frédéric
2015-12-01
We prove that curved noncommutative tori are Leibniz quantum compact metric spaces and that they form a continuous family over the group of invertible matrices with entries in the image of the quantum tori for the conjugation by modular conjugation operator in the regular representation, when this group is endowed with a natural length function.
Scattering Matrices and Conductances of Leaky Tori
Pnueli, A.
1994-04-01
Leaky tori are two-dimensional surfaces that extend to infinity but which have finite area. It is a tempting idea to regard them as models of mesoscopic systems connected to very long leads. Because of this analogy-scattering matrices on leaky tori are potentially interesting, and indeed-the scattering matrix on one such object-"the" leaky torus-was studied by M. Gutzwiller, who showed that it has chaotic behavior. M. Antoine, A. Comtet and S. Ouvry generalized Gutzwiller‧s result by calculating the scattering matrix in the presence of a constant magnetic field B perpendicular to the surface. Motivated by these results-we generalize them further. We define scattering matrices for spinless electrons on a general leaky torus in the presence of a constant magnetic field "perpendicular" to the surface. From the properties of these matrices we show the following: (a) For integer values of B, Tij (the transition probability from cusp i to cusp j), and hence also the Büttiker conductances of the surfaces, are B-independent (this cannot be interpreted as a kind of Aharonov-Bohm effect since a magnetic force is acting on the electrons). (b) The Wigner time-delay is a monotonically increasing function of B.
Infrared Constrains on AGN Tori Models
Hatziminaoglou, E
2006-01-01
This work focuses on the properties of dusty tori in active galactic nuclei (AGN) derived from the comparison of SDSS type 1 quasars with mid-Infrared (MIR) counterparts and a new, detailed torus model. The infrared data were taken by the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. Basic model parameters are constraint, such as the density law of the graphite and silicate grains, the torus size and its opening angle. A whole variety of optical depths is supported. The favoured models are those with decreasing density with distance from the centre, while there is no clear tendency as to the covering factor, i.e. small, medium and large covering factors are almost equally distributed. Based on the models that better describe the observed SEDs, properties such as the accretion luminosity, the mass of dust, the inner to outer radius ratio and the hydrogen column density are computed. The properties of the tori, as derived fitting the observed SEDs, are independent of the redshift, once observational ...
Hypercat - Hypercube of Clumpy AGN Tori
Nikutta, Robert; Lopez-Rodriguez, Enrique; Ichikawa, Kohei; Levenson, Nancy; Packham, Christopher C.
2017-06-01
Dusty tori surrounding the central engines of Active Galactic Nuclei (AGN) are required by the Unification Paradigm, and are supported by many observations, e.g. variable nuclear absorber (sometimes Compton-thick) in X-rays, reverberation mapping in optical/UV, hot dust emission and SED shapes in NIR/MIR, molecular and cool-dust tori observed with ALMA in sub-mm.While models of AGN torus SEDs have been developed and utilized for a long time, the study of the resolved emission morphology (brightness maps) has so far been under-appreciated, presumably because resolved observations of the central parsec in AGN are only possible very recently. Currently, only NIR+MIR interferometry is capable of resolving the nuclear dust emission (but not of producing images, until MATISSE comes online). Furthermore, MIR interferometry has delivered also puzzling results, e.g. that in some resolved sources the light emanates preferentially from polar directions above the "torus" system, and not from the equatorial plane, where most of the dust is located.We are preparing the release of a panchromatic, fully interpolable hypercube of brightness maps and projected dust images for a large number of CLUMPY torus models (Nenkova+2008), that will help facilitate studies of resolved AGN emission and dust morphologies. Together with the cube we will release a comprehensive set of open-source tools (Python) that will enable researches to work efficiently with this large hypercube:* easy sub-cube selection + memory-mapping (mitigating the too-big-for-RAM problem)* multi-dim image interpolation (get an image at any wavelength & model parameter combination)* simulation of observations with telescopes (compute/provide + apply a PSF) and interferometers (get visibilities)* analyze images with respect to the power contained at all scales and orientations (via 2D steerable wavelets), addressing the seemingly puzzling results mentioned aboveA series of papers is in preparation, aiming at solving the
Accuracy assessment of global barotropic ocean tide models
Stammer, D.; Ray, R. D.; Andersen, Ole Baltazar
2014-01-01
The accuracy of state-of-the-art global barotropic tide models is assessed using bottom pressure data, coastal tide gauges, satellite altimetry, various geodetic data on Antarctic ice shelves, and independent tracked satellite orbit perturbations. Tide models under review include empirical, purel...
Dirac-like equations for barotropic FRW cosmologies
Rosu, H C; Reyes, M; Jimenez, D
2002-01-01
Simple Schroedinger-like equations have been written down for FRW cosmologies with barotropic fluids by Faraoni. His results have been extended by Rosu, who employed techniques belonging to nonrelativistic supersymmetry. Further extensions are presented herein using the known connection between Schroedinger-like equations and Dirac-like equations in the same supersymmetric context
Modular Curvature for Noncommutative Two-Tori
Connes, Alain
2011-01-01
Starting from the description of the conformal geometry of noncommutative 2-tori in the framework of modular spectral triples, we explicitly compute the local curvature functionals determined by the value at zero of the zeta functions affiliated with these spectral triples. We give a closed formula for the Ray-Singer analytic torsion in terms of the Dirichlet quadratic form and the generating function for Bernoulli numbers applied to the modular operator. The gradient of the Ray-Singer analytic torsion is then expressed in terms of these functionals, and yields the analogue of scalar curvature. Computing this gradient in two ways elucidates the meaning of the complicated two variable functions occurring in the formula for the scalar curvature. Moreover, the corresponding evolution equation for the metric produces the appropriate analogue of Ricci curvature. We prove the analogue of the classical result which asserts that in every conformal class the maximum value of the determinant of the Laplacian on metrics...
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Self-gravitating fluid tori with charge
Karas, Vladimir; Trova, Audrey; Kovar, Jiri
2017-08-01
We have been developing an analytical approach to study equilibria of self-gravitating charged fluid embedded in the gravitational and magnetic fields of a central body. Our calculations provide a toy-model scenario for gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. Moreover, by charging mechanisms it also acquires non-zero electric charge density. These two influences need to be taken into account to achieve a self-consistent picture (based on Trova et al., ApJSS, 226, id. 12, 2016).
Infrared Constraints on AGN Tori Models
Hatziminaoglou, E; Pérez-Fournon, I; Franceschini, A; Hernan-Caballero, A; Afonso-Luis, A; Lonsdale, C; Fang, F; Oliver, S; Rowan-Robinson, M; Shupe, D; Smith, H; Surace, J; Gonzales-Solares, E
2006-01-01
This work focuses on the properties of dusty tori in active galactic nuclei (AGN) derived from the comparison of SDSS type 1 quasars with mid-Infrared (MIR) counterparts and a new, detailed torus model. The infrared data were taken by the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. Basic model parameters are constraint, such as the density law of the graphite and silicate grains, the torus size and its opening angle. A whole variety of optical depths is supported. The favoured models are those with decreasing density with distance from the centre, while there is no clear tendency as to the covering factor, ie small, medium and large covering factors are almost equally distributed. Based on the models that better describe the observed SEDs, properties such as the accretion luminosity, the mass of dust, the inner to outer radius ratio and the hydrogen column density are computed.
On exact triangles consisting of stable vector bundles on tori
Kobayashi, Kazushi
2016-01-01
In this paper, we consider the exact triangles consisting of stable holomorphic vector bundles on one-dimensional complex tori, and discuss their relations with the corresponding Fukaya category via the homological mirror symmetry.
Time-independent gossiping on full-port tori
Meyer, U.; Sibeyn, J.
1998-01-01
Near-optimal gossiping algorithms are given for two- and higher dimensional tori. It is assumed that the amount of data each PU contributes is so large that start-up time may be neglected. For two-dimensional tori, a previous algorithm achieved optimality in an intricate way, with a time-dependent routing pattern. In all steps of our algorithms, the PUs forward the received packets in the same way.
Nada: A new code for studying self-gravitating tori around black holes
Montero, Pedro J.; Font, José A.; Shibata, Masaru
2008-09-01
We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.
Shaghaghian, M
2016-01-01
We examine a thick accretion disc in the presence of external gravity and intrinsic dipolar magnetic field due to a non-rotating central object. In this paper, we generalize the Newtonian theory of stationary axisymmetric resistive tori of Tripathy, Prasanna $\\&$ Das (1990) by including the fully general relativistic features. If we are to obtain the steady state configuration, we have to take into account the finite resistivity for the magnetofluid in order to avoid the piling up of the field lines anywhere in the accretion discs. The efficient value of conductivity must be much smaller than the classical conductivity to be astrophysically interesting. The accreting plasma in the presence of an external dipole magnetic field gives rise to a current in the azimuthal direction. The azimuthal current produced due to the motion of the magnetofluid modifies the magnetic field structure inside the disc and generates a poloidal magnetic field for the disc. The solutions we have found show that the radial inflow...
Cremaschini, Claudio; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír
2013-01-01
The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal MHD theory. These stationary structures can represent plausible candidates for the modelling of coronal plasmas expected to arise in association with accretion discs. However, accretion disc coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can be determined also in the case of collisionless plasmas for which treatment based on kinetic theory, rather than fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution functio...
Simulations of flux variability of oscillating accretion fluid tori around Kerr black holes
Bakala, Pavel; Šrámková, Eva; Kotrlová, Andrea; Török, Gabriel; Vincent, Frederic H; Abramowicz, Marek A
2014-01-01
High frequency quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra (PDS) of several microquasars and low mass X-ray binaries. Many proposed QPO models are based on oscillations of accretion toroidal fluid structures orbiting in the vicinity of a compact object. We study oscillating accretion tori orbiting in the vicinity of a Kerr black hole. We demonstrate that significant variation of the observed flux can be caused by the combination of radial and vertical oscillation modes of a slender, polytropic, perfect fluid, non-self-graviting torus with constant specific angular momentum. We investigate two combinations of the oscillating modes corresponding to the direct resonance QPO model and the modified relativistic precession QPO model.
Rossby waves with linear topography in barotropic fluids
2008-01-01
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies
Haret C. Rosu
2011-02-01
Full Text Available In the case of barotropic FRW cosmologies, the Hubble parameter in conformal time is the solution of a simple Riccati equation of constant coefficients. We consider these cosmologies in the framework of nonrelativistic supersymmetry that has been effective in the area of supersymmetric quantum mechanics. Recalling that Faraoni [Amer. J. Phys. 67 (1999, 732-734] showed how to reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations, we set the latter equations in the supersymmetric approach and divide their solutions into two classes of 'bosonic' (nonsingular and 'fermionic' (singular cosmological zero-mode solutions. The fermionic equations can be considered as representing cosmologies of Stephani type, i.e., inhomogeneous and curvature-changing in the conformal time. We next apply the so-called shifted Riccati procedure by introducing a constant additive parameter, denoted by S, in the common Riccati solution of these supersymmetric partner cosmologies. This leads to barotropic Stephani cosmologies with periodic singularities in their spatial curvature indices that we call U and V cosmologies, the first being of bosonic type and the latter of fermionic type. We solve completely these cyclic singular cosmologies at the level of their zero modes showing that an acceptable shift parameter should be purely imaginary, which in turn introduces a parity-time (PT property of the partner curvature indices.
Shifted Riccati Procedure: Application to Conformal Barotropic FRW Cosmologies
Rosu, Haret C.; Khmelnytskaya, Kira V.
2011-02-01
In the case of barotropic FRW cosmologies, the Hubble parameter in conformal time is the solution of a simple Riccati equation of constant coefficients. We consider these cosmologies in the framework of nonrelativistic supersymmetry that has been effective in the area of supersymmetric quantum mechanics. Recalling that Faraoni [Amer. J. Phys. 67 (1999), 732-734] showed how to reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations, we set the latter equations in the supersymmetric approach and divide their solutions into two classes of 'bosonic' (nonsingular) and 'fermionic' (singular) cosmological zero-mode solutions. The fermionic equations can be considered as representing cosmologies of Stephani type, i.e., inhomogeneous and curvature-changing in the conformal time. We next apply the so-called shifted Riccati procedure by introducing a constant additive parameter, denoted by S, in the common Riccati solution of these supersymmetric partner cosmologies. This leads to barotropic Stephani cosmologies with periodic singularities in their spatial curvature indices that we call U and V cosmologies, the first being of bosonic type and the latter of fermionic type. We solve completely these cyclic singular cosmologies at the level of their zero modes showing that an acceptable shift parameter should be purely imaginary, which in turn introduces a parity-time (PT) property of the partner curvature indices.
Tanaka, H. L.
2003-06-01
In this study, a numerical simulation of the Arctic Oscillation (AO) is conducted using a simple barotropic model that considers the barotropic-baroclinic interactions as the external forcing. The model is referred to as a barotropic S model since the external forcing is obtained statistically from the long-term historical data, solving an inverse problem. The barotropic S model has been integrated for 51 years under a perpetual January condition and the dominant empirical orthogonal function (EOF) modes in the model have been analyzed. The results are compared with the EOF analysis of the barotropic component of the real atmosphere based on the daily NCEP-NCAR reanalysis for 50 yr from 1950 to 1999.According to the result, the first EOF of the model atmosphere appears to be the AO similar to the observation. The annular structure of the AO and the two centers of action at Pacific and Atlantic are simulated nicely by the barotropic S model. Therefore, the atmospheric low-frequency variabilities have been captured satisfactorily even by the simple barotropic model.The EOF analysis is further conducted to the external forcing of the barotropic S model. The structure of the dominant forcing shows the characteristics of synoptic-scale disturbances of zonal wavenumber 6 along the Pacific storm track. The forcing is induced by the barotropic-baroclinic interactions associated with baroclinic instability.The result suggests that the AO can be understood as the natural variability of the barotropic component of the atmosphere induced by the inherent barotropic dynamics, which is forced by the barotropic-baroclinic interactions. The fluctuating upscale energy cascade from planetary waves and synoptic disturbances to the zonal motion plays the key role for the excitation of the AO.
Accuracy Assessment of Global Barotropic Ocean Tide Models
2014-08-07
a depth-averaged hydrodynamic tidal model, formulated in terms of the barotropic shallow-water equations in volume transport form. A spectral approach...bootstrap of all models except NSWC, CSR , and TPXO8. of T/P in 1992. The signal is defined by √ A2station∕2, where the Astation values are the...low- est RMS in any given constituent, where is taken from the median bootstrap of all models except CSR and TPXO8. bTPXO8 assimilated a subset of
A new barotropic model of the wind-driven circulation
张庆华; 曲媛媛; 李坚克
1999-01-01
Rationalized by the observational circulation pattern in the upper ocean of the North Pacific, meridional friction term is first incorporated in a barotropic theoretical model of the wind-driven circulation. The governing potential vortieity equation thence has β term and wind stress curl term (the two of the Sverdrup balance), zonal friction term and meridional friction term. The analytical solution satisfactorily captures many important features of the wind-driven circulation in the North Pacific: Kuroshio, Oyashio, Kuroshio extension, North Equatorial Current, and especially the eastern boundary currents in the North Pacific, i.e. California current and Alaska current.
Twin peak HF QPOs as a spectral imprint of dual oscillation modes of accretion tori
Bakala, Pavel; Török, Gabriel; Šrámková, Eva; Abramowicz, Marek A; Vincent, Frederic H; Mazur, Grzegorz P
2015-01-01
High frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3/2. Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of optically thick slender tori with constant specific angular momentum. We examined power spectra and fluorescent K$\\alpha$ iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. We use relativistic ray-tracing implemented in parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyze t...
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Võitlus tori tõuraamatute pärast jätkub / Aive Sarjas
Sarjas, Aive
2012-01-01
Eesti Hobusekasvatajate Seltsi (EHS) kaebusest kohtule, et seoses Veterinaar- ja toiduameti otusega tunnustda Vana-Tori Hobuse Ühingut tori tõugu hobuste vana-tori suuna tõuraamatu pidajana ei saa EHS täita aretus- ja säilitusprogrammiga võetud kohustusi
Geometry of KAM tori for nearly integrable Hamiltonian systems
Broer, Hendrik; Cushman, Richard; Fassò, Francesco; Takens, Floris
2007-01-01
We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the pr
Küsimuste tulv automaksu teel / Villem Tori
Tori, Villem
2008-01-01
Eesti Autoettevõtete Liidu direktor Villem Tori imestab sotsiaaldemokraatide automaksu idee üle, sest kordagi pole öeldud, mida sellest maksust laekuva rahaga teha soovitakse. Vt. samas: Võimalik automaks. Kommenteerivad võimlemisklubi Janika juht Janika Mölder ja suusatreener Mati Alaver
So That History May Repeat Itself: Roger Tory Peterson Institute.
Sharp, William; Dobey, Dan
1991-01-01
Traces the roots of the Roger Tory Peterson Institute, which provides programs to encourage outdoor experiences. Summarizes a forum on natural history education titled, "Breaking the Barriers: Linking Children and Nature." Lists strategies for improving environmental education and objectives for the institute. (KS)
Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities
Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.
2015-09-01
We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.
Collapse and fragmentation of Gaussian barotropic protostellar clouds
Gomez-Ramirez, F; Cervantes-Cota, Jorge L; Arreaga-Garcia, G; Bahena, D
2011-01-01
We examine the problem of the collapse and fragmentation of molecular clouds with a Gaussian density distribution with high resolution, double precision numerical simulations using the GADGET-2 code. To describe the thermodynamic properties of the cloud during the collapse -to mimic the rise of temperature predicted by radiative transfer- we use a barotropic equation of state that introduces a critical density to separate the isothermal and adiabatic regimes. We discuss the effects of this critical density in the formation of multiple systems. We confirm the tendency found for Plummer and Gaussian models that if the collapse changes from isothermal to adiabatic at earlier times that occurs for the models with a lower critical density, the collapse is slowed down, and this enhances the fragments' change to survive. However, this effect happens up to a threshold density below which single systems tend to form. On the other hand, by setting a bigger initial perturbation amplitude, the collapse is faster and in s...
Bottom friction optimization for a better barotropic tide modelling
Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy
2015-04-01
At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction
A BAROTROPIC QUASI-GEOSTROPHIC MODEL WITH LARGE-SCALE TOPOGRAPHY, FRICTION AND HEATING
无
2000-01-01
Based on the barotropic equations including large-scale topography, friction and heat factor, a barotropic quasi-geostrophic model with large-scale topography, friction and heating is obtained by means of scale analysis and small parameter method. It is shown that this equation is a basic one, which is used to study the influence of the Tibetan Plateau on the large-scale flow in the atmosphere. If the friction and heating effect of large-scale topography are neglected, this model will degenerate to the general barotropic quasi-geostrophic one.
Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities
Stuchlík, Zdeněk; Schee, Jan; Kučáková, Hana
2014-01-01
We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularity representing spherically symmetric vacuum solution of the modified Ho\\v{r}ava quantum gravity that is characterized by a dimensionless parameter $\\omega M^2$, combining the gravitational mass parameter $M$ of the spacetime with the Ho\\v{r}ava parameter $\\omega$ reflecting the role of the quantum corrections. In dependence on the value of $\\omega M^2$, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in stable equilibrium position, that is relevant for the stability of the orbiting fluid toroidal accretion structures.
Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori
Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko
2001-01-18
Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.
Homological mirror symmetry on noncommutative two-tori
Kajiura, H
2004-01-01
Homological mirror symmetry is a conjecture that a category constructed in the A-model and a category constructed in the B-model are equivalent in some sense. We construct a cyclic differential graded (DG) category of holomorphic vector bundles on noncommutative two-tori as a category in the B-model side. We define the corresponding Fukaya's category in the A-model side, and prove the equivalence of the two categories at the level of cyclic categories. We further write down explicitly Feynman rules for higher Massey products derived from the cyclic DG category. As a background of these arguments, a physical explanation of the mirror symmetry for noncommutative two-tori is also given.
Classification of knotted tori in 2-metastable dimension
Cencelj, Matija
2012-11-30
This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
General Relativistic Simulations of Binary Neutron Star Mergers
Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca; Link, David; Font, José A.
2011-08-01
Binary neutron star mergers are one of the possible candidates for the central engine of short gamma-ray bursts (GRBs) and they are also powerful sources of gravitational waves. We have used our fully general relativistic hydrodynamical code Whisky to investigate the merger of binary neutron star systems and we have in particular studied the properties of the tori that can be formed by these systems, their possible connection with the engine of short GRBs and the gravitational wave signals that detectors such as advanced LIGO will be able to detect. We have also shown how the mass of the torus varies as a function of the total mass of the neutron stars composing the binary and of their mass ratio and we have found that tori sufficiently massive to power short GRBs can indeed be formed.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
The Persistence of Invariant Tori in Nearly Small Twist Mappings with Intersection Property
祝文壮; 黄庆道; 刘柏枫
2004-01-01
In this paper we investigate the nearly small twist mappings with intersection property. With a certain non-degenerate condition, we proved that the most of invariant tori of the original small twist mappings will survive afer small perturtations. The persisted invariant tori are close to the unperturbed ones when the perturbation are small. The orbits reduced by those mappings are quasi-periodic in the invariant tori with the frequences closing to the original ones.
Numerical simulations of oscillating tori in a pseudo-Newtonian potential
Parthasarathy, Varadarajan; Kluzniak, Wlodek
2016-01-01
We have modeled hydrodynamical tori in the Klu{\\'z}niak-Lee pseudo-Newtonian potential. The tori in equilibrium were perturbed with uniform sub-sonic velocity fields: vertical, radial and diagonal respectively, and allowed to evolve in time. We identify the eigenmodes corresponding to those of slender tori. The results of our simulations are relevant to the investigation of high-frequency quasi-periodic oscillations observed in stellar-mass black hole binaries.
Effectiveness of tori line use to reduce seabird bycatch in pelagic longline fishing
Domingo, Andrés; Abreu, Martin; Forselledo, Rodrigo; Yates, Oliver
2017-01-01
Industrial longline fisheries cause the death of large numbers of seabirds annually. Various mitigation measures have been proposed, including the use of tori lines. In this study the efficiency of a single tori line to reduce seabird bycatch was tested on pelagic longline vessels (25-37m length). Thirteen fishing trips were carried out in the area and season of the highest bycatch rates recorded in the southwest Atlantic (2009–2011). We deployed two treatments in random order: sets with a tori line and without a tori line (control treatment). The use of a tori line significantly reduced seabird bycatch rates. Forty three and seven birds were captured in the control (0.85 birds/1,000 hooks, n = 49 sets) and in the tori line treatment (0.13 birds/1,000 hooks, n = 51 sets), respectively. In 47% of the latter sets the tori line broke either because of entanglement with the longline gear or by tension. This diminished the tori line effectiveness; five of the seven captures during sets where a tori line was deployed were following ruptures. Nine additional trips were conducted with a tori line that was modified to reduce entanglements (2012–2016). Seven entanglements were recorded in 73 longline sets. The chance of a rupture on these trips was 4% (95% c.l. = 1–18%) of that during 2009–2011. This work shows that the use of a tori line reduces seabird bycatch in pelagic longline fisheries and is a practice suitable for medium size vessels (~25-40m length). Because the study area has historically very high bycatch rates at global level, this tori line design is potentially useful to reduce seabird bycatch in many medium size pelagic longline vessel fishing in the southern hemisphere. PMID:28886183
Numerical solution of Helmholtz equation of barotropic atmosphere using wavelets
Wang Ping; Dai Xin-Gang
2004-01-01
The numerical solution of the Helmholtz equation for barotropic atmosphere is estimated by use of the waveletGalerkin method. The solution involves the decomposition of a circulant matrix consisting up of 2-term connection coefficients of wavelet scaling functions. Three matrix decompositions, i.e. fast Fourier transformation (FFT), Jacobian and QR decomposition methods, are tested numerically. The Jacobian method has the smallest matrix-reconstruction error with the best orthogonality while the FFT method causes the biggest errors. Numerical result reveals that the numerical solution of the equation is very sensitive to the decomposition methods, and the QR and Jacobian decomposition methods, whose errors are of the order of 10-3, much smaller than that with the FFT method, are more suitable to the numerical solution of the equation. With the two methods the solutions are also proved to have much higher accuracy than the iteration solution with the finite difference approximation. In addition, the wavelet numerical method is very useful for the solution of a climate model in low resolution. The solution accuracy of the equation may significantly increase with the order of Daubechies wavelet.
Barotropic response in a lake to wind-forcing
Y. Wang
Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.
Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation
Unstable periodic orbits and attractor of the barotropic ocean model
E. Kazantsev
1998-01-01
Full Text Available A numerical method for detection of unstable periodic orbits on attractors of nonlinear models is proposed. The method requires similar techniques to data assimilation. This fact facilitates its implementation for geophysical models. This method was used to find numerically several low-period orbits for the barotropic ocean model in a square. Some numerical particularities of application of this method are discussed. Knowledge of periodic orbits of the model helps to explain some of these features like bimodality of probability density functions (PDF of principal parameters. These PDFs have been reconstructed as weighted averages of periodic orbits with weights proportional to the period of the orbit and inversely proportional to the sum of positive Lyapunov exponents. The fraction of time spent in the vicinity of each periodic orbit has been compared with its instability characteristics. The relationship between these values shows the 93% correlation. The attractor dimension of the model has also been approximated as a weighted average of local attractor dimensions in vicinities of periodic orbits.
Breakup of shearless meanders and ``outer'' tori in the standard nontwist map
Fuchss, K.; Wurm, A.; Apte, A.; Morrison, P. J.
2006-09-01
The breakup of shearless invariant tori with winding number ω =(11+γ)/(12+γ) (in continued fraction representation) of the standard nontwist map is studied numerically using Greene's residue criterion. Tori of this winding number can assume the shape of meanders [folded-over invariant tori which are not graphs over the x axis in (x,y) phase space], whose breakup is the first point of focus here. Secondly, multiple shearless orbits of this winding number can exist, leading to a new type of breakup scenario. Results are discussed within the framework of the renormalization group for area-preserving maps. Regularity of the critical tori is also investigated.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis
Wu, Man-Li C; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Thorncroft, Chris D.
2012-01-01
This study investigates the structure of the African easterly jet, focusing on instability processes on a seasonal and subseasonal scale, with the goal of identifying features that could provide increased predictability of Atlantic tropical cyclogenesis. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used as the main investigating tool. MERRA is compared with other reanalyses datasets from major operational centers around the world and was found to describe very effectively the circulation over the African monsoon region. In particular, a comparison with precipitation datasets from the Global Precipitation Climatology Project shows that MERRA realistically reproduces seasonal precipitation over that region. The verification of the generalized Kuo barotropic instability condition computed from seasonal means is found to have the interesting property of defining well the location where observed tropical storms are detected. This property does not appear to be an artifact of MERRA and is present also in the other adopted reanalysis datasets. Therefore, the fact that the areas where the mean flow is unstable seems to provide a more favorable environment for wave intensification, could be another factor to include-in addition to sea surface temperature, vertical shear, precipitation, the role of Saharan air, and others-among large-scale forcings affecting development and tropical cyclone frequency. In addition, two prominent modes of variability are found based on a spectral analysis that uses the Hilbert-Huang transform: a 2.5-6-day mode that corresponds well to the African easterly waves and also a 6-9-day mode that seems to be associated with tropical- extratropical interaction.
Formation Flight of Earth Satellites on KAM Tori
2007-09-01
analysis in 320km, 30◦ orbit, δϕ = 0.0001◦ 119 E8 . Cluster distance from chief satellite for tight formation analysis in 320km, 30◦ orbit, δϕ0 = 0.0001...become all the more apparent with the relatively recent focus on development and implementation of small satellite or microsatellite formations – groups ...of math - ematics. However, one can obtain a very basic idea of system behavior by investigating higher-dimensional tori using a method loosely
The Tomba dei Tori at Tarquinia: A ritual approach
J. Rasmus Brandt
2014-11-01
Full Text Available In a recent publication (Brandt 2014b an attempt was made to single out recurring pictorial motifs in Etruscan tomb paintings and to interpret them as elements of funerary ritual procedures with reference to Arnold van Gennep’s rites-de-passage model (1908 and Mary Douglas’ views on purity and danger (1996. The model is here applied on the Archaic and well-known Tomba dei Tori at Tarquinia in order to see if the tomb’s many enigmatic pictorial scenes can be read as coherent elements of such procedures.
Enhancement of the TORIS data base of Appalachian basin oil fields. Final report
NONE
1996-01-31
The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.
Bifurcations of Invariant Tori and Subharmonic Solutions of Singularly Perturbed System
Zhiyong YE; Maoan HAN
2007-01-01
This paper deals with bifurcations of subharmonic solutions and invariant tori generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed integral manifold, the conditions for the existence of invariant tori are obtained, and the saddle-node bifurcations of subharmonic solutions are studied.
KAM Type-Theorem for Lower Dimensional Tori in Random Hamiltonian Systems*
LI YONG; XU LU
2011-01-01
In this paper, we study the persistence of lower dimensional tori for random Hamiltonian systems, which shows that majority of the unperturbed tori persist as Cantor fragments of lower dimensional ones under small perturbation. Using this result, we can describe the stability of the non-autonomous dynamic systems.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Barotropic flow over bottom topography— experiments and nonlinear theory
Pfeffer, Richard L.; Kung, Robin; Ding, Wen; Li, Guo-Qing
1993-10-01
Barotropic flow over finite amplitude two-wave bottom topography is investigated both experimentally and theoretically over a broad parameter range. In the experiments, the fluid is contained in a vertically oriented, rotating circular cylindrical annulus. It is forced into motion relative to the annulus by a differentially rotating, rigid, radially sloping lid in contact with the top surface of the fluid. The radial depth variation associated with the slope of the lid, and an equal and opposite slope of the bottom boundary, simulates the effect of the variation of the Coriolis parameter with latitude (β) in planetary atmospheres and in the ocean. The dimensionless parameters which control the fluid behavior are the Rossby number (ɛ), the Ekman number (E), the β parameter, the aspect ratio (δ), the ratio of the mean radius to the gap width (α) and the ratio of the topographic height to the mean fluid depth (η). The Rossby and Ekman numbers are varied over an order of magnitude by conducting experiments at different rotation rates of the annulus. Velocity measurements using photographs of tracer particles suspended in the fluid reveal the existence of a stationary, topographically forced wave superimposed on an azimuthal mean current. With successively larger rotation rates (i.e. lower ɛ and E) the wave amplitude increases and then levels off, the phase displacement of the wave upstream of the topography increases and the azimuthal mean velocity decreases and then levels off. Linear quasigeostophic theory accounts qualitatively, but not quantitatively, for the phase displacement, predicts the wave amplitude poorly and provides no basis for predicting the zonal mean velocity. Accordingly, we have solved the nonlinear, steady-state, quasigeostrophic barotrophic vorticity equation with both Ekman layer and internal dissipation using a spectral colocation method with Fourier representation in the azimuthal direction and Chebyshev polynomial representation in the
Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D
2013-01-01
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...
Stability of magnetic fields in non-barotropic stars: an analytic treatment
Akgün, Taner; Mastrano, Alpha; Marchant, Pablo
2013-01-01
Magnetic fields in upper main-sequence stars, white dwarfs, and neutron stars are known to persist for timescales comparable to their lifetimes. From a theoretical perspective this is problematic, as it can be shown that simple magnetic field configurations are always unstable. In non-barotropic stars, stable stratification allows for a much wider range of magnetic field structures than in barotropic stars, and helps stabilize them by making it harder to induce radial displacements. Recent simulations by Braithwaite and collaborators have shown that, in stably stratified stars, random initial magnetic fields evolve into nearly axisymmetric configurations with both poloidal and toroidal components, which then remain stable for some time. It is desirable to provide an analytic study of the stability of such fields. We write an explicit expression for a plausible equilibrium structure of an axially symmetric magnetic field with both poloidal and toroidal components of adjustable strengths, in a non-barotropic st...
REGIMUL JURIDIC AL BILETULUI DE CĂLĂTORIE ELECTRONIC
Dumitriţa BAEŞU
2016-03-01
Full Text Available În articol sunt scoase în relief principalele repere conceptuale ce se ataşează problematicii cu privire la coraportul biletului de călătorie electronic în transportul auto de călători şi bagaje şi în transportul aerian. Este fundamentată teza, potrivit căreia sistemul de taxare electronic în cadrul prestării serviciilor de transport este deosebit de important şi necesar în contextul racordării legislaţiei naţionale la cerinţele Uniunii Europene. De asemenea, se menţionează că reforma în cazul respectiv este oportună şi inevitabilă, deoarece una dintre condiţiile cerute de Uniunea Europeană pentru integrarea Republicii Moldova în acest sistem constă în armonizarea legislaţiei privind transportul la standardele europene. Nu în ultimul rând, este formulată concluzia, potrivit căreia achiziţionarea biletelor de călătorie electronice a devenit mult mai comodă, economă şi accesibilă. LEGAL REGIME OF THE ELECTRONIC TRAVEL TICKET In the article are pointed out major conceptual aspects that are a added to issues on the ticket correlation of road transport of passengers electronic ticket and luggage in air transport. It is fundamental thesis that the electronic toll system in transport services is particularly important and necessary in the context of adjusting the national legislation to the European Union standards. Also in this case, is mentioned that reform is appropriate and inevitable, because one of the conditions required by the EU for Moldova's integration into the system is to harmonize transport legislation with European standards. Finally, as conclusion, electronic travel ticket purchasing has become more convenient, cheap and affordable.
BALI Raj; PAREEK Umesh Kumar; PRADHAN Anirudh
2007-01-01
@@ Bianchi type-Ⅰ massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel is investigated. To obtain the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along the x-axis with infinite electrical condúctivity. The behaviour of the model in the presence and absence of magnetic field together with other physical aspects is further discussed.
The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex
无
2007-01-01
The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a generalized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super highspeed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different.They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Hiroyuki Abe
2016-10-01
Full Text Available We construct several dynamical supersymmetry breaking (DSB models within a single ten-dimensional supersymmetric Yang–Mills (SYM theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU(NC SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Abe, Hiroyuki; Kobayashi, Tatsuo; Sumita, Keigo
2016-10-01
We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU (NC) SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Abe, Hiroyuki; Sumita, Keigo
2016-01-01
We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of $SU(N_C)$ SYM theory with $N_F$ flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
Nonsymmetric systems arising in the computation of invariant tori
Trummer, M.R. [Simons Fraser Univ., Burnaby, British Columbia (Canada)
1996-12-31
We introduce two new spectral implementations for computing invariant tori. The underlying nonlinear partial differential equation although hyperbolic by nature, has periodic boundary conditions in both space and time. In our first approach we discretize the spatial variable, and find the solution via a shooting method. In our second approach, a full two-dimensional Fourier spectral discretization and Newton`s method lead to very large, sparse, nonsymmetric systems. These matrices are highly structured, but the sparsity pattern prohibits the use of direct solvers. A modified conjugate gradient type iterative solver appears to perform best for this type of problems. The two methods are applied to the van der Pol oscillator, and compared to previous algorithms. Several preconditioners are investigated.
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
A vast amount of various invariant tori in the Nosé-Hoover oscillator
Wang, Lei [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Mathematics and Physics, Hefei University, Hefei 230601 (China); Yang, Xiao-Song, E-mail: yangxs@hust.edu.cn [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2015-12-15
This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of “chaotic region” and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a “chaotic sea” for the Nosé-Hoover oscillator.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
On the lifetime of an intense localized barotropic vortex on the {beta}-plane
Reznik, G.M. [Russian Academy of Science, Moscow (Russian Federation). P.P. Shirshov Institute of Oceanology; Grimshaw, R. [Monash Univ., Clayton, Victoria (Australia). Dept. of Mathematics and Statistics
1999-12-01
The study presents an asymptotic theory for the long time evolution of an intense barotropic vortex, on the {beta}-plane. Three stages are described: first, the near-field development of {beta}-gyres; second, the intensification of the quadrupole and secondary axisymmetric components with vortex decay. The theory takes into account of all three stages and provides estimates for the vortex lifetime.
Barotropic tidal model for the Bombay High, Gulf of Khambhat and surrounding areas
Unnikrishnan, A.S.; Shetye, S.R.; Michael, G.S.
A barotropic model is developed for the shelf region off the central west coast of India, which includes the regions of Bombay High and Gulf of Khambhat, in order to simulate tides and tidal currents in the region. The model is forced by a composite...
Second Order perturbation Theory: A covariant approach involving a barotropic equation of state
Osano, Bob
2015-01-01
We first revisit the motivations for developing techniques to study Second-Order effects, before presenting the formalism. We study second-order tensor perturbations about FLRW with dust on the one hand, and with a general barotropic equation of state on the other. Solutions to the wave equations are presented.
SIMULATION OF EDDIES AFFECTED BY TOPOGRAPHY IN A BAROTROPICAL QUASI-GEOSTROPHIC FLUID
无
2001-01-01
Based upon the quasi-geostrophic barotropic equation, taking into account the effect of seabed topography, analytical solutions and simulated eddies associated with different topographies are obtained. Through exhibiting the shape of various eddies we have found some interesting phenomena and had a better understanding of the importance of seabed topography to the eddy shape.
The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems
Yanan Jiang
2014-01-01
Full Text Available We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3.
The existence of periodic orbits and invariant tori for some 3-dimensional quadratic systems.
Jiang, Yanan; Han, Maoan; Xiao, Dongmei
2014-01-01
We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ(3).
The Existence of Periodic Orbits and Invariant Tori for Some 3-Dimensional Quadratic Systems
Jiang, Yanan; Han, Maoan; Xiao, Dongmei
2014-01-01
We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ3. PMID:24982980
Martin, Charles Francis James
The Ontario Tories' 42-year hegemony in government (1943-1985) was wrought through clever policies which often utilized Crown institutions to promote prosperity or to oblige or mollify vying interests. Ousted in 1985, though, they used their time in opposition to revise the Tory doctrine. In the 1995 election, the Tories emerged a tougher, more truculent group quite unlike their predecessors. Campaigning on their Common Sense Revolution (CSR) platform, they promised to eliminate red tape and vowed to obliterate all ostensible economic barriers which were impeding commerce in the province. In the CSR, the Tories identified Ontario Hydro (OH), the province's lauded publicly-owned power monopoly, as a troublesome and inefficient Crown entity which required fundamental reform. Portions of OH, they hinted, would likely be sold. Once elected, the Tories worked hurriedly to demolish OH and destroy public power in Ontario. For nearly 100 years, OH proved a pivotal component within the province's political economy for its provision of affordable, reliable power and its function as a policy tool to incite and direct development. A Tory government fought to instigate public power in the early 1900s and, in the late 1900s, a Tory government was fighting vigorously to rescind it. Why would they now renounce Crown power? It is the intent of this thesis to elucidate the Tory government's involvement in the transformation of Ontario's electricity industry from 1995 to 2003. Distinguishing electricity as a special, strategic staple, this thesis uses a pro-state, pro-staples industry political economy approach to discern how and why the Tory government sought to restructure the electricity sector. Essentially, it posits that the onslaught of neoliberalism, the emergence of novel generating technology, and the faltering of OH's nuclear wing all had a huge part to play in provoking the Tory government to initiate its reforms. Their reforms, though, proved too hasty, haughty, and
Liu Su-Hua; Tang Jia-Shi; Qin Jin-Qi; Yin Xiao-Bo
2008-01-01
Bifurcation characteristics of the Langford system in a general form are systematically analysed,and nonlinear controls of periodic solutions changing into invariant tori in this system are achieved.Analytical relationship between control gain and bifurcation parameter is obtained.Bifurcation diagrams are drawn,showing the results of control for secondary Hopf bifurcation and sequences of bifurcations route to chaos.Numerical simulations of quasi-periodic tori validate analytic predictions.
Low-dimensional q-Tori in FPU Lattices: Dynamics and Localization Properties
Christodoulidi, Helen
2012-01-01
This is a continuation of our study concerning q-tori, i.e. tori of low dimensionality in the phase space of nonlinear lattice models like the Fermi-Pasta-Ulam (FPU) model. In our previous work we focused on the beta FPU system, and we showed that the dynamical features of the q-tori serve as an interpretational tool to understand phenomena of energy localization in the FPU space of linear normal modes. In the present paper i) we employ the method of Poincare - Lindstedt series, for a fixed set of frequencies, in order to compute an explicit quasi-periodic representation of the trajectories lying on q-tori in the alpha model, and ii) we consider more general types of initial excitations in both the alpha and beta models. Furthermore we turn into questions of physical interest related to the dynamical features of the q-tori. We focus on particular q-tori solutions describing low-frequency `packets' of modes, and excitations of a small set of modes with an arbitrary distribution in q-space. In the former case, ...
Global structure of regular tori in a generic 4D symplectic map
Lange, S.; Richter, M.; Onken, F.; Bäcker, A.; Ketzmerick, R.
2014-06-01
For the case of generic 4d symplectic maps with a mixed phase space, we investigate the global organization of regular tori. For this, we compute elliptic 1-tori of two coupled standard maps and display them in a 3d phase-space slice. This visualizes how all regular 2-tori are organized around a skeleton of elliptic 1-tori in the 4d phase space. The 1-tori occur in two types of one-parameter families: (α) Lyapunov families emanating from elliptic-elliptic periodic orbits, which are observed to exist even far away from them and beyond major resonance gaps, and (β) families originating from rank-1 resonances. At resonance gaps of both types of families either (i) periodic orbits exist, similar to the Poincaré-Birkhoff theorem for 2d maps, or (ii) the family may form large bends. In combination, these results allow for describing the hierarchical structure of regular tori in the 4d phase space analogously to the islands-around-islands hierarchy in 2d maps.
Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei
Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa
2012-12-01
Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the
Adiabatic Compression of Compact Tori for Current Drive and Heating
Woodruff, Simon; McNab, Angus; Miller, Kenneth; Ziemba, Tim
2008-11-01
Several critical issues stand in the development path for compact tori. An important one is the production of strong magnetic fields, (or large flux amplifications) by use of a low current source. The Pulsed Build-up Experiment is a Phase II SBIR project in which we aim to show a new means for generating strong magnetic fields from a low current source, namely, the repetitive injection of helicity-bearing plasma that also undergoes an acceleration and compression. In the Phase I SBIR, advanced computations were benchmarked against analytic theory and run to determine the best means for the acceleration and compression of a compact torus plasma. The study included detailed simulations of magnetic reconnection. In Phase II, an experiment has been designed and is being built to produce strong magnetic fields in a spheromak by the repetitive injection of magnetic helicity from a low current coaxial plasma source. The plasma will be accelerated and compressed in a similar manner to a traveling wave adiabatic compression scheme that was previously applied to a mirror plasma [1]. [1] P. M. Bellan Scalings for a Traveling Mirror Adiabatic Magnetic Compressor Rev. Sci. Instrum. 53(8) 1214 (1982) Work supported by DOE Grant No. DE-FG02-06ER84449.
Aprotické elektrolyty pro superkondenzátory
2010-01-01
Diplomová práce ověřuje vhodnost použití různých typů aprotických elektrolytů pro superkondenzátory, využívá metody impedanční spektroskopie k měření měrné iontové vodivosti a cyklické voltametrie k určení velikosti potenciálových oken. Použitá aprotická rozpouštědla - propylenkarbonát, dimethylsulfoxid, N, N dimethylformamid, ethylenkarbonát, dimethylkarbonát, diethylkarbonát a acetonitril. Do rozpouštědel byly přidány soli - LiClO4, NaClO4, KClO4, LiBF4, LiPF6, TEABF4 a TMABF4, za vzniku ro...
M-theory FDA, Twisted Tori and Chevalley Cohomology
Fré, P
2006-01-01
The FDA algebras emerging from twisted tori compactifications of M-theory with fluxes are discussed within the general classification scheme provided by Sullivan's theorems and by Chevalley cohomology. It is shown that the generalized Maurer Cartan equations which have appeared in the literature, in spite of their complicated appearance and contrary to opposite claims, once suitably decoded within cohomology, lead to trivial FDA.s, all new p--form generators being contractible when the 4--form flux is cohomologically trivial. Non trivial D=4 FDA.s can emerge from non trivial fluxes but only if the cohomology class of the flux satisfies an additional algebraic condition which appears not to be satisfied in general and has to be studied for each algebra separately. As an illustration an exhaustive study of Chevalley cohomology for the simplest class of SS algebras is presented but a general formalism is developed, based on the structure of a double elliptic complex, which, besides providing the presented result...
Assessment of Cowling approximation in computing ellipticity of a magnetized non-barotropic star
Yoshida, Shin'ichirou
2013-01-01
A deformation of a neutron star due to its own magnetic field is an important issue in gravitational wave astronomy, since a misaligned rotator with small ellipticity may emit continuous gravitational wave that may be observed by ground-based detectors. Recently Mastrano et al. (2011,2013) evaluated deformations induced by both poloidal and toroidal magnetic field in non-barotropic model stars by neglecting the gravitational field perturbation (Cowling approximation). Following their treatment in non-barotropic fluid and magnetic configurations, we here assess the effect of gravitational perturbation that they neglected. We show that the ellipticity computed with gravitational perturbation is roughly twice as large as that obtained by Cowling approximation. We should allow this amount of error in using the neat analytic treatment proposed by them.
An implementation of a barotropic quasigeostrophic model of ocean circulation on the MPP
Grosch, C. E.; Fatoohi, R.
1987-01-01
The implementation on the Massively Parallel Processor (MPP) of a barotropic quasigeostrophic model of ocean circulation is discussed. The mathematical model, including scalings and boundary conditions is discussed. The numerical scheme, which uses compact differencing is also discussed. The implementation of this model on the MPP is then presented. Finally, some performance results are given and compared to results obtained using the VPS-32 and one processor of a CRAY-2.
Barotropic Process Contributing to the Formation and Growth of Tropical Cyclone Nargis
MAO Jiangyu; WU Guoxiong
2011-01-01
This study reveals the barotropic dynamics associated with the formation and growth of tropical cyclone Nargis in 2008, during its formation stage. Strong equatorial westerlies occurred over the southern Bay of Bengal in association with the arrival of an intraseasonal westerly event during the period 22-24 April 2008.The westerlies, together with strong tropical-subtropical easterlies, constituted a large-scale horizontal shear flow, creating cyclonic vorticity and thereby promoting the incipient disturbance that eventually evolved into Nargis. This basic zonal flow in the lower troposphere was barotropically unstable, with the amplified disturbance gaining more kinetic energy from the easterly jet than from the westerly jet during 25 26 April.This finding suggests that more attention should be paid to the unstable easterly jet when monitoring and predicting the development of tropical cyclones. Energetics analyses reveal that barotropic energy conversion by the meridional gradient of the basic zonal flow was indeed an important energy source for the growth of Nargis.
Barotropic Process Contributing to the Formation and Growth of Tropical Cyclone Nargis
无
2011-01-01
This study reveals the barotropic dynamics associated with the formation and growth of tropical cyclone Nargis in 2008,during its formation stage.Strong equatorial westerlies occurred over the southern Bay of Bengal in association with the arrival of an intraseasonal westerly event during the period 22-24 April 2008. The westerlies,together with strong tropical-subtropical easterlies,constituted a large-scale horizontal shear flow,creating cyclonic vorticity and thereby promoting the incipient disturbance that eventually evolved into Nargis.This basic zonal flow in the lower troposphere was barotropically unstable,with the amplified disturbance gaining more kinetic energy from the easterly jet than from the westerly jet during 25-26 April. This finding suggests that more attention should be paid to the unstable easterly jet when monitoring and predicting the development of tropical cyclones.Energetics analyses reveal that barotropic energy conversion by the meridional gradient of the basic zonal flow was indeed an important energy source for the growth of Nargis.
Kaspi, Y.; Davighi, J. E.; Galanti, E.; Hubbard, W. B.
2016-09-01
The upcoming Juno and Cassini gravity measurements of Jupiter and Saturn, respectively, will allow probing the internal dynamics of these planets through accurate analysis of their gravity spectra. To date, two general approaches have been suggested for relating the flow velocities and gravity fields. In the first, barotropic potential surface models, which naturally take into account the oblateness of the planet, are used to calculate the gravity field. However, barotropicity restricts the flows to be constant along cylinders parallel to the rotation axis. The second approach, calculated in the reference frame of the rotating planet, assumes that due to the large scale and rapid rotation of these planets, the winds are to leading order in geostrophic balance. Therefore, thermal wind balance relates the wind shear to the density gradients. While this approach can take into account any internal flow structure, it is limited to only calculating the dynamical gravity contributions, and has traditionally assumed spherical symmetry. This study comes to relate the two approaches both from a theoretical perspective, showing that they are analytically identical in the barotropic limit, and numerically, through systematically comparing the different model solutions for the gravity harmonics. For the barotropic potential surface models we employ two independent solution methods - the potential-theory and Maclaurin spheroid methods. We find that despite the sphericity assumption, in the barotropic limit the thermal wind solutions match well the barotropic oblate potential-surface solutions.
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Computation of whiskered invariant tori and their associated manifolds: new fast algorithms
Huguet, Gemma; Sire, Yannick
2010-01-01
In this paper we present efficient algorithms for the computation of several invariant objects for Hamiltonian dynamics. More precisely, we consider KAM tori (i.e diffeomorphic copies of the torus such that the motion on them is conjugated to a rigid rotation) both Lagrangian tori (of maximal dimension) and whiskered tori (i.e. tori with hyperbolic directions which, together with the tangents to the torus and the symplectic conjugates span the whole tangent space). In the case of whiskered tori, we also present algorithms to compute the invariant splitting and the invariant manifolds associated to the splitting. We present them both for the case of discrete time and for differential equations. The algorithms are based on a Newton method to solve an appropriately chosen functional equation that expresses invariance. The algorithms are efficient: if we discretize the objects by $N$ elements, one step of the Newton method requires only O(N) storage and $O(N \\ln(N))$ operations. Furthermore, if the object we cons...
Testicular measurements and daily sperm output of Tori and Estonian breed stallions.
Kavak, A; Lundeheim, N; Aidnik, M; Einarsson, S
2003-06-01
Evaluation of testicular measurements and daily sperm output (DSO) yields valuable information for predicting the reproductive capacity of stallions. The present study evaluated testicular measurements (height, length, width and circumference) and DSO of eight Tori and eight Estonian breed stallions. One ejaculate of semen was collected daily for 10 subsequent days from each stallion. The gel-free volume of semen was measured with a graduated glass cylinder and the sperm concentration was assessed with a Chorjajev chamber. The volume of gel-free fraction was multiplied by the sperm concentration to give the total number of spermatozoa (TSN). The DSO was calculated as mean TSN of collection on days 8-10 in Tori breed stallions and on days 4-10 in Estonian breed stallions. The DSO of Tori breed stallions was 12.9 x 109 spermatozoa and of Estonian breed stallions 4.5 x 109 spermatozoa (p Estonian breed stallions; right testis- height 7.4, length 10.6 and width 7.4 in Tori breed stallions, and 5.5, 7.4 and 5.3, respectively, in Estonian breed stallions. All these testicular measurements were significantly smaller in Estonian than in Tori breed stallions (p Estonian breed stallions, respectively (p Estonian (p Estonian breed stallions.
Sultan, Pinar; Dogan, Cezmi; Iskeleli, Guzin
2016-12-01
The purpose of this study was to investigate the efficacy and safety of the Toris K silicone hydrogel contact lens (SwissLens; Prilly, Switzerland) in keratoconus patients. A database with information on 50 keratoconus patients (64 eyes) fitted with Toris K soft contact lenses over a 2-year period was retrospectively reviewed. Demographic data, prefitting refraction, the reason for choosing the Toris K soft contact lens, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), best-corrected visual acuity with a rigid gas permeable lens (BCVA RGP), best-corrected visual acuity with the Toris K lens (BCVA Toris K), and complications were evaluated. The mean age ± standard deviation at the time of fitting was 27.92 ± 9.86 years. The mean spherical refractive power was -4.62 ± 6.53 dioptres, and the mean cylinder was -3.78 ± 2.43 dioptres. The most common reason for using Toris K soft contact lenses was an inability to fit the patient with a RGP contact lens. There was a statistically significant difference between UCVA and BCVA Toris K (p = 0.0001), as well as between BSCVA and BCVA Toris K (p = 0.0001). However, there was no statistically significant difference between BCVA Toris K and BCVA RGP (p = 0.20). Superficial punctate keratitis and giant papillary conjunctivitis were the most common complications. The Toris K contact lens is a viable alternative for the optical management of all grades of keratoconus. The Toris K soft contact lens is a promising alternative for the visual rehabilitation of keratoconus patients who cannot tolerate RGP lenses or achieve a good fit.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Chandre, C
1999-01-01
We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by constructing a transformation that combines Kolmogorov-Arnold-Moser theory and renormalization-group techniques. This transformation is based on the continued fraction expansion of the frequency of the torus. We apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we show that the properties of critical (and near critical) tori can be obtained by analyzing renormalization dynamics around a single hyperbolic strange attractor. We compute the fractal diagram, i.e., the critical coupling as a function of the frequencies, associated with a given one-parameter family.
The Witten-Reshetikhin-Turaev invariants of finite order mapping tori I
Ellegaard Andersen, Jørgen
We formulate the Asymptotic Expansion Conjecture for the Witten-Reshetikhin-Turaev quantum invariants of closed oriented three manifolds. For finite order mapping tori, we study these quantum invariants via the geometric gauge theory approach to the corresponding quantum representations and prove...... of the mapping torus for the contributions from each of the smooth components. We further establish that the Asymptotic Expansion Conjecture and the Growth Rate Conjecture for these finite order mapping tori.......We formulate the Asymptotic Expansion Conjecture for the Witten-Reshetikhin-Turaev quantum invariants of closed oriented three manifolds. For finite order mapping tori, we study these quantum invariants via the geometric gauge theory approach to the corresponding quantum representations and prove...
Efficient Indirect All-to-All Personalized Communication on Rings and 2-D Tori
GU Naijie
2001-01-01
All-to-All personalized communication is a basic communication operation in a parallel computing environment. There are a lot of results appearing in literature. All these communication algorithms can be divided into two kinds: direct communication algorithm and indirect communication algorithm. The optimal direct all-to-all communication algorithm on rings and 2-D tori does exist. But, for indirect all-to-all communication algorithms, there is a gap between the time complexity of the already existing algorithm and the lower bound. In this paper an efficient indirect algorithm for all-to-all communication on rings and 2-D square tori with bidirection channels is presented. The algorithms is faster than any previous indirect algorithms. The main items of the time complexity of the algorithm is p2/8 and pa/2/8 on rings and 2-D tori respectively, both reaching the theoretical lower bound, where p is the number of processors.
2008-01-01
Eesti Laulu- ja Tantsupeo SA ja maavalitsused, sh. Pärnu maavalitsus sõlmisid kultuuriministeeriumis koostöölepingu. Pianist Gerly Kättmann ja näitleja Ena Kõrv esitavad 16. mail Pärnu-Jaagupi Muusikakoolis Leelo Tungla muusikalise muinasjutu, mille vahele kõlab Eesti heliloojate klaverimuusika. Tori valla laste 11. laulukonkursist 18. mail Tori rahvamajas
Odé, C.
2008-01-01
This article discusses a new system for the Transcription of Russian Intonation, ToRI, on the Internet. Section 1 presents a general outline of the system. The terminology used in ToRI is defined in an online glossary, from which Section 2 gives the following examples: pitch accent and
Break-Up of Three-Frequency KAM Tori: Determination of the Critical Parameters
周济林; 孙义燧; 胡斑比
2001-01-01
With a four-dimensional symplectic map we study numerically the break-up of three-frequency KolmogorovArnold-Moser (KAM) tori. The locations and stabilities of a sequence of periodic orbits, whose winding numbersapproach the irrational winding number of the KAM torus, are examined. The break-up of quadratic frequencytori is characterized as the exponential growth of the residue means of the convergent periodic orbits. Criticalparameters of the break-up of tori with different winding numbers are calculated, which show that the spiralmean torus is the most robust one in our model
Hunter, Richard
2010-01-01
It is known that all weakly conformal Hamiltonian stationary Lagrangian immersions of tori in the complex projective plane may be constructed by methods from integrable systems theory. This article describes the precise details of a construction which leads to a form of classification. The immersion is encoded as spectral data in a similar manner to the case of minimal Lagrangian tori in the complex projective plane, but the details require a careful treatment of both the "dressing construction" and the spectral data to deal with a loop of flat connexions which is quadratic in the loop parameter.
Whitney smooth families of invariant tori within the reversible context 2 of KAM theory
Sevryuk, Mikhail B.
2016-11-01
We prove a general theorem on the persistence of Whitney C ∞-smooth families of invariant tori in the reversible context 2 of KAM theory. This context refers to the situation where dim Fix G Fix G is the fixed point manifold of the reversing involution G and T is the invariant torus in question. Our result is obtained as a corollary of the theorem by H. W.Broer, M.-C.Ciocci, H.Hanßmann, and A.Vanderbauwhede (2009) concerning quasi-periodic stability of invariant tori with singular "normal" matrices in reversible systems.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Relativistic Diskoseismology. III. Low-Frequency Fundamental p-Modes
Ortega-Rodriguez, M; Wagoner, R V; Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.
2002-01-01
We extend our investigation of the normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks to the inertial-pressure (p) modes. We focus here on the lowest frequency fundamental p-modes, those with no axial or vertical nodes in their distribution. Through a variety of analyses, we obtain closed-form expressions for the eigenfrequencies and eigenfunctions. These depend on the luminosity and viscosity parameter of the disk as well as the mass and angular momentum of the black hole via detailed formulae for the speed of sound. The effect of a torque on the inner edge of the disk is also included. We compare the p-mode properties to those of the g- and c-modes.
Two-Way Interactions Between Equatorially-Trapped Waves and the Barotropic Flow
James FERGUSON; Boualem KHOUIDER; Maryam NAMAZI
2009-01-01
Lateral energy exchange between the tropics and the midlatitudes is a topic of great importance for understanding Earth's climate system.In this paper,the authors address this issue in an idealized set up through simple shallow water models for the interactions between equatorially trapped waves and the barotropic mode,which supports Rossby waves that propagate poleward and can excite midlatitude teleconnection patterns.It is found here that the interactions between a Kelvin wave and a fixed meridional shear (mimicking the jet stream) generates a non-trivial meridional velocity and meridional convergence in phase with the upward motion that can attain a maximum of about 50%,which oscillates on frequencies ranging from one day to 10 days.When,on the other hand,the barotropic flow is forced by slowly propagating Kelvin waves a complex flow pattern emerges:it consists of a phase-locked barotropic response that is equatorially trapped and that propagates eastward with the forcing Kelvin wave and a certain number of planetary Rossby waves that propagate westward and toward the poles as seen in nature.It is suggested here that the poleward propagating waves are to some sort of multi-way resonant interaction with the phase locked response.Moreover,it is shown here that a numerical scheme with dispersion properties that depend on the direction perpendicular to the direction of propagation,namely the 2D central scheme of Nessyahu and Tadmor,can artificially alter significantly the topology of the wave fields and thus should be avoided in climate models.
Kalmikov, A.; Heimbach, P.
2013-12-01
We apply derivative-based uncertainty quantification (UQ) and sensitivity methods to the estimation of Drake Passage transport in a global barotropic configuration of the MIT ocean general circulation model (MITgcm). Sensitivity and uncertainty fields are evaluated via first and second derivative codes of the MITgcm, generated via algorithmic differentiation (AD). Observation uncertainties are projected to uncertainties in the control variables by inversion of the Hessian of the nonlinear least-squares misfit function. Only data-supported components of Hessian information are retained through elimination of the unconstrained uncertainty nullspace. The assimilated observation uncertainty is combined with prior control variable uncertainties to reduce their posterior uncertainty. The spatial patterns of posterior uncertainty reduction and their temporal evolution are explained in terms of barotropic dynamics. Global uncertainty teleconnection mechanisms are identified as barotropic uncertainty waves. Uncertainty coupling across different control fields is demonstrated by assimilation of sea surface height uncertainty. A second step in our UQ scheme consists in propagating prior and posterior uncertainties of the model controls onto model output variables of interest, here Drake Passage transport. Forward uncertainty propagation amounts to matrix transformation of the uncertainty covariances via the model Jacobian and its adjoint. Sources of uncertainties of the transport are revealed through analysis of the adjoint wave dynamics in the model. These adjoint (reversed) mechanisms are associated with the evolution of sensitivity fields and our method formally extends sensitivity analysis to uncertainty quantification. Inverse uncertainty propagation mechanisms can be linked to adjoint dynamics in a similar manner. The posterior correlations of controls are found to dominate the reduction of the transport uncertainty compared to the marginal uncertainty reduction of the
Sensitivity of a Barotropic Ocean Model to Perturbations of the Bottom Topography
Kazantsev, Eugene
2008-01-01
In this paper, we look for an operator that describes the relationship between small errors in representation of the bottom topography in a barotropic ocean model and the model's solution. The study shows that the model's solution is very sensitive to topography perturbations in regions where the flow is turbulent. On the other hand, the flow exhibits low sensitivity in laminar regions. The quantitative measure of sensitivity is influenced essentially by the error growing time. At short time scales, the sensitivity exhibits the polynomial dependence on the error growing time. And in the long time limit, the dependence becomes exponential.
A Lagrangian particle/panel method for the barotropic vorticity equations on a rotating sphere
Bosler, Peter; Krasny, Robert [Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (United States); Wang, Lei [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Christiane Jablonowski, E-mail: krasny@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)
2014-06-01
We present a Lagrangian particle/panel method for geophysical fluid flow described by the barotropic vorticity equations on a rotating sphere. The particles carry vorticity and the panels are used in discretizing the Biot–Savart integral for the velocity. Adaptive panel refinement and a new Lagrangian remeshing scheme are applied to reduce the computational cost and maintain accuracy as the flow evolves. Computed examples include a Rossby–Haurwitz wave, a Gaussian vortex, and a perturbed zonal jet. To validate the method, a comparison is made with results obtained using the Lin–Rood finite–volume scheme. (papers)
NUMERICAL STUDY ON THE FORMATION OF THE SOUTH CHINA SEA WARM CURRENT I. BAROTROPIC CASE
无
2001-01-01
In this work, Princeton Ocean Model (POM) was used to study the formation of the South China Sea Warm Current (SCSWC) in the barotropic case. Monthly averaged wind stress and the inflow/outflow transports in January were used in the numerical simulation which reproduced the SCSWC. The effects of wind stress and inflow/outflow were studied separately. Numerical experiments showed that the Kuroshio intrusion through the Luzon Strait and the slope shelf in the northern SCS are necessary conditions for the formation of the SCSWC. In a flat bottom topography experiment, the wind stress driven northeast current in the northern SCS is a compensatory current.
A computational study of turbulent kinetic energy transport in barotropic turbulence on the f-plane
Grooms, Ian, E-mail: ian.grooms@colorado.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2015-10-15
Energy transport by eddies is diagnosed from a series of simulations of stochastically forced, inhomogeneous two-dimensional turbulence—barotropic dynamics on the f-plane. The divergence of the energy flux is compared to diffusive models, both fractional and harmonic, and the inferred diffusivity κ is compared to a mixing-length model κ ∝ Vℓ where V and ℓ are eddy velocity and length scales, respectively. The flux-divergence is found to be well approximated by Laplacian diffusion with a mixing-length approximation. This study provides some support for diffusive modeling of mesoscale eddy energy transport in ocean model parameterizations.
Numerical Physical Mechanism and Model of Turbulent Cascades in a Barotropic Atmosphere
黄锋; 刘式适
2004-01-01
In a barotropic atmosphere,new Reynolds mean momentum equations including turbulent viscosity,dispersion,and instability are used not only to derive the KdV-Burgers-Kuramoto equation but also to analyze the physical mechanism of the cascades of energy and enstrophy.It shows that it is the effects of dispersion and instability that result in the inverse cascade.Then based on the conservation laws of the energy and enstrophy,a cascade model is put forward and the processes of the cascades are described.
THE ENSEMBLE FORECASTING OF TROPICAL CYCLONE MOTION I:USING A PRIMITIVE EQUATION BAROTROPIC MODEL
周霞琼; 端义宏; 朱永禔
2003-01-01
Ensemble forecasting of tropical cyclone (TC) motion was studied usinga primitive equation barotropic model by perturbing initial position and structure for 1979 - 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % - 70 % of all cases is improved in selective ensemble mean. When the ambient steeringcurrent is weak, more improvement can be obtained over the control forecast.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Where are the Dust Tori of Mars? - A Possible Role of Stochastic Effects
Makuch, M.; Brilliantov, N. V.; Spahn, F.; Krivov, A. V.
2005-08-01
Dust tori around Mars were predicted theoretically several decades ago, but still escape direct detection. On the base of our recent analytical and numerical studies we re-assess expected properties of the dust belts. In addition to deterministic models developed before we investigate the influence of stochastic effects on the dynamics, lifetimes of particles, and configuration of the dust tori. There exist various sources of stochasticity. For instance, we consider the influence of solar radiation on an ensemble of differently-shaped dust particles. Following the ergodic hypothesis, the dynamics of a single dust grain exposed to fluctuating radiation mimics the stochastic evolution of the whole ensemble. Further, we study the action of the planetary shadow on the dynamics of dust particles, a perturbation which turns out to be stochastic. Additional stochastic perturbations of deterministic dust trajectories are expected to be caused by different material properties of the dust grains, fluctuations of the solar wind, and the related magnetic field. As a result the fluctuating forces cause a diffusion of the dust configuration whose related fluxes can be estimated from our numerical experiments. This effect leads to a decrease of the expected optical depth of the tori, which is mainly determined by the strength of the stochastic force. We will provide estimates for the latter resulting in a diffusion coefficient. This will give new information about change of the configuration and lifetimes of the Martian dust-tori.
Null, Elizabeth Higgins
The Roger Tory Peterson Institute (Jamestown, New York) has been sparking a regional revival in K-12 nature studies and attracting attention from educators across America. Through summer training sessions and workshops, the Institute introduces multidisciplinary teams of teachers and community members to empirical research techniques for observing…
The Witten–Reshetikhin–Turaev invariant for links in finite order mapping tori I
Andersen, Jørgen Ellegaard; Himpel, Benjamin; Jørgensen, Søren Fuglede
2017-01-01
We state Asymptotic Expansion and Growth Rate conjectures for the Witten–Reshetikhin–Turaev invariants of arbitrary framed links in 3-manifolds, and we prove these conjectures for the natural links in mapping tori of finite-order automorphisms of marked surfaces. Our approach is based upon...
Periodic Orbits and Invariant Tori from a Semistable Limit Cycle in the Fast Dynamics
无
2006-01-01
Some global behavior for a slowly varying oscillator was investigated. Based on a series of transformations and the theory of periodic orbits and integral manifold, the bifurcations of subharmonic solutions and invariant tori generated from a semistable limit cycle in the fast dynamics were discussed.
The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II
Andersen, Jørgen Ellegaard; Himpel, Benjamin
2012-01-01
We identify the leading order term of the asymptotic expansion of the Witten–Reshetikhin–Turaev invariants for finite order mapping tori with classical invariants for all simple and simply-connected compact Lie groups. The square root of the Reidemeister torsion is used as a density on the moduli...
Barotropic Turbulence on a Beta-Plane with Quadratic Bottom Drag
Kong, H.; Jansen, M.
2016-12-01
Geostrophic turbulent eddies are crucial in the oceans because they play a major role in transporting and mixing physical quantities and chemical constituents. However, it would be too computationally expensive for current IPCC-class models to fully resolve them, calling for proper parameterizations. Many of the key properties of geostrophic turbulence are captured by barotropic (2D) turbulence, which thus serves as a useful model to develop a fundamental understanding of meso-scale turbulence in the ocean. Although barotropic turbulence has received significant attention in the literature, the arguably most realistic case of beta-plane turbulence with quadratic bottom drag remains unexplored. The beta-effect and bottom drag both affect the halting scale of the inverse energy cascade - while quadratic drag can halt the cascade by removing eddy kinetic energy (EKE) out of the system, the beta effect introduces a wave-turbulence crossover and causes a channeling of energy into zonal jets. The characteristics of the flow are governed by a single non-dimensional parameter, which can be expressed as the ratio of the frictional halting scale and the wave-turbulence crossover scale. In a regime most relevant to Earth's ocean, we find that the eddy mixing length is significantly suppressed by the beta-effect and well approximated by the Rhines scale. The EKE level instead remains controlled by the bottom drag. This allows us to derive a parameterization for the eddy diffusivity which agrees well with the eddy diffusivity diagnosed from our model.
On the computation of the barotropic mode of a free-surface world ocean model
E. Deleersnijder
Full Text Available The free-surface formulation of the equations of our world ocean model is briefly described. The barotropic mode equations are solved according to the split-explicit method, using different time steps for the external and internal modes. Because the numerical algorithm is implemented on the B-grid, a spurious, free-surface, two-grid interval mode may develop. This mode must be filtered out. The properties of two filters are theoretically investigated and their actual performance is tested in a series of numerical experiments. It is seen that one of these filters may severely perturb the local mass conservation, rendering it impossible to enforce the impermeability of the surface or the bottom of the ocean. The dynamics of the external mode is also examined, by studying the depth-integrated momentum equations. The depth-integral of the pressure force due to the slope of the ocean surface is approximately balanced by the depth-integral of the force ensuing from the horizontal variations of the density. The depth-integral of the Coriolis force is an order of magnitude smaller, except in the Southern Ocean. Two variational principles are resorted to for computing the fictitious ocean surface elevation corresponding to the approximate equilibrium between the dominant forces of the barotropic momentum equations.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Spherical relativistic vacuum core models in a Λ-dominated era
Yousaf, Z.
2017-02-01
This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Nonlinear Acoustics and Shock Formation in Lossless Barotropic Green--Naghdi Fluids
Christov, Ivan C
2016-01-01
The equations of motion of lossless compressible nonclassical fluids under the so-called Green--Naghdi theory are considered for two classes of barotropic fluids: (\\textit{i}) perfect gases and (\\textit{ii}) liquids obeying a quadratic equation of state. An exact reduction in terms of a scalar acoustic potential and the (scalar) thermal displacement is achieved. Properties and simplifications of these model nonlinear acoustic equations for unidirectional flows are noted. Specifically, the requirement that the governing system of equations for such flows remain hyperbolic is shown to lead to restrictions on the physical parameters and/or applicability of the model. A weakly nonlinear model is proposed on the basis of neglecting only terms proportional to the square of the Mach number in the governing equations, without any further approximation or modification of the nonlinear terms. Shock formation via acceleration wave blowup is studied numerically in a one-dimensional context using a high-resolution Godunov...
Approximate deconvolution large eddy simulation of a barotropic ocean circulation model
San, Omer; Wang, Zhu; Iliescu, Traian
2011-01-01
This paper puts forth a new large eddy simulation closure modeling strategy for two-dimensional turbulent geophysical flows. This closure modeling approach utilizes approximate deconvolution, which is based solely on mathematical approximations and does not employ phenomenological arguments, such as the concept of an energy cascade. The new approximate deconvolution model is tested in the numerical simulation of the wind-driven circulation in a shallow ocean basin, a standard prototype of more realistic ocean dynamics. The model employs the barotropic vorticity equation driven by a symmetric double-gyre wind forcing, which yields a four-gyre circulation in the time mean. The approximate deconvolution model yields the correct four-gyre circulation structure predicted by a direct numerical simulation, on a much coarser mesh but at a fraction of the computational cost. This first step in the numerical assessment of the new model shows that approximate deconvolution could represent a viable alternative to standar...
An analytic solution for barotropic flow along a variable slope topography
Kuehl, Joseph J.
2014-11-01
An analytic solution is derived for the generic oceanographic situation of a barotropic current flowing along sloping topography. It is shown that the shallow water equations can be reduced to a heat-like equation in which βeffect is balanced by Ekman dissipation. For constant topography, the system is found to admit a well-known similarity solution and this solution is generalized to the case of variable topography. Several properties of the solution are explored, and an example is given for flow along the northern Gulf of Mexico slope, between the De Soto Canyon and the Mississippi Canyon. This "Topographic β-plume" solution may serve as a model for further research concerning the influence exerted by geophysical boundary layers on the interior flow via their structure and stability.
Bianchi Type-Ⅴ Bulk Viscous Barotropic Fluid Cosmological Model with Variable G and A
Raj Bali; Seema Tinker
2008-01-01
@@ We investigate the Bianehi type-Ⅴ bulk viscous barotropic fluid cosmological model with variable gravitational constant G and the cosmological constant A, assuming the condition on metric potential as A/A=B/B=C/C=m/ln, where A, B, and C are functions of time t, while m and n are constants. To obtain the deterministic model, we also assume the relations P= p-3ηH, p =γρ, η = ηoρs, where p is the isotropic pressure, η the bulk viscosity, 0 ≤γ≤1, H the Hubble constant, ηo and s are constants. Various physical aspects of the model are discussed. The case of n = 1 is also discussed to compare the results with the actual universe.
Efficient forcing and its response in the barotropic atmosphere and teleconnection patterns
李志锦; 纪立人
1996-01-01
For linear forcing problems, a method is developed to provide a set of forcing modes, which form a complete orthonormal basis to identify the efficient forcing. The method is used in the damping barotropic model linearized about the 30000 Pa zonally-varying dimatological flow for northern summertime. The results show that there will be only a few dominant efficient forcing modes which control the behaviour of atmospheric response. The structure of the response to such efficient forcing modes is primarily composed of the teleconnection patterns in good agreement with those in the real atmosphere. Energetics analyses have shown that the primary source of energy of response to the most efficient forcing modes is the conversion of basic state kinetic energy to response kinetic energy, rather than that directly supplied by the forcing itself. It is suggested that teleconnection patterns produced by external source result in the consequence of the coupling action of the conversion of kinetic energy from the b
Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces
HASPOT; Boris
2012-01-01
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N 2.We address the question of well-posedness for large data having critical Besov regularity.Our result improves the analysis of Danchin and of the author inasmuch as we may take initial density in B N p p,1 with 1 p +∞.Our result relies on a new a priori estimate for the velocity,where we introduce a new unknown called effective velocity to weaken one of the couplings between the density and the velocity.In particular,our result is the first in which we obtain uniqueness without imposing hypothesis on the gradient of the density.
Low-frequency regime transitions and predictability of regimes in a barotropic model
Nadiga, B T
2016-01-01
Predictability of flow is examined in a barotropic vorticity model that admits low frequency regime transitions between zonal and dipolar states. Such transitions in the model were first studied by Bouchet and Simonnet (2009) and are reminiscent of regime change phenomena in the weather and climate systems wherein extreme and abrupt qualitative changes occur, seemingly randomly, after long periods of apparent stability. Mechanisms underlying regime transitions in the model are not well understood yet. From the point of view of atmospheric and oceanic dynamics, a novel aspect of the model is the lack of any source of background gradient of potential-vorticity such as topography or planetary gradient of rotation rate (e.g., as in Charney & DeVore '79). We consider perturbations that are embedded onto the system's chaotic attractor under the full nonlinear dynamics as bred vectors---nonlinear generalizations of the leading (backward) Lyapunov vector. We find that ensemble predictions that use bred vector per...
Computation of Reynolds stresses for barotropic turbulent jets from first principles
Woillez, Eric
2016-01-01
It is extremely uncommon to be able to predict analytically, from first principles, the velocity profile of a turbulent flow. In two-dimensional flows, atmosphere dynamics, and plasma physics, large scale coherent jets are created through inverse energy transfers from small scales to the largest scales of the flow. We prove that in the limits of vanishing energy injection, vanishing friction, and small scale forcing, the velocity profile of a jet obeys a universal equation independent of the details of the forcing. We find an other universal relation for the maximal curvature of a jet and we give strong arguments to support the existence of an hydrodynamic instability at the point with minimal jet velocity. Those results are the first computations of Reynolds stresses from first principle in a genuine turbulent flow, and the first consistent analytic theory of zonal jets in barotropic turbulence.
Doubly twisted Neimark–Sacker bifurcation and two coexisting two-dimensional tori
Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan)
2016-01-08
We discuss a complicated bifurcation structure involving several quasiperiodic bifurcations generated in a three-coupled delayed logistic map where a doubly twisted Neimark–Sacker bifurcation causes a transition from two coexisting periodic attractors to two coexisting invariant closed circles (ICCs) corresponding to two two-dimensional tori in a vector field. Such bifurcation structures are observed in Arnol'd tongues. Lyapunov and bifurcation analyses suggest that the two coexisting ICCs and the two coexisting periodic solutions almost overlap in the two-parameter bifurcation diagram. - Highlights: • This study investigates a three-coupled delayed logistic map. • It generates complex quasiperiodic bifurcations. • Two periodic solution coexist in a conventional Arnol'd tongue. • Two two-tori coexist in a high-dimensional Arnol'd tongue.
Computation of invariant tori in 2 1/2 degrees of freedom
Gabella, W.E. (Colorado Univ., Boulder, CO (USA). Dept. of Physics); Ruth, R.D.; Warnock, R.L. (Stanford Linear Accelerator Center, Menlo Park, CA (USA))
1991-01-01
Approximate invariant tori in phase space are found using a non-perturbative, numerical solution of the Hamilton-Jacobi equation for a nonlinear, time-periodic Hamiltonian. The Hamiltonian is written in the action-angle variables of its solvable part. The solution of the Hamilton-Jacobi equation is represented as a Fourier series in the angle variables but not in the time' variable. The Fourier coefficients of the solution are regarded as the fixed point of a nonlinear map. The fixed point is found using a simple iteration or a Newton-Broyden iteration. The Newton-Broyden method is slower than the simple iteration, but it yields solutions at amplitudes that are significant compared to the dynamic aperture.' Invariant tori are found for the dynamics of a charged particle in a storage ring with sextupole magnets. 10 refs., 3 figs., 3 tabs.
Bifurcations of families of 1D-tori in 4D symplectic maps.
Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd
2016-06-01
The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.
KAM tori in 1D random discrete nonlinear Schr\\"odinger model?
Johansson, Magnus; Aubry, Serge
2010-01-01
We suggest that KAM theory could be extended for certain infinite-dimensional systems with purely discrete linear spectrum. We provide empirical arguments for the existence of square summable infinite-dimensional invariant tori in the random discrete nonlinear Schr\\"odinger equation, appearing with a finite probability for a given initial condition with sufficiently small norm. Numerical support for the existence of a fat Cantor set of initial conditions generating almost-periodic oscillations is obtained by analyzing (i) sets of recurrent trajectories over successively larger time scales, and (ii) finite-time Lyapunov exponents. The norm region where such KAM-like tori may exist shrinks to zero when the disorder strength goes to zero and the localization length diverges.
Bifurcations of families of 1D-tori in 4D symplectic maps
Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd
2016-06-01
The regular structures of a generic 4d symplectic map with a mixed phase space are organized by one-parameter families of elliptic 1d-tori. Such families show prominent bends, gaps, and new branches. We explain these features in terms of bifurcations of the families when crossing a resonance. For these bifurcations, no external parameter has to be varied. Instead, the longitudinal frequency, which varies along the family, plays the role of the bifurcation parameter. As an example, we study two coupled standard maps by visualizing the elliptic and hyperbolic 1d-tori in a 3d phase-space slice, local 2d projections, and frequency space. The observed bifurcations are consistent with the analytical predictions previously obtained for quasi-periodically forced oscillators. Moreover, the new families emerging from such a bifurcation form the skeleton of the corresponding resonance channel.
Radiation-driven outflows from and radiative support in dusty tori of active galactic nuclei
Chan, Chi-Ho
2015-01-01
Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei, but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Infrared (IR) radiation pressure on dust can play a significant role in shaping the torus, yet the separation of hydrodynamic evolution from radiative transfer (RT) in previous work on radiation-supported tori precluded a self-consistent picture. Here we present radiative hydrodynamics simulations of an initially smooth torus; we solve the hydrodynamics equations, the time-dependent multi-angle group IR RT equation, and the time-independent ultraviolet (UV) RT equation. IR radiation is highly anisotropic, leaving primarily through the central hole of the torus. The inner edge of the torus exhibits a break in axisymmetry under the influence of radiation and differential rotation. In addition, UV radiation pressure on dust launches a strong wind along the inner edge of the torus with speed $...
Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes
Makuch, Martin
2007-01-01
Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in g...
Supersymmetry algebra and BPS states of super Yang-Mills theories on noncommutative tori
Konechny, Anatoly; Schwarz, Albert
1999-04-01
We consider 10-dimensional super Yang-Mills theory with topological terms compactified on a noncommutative torus. We calculate supersymmetry algebra and derive BPS energy spectra from it. The cases of d-dimensional tori with d=2,3,4 are considered in full detail. SO(d,d,Z)-invariance of the BPS spectrum and relation of new results to the previous work in this direction are discussed.
Embeddings of maximal tori in classical groups over local and global fields
Bayer-Fluckiger, E.; Lee, T.-Y.; Parimala, R.
2016-08-01
Embeddings of maximal tori in classical groups over fields of characteristic not 2 are the subject matter of several recent papers. The aim of the present paper is to give necessary and sufficient conditions for such an embedding to exist, when the base field is a local field, or the field of real numbers. This completes the results of [3], where a complete criterion is given for the Hasse principle to hold when the base field is a global field.
Lindstedt series and Hamilton-Jacobi equation for hyperbolic tori in three time scales problems
Gallavotti, G; Mastropietro, V; Gallavotti, Giovannni; Gentile, Guido; Astropietro, Vieri M
1998-01-01
Interacting systems consisting of two rotators and a pendulum are considered, in a case in which the uncoupled systems have three very different characteristic time scales. The abundance of unstable quasi periodic motions in phase space is studied via Lindstedt series. The result is a strong improvement, compared to our previous results, on the domain of validity of bounds that imply existence of invariant tori, large homoclinic angles, long heteroclinic chains and drift--diffusion in phase space.
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Exact Relativistic 'Antigravity' Propulsion
Felber, F S
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic phase space dimensional recurrences
Delbourgo, Robert
2003-01-01
We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius $R$ and taking the limit as $R \\to \\infty$. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension.
Nohr Christian
2009-12-01
Full Text Available The pathways of energy supply for mixing the deep waters of the Baltic Sea is largely unknown. In this paper, a parameterization of the internal wave drag forces on barotropic motion is developed and implemented into a two-dimensional shallow water model of the Baltic Sea. The model is validated against observed sea levels. The dissipation of barotropic motion by internal wave drag that is quantified from the model results show that breaking internal waves generated by wind forced barotropic motions can contribute significantly to diapycnal mixing in the deep water of the Baltic Sea.
N. P. Gaikwad; M. S. Borkar; S. S. Charjan
2011-01-01
@@ We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier(1979,1980) and Stachel(1983).To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution.The physical and geometrical significance of the model are discussed.By comparing our model with the model of Bali et al.(2007), it is realized that there are no big-bang and big-crunch singularities in our model and T＝0 is not the time of the big bang, whereas the model of Bali et al.starts with a big bang at T=0.Further, our model is in agreement with Bali et al.(2007) as time increases in the presence, as well as in the absence, of a magnetic field.
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Relativistic Quantum Communication
Hosler, Dominic
2013-01-01
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Benseghir, Rym, E-mail: benseghirrym@ymail.com, E-mail: benseghirrym@ymail.com; Benchettah, Azzedine, E-mail: abenchettah@hotmail.com [LANOS Laboratory, Badji Mokhtar University, BP 12, 23000, Annaba (Algeria); Raynaud de Fitte, Paul, E-mail: prf@univ-rouen.fr [Normandie Univ, Laboratoire Raphaël Salem, UMR CNRS 6085, Rouen (France)
2015-11-30
A stochastic equation system corresponding to the description of the motion of a barotropic viscous gas in a discretized one-dimensional domain with a weight regularizing the density is considered. In [2], the existence of an invariant measure was established for this discretized problem in the stationary case. In this paper, applying a slightly modified version of Khas’minskii’s theorem [5], we generalize this result in the periodic case by proving the existence of a periodic measure for this problem.
Relativistic electronic dressing
Attaourti, Y
2002-01-01
We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.
Fabian, A C; Parker, M L
2014-01-01
Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
The special relativistic shock tube
Thompson, Kevin W.
1986-01-01
The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.
A nonlinear self-similar solution to barotropic flow over rapidly varying topography
Ibanez, Ruy; Kuehl, Joseph
2016-11-01
Beginning from the Shallow Water Equations (SWE), a nonlinear self-similar analytic solution is derived for barotropic flow over rapidly varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. Attention is paid to the northern Gulf of Mexico slope with application to pollutant dispersion and the Norwegian Coastal Current which sheds eddies into the Lofoten Basin that are believe to influence deep water formation. The solution is found to extend the topographic β-plume solution (Kuehl 2014, GRL) in two ways: 1) The solution is valid for intensifying jets. 2) The influence of nonlinear advection is included. The SWE are scaled to the case of a topographically controlled jet, then solved by introducing a similarity variable η = Cxy . The nonlinear solution, valid for topographies h =h0 - αxy3 , takes the form of the Lambert W Function for velocity. The linear solution, valid for topographies h =h0 - αxyγ , takes the form of the Error Function for transport. Kuehl's results considered the case - 1 <= γ < 1 which admits expanding jets, while the new result consider the case γ < - 1 which admits intensifying jets.
A quasi-geostrophic wavelet-spectrum model for barotropic atmosphere and its numerical solution
DAI Xingang; WANG Ping; CHOU Jifan
2004-01-01
A quasi-geostrophic wavelet-spectrum model of barotropic atmosphere has been constructed by wavelet-Galerkin method with the periodic orthogonal wavelet bases. In this study a wavelet grid-spectrum transform method is designed to decrease the tremendous computation of the nonlinear interaction term in the model, and a two-dimensional Helmholtz equation from the model in a wavelet spectrum form is derived, and a solution with high precision under the periodic boundary condition is obtained. The numerical investigation manifests that the wavelet-spectrum model (WSM) could keep on running for a long time under the forcing of heating and topography. Although its numerical solution is compatible with the grid model (GM), the WSM is of a higher precision and faster convergence rate than GM's. A stationary solution comes forth when the model is forced only by the surface heating, whereas a quasi-periodic oscillation with a period about 15 days appears as considering the topography in the model. The latter oscillation, to some extent, is very similar to the Rossby index cycle of atmosphere over middle and high latitudes.
A wind-driven nonseasonal barotropic fluctuation of the Canadian Inland Seas
C. G. Piecuch
2014-10-01
Full Text Available A wind-driven, spatially coherent mode of nonseasonal, depth-independent variability in the Canadian Inland Seas (i.e., the collective of Hudson Bay, James Bay, and Foxe Basin is identified based on Gravity Recovery and Climate Experiment (GRACE retrievals, a tide-gauge record, and a barotropic model over 2003–2013. This dominant mode of nonseasonal variability is partly related to the North Atlantic Oscillation and is associated with net flows into and out of the Canadian Inland Seas; the anomalous inflows and outflows, which are reflected in mean sea level and bottom pressure changes, are driven by wind stress anomalies over Hudson Strait, possibly related to wind setup, as well as over the northern North Atlantic Ocean, potentially mediated by various wave mechanisms. The mode is also associated with mass redistribution within the Canadian Inland Seas, reflecting linear response to local wind stress variations under the combined influences of rotation, gravity, and variable bottom topography. Results exemplify the usefulness of GRACE for studying regional ocean circulation and climate.
KAM tori for higher dimensional beam equation with a fixed constant potential
2009-01-01
In this paper, we consider the higher dimensional nonlinear beam equation:utt+△2u+σu + f(u)=0 with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u=0 and σ is a positive constant. It is proved that for any fixed σ>0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.
KAM tori for higher dimensional beam equation with a fixed constant potential
XU XinDong; GENG JianSheng
2009-01-01
In this paper, we consider the higher dimensional nonlinear beam equation……with periodic boundary conditions, where the nonlinearity f(u) is a real-analytic function of the form f(u)=u3+ h.o.t near u = 0 and σ is a positive constant. It is proved that for any fixed σ> 0, the above equation admits a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional dynamical system.
Tori Amos 《American Doll Posse》闪亮出炉
Karen
2007-01-01
最近,Tori Amos的新专辑《American Doll Posse》问世。虽然她去年发行了精选集,但这张专辑是2005年《the Beekeeper》以来的首张录音室作品。专辑发行的同时,Amos将踏上世界巡演的路程,5月28日的巡演第一站设在罗马。
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Relativistic cosmology; Cosmologia Relativista
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic length agony continued
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Haro, A
2004-01-01
We develop numerical algorithms for the computation of invariant manifolds in quasi-periodically forced systems. We show how to compute invariant tori and invariant manifolds associated to them. In particular, the stable and unstable manifolds of invariant tori, but also {\\sl non-resonant} invariant manifolds associated to spaces invariant under the linearization. These non-resonant manifolds include the slow manifolds which dominate the asymptotic behavior. The algorithms are based on the parameterization method. Rigorous results about this method are proved in in a companion paper. In this paper, we concentrate on numerical issues of algorithm. Examples of implementations of the algorithms appear in another companion paper.
Konopelchenko, B G
1995-01-01
A new approach is proposed for study structure and properties of the total squared mean curvature $W$ of surfaces in ${\\bf R}^3$. It is based on the generalized Weierstrass formulae for inducing surfaces. The quantity $W$ (Willmore functional) is shown to be invariant under the modified Novikov--Veselov hierarchy of integrable flows. The $1+1$--dimensional case and, in particular, Willmore tori of revolution, are studied in details. The Willmore conjecture is proved for the mKDV--invariant Willmore tori.
HUANG Wei; YUAN Cai; Ansaldi Mireille; Morelli Xavier; Edward J. Meehan; CHEN Li-Qing; HUANG Ming-Dong
2007-01-01
TorI, a Tor system inhibitor acting through protein-protein interaction with the TorR response regulator, is an excisionase that interacts with the integrase and DNA during prophage excision. It has been crystallized by the vapor-diffusion method using polyethylene glycol 3350 as a precipitant at pH 8.5. The X-ray diffraction data sets from the TorI crystal was collected at a resolution of 2.1 (A), using a synchrotron source. The crystal belongs to primitive monoclinic lattice with cell parameters of 46.210(A) × 53.992(A) × 73.561(A)
AGN Dusty Tori as a Clumpy Two-Phase Medium: The 10 Micron Silicate Feature
Stalevski, Marko; Baes, Maarten; Nakos, Theodoros; Popovic, Luka C
2011-01-01
We investigated the emission of active galactic nuclei dusty tori in the infrared domain, with a focus on the 10 micron silicate feature. We modeled the dusty torus as a clumpy two-phase medium with high-density clumps and a low-density medium filling the space between the clumps. We employed a three-dimensional radiative transfer code to obtain spectral energy distributions and images of tori at different wavelengths. We calculated a grid of models for different parameters and analyzed the influence of these parameters on the shape of the mid-infrared emission. A corresponding set of clumps-only models and models with a smooth dust distribution is calculated for comparison. We found that the dust distribution, the optical depth and a random arrangement of clumps in the innermost region, all have an impact on the shape and strength of the silicate feature. The 10 micron silicate feature can be suppressed for some parameters, but models with smooth dust distribution are also able to produce a wide range of the...
Bianchi Type Ⅲ Bulk Viscous Barotropic Fluid Cosmological Models with Variable G and A
Raj Ba-li; Seema Tinker
2009-01-01
Bianchi type-Ⅲ bulk viscous barotropic fluid cosmological model with variables G and A is investigated. To obtainthe realistic model, we assume the conditions between the metric potentials A, B, C as A/A = B/B = m1/tnand C/C = m2/tn, P = p - 3ηH, η= ηops, p =γp, 0 γ 1, where p is isotropic pressure, η the coefficient of bulk viscosity, ηo and S the constants, H the Hubble constant, m1= 2m2 where m1 0, m2 0. The solutions obtained lead to inflationary phase and the results obtained match with the observations. The case n = 1 for S = 1 is also discussed, relating the results with the observations.PACS: 98. 80. Hω, 04.50. +h, 98.80. CqSpatially homogeneous and anisotropic cosmologi-cal models play a significant role in description of the large scale behaviour of the universe. The choice of anisotropic model in the Einstein system of field equa-tions permits us to obtain cosmological model more general than the Robertson-Walker model. Tikekar and Patel[1] have investigated some exact solutions of massive string for Bianchi type-Ⅲ spacetime in the presence and absence of magnetic field. They have also discussed the behaviour of the model in the ab-sence of magnetic field. Bali and Dave[2] investigated the Bianchi type-Ⅲ string cosmological model with bulk viscosity. Recently Bali and Pradhan[3] investi-gated the Bianchi type-Ⅲ string cosmological models with time-dependent bulk viscosity.
Omdehghiasi Hamed; Mojtahedi Alireza; Lotfollahi-Yaghin Mohammad Ali
2015-01-01
Groins are employed to prevent nearshore areas from erosion and to control the direction of flow. However, the groin structure and its associated flow characteristics are the main causes of local erosion. In this study, we investigate the flow patterns around refractive and right-angle groins. In particular, we analytically compare the flow characteristics around a refractive groin and study the degree of accuracy that can be achieved by using a right-angle groin of various projected lengths. To compare the flow characteristics, we replaced the right-angle groin with an approximation of a refractive groin. This replacement had the least effect on the maximum velocity of flow in the channel. Moreover, we investigated the distribution of the density variables of temperature and salinity, and their effects on the flow characteristics around the right-angle groin. A comparison of the flow analysis results in baroclinic and barotropic conditions reveals that the flow characteristic values are very similar for both the refractive and right-angle groins. The geometry of the groin, i.e., right-angle or refractive, has little effect on the maximum speed to relative average speed. Apart from the angular separation, the arm length of the groin in downstream refractive groins has less effect on other flow characteristics than do upstream refractive groins. We also correlated a number of non-dimensional variables with respect to various flow characteristics and groin geometry. These comparisons indicate that the correlation between the thalweg height and width of the channel and groin arm’s length to projection length have been approximated using linear and nonlinear formulas regardless of inner velocity in the subcritical flow.
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Relativistic heavy ion reactions
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Relativistic gravity gradiometry
Bini, Donato; Mashhoon, Bahram
2016-12-01
In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Parker, Edward
2017-08-01
A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Roger Tory Peterson Inst. of Natural History, Inc., Jamestown, NY.
This report was written to extend the findings of the Roger Tory Peterson Institute's 1990 forum on early-childhood environmental education. The report begins with an overview of Peterson's own childhood experiences that influenced his career as a naturalist. Peterson developed a hands-on interest in nature as a very young boy. His case is not…
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Statistical equilibria of the coupled barotropic flow and shallow water flow on a rotating sphere
Ding, Xueru
The motivation of this research is to build equilibrium statistical models that can apply to explain two enigmatic phenomena in the atmospheres of the solar system's planets: (1) the super-rotation of the atmospheres of slowly-rotating terrestrial planets---namely Venus and Titan, and (2) the persistent anticyclonic large vortex storms on the gas giants, such as the Great Red Spot (GRS) on Jupiter. My thesis is composed of two main parts: the first part focuses on the statistical equilibrium of the coupled barotropic vorticity flow (non-divergent) on a rotating sphere; the other one has to do with the divergent shallow water flow rotating sphere system. The statistical equilibria of these two systems are simulated in a wide range of parameter space by Monte Carlo methods based on recent energy-relative enstrophy theory and extended energy-relative enstrophy theory. These kind of models remove the low temperatures defect in the old classical doubly canonical energy-enstrophy theory which cannot support any phase transitions. The other big difference of our research from previous work is that we work on the coupled fluid-sphere system, which consists of a rotating high density rigid sphere, enveloped by a thin shell of fluid. The sphere is considered to have infinite mass and angular momentum; therefore, it can serve as a reservoir of angular momentum. Unlike the fluid sphere system itself, the coupled fluid sphere system allows for the exchange of angular momentum between the atmosphere and the solid planet. This exchange is the key point in any model that is expected to capture coherent structures such as the super-rotation and GRS-like vortices problems in planetary atmospheres. We discovered that slowly-rotating planets can have super-rotation at high energy state. All known slowly-rotating cases in the solar system---Venus and Titan---have super-rotation. Moreover, we showed that the anticyclonicity in the GRS-like structures is closely associated with the
Bottom friction optimization for barotropic tide modelling using the HYbrid Coordinate Ocean Model
Boutet, Martial; Lathuilière, Cyril; Baraille, Rémy; Son Hoang, Hong; Morel, Yves
2014-05-01
tested and validated with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer), using twin experiments (the observations are obtained with the direct model, prescribing the reference parameter distribution). The modeled area is the Bay of Biscay and the English Channel and the estimated parameter is the bottom roughness (z0).
The existence of Hamiltonian stationary Lagrangian tori in Kahler manifolds of any dimension
Lee, Yng-Ing
2010-01-01
Hamiltonian stationary Lagrangians are Lagrangian submanifolds that are critical points of the volume functional under Hamiltonian deformations. They can be considered as a generalization of special Lagrangians or Lagrangian and minimal submanifolds. Joyce, Schoen and the author show that given any compact rigid Hamiltonian stationary Lagrangian in $\\C^n$, one can always find a family of Hamiltonian stationary Lagrangians of the same type in any compact symplectic manifolds with a compatible metric. The advantage of this result is that it holds in very general classes. But the disadvantage is that we do not know where these examples locate and examples in this family might be far apart. In this paper, we derive a local condition on Kahler manifolds which ensures the existence of one family of Hamiltonian stationary Lagrangian tori near a point with given frame satisfying the criterion. Butscher and Corvino ever proposed a condition in n=2. But our condition appears to be different from theirs. The condition d...
The Witten-Reshetikhin-Turaev invariants of finite order mapping tori I
Ellegaard Andersen, Jørgen
is a polynomial in the level $k$, weighted by a complex phase, which is $k$ times the Chern-Simons invariant corresponding to the component. We express the coefficients of these polynomials in terms of cohomological pairings on the fixed point set of the moduli space of flat connections on the surface. We...... explicitly describe the fixed point set in terms of moduli spaces of the quotient orbifold Riemann surface and for the smooth components we express the aforementioned coefficients in terms of the known generators of the cohomology ring. We provide an explicit formula in terms of the Seifert invariants......We formulate the Asymptotic Expansion Conjecture for the Witten-Reshetikhin-Turaev quantum invariants of closed oriented three manifolds. For finite order mapping tori, we study these quantum invariants via the geometric gauge theory approach to the corresponding quantum representations and prove...
Sato, Noriyosi; Ochi, Daisuke; Minami, Hiroshi; Yokawa, Kotaro
2012-01-01
To improve the effectiveness of tori-lines it is necessary to evaluate the ability of tori-lines to mitigate seabird bycatch and determine what kind of seabird species gather during line settings, attack the bait and are incidentally caught. We conducted two experiments in the western North Pacific and examined the effectiveness for seabird mitigation of light streamer tori-lines which have no long streamers but many light (short) streamers and are mainly used in the North Pacific area. Firstly, the effectiveness of two different types of tori-line (light streamer (1 m) and long streamer (up to 7 m) tori-line) and of two different colors (yellow and red) of light streamers for seabird bycatch avoidance was evaluated using 567 sets based on data from 20 offshore surface commercial longliners. No significant difference in the bycatch number between the different tori-line types and streamer colors was found. Secondly, we investigated the characteristics of the seabird bycatch in the North Pacific and the effectiveness of three different types of streamers (light, hybrid and modified light types) by detailed observations of seabird attacks using a chartered longline vessel. Although the appearance rate of albatrosses and shearwaters were 40.9% and 27.7%, Laysan albatross was the main seabird species that followed the vessel but shearwaters seldom followed the vessel and did not aggregate during line setting. In all attacks on bait observed during line settings, 81% and 7% were by albatrosses and shearwaters, respectively. In the number of primary attacks by Laysan albatrosses which attacked most aggressively of all seabirds, there were no significant differences among the tori-line types. No individuals of shearwater were caught. The results of both experiments indicated that light streamer tori-lines were as effective as tori-lines with long streamers for mitigating seabird bycatch in the North Pacific.
Noriyosi Sato
Full Text Available To improve the effectiveness of tori-lines it is necessary to evaluate the ability of tori-lines to mitigate seabird bycatch and determine what kind of seabird species gather during line settings, attack the bait and are incidentally caught. We conducted two experiments in the western North Pacific and examined the effectiveness for seabird mitigation of light streamer tori-lines which have no long streamers but many light (short streamers and are mainly used in the North Pacific area. Firstly, the effectiveness of two different types of tori-line (light streamer (1 m and long streamer (up to 7 m tori-line and of two different colors (yellow and red of light streamers for seabird bycatch avoidance was evaluated using 567 sets based on data from 20 offshore surface commercial longliners. No significant difference in the bycatch number between the different tori-line types and streamer colors was found. Secondly, we investigated the characteristics of the seabird bycatch in the North Pacific and the effectiveness of three different types of streamers (light, hybrid and modified light types by detailed observations of seabird attacks using a chartered longline vessel. Although the appearance rate of albatrosses and shearwaters were 40.9% and 27.7%, Laysan albatross was the main seabird species that followed the vessel but shearwaters seldom followed the vessel and did not aggregate during line setting. In all attacks on bait observed during line settings, 81% and 7% were by albatrosses and shearwaters, respectively. In the number of primary attacks by Laysan albatrosses which attacked most aggressively of all seabirds, there were no significant differences among the tori-line types. No individuals of shearwater were caught. The results of both experiments indicated that light streamer tori-lines were as effective as tori-lines with long streamers for mitigating seabird bycatch in the North Pacific.
Toroidal orbifolds of Z3 and Z6 symmetries of noncommutative tori
Walters, Sam
2015-05-01
The Hexic transform ρ of the noncommutative 2-torus Aθ is the canonical order 6 automorphism defined by ρ (U) = V, ρ (V) =e-πiθU-1 V, where U, V are the canonical unitary generators obeying the unitary Heisenberg commutation relation VU =e2πiθ UV . The Cubic transform is κ =ρ2. These are canonical analogues of the noncommutative Fourier transform, and their associated fixed point C*-algebras Aθρ, Aθκ are noncommutative Z6, Z3 toroidal orbifolds, respectively. For a large class of irrationals θ and rational approximations p / q of θ, a projection e of trace q2 θ - pq is constructed in Aθ that is invariant under the Hexic transform. Further, this projection is shown to be a matrix projection in the sense that it is approximately central, the cut down algebra eAθ e contains a Hexic invariant q × q matrix algebra M whose unit is e and such that the cut downs eUe, eVe are approximately inside M. It is also shown that these invariant matrix projections are covariant in that they arise from a continuous section E (t) of C∞-projections of the continuous field {At } 0 < t < 1 of noncommutative tori C*-algebras such that ρ (E (t)) = E (t). It turns out that the projection E (t) is the support projection of a canonical C∞-positive element that has the appearance of a noncommutative 2-dimensional Theta function. The topological invariants (or 'quantum' numbers) of E (t), e, and related projections are computed by a new and quicker method than in previous works. (They would also give topological invariants for finitely generated projective modules over noncommutative orbifolds associated to Z6 and Z3 symmetries of noncommutative tori.) We remark that these results have some bearing on research work related to noncommutative orbifolds used in string theory.
Recurrence relation for relativistic atomic matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Numerical Relativistic Quantum Optics
2013-11-08
µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Rössler, O E; Matsuno, K
1998-04-01
The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.
Snedden, Gregg
2016-01-01
Estuarine navigation channels have long been recognized as conduits for saltwater intrusion into coastal wetlands. Salt flux decomposition and time series measurements of velocity and salinity were used to examine salt flux components and drivers of baroclinic and barotropic exchange in the Houma Navigation Channel, an estuarine channel located in the Mississippi River delta plain that receives substantial freshwater inputs from the Mississippi-Atchafalaya River system at its inland extent. Two modes of vertical current structure were identified from the time series data. The first mode, accounting for 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the horizontal salinity gradient along the channel’s length. Tidal oscillatory salt flux was more important than gravitational circulation in transporting salt upestuary, except over equatorial phases of the fortnightly tidal cycle during times when river inflows were minimal. During all tidal cycles sampled, the advective flux, driven by a combination of freshwater discharge and wind-driven changes in storage, was the dominant transport term, and net flux of salt was always out of the estuary. These findings indicate that although human-made channels can effectively facilitate inland intrusion of saline water, this intrusion can be minimized or even reversed when they are subject to significant freshwater inputs.
Ken-Chung Ko Huang-Hsiung Hsu
2014-01-01
Full Text Available This study used the barotropic kinetic energy conversion to record the active eddy-mean flow interaction between the TC/sub-monthly wave pattern (TSM and the intraseasonal oscillation (ISO in the western North Pacific (WNP. Overall, the TSM extracted (lost kinetic energy from (to the cyclonic (anticyclonic circulation of the ISO, which is located in the South China Sea and the Philippine Sea, during the ISO westerly (easterly phase. The phase change in barotropic energy conversion was due to the opposite background flow set up by the ISO. When the climatological-mean southwesterly was retained as part of the background flow in both ISO westerly and easterly phases as in previous studies, the ISO along with the low-frequency background flow always provided kinetic energy to the TSM regardless of the phase. The stronger (weaker southwesterly in the ISO westerly (easterly phase, the stronger (weaker energy conversion to the TSM. Climatological mean flow exclusion showed an upscale feedback in the TSM to the ISO during the easterly phase. However, this feedback was weaker than the downscale conversion from the ISO to the TSM during the westerly phase.
Jiménez-Aquino, J. I.; Romero-Bastida, M.
2016-09-01
In this paper we derive the non-Markovian barotropic-type and Hall-type fluctuation relations for noninteracting charged Brownian particles embedded in a memory heat bath and under the action of crossed electric and magnetic fields. We first obtain a more general non-Markovian fluctuation relation formulated within the context of a generalized Langevin equation with arbitrary friction memory kernel and under the action of a constant magnetic field and an arbitrary time-dependent electric field. It is shown that this fluctuation relation is related to the total amount of an effective work done on the charged particle as it is driven out of equilibrium by the applied time-dependent electric field. Both non-Markovian barotropic- and Hall-type fluctuation relations are then derived when the electric field is assumed to be also a constant vector pointing along just one axis. In the Markovian limit, we show explicitly that they reduce to the same results reported in the literature.
Gregg A. Snedden
2016-04-01
Full Text Available Estuarine navigation channels have long been recognized as conduits for saltwater intrusion into coastal wetlands. Salt flux decomposition and time series measurements of velocity and salinity were used to examine salt flux components and drivers of baroclinic and barotropic exchange in the Houma Navigation Channel, an estuarine channel located in the Mississippi River delta plain that receives substantial freshwater inputs from the Mississippi-Atchafalaya River system at its inland extent. Two modes of vertical current structure were identified from the time series data. The first mode, accounting for 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the horizontal salinity gradient along the channel’s length. Tidal oscillatory salt flux was more important than gravitational circulation in transporting salt upestuary, except over equatorial phases of the fortnightly tidal cycle during times when river inflows were minimal. During all tidal cycles sampled, the advective flux, driven by a combination of freshwater discharge and wind-driven changes in storage, was the dominant transport term, and net flux of salt was always out of the estuary. These findings indicate that although human-made channels can effectively facilitate inland intrusion of saline water, this intrusion can be minimized or even reversed when they are subject to significant freshwater inputs.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
'Antigravity' Propulsion and Relativistic Hyperdrive
Felber, F S
2006-01-01
Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
A relativistic trolley paradox
Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.
2016-06-01
We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Jennings, M.R.
1987-01-01
Review of: A Field Guide to Western Reptiles and Amphibians (Peterson Field Guides, No. 16). Robert C. Stebbins and Roger Tory Peterson. Houghton Mifflin; 2nd Revised edition (June 10, 1985). 448 pages. ISBN: 978-0395382530.
Persistence of Hyperbolic Tori in Generalized Hamiltonian Systems%广义Hamilton系统中双曲环面的保持性
柳振鑫; 伊贺达赉; 黄庆道
2005-01-01
In this paper we prove the persistence of hyperbolic invariant tori in generalized Hamiltonian systems, which may admit a distinct number of action and angle variables. The systems under consideration can be odd dimensional in tangent direction. Our results generalize the well-known results of Graff and Zehnder in standard Hamiltonians. In our case the unperturbed Hamiltonian systems may be degenerate. We also consider the persistence problem of hyperbolic tori on submanifolds.
2012-01-01
Parteneriatele de solidaritate ASAT sunt dezvoltate în România începând cu anul 2008, în vederea susţinerii micilor producători agricoli care cultivă natural. Dezvoltarea acestora este susţinută la nivel naţional de Asociaţia Centrul de Resurse pentru Iniţiative Eticeși Solidare (CRIES). Mecanismul este unul bazat pe construirea unui relaţii de încredere între producători locali şi consumatori urbani. Astfel,se formează la nivel comunitar grupuri de consumatori care doresc să achiziţioneze pr...
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Relativistic Gravothermal Instabilities
Roupas, Zacharias
2014-01-01
The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...
Lock, Maximilian P E
2016-01-01
The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Reverberation Mapping of the size of the Dusty Tori in Active Galactic Nuclei.
Axon, David; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Elitzur, Moshe; Gallimore, Jack; Geballe, Thomas; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Roberto; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Richmond, Michael; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa
2011-05-01
Despite its central role in AGN unification models and its importance for studies of supermassive black hole demographics, our current understanding of the size and structure of AGN tori is weak. We propose to use the unique opportunity provided by the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will carry out a monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed repeatedly with visibility windows for at least 70% of the ~400 day cycle and generally > 90% (10 objects )of the ~400 day cycle. We will observe each AGN with 3 day sampling on Spitzer for the whole of Cycle 8. We have in place a plan for a supporting ground based monitoring program using a variety of conventional and robotic telescopes, which will allow ?world-wide? coverage, to determine the AGN light-curves in the B band. These observations will more than double the number of AGN with simultaneous optical and NIR time-series data, providing well-sampled, high signal-to-noise light curves of both S1 and NLS1. Such high fidelity, continuously sampled lR light curves covering hundreds of days cannot be obtained from the ground, and are needed because the expected reverberation time scales are many tens of days (30-150). We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which has diverse properties and samples a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 196 hrs in the cycle to perform our observations.
Relativistic Runaway Electrons
Breizman, Boris
2014-10-01
This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of
What is "Relativistic Canonical Quantization"?
Arbatsky, D. A.
2005-01-01
The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.
Leonel, Edson D; De Oliveira, Juliano A; Saif, Farhan, E-mail: edleonel@rc.unesp.br [Departamento de EstatIstica, Matematica Aplicada e Computacao, UNESP-Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro, Sao Paulo (Brazil)
2011-07-29
Critical exponents that describe a transition from integrability to non-integrability in a two-dimensional, nonlinear and area-preserving map are obtained via localization of the first invariant spanning curve (invariant tori) in the phase space. In a general class of systems, the position of the first invariant tori is estimated by reducing the mapping of the system to the standard mapping where a transition takes place from local to global chaos. The phase space of the mapping shows a large chaotic sea surrounding periodic islands and limited by a set of invariant tori whose position of the first of them depends on the control parameters. The formalism leads us to obtain analytically critical exponents that describe the behaviour of the average variable (action) along the chaotic sea. The result is compared to several models in the literature confirming the approach is of large interest. The formalism used is general and the procedure can be extended to many other different systems. (fast track communication)
Trova, A.; Karas, V.; Slaný, P.; Kovář, J.
2016-09-01
We present an analytical approach for the equilibrium of a self-gravitating charged fluid embedded in a spherical gravitational and dipolar magnetic fields produced by a central mass. Our scheme is proposed, as a toy model, in the context of gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. By charging mechanisms it also acquires non-zero electric charge density, so the two influences need to be taken into account to achieve a self-consistent picture. Using our approach we discuss the impact of self-gravity, represented by the term {d}{{t}} (ratio of the torus total mass to the mass of the central body), on the conditions for existence of the equilibrium and the morphology and typology of the tori. By comparison with a previous work without self-gravity, we show that the conditions can be different. Although the main aim of the present paper is to discuss a framework for the classification of electrically charged, magnetized, self-gravitating tori, we also mention potential astrophysical applications to vertically stratified fluid configurations.
Granato, G. L.; Danese, L.
1994-05-01
The continuum expected from active galactic nuclei (AGN) surrounded by thick tori is compared to the data available for a sample of optically selected Seyfert 1 galaxies. The optical and near-IR nuclear fluxes have previously been derived for these objects, and hence the spectral energy distributions (SEDs) of their active nuclei can be analysed. We perform detailed calculations of the 0.1 to 1000 micron SEDs for AGN surrounded by dust tori with different opening angles. The dust mixture is mimicked by using three silicate and three graphite grains of different sizes. The radiative transfer equation for a cloud having azimuthal symmetry and containing a mixture of dust grains is solved by means of a numerical code that takes absorption, emission and scattering into account. We discuss the optimization of the free parameters by comparing the spectra predicted by the code to available data. The general absence of the silicate emission feature at about 10 microns in the spectra of broad- line AGN and the general presence of the 10 micron silicate absorption feature in narrow-line AGN are addressed. The ensuing constraints are discussed. We show that models of thick tori extending up to a few hundred parsecs in which physical processes such as shocks significantly reduce the silicate grain abundance within the first few tens of parsecs are fully consistent with available broad-band data and high-resolution IR spectra of Seyfert 1 and 2 nuclei.
Mitchell, K. E.; Dutton, J. A.
1981-01-01
The considered investigation is concerned with periodic solutions in the context of a forced, dissipative, barotropic spectral model truncated to three complex coefficients with constant forcing on only the intermediate scale. It is found that determining a periodic solution of this three-coefficient model also reduces to finding the algebraic roots of a real polynomial. In the derivation of this polynomial, a class of hydrodynamic spectral systems is described for which a periodic solution might be similarly specified. The existence of periodic solutions of the three-coefficient model is controlled by the roots of the stability polynomial of the basic stationary solution, which represents the simplest response to the constant forcing. When the forcing exceeds a critical value, the basic solution becomes unstable. Owing to the nature of the roots of the stability polynomial at critical forcing, bifurcation theory guarantees the existence of a periodic solution.
Blume, M.; Skoda, R.
2015-12-01
A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.
Ruge, J.; Li, Y.; McCormick, S.F. [and others
1994-12-31
The formulation and time discretization of problems in meteorology are often tailored to the type of efficient solvers available for use on the discrete problems obtained. A common procedure is to formulate the problem so that a constant (or latitude-dependent) coefficient Poisson-like equation results at each time step, which is then solved using spectral methods. This both limits the scope of problems that can be handled and requires linearization by forward extrapolation of nonlinear terms, which, in turn, requires filtering to control noise. Multigrid methods do not suffer these limitations, and can be applied directly to systems of nonlinear equations with variable coefficients. Here, a global barotropic semi-Lagrangian model, developed by the authors, is presented which results in a system of three coupled nonlinear equations to be solved at each time step. A multigrid method for the solution of these equations is described, and results are presented.
Qi, Di; Majda, Andrew J.
2017-03-01
A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty to changes in forcing in a barotropic turbulent system with topography involving interactions between small-scale motions and a large-scale mean flow. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model parameters. Statistical theories about a Gaussian invariant measure and the exact statistical energy equations are also developed for the truncated barotropic equations that can be used to improve the imperfect model prediction skill. A stringent paradigm model of 57 degrees of freedom is used to display the feasibility of the reduced-order methods. This simple model creates large-scale zonal mean flow shifting directions from westward to eastward jets with an abrupt change in amplitude when perturbations are applied, and prototype blocked and unblocked patterns can be generated in this simple model similar to the real natural system. Principal statistical responses in mean and variance can be captured by the reduced-order models with desirable accuracy and efficiency with only 3 resolved modes. An even more challenging regime with non-Gaussian equilibrium statistics using the fluctuation equations is also tested in the reduced-order models with accurate prediction using the first 5 resolved modes. These reduced-order models also show potential for uncertainty quantification and prediction in more complex realistic geophysical turbulent dynamical systems.
Deformations on Tilted Tori and Moduli Stabilisation at the Orbifold Point
Blaszczyk, Michael; Koltermann, Isabel
2015-01-01
We discuss deformations of orbifold singularities on tilted tori in the context of Type IIA orientifold model building with D6-branes on special Lagrangian cycles. Starting from $T^6/(\\mathbb{Z}_2 \\times \\mathbb{Z}_2)$, we mod out an additional $\\mathbb{Z}_3$ symmetry to describe phenomenologically appealing backgrounds and reduce to $\\mathbb{Z}_3$ and $\\Omega\\mathcal{R}$ invariant orbits of deformations. While D6-branes carrying SO(2N) or USp(2N) gauge groups do not constrain deformations, D6-branes with U(N) gauge groups develop non-vanishing D-terms if they couple to previously singular, now deformed cycles. We present examples for both types of D6-branes, and in a three-generation Pati-Salam model on $T^6/(\\mathbb{Z}_2 \\times \\mathbb{Z}_6')$ we find that ten out of 15 twisted complex structure moduli are indeed stabilised at the orbifold point by the existence of the brane stacks.
Mesh theory of angle modified dual tori double-enveloping toroidal worm drive
无
2010-01-01
In this paper, the meshing theory of the angle modified hourglass worm drive is enriched and developed. The ordinary condition of the angle modification is derived and the physical significance of the modification is interpreted. A normal section methodology is proposed for meshing analysis, which can be used to compute the normal distance near a singular meshing point of a conjugate surface couple. By means of the method and after analyzing the normal transversals, it is specified that the worm helicoid, the nominal former contact zone and the new contact zone intersect each other along the locus of singular points of the instantaneous contact lines of an angle-modified worm pair. As a result, it is explained clearly that those three osculate each other but the osculations are different in degree. Moreover, the mechanism of removing the twice-contacted zone from the worm gear tooth surface is clarified and the reason of shortening the worm working length is also elucidated. With the help of the theory described in the present paper and the thorough and systematic research on the relevant meshing characteristics, the angle modified dual tori double-enveloping toroidal worm drive has been shown to be an excellent new-fashioned hourglass worm set.
Twisted Six Dimensional Gauge Theories on Tori, Matrix Models,and Integrable Systems
Ganguli, S N; Gill, J A; Ganguli, Surya; Ganor, Ori J.; Gill, James A.
2004-01-01
We use the Dijkgraaf-Vafa technique to study massive vacua of 6D SU(N) SYM theories on tori with R-symmetry twists. One finds a matrix model living on the compactification torus with a genus-2 spectral curve whose Jacobian is closely related to a twisted four torus T in which the Seiberg-Witten curves of the theory are embedded. We also analyze R-symmetry twists in a bundle with nontrivial first Chern class which yields intrinsically 6D SUSY breaking and a novel matrix integral in which eigenvalues float in a sea of background charge. Next we analyze the underlying integrable system of the theory, whose phase space we show to be a system of N-1 points on T. We write down an explicit set of Poisson commuting Hamiltonians for this system for arbitrary N and use them to prove that equilbrium configurations with respect to all Hamiltonians correspond to points in moduli space where the Seiberg-Witten curve maximally degenerates to genus 2, thereby recovering the matrix model spectral curve. We also write down a c...
Clumpy tori illuminated by the anisotropic radiation of accretion discs in active galactic nuclei
He, Jian-Jian; Zhang, Shuang-Nan
2015-01-01
In this paper, we try to explain the observed correlation between the covering factor (CF) of hot dust and the properties of active galactic nuclei (AGNs), e.g., the bolometric luminosity ($L_{\\rm{bol}}$) and black hole mass ($M_{\\rm{BH}}$). Combining the possible dust distribution in the torus, the angular dependence of the radiation of the accretion disc, and the relation between the critical angle of torus and the Eddington ratio, there are eight possible models investigated in our work. We fit the observed CF with these models to determine the parameters of them. As a result, clumpy torus models can generally explain the observed correlations of tori, while the smooth models fail to produce the required CFs. However, there is still significant scatter even for the best-fitting model, which is the combination of a clumpy torus illuminated by the anisotropic radiation of accretion disc in an AGN. Although some of the observed scatter is due to the uncertainties in measuring $L_{\\rm{bol}}$ and $M_{\\rm{BH}}$,...
Simulating relativistic binaries with Whisky
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
Relativistic effects in atom gravimeters
Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun
2017-01-01
Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Relativistic formulation and reference frame
Klioner, Sergei A.
2004-01-01
After a short review of experimental foundations of metric theories of gravity, the choice of general relativity as a theory to be used for the routine modeling of Gaia observations is justified. General principles of relativistic modeling of astronomical observations are then sketched and compared to the corresponding Newtonian principles. The fundamental reference system -- Barycentric Celestial Reference System, which has been chosen to be the relativistic reference system underlying the f...
q-Deformation of the AdS5 x S5 Superstring S-matrix and its Relativistic Limit
Hoare, Ben; Miramontes, J Luis
2011-01-01
A set of four factorizable non-relativistic S-matrices for a multiplet of fundamental particles are defined based on the R-matrix of the quantum group deformation of the centrally extended superalgebra su(2|2). The S-matrices are a function of two independent couplings g and q=exp(i\\pi/k). The main result is to find the scalar factor, or dressing phase, which ensures that the unitarity and crossing equations are satisfied. For generic (g,k), the S-matrices are branched functions on a product of rapidity tori. In the limit k->infinity, one of them is identified with the S-matrix describing the magnon excitations on the string world sheet in AdS5 x S5, while another is the mirror S-matrix that is needed for the TBA. In the g->infinity limit, the rapidity torus degenerates, the branch points disappear and the S-matrices become meromorphic functions, as required by relativistic S-matrix theory. However, it is only the mirror S-matrix which satisfies the correct relativistic crossing equation. The mirror S-matrix ...
Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows
Bernstein, J. P.; Hughes, P. A.
2009-09-01
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
Gallavotti, G
1993-01-01
Abstract: Rotators interacting with a pendulum via small, velocity independent, potentials are considered. If the interaction potential does not depend on the pendulum position then the pendulum and the rotators are decoupled and we study the invariant tori of the rotators system at fixed rotation numbers: we exhibit cancellations, to all orders of perturbation theory, that allow proving the stability and analyticity of the dipohantine tori. We find in this way a proof of the KAM theorem by direct bounds of the $k$--th order coefficient of the perturbation expansion of the parametric equations of the tori in terms of their average anomalies: this extends Siegel's approach, from the linearization of analytic maps to the KAM theory; the convergence radius does not depend, in this case, on the twist strength, which could even vanish ({\\it "twistless KAM tori"}). The same ideas apply to the case in which the potential couples the pendulum and the rotators: in this case the invariant tori with diophantine rotation...
Empirical Foundations of Relativistic Gravity
Ni, W T
2005-01-01
In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...
Schulz-Stellenfleth, J.; Stanev, E. V.
2016-04-01
The upscaling problem is investigated using the barotropic dynamics of the North Sea and the German Bight as an example. The impact of small scale perturbations of bathymetry, bottom roughness, wind forcing, and boundary forcing is quantified using a two-dimensional linear barotropic model for the entire North Sea with 5 km resolution. The model is solved in the spectral domain for the dominant M2 tide. Comparisons with results from a fully nonlinear 3D circulation model show that the main circulation features are well captured by the spectral model. The impact of different types of perturbations is estimated by inversion of the model using the perturbation covariance matrix as input. Case studies with white noise and fully correlated noise are presented. It is shown that the German Bight area stands out in its sensitivity with respect to small scale uncertainties of bathymetry. Small scale changes of bottom roughness have a particularly strong effect in the English Channel. Small scale wind perturbations have a significant local effect only in very shallow near coastal areas. It is shown that uncorrelated noise introduced along an open boundary around the German Bight only has a very local effect. Perturbations with long correlation length are shown to lead to significant far field effects along the east coast of England. It is demonstrated that this effect is related to the boundary conditions used for the North Sea model. In a next step a German Bight grid with 1 km resolution is nested into the North Sea grid and the spectral model is solved in a two way nested configuration. It is shown that there are some significant local and far field effects caused by the change of resolution in this coastal area. Finally, the potential impact of observations taken in coastal areas is investigated by evaluating the Kalman a posteriori distribution of analysis vectors based on different assumptions about model errors. The area of influence of a single tide gauge is
Ihsan Yilmaz
2016-01-01
Full Text Available Objectives. To evaluate the visual performance of Toris K soft contact lenses in patients with moderate-to-advanced keratoconus and also to compare the results according to cone types, cone location, and severity of keratoconus. Materials and Methods. Sixty eyes of 40 participants were included in this retrospective study. Uncorrected visual acuity (UCVA, best-spectacle corrected visual acuity (BCVA, best-contact lens corrected visual acuity (BCLCVA, and comfort rating via visual analogue scales (VAS were measured. Results. The mean age was 27.3 ± 8.6 years (range: 18 to 54. The mean logMAR UCVA, BCVA, and BCLCVA were 0.85 ± 0.38 (range: 0.30–1.30, 0.47 ± 0.27 (range: 0.10–1.30, and 0.16 ± 0.20 (range: 0–1.00. There were significant increases in visual acuities with contact lenses (p<.05. BCLCVA was significantly better in oval type than globus type (p=.022. UCVA and BCLCVA were significantly better in moderate keratoconus group (p=.015, p=.018. The mean line gain in Snellen was 3.6 ± 1.8 lines (range: 0–7 lines. The mean line gain was higher in central cone group than paracentral cone group and oval group than globus group (p=.014, p=.045. The mean VAS score was 8.14 ± 1.88 (range: 6–10. Conclusions. Toris K can improve visual acuity of patients with keratoconus. Toris K is successful even in the moderate and advanced form of the disease.
Relativistic causality and clockless circuits
Matherat, Philippe; 10.1145/2043643.2043650
2011-01-01
Time plays a crucial role in the performance of computing systems. The accurate modelling of logical devices, and of their physical implementations, requires an appropriate representation of time and of all properties that depend on this notion. The need for a proper model, particularly acute in the design of clockless delay-insensitive (DI) circuits, leads one to reconsider the classical descriptions of time and of the resulting order and causal relations satisfied by logical operations. This questioning meets the criticisms of classical spacetime formulated by Einstein when founding relativity theory and is answered by relativistic conceptions of time and causality. Applying this approach to clockless circuits and considering the trace formalism, we rewrite Udding's rules which characterize communications between DI components. We exhibit their intrinsic relation with relativistic causality. For that purpose, we introduce relativistic generalizations of traces, called R-traces, which provide a pertinent des...
Haro, A
2004-01-01
We prove rigorous results on persistence of invariant tori and their invariant manifolds for quasiperiodically perturbed systems. The proofs are based on the parametrization method of X. Cabre, E. Fontich, R. de la Llave, Ind. Math. Jour. 52, 2 The invariant manifolds results proved here include as particular cases of the usual (strong) stable and (strong) unstable manifolds, but also include other non-resonant manifolds. The method lends itself to numerical implementations whose analysis and implementation is studied in a companion paper by the same authors.
Relativistic RPA in axial symmetry
Arteaga, D Pena; 10.1103/PhysRevC.77.034317
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Multifragmentation calculated with relativistic forces
Feldmeier, H; Papp, G
1995-01-01
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density depe ndence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 -- 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. PACS: 25.70Mn, 25.75.+r
Relativistic Stern-Gerlach Deflection
Talman, Richard
2016-01-01
Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.
Special Relativistic Hydrodynamics with Gravitation
Hwang, Jai-chan; Noh, Hyerim
2016-12-01
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Special relativistic hydrodynamics with gravitation
Hwang, Jai-chan
2016-01-01
The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.
Vector Theory in Relativistic Thermodynamics
刘泽文
1994-01-01
It is pointed out that five defects occur in Planck-Einstein’s relativistic thermodynamics (P-E theory). A vector theory in relativistic thermodynamics (VTRT) is established. Defining the internal energy as a 4-vector, and supposing the entropy and the number of. particles to be invariants we have derived the transformations of all quantities, and subsequently got the Lagrangian and 4-D forms of thermodynamic laws. In order to test the new theory, several exact solutions with classical limits are given. The VTRT is free from the defects of the P-E theory.
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Fang, Li; Guo, Zhenhua
2016-04-01
The aim of this paper is to establish the global well-posedness and large-time asymptotic behavior of the strong solution to the Cauchy problem of the two-dimensional compressible Navier-Stokes equations with vacuum. It is proved that if the shear viscosity {μ} is a positive constant and the bulk viscosity {λ} is the power function of the density, that is, {λ=ρ^{β}} with {β in [0,1],} then the Cauchy problem of the two-dimensional compressible Navier-Stokes equations admits a unique global strong solution provided that the initial data are of small total energy. This result can be regarded as the extension of the well-posedness theory of classical compressible Navier-Stokes equations [such as Huang et al. (Commun Pure Appl Math 65:549-585, 2012) and Li and Xin (http://arxiv.org/abs/1310.1673) respectively]. Furthermore, the large-time behavior of the strong solution to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations had been also obtained.
Relativistic Hydrodynamics for Heavy-Ion Collisions
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Microscopic Processes in Relativistic Jets
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.;
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
The Highest Redshift Relativistic Jets
Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.
2007-12-18
We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.
Circular polarization in relativistic jets
Macquart, JP
2003-01-01
Circular polarization is observed in some relativistic jet sources at radio wavelengths. It is largely associated with activity in the cores of the radio sources, is highly variable, and is strongest during ejection episodes. VLBI imaging and interstellar scintillation arguments show that the degree
Trova, A; Slany, P; Kovar, J
2016-01-01
We present an analytical approach for the equilibrium of a self-gravitating charged fluid embedded in a spherical gravitational and dipolar magnetic fields produced by a central mass. Our scheme is proposed, as a toy-model, in the context of gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and it remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. By charging mechanisms it also acquires non-zero electric charge density, so the two influences need to be taken into account to achieve a self-consistent picture. With our approach we discuss the impact of self-gravity, represented by the term dt (ratio of the torus total mass to the mass of the central body), on the conditions for existence of the equilibrium and the morphology and typology of the tori. By comparison with a previous work without self-gravity, we show that the conditions can be different...
Mihaela Veţan
2012-10-01
Full Text Available Parteneriatele de solidaritate ASAT sunt dezvoltate în România începând cu anul 2008, în vederea susţinerii micilor producători agricoli care cultivă natural. Dezvoltarea acestora este susţinută la nivel naţional de Asociaţia Centrul de Resurse pentru Iniţiative Eticeși Solidare (CRIES. Mecanismul este unul bazat pe construirea unui relaţii de încredere între producători locali şi consumatori urbani. Astfel,se formează la nivel comunitar grupuri de consumatori care doresc să achiziţioneze produse realizate de mici agricultori, cu care încheie un contract pe perioada unui sezon agricol și cărora le plătesc un avans, în vederea susţinerii costurilor de producţie.
Three-dimensional radiative transfer modeling of AGN dusty tori as a clumpy two-phase medium
Stalevski, Marko; Baes, Maarten; Nakos, Theodoros; Popovic, Luka C
2011-01-01
We investigate the emission of active galactic nuclei (AGN) dusty tori in the infrared domain. Following theoretical predictions coming from hydrodynamical simulations, we model the dusty torus as a 3D two-phase medium with high-density clumps and low-density medium filling the space between the clumps. Spectral energy distributions (SED) and images of the torus at different wavelengths are obtained using 3D Monte Carlo radiative transfer code SKIRT. Our approach of generating clumpy structure allows us to model tori with single clumps, complex structures of merged clumps or interconnected sponge-like structure. A corresponding set of clumps-only models and models with smooth dust distribution is calculated for comparison. We found that dust distribution, optical depth, clump size and their actual arrangement in the innermost region, all have an impact on the shape of near- and mid-infrared SED. The 10 micron silicate feature can be suppressed for some parameters, but models with smooth dust distribution are ...
Relativistic compact objects in isotropic coordinates
M K Mak; T Harko
2005-08-01
We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati-type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic-type fluid with an equation of state = ρ is discussed in detail.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Roger Tory Peterson Inst. of Natural History, Inc., Jamestown, NY.
This report describes a 1989 leadership round-table discussion at the Roger Tory Peterson Institute in New York, which promotes emotional and intellectual linkages between people, especially children, to nature. The document includes the keynote remarks of three speakers along with some administrative guidelines for nature centers. Conservation…
Baldwin, Mark, Comp.; Seaberg, Anita, Comp.
The Roger Tory Peterson Institute's Nature Educators of the Year program recognizes teachers who have successfully implemented education programs that effectively connect children to nature, and that can be replicated by others. Two awards of $1,000 each were given in 1991. One of the recipients, Steven Prchal, is executive director of Sonoran…
Relativistic electron beams above thunderclouds
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-05-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Volatility smile as relativistic effect
Kakushadze, Zura
2017-06-01
We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.
Double Relativistic Electron Accelerating Mirror
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Relativistic stars in bigravity theory
Aoki, Katsuki; Tanabe, Makoto
2016-01-01
Assuming static and spherically symmetric spacetimes in the ghost-free bigravity theory, we find a relativistic star solution, which is very close to that in general relativity. The coupling constants are classified into two classes: Class [I] and Class [II]. Although the Vainshtein screening mechanism is found in the weak gravitational field for both classes, we find that there is no regular solution beyond the critical value of the compactness in Class [I]. This implies that the maximum mass of a neutron star in Class [I] becomes much smaller than that in GR. On the other hand, for the solution in Class [II], the Vainshtein screening mechanism works well even in a relativistic star and the result in GR is recovered.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
A relativistic symmetry in nuclei
Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)
2007-11-15
We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.
Fluctuations in Relativistic Causal Hydrodynamics
Kumar, Avdhesh; Mishra, Ananta P
2013-01-01
The formalism to calculate the hydrodynamics fluctuation using the quasi-stationary fluctuation theory of Onsager to the relativistic Navier-Stokes hydrodynamics is already known. In this work we calculate hydrodynamic fluctuations in relativistic causal theory of Muller, Israel and Stewart and other related causal hydrodynamic theories. We show that expressions for the Onsager coefficients and the correlation functions have form similar to the ones obtained by using Navier-Stokes equation. However, temporal evolution of the correlation functions obtained using MIS and the other causal theories can be significantly different than the correlation functions obtained using the Navier-Stokes equation. Finally, as an illustrative example, we explicitly plot the correlation functions obtained using the causal-hydrodynamics theories and compare them with correlation functions obtained by earlier authors using the expanding boost-invariant (Bjorken) flows.
Thermodynamic and relativistic uncertainty relations
Artamonov, A. A.; Plotnikov, E. M.
2017-01-01
Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
Relativistic Binaries in Globular Clusters
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Benacquista Matthew
2002-01-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Tennis Using Flying Mirror
Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.
2008-06-01
Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Relativistic effects in Lyman-alpha forest
Iršič, Vid; Viel, Matteo
2015-01-01
We present the calculation of the Lyman-alpha (Lyman-$\\alpha$) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range ($z = 2 - 5$). Furthermore, we show a comprehensive application of our calculations to the Quasar- Lyman-$\\alpha$ cross-correlation function. Our results indicate that the signal of relativistic effects can be as large as 30% at Baryonic Acoustic Oscillation (BAO) scale, which is much larger than anticipated and mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross- correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considerin...
Transverse relativistic effects in paraxial wave interference
Bliokh, Konstantin Y; Nori, Franco
2013-01-01
We consider relativistic deformations of interfering paraxial waves moving in the transverse direction. Owing to superluminal transverse phase velocities, noticeable deformations of the interference patterns arise when the waves move with respect to each other with non-relativistic velocities. Similar distortions also appear on a mutual tilt of the interfering waves, which causes a phase delay analogous to the relativistic time delay. We illustrate these observations by the interference between a vortex wave beam and a plane wave, which exhibits a pronounced deformation of the radial fringes into a fork-like pattern (relativistic Hall effect). Furthermore, we describe an additional relativistic motion of the interference fringes (a counter-rotation in the vortex case), which become noticeable at the same non-relativistic velocities.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic non-equilibrium thermodynamics revisited
García-Colin, L S
2006-01-01
Relativistic irreversible thermodynamics is reformulated following the conventional approach proposed by Meixner in the non-relativistic case. Clear separation between mechanical and non-mechanical energy fluxes is made. The resulting equations for the entropy production and the local internal energy have the same structure as the non-relativistic ones. Assuming linear constitutive laws, it is shown that consistency is obtained both with the laws of thermodynamics and causality.
Analogy betwen dislocation creep and relativistic cosmology
J.A. Montemayor-Aldrete; J.D. Muñoz-Andrade; Mendoza-Allende, A.; Montemayor-Varela, A.
2005-01-01
A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have been obtained for Relativistic Cosmology. From these four new equations, one may determine...
A relativistic correction to semiclassical charmonium
Weiss, J.
1995-09-01
It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Relativistic Cyclotron Instability in Anisotropic Plasmas
López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.
2016-11-01
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Relativistic and non-relativistic solitons in plasmas
Barman, Satyendra Nath
This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields
Relativistic Corrections to the Bohr Model of the Atom
Kraft, David W.
1974-01-01
Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)
Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency
Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.
2015-11-01
3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.
On the relativistic anisotropic configurations
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)
2016-06-15
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)
Simple waves in relativistic fluids.
Lyutikov, Maxim
2010-11-01
We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.
Observation of relativistic antihydrogen atoms
Blanford, Glenn Delfosse, Jr.
1997-09-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
Einstein Toolkit for Relativistic Astrophysics
Collaborative Effort
2011-02-01
The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.
Density perturbations with relativistic thermodynamics
Maartens, R
1997-01-01
We investigate cosmological density perturbations in a covariant and gauge- invariant formalism, incorporating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inhomogeneities splits covariantly into a scalar part, a rotational vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for viswcous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and temperature perturbation equations. We give the full coupled system in the general dissipative case, and simplify the system in certain cases.
Thermodynamics of polarized relativistic matter
Kovtun, Pavel
2016-07-01
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Thermodynamics of polarized relativistic matter
Kovtun, Pavel
2016-01-01
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Relativistic solitons and superluminal signals
Maccari, Attilio [Technical Institute ' G. Cardano' , Piazza della Resistenza 1, Monterotondo, Rome 00015 (Italy)]. E-mail: solitone@yahoo.it
2005-02-01
Envelope solitons in the weakly nonlinear Klein-Gordon equation in 1 + 1 dimensions are investigated by the asymptotic perturbation (AP) method. Two different types of solitons are possible according to the properties of the dispersion relation. In the first case, solitons propagate with the group velocity (less than the light speed) of the carrier wave, on the contrary in the second case solitons always move with the group velocity of the carrier wave, but now this velocity is greater than the light speed. Superluminal signals are then possible in classical relativistic nonlinear field equations.
Relativistic suppression of wave packet spreading.
Su, Q; Smetanko, B; Grobe, R
1998-03-30
We investigate numerically the solution of Dirac equation and analytically the Klein-Gordon equation and discuss the relativistic motion of an electron wave packet in the presence of an intense static electric field. In contrast to the predictions of the (non-relativistic) Schroedinger theory, the spreading rate in the field's polarization direction as well as in the transverse directions is reduced.
Magnetism and rotation in relativistic field theory
Mameda, Kazuya; Yamamoto, Arata
2016-09-01
We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.
Relativistic heavy-ion physics: Experimental overview
Itzhak Tserruya
2003-04-01
The ﬁeld of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the ﬁrst run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.
Physico-mathematical foundations of relativistic cosmology
Soares, Domingos
2013-01-01
I briefly present the foundations of relativistic cosmology, which are, General Relativity Theory and the Cosmological Principle. I discuss some relativistic models, namely, "Einstein static universe" and "Friedmann universes". The classical bibliographic references for the relevant tensorial demonstrations are indicated whenever necessary, although the calculations themselves are not shown.
Einstein Never Approved of Relativistic Mass
Hecht, Eugene
2009-01-01
During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…
General relativistic Boltzmann equation, I: Covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
This series of two articles aims at dissipating the rather dense haze existing in the present literature around the General Relativistic Boltzmann equation. In this first article, the general relativistic one-particle distribution function in phase space is defined as an average of delta functions.
Critique of Conventional Relativistic Quantum Mechanics.
Fanchi, John R.
1981-01-01
Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
Relativistic corrections to molecular dynamic dipole polarizabilities
Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard
1995-01-01
Using response function methods we report calculations of the dynamic isotropic polarizability of SnH4 and PbH4 and of the relativistic corrections to it in the random phase approximation and at the correlated multiconfigurational linear response level of approximation. All relativistic corrections...
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-08-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10^{−3} Am^{−2} associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
Ponderomotive Acceleration by Relativistic Waves
Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-01-01
In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...
Single electron relativistic clock interferometer
Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.
2016-09-01
Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.
24-Hour Relativistic Bit Commitment
Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo
2016-09-01
Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.
Chaos and Maps in Relativistic Dynamical Systems
Horwitz, L P
1999-01-01
The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...
Relativistic Particles in Clusters of Galaxies
Ensslin, T A
2002-01-01
A brief overview on the theory and observations of relativistic particle populations in clusters of galaxies is given. The following topics are addressed: (i) the diffuse relativistic electron population within the intra-cluster medium (ICM) as seen in the cluster wide radio halos and possibly also seen in the high energy X-ray and extreme ultraviolet excess emissions of some clusters, (ii) the observed confined relativistic electrons within fresh and old radio plasma and their connection to cluster radio relics at cluster merger shock waves, (iii) the relativistic proton population within the ICM, and its observable consequences (if it exists), and (iv) the confined relativistic proton population (if it exists) within radio plasma. The importance of upcoming, sensitive gamma-ray telescopes for this research area is highlighted.
Relativistic gas in a Schwarzschild metric
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...
Relativistic recursion relations for transition matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2004-01-01
We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.
Relativistic Electrons in Electric Discharges
Cinar, Deniz
discharges as the source. The “Atmosphere-Space Interactions Monitor” (ASIM) for the International Space Station in 2016, led by DTU Space, and the French microsatellite TARANIS, also with launch in 2016, will identify with certainty the source of TGFs. In preparation for the missions, the Ph.D. project has...... developed a Monte Carlo module of a simulation code to model the formation of avalanches of electrons accelerated to relativistic energies, and the generation of bremsstrahlung through interactions with the neutral atmosphere. The code will be used in the analysis of data from the two space missions. We...... scattering. However, we only explored the properties of the complete number of photons reaching space, not the distribution at speci_c locations as in the case of a satellite. With this reservation we conclude that it is not possible to deduce much information from a satellite measurement of the photons...
Real vs. simulated relativistic jets
Gómez, J L; Agudo, I; Marscher, A P; Jorstad, S G; Aloy, M A
2005-01-01
Intensive VLBI monitoring programs of jets in AGN are showing the existence of intricate emission patterns, such as upstream motions or slow moving and quasi-stationary componentes trailing superluminal features. Relativistic hydrodynamic and emission simulations of jets are in very good agreement with these observations, proving as a powerful tool for the understanding of the physical processes taking place in the jets of AGN, microquasars and GRBs. These simulations show that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or ambient medium. Both observations and simulations suggest that shock-in-jet models may be an overly simplistic idealization when interpreting the emission structure observed in actual jets.
Causal categories: relativistically interacting processes
Coecke, Bob
2011-01-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study t...
Relativistic effects and quasipotential equations
Ramalho, G; Peña, M T
2002-01-01
We compare the scattering amplitude resulting from the several quasipotential equations for scalar particles. We consider the Blankenbecler-Sugar, Spectator, Thompson, Erkelenz-Holinde and Equal-Time equations, which were solved numerically without decomposition into partial waves. We analyze both negative-energy state components of the propagators and retardation effects. We found that the scattering solutions of the Spectator and the Equal-Time equations are very close to the nonrelativistic solution even at high energies. The overall relativistic effect increases with the energy. The width of the band for the relative uncertainty in the real part of the scattering $T$ matrix, due to different dynamical equations, is largest for backward-scattering angles where it can be as large as 40%.
Relativistic heavy-ion collisions
Bhalerao, Rajeev S
2014-01-01
The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.
General relativity and relativistic astrophysics
Mukhopadhyay, Banibrata
2016-01-01
Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.
In search of relativistic time
Lachieze-Rey, Marc
2013-01-01
This paper explores the status of some notions which are usually associated to time, like datations, chronology, durations, causality, cosmic time and time functions in the Einsteinian relativistic theories. It shows how, even if some of these notions do exist in the theory or for some particular solution of it, they appear usually in mutual conflict: they cannot be synthesized coherently, and this is interpreted as the impossibility to construct a common entity which could be called time. This contrasts with the case in Newtonian physics where such a synthesis precisely constitutes Newtonian time. After an illustration by comparing the status of time in Einsteinian physics with that of the vertical direction in Newtonian physics, I will conclude that there is no pertinent notion of time in Einsteinian theories.
Playing relativistic billiards beyond graphene
Sadurni, E [Institut fuer Quantenphysik, Ulm Universitaet, Albert-Einstein Allee 11, 89081 Ulm (Germany); Seligman, T H [Centro Internacional de Ciencias A.C., Apartado Postal 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico); Mortessagne, F, E-mail: esadurni@uni-ulm.d, E-mail: seligman@fis.unam.m, E-mail: fabrice.mortessagne@unice.f [Laboratoire de Physique de la Matiere Condensee, Universite de Nice-Sophia Antipolis, CNRS, UMR 6622 Parc Valrose, 06108 Nice cedex 2 (France)
2010-05-15
The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.
Playing relativistic billiards beyond graphene
Sadurní, E.; Seligman, T. H.; Mortessagne, F.
2010-05-01
The possibility of using hexagonal structures in general, and graphene in particular, to emulate the Dirac equation is the topic under consideration here. We show that Dirac oscillators with or without rest mass can be emulated by distorting a tight-binding model on a hexagonal structure. In the quest to make a toy model for such relativistic equations, we first show that a hexagonal lattice of attractive potential wells would be a good candidate. Firstly, we consider the corresponding one-dimensional (1D) model giving rise to a 1D Dirac oscillator and then construct explicitly the deformations needed in the 2D case. Finally, we discuss how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and we describe a feasible experimental setup.
Playing relativistic billiards beyond graphene
Sadurni, Emerson; Mortessagne, Fabrice
2010-01-01
The possibility of using hexagonal structures in general and graphene in particular to emulate the Dirac equation is the basis of our considerations. We show that Dirac oscillators with or without restmass can be emulated by distorting a tight binding model on a hexagonal structure. In a quest to make a toy model for such relativistic equations we first show that a hexagonal lattice of attractive potential wells would be a good candidate. First we consider the corresponding one-dimensional model giving rise to a one-dimensional Dirac oscillator, and then construct explicitly the deformations needed in the two-dimensional case. Finally we discuss, how such a model can be implemented as an electromagnetic billiard using arrays of dielectric resonators between two conducting plates that ensure evanescent modes outside the resonators for transversal electric modes, and describe an appropriate experimental setup.
Relativistic Kinetic Theory: An Introduction
Sarbach, Olivier
2013-01-01
We present a brief introduction to the relativistic kinetic theory of gases with emphasis on the underlying geometric and Hamiltonian structure of the theory. Our formalism starts with a discussion on the tangent bundle of a Lorentzian manifold of arbitrary dimension. Next, we introduce the Poincare one-form on this bundle, from which the symplectic form and a volume form are constructed. Then, we define an appropriate Hamiltonian on the bundle which, together with the symplectic form yields the Liouville vector field. The corresponding flow, when projected onto the base manifold, generates geodesic motion. Whenever the flow is restricted to energy surfaces corresponding to a negative value of the Hamiltonian, its projection describes a family of future-directed timelike geodesics. A collisionless gas is described by a distribution function on such an energy surface, satisfying the Liouville equation. Fibre integrals of the distribution function determine the particle current density and the stress-energy ten...
Some Surprises in Relativistic Gravity
Santos, N O
2016-01-01
General Relativity has had tremendous success both on the theoretical and the experimental fronts for over a century now. However, the contents of the theory are far from exhausted. Only very recently, with the detection of gravitational waves from colliding black holes, we have started probing the behavior of gravity in the strongly non-linear regime. Even today, the studies of black holes keep revealing more and more paradoxes and bizarre results. In this paper, inspired by David Hilbert's startling observation, we show that, contrary to the conventional wisdom, a freely falling test particle feels gravitational repulsion by a black hole as seen by the asymptotic observer. We dig deeper into this surprising behavior of relativistic gravity and offer some explanations.
Thermodynamic Laws and Equipartition Theorem in Relativistic Brownian Motion
Koide, T.; Kodama, T.
2011-01-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
Thermodynamic laws and equipartition theorem in relativistic Brownian motion.
Koide, T; Kodama, T
2011-06-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
X-ray bumps, iron K-alpha lines, and X-ray suppression by obscuring tori in Seyfert galaxies
Krolik, Julian H.; Madau, Piero; Zycki, Piotr T.
1994-01-01
We investigate the X-ray spectral properties of unobscured type 1 and obscured type 2 Seyferts as predicted by the unified Seyfert scheme. We consider the reprocessing of X-ray photons by photoelectric absorption, iron fluorescence, and Compton downscattering in the obscuring tori surrounding these active nuclei, and compute by Monte Carlo methods the reprocessed spectra as a function of the viewing angle. Depending on the optical depth and shape of the torus, and on the viewing angle, the X-ray flux can be suppressed by substantial factors when our line of sight is obscured. We show that an immediate consequence of the existence of an obscuring thick torus is the production in the spectra of type 1 Seyfert galaxies of a bump in the continuum above 10-20 keV and an Fe K-alpha line with significant equivalent width. In those type 2 Seyferts for which the hard X-ray spectrum has been substantially suppressed, the equivalent width of the Fe K-alpha line in the transmitted spectrum can be very large.
Holographic Aspects of a Relativistic Nonconformal Theory
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Relativistic Electron Experiment for the Undergraduate Laboratory
Marvel, Robert E
2011-01-01
We have developed an undergraduate laboratory experiment to make independent measurements of the momentum and kinetic energy of relativistic electrons from a \\beta -source. The momentum measurements are made with a magnetic spectrometer and a silicon surface-barrier detector is used to measure the kinetic energy. A plot of the kinetic energy as a function of momentum compared to the classical and relativistic predictions clearly shows the relativistic nature of the electrons. Accurate values for the rest mass of the electron and the speed of light are also extracted from the data.
DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS
无
2011-01-01
In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...
Pireaux, S
2008-01-01
The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, with respect to the appropriate gravitational metric, instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of satellites. Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI ephemeris with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. This mission is an interferometer formed by three spacecraft which aims at the detection of gravitational waves. Precise ephemerides of LISA spacecraft are needed not only for the sake of the orbitography but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbitography n...
Einšpigel, David; Martinec, Zdeněk
2015-08-01
The purpose of this paper is to present a new global barotropic ocean model-the DEBOT model. The model is based on the shallow water equations which we newly express in geographical coordinates. The derivation includes the boundary conditions and the Reynolds tensor in a form used commonly in oceanography. The numerical model employs finite differences on an Arakawa-C grid in space and a generalized forward-backward scheme in time with a combined third-order Adams-Bashforth and fourth-order Adams-Moulton step. The validity of the model is demonstrated by the tests based on conservation integral invariants. As a practical application, we present ocean circulation simulations generated by the lunisolar tidal force.
Relativistic elastic differential cross sections for equal mass nuclei
C.M. Werneth
2015-10-01
Full Text Available The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.
Relativistic elastic differential cross sections for equal mass nuclei
Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Maung, K.M.; Ford, W.P. [The University of Southern Mississippi, 118 College Drive, Box 5046, Hattiesburg, MS 39406 (United States)
2015-10-07
The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.
Artru, X. [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Collaboration: IPN-Lyon, IRMM (Gell), LURE (Orsay); Collaboration: IPN-Lyon, LAL and IEF (Orsay), HIP (Helsinki), INFN (Frascati, Milan)
1998-12-31
We have studied different effects related to electromagnetic interaction of relativistic electrons in matter and investigated their use in beam profile measurements. (authors) 4 refs. Short communication
B. V. Chubarenko
Full Text Available We study how a coastal obstruction (peninsula or coastal island affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.
Key words: Oceanography: general (limnology; numerical modeling - Oceanography: physical (currents
Argote, M. L.; Lavin, M. F.; Amador, A. [Departamento de Oceanografia Fisica, CICESE, Ensenada, Baja California (Mexico)
1998-07-01
A vertically integrated, non-linear numerical model in finite differences is used to analyze two forcing mechanisms of the mean barotropic circulation in the Gulf of California: topographic rectification due to tidal currents (M{sub 2}) and wind stress. Under tidal forcing the nonlinearities of the momentum equations induce unorganized strong tidal induced residual currents (u{sub e} > 5 cm s{sup -}1) in the channels between the islands, and along-isobath anticyclonic circulation in the Northern Gulf, with speeds u{sub 3} < 2.5 cm s{sup -}1 over the edge of Delfin Basin. These numerical results are in agreement with analytical results, which indicate that the tidal-induced currents are mostly due to the advective terms, and that continuity and the Coriolis term (but regulated by bottom friction) are responsible for the along-isobath flow. The quadratic bottom friction plays a role in generating mean currents only in the very shallow area off the Colorado River Delta. The effect of wind stress was modeled by imposing upon the running M{sub 2} model a constant surface stress ( r = 0.016 Pa), from the NW for winter conditions and from the SE for summer conditions. The wind-induced circulation was obtained by averaging over a tidal cycle and then subtracting the tidal residuals. The two wind directions produce almost identical circulation patterns, but with opposite directions. For the NW wind stress, the main features of the predicted circulation are: (a) In the Northern Gulf an anticyclonic circulation pattern, with the strongest currents (up to {approx} 10 cm s-1) following the bathymetry of the rim of Delfin Basin, Wagner Basin and the mainland coast off Bahia Adair and Bahia San Jorge. There is also a southward flow along the peninsula coast, from the Colorado River to Bahia San Luis Gonzaga. (b) In the Southern Gulf, there is a strong flow ({approx} 10 to 15 cm s{sup -}1) to the SE over the continental shelf along the mainland coast. A somewhat less well
Clumps in large scale relativistic jets
Tavecchio, F; Celotti, A
2003-01-01
The relatively intense X-ray emission from large scale (tens to hundreds kpc) jets discovered with Chandra likely implies that jets (at least in powerful quasars) are still relativistic at that distances from the active nucleus. In this case the emission is due to Compton scattering off seed photons provided by the Cosmic Microwave Background, and this on one hand permits to have magnetic fields close to equipartition with the emitting particles, and on the other hand minimizes the requirements about the total power carried by the jet. The emission comes from compact (kpc scale) knots, and we here investigate what we can predict about the possible emission between the bright knots. This is motivated by the fact that bulk relativistic motion makes Compton scattering off the CMB photons efficient even when electrons are cold or mildly relativistic in the comoving frame. This implies relatively long cooling times, dominated by adiabatic losses. Therefore the relativistically moving plasma can emit, by Compton sc...
General relativistic corrections and non-Gaussianity
Villa, Eleonora; Matarrese, Sabino
2014-01-01
General relativistic cosmology cannot be reduced to linear relativistic perturbations superposed on an isotropic and homogeneous (Friedmann-Robertson-Walker) background, even though such a simple scheme has been successfully applied to analyse a large variety of phenomena (such as Cosmic Microwave Background primary anisotropies, matter clustering on large scales, weak gravitational lensing, etc.). The general idea of going beyond this simple paradigm is what characterises most of the efforts made in recent years: the study of second and higher-order cosmological perturbations including all general relativistic contributions -- also in connection with primordial non-Gaussianities -- the idea of defining large-scale structure observables directly from a general relativistic perspective, the various attempts to go beyond the Newtonian approximation in the study of non-linear gravitational dynamics, by using e.g., Post-Newtonian treatments, are all examples of this general trend. Here we summarise some of these ...
Relativistic Thermodynamics: A Modern 4-Vector Approach
J. Güémez
2011-01-01
Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ = Wμ + Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.
Relativistic effect of spin and pseudospin symmetries
Chen, Shou-Wan
2012-01-01
Dirac Hamiltonian is scaled in the atomic units $\\hbar =m=1$, which allows us to take the non-relativistic limit by setting the Compton wavelength $% \\lambda \\rightarrow 0 $. The evolutions of the spin and pseudospin symmetries towards the non-relativistic limit are investigated by solving the Dirac equation with the parameter $\\lambda$. With $\\lambda$ transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin doublets, and the pseudospin splittings increase in several pseudospin doublets, no change, or even reduce in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin doublets with $\\lambda$ are well explained by the perturbation calculations of Dirac Hamiltonian in the present units. It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin symmetry cannot be uniquely attributed to the relativistic effect.
Relativistic calculations of coalescing binary neutron stars
Joshua Faber; Phillippe Grandclément; Frederic Rasio
2004-10-01
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.
Non-Newtonian Properties of Relativistic Fluids
Koide, Tomoi
2010-01-01
We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.
Energy spectra in relativistic electron precipitation events.
Rosenberg, T. J.; Lanzerotti, L. J.; Bailey, D. K.; Pierson, J. D.
1972-01-01
Two events in August 1967, categorized as relativistic electron precipitation (REP) events by their effect on VHF transmissions propagated via the forward-scatter mode, have been examined with regard to the energy spectra of trapped and precipitated electrons. These two substorm-associated events August 11 and August 25 differ with respect to the relativistic, trapped electron population at synchronous altitude; in the August 25 event there was a nonadiabatic enhancement of relativistic (greater than 400 keV) electrons, while in the August 11 event no relativistic electrons were produced. In both events electron spectra deduced from bremsstrahlung measurements (made on a field line close to that of the satellite) had approximately the same e-folding energies as the trapped electron enhancements. However, the spectrum of electrons in the August 25 event was significantly harder than the spectrum in the event of August 11.
Relativistic Effects at the Freshman Level.
Banna, M. Salim
1985-01-01
Summarizes the content of a lecture in which relativistic effects in chemistry are introduced through a calculation that illustrates these effects on the s and p electrons and that can be verified by photoelectron spectroscopy data. (JN)
Star Products for Relativistic Quantum Mechanics
Henselder, P.
2007-01-01
The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.
Relabeling symmetry in relativistic fluids and plasmas
Kawazura, Yohei; Fukumoto, Yasuhide
2014-01-01
The conservation of the recently formulated relativistic canonical helicity [Yoshida Z, Kawazura Y, and Yokoyama T 2014 J. Math. Phys. 55 043101] is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the "conventional helicity" is no longer a constant of motion. We have...
Relativistic diffusion equation from stochastic quantization
Kazinski, P O
2007-01-01
The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.
Relativistic Langevin equation for runaway electrons
Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.
2016-10-01
The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.
Solutions of relativistic radial quasipotential equations
Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1985-11-01
A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.
Spin, localization and uncertainty of relativistic fermions
Céleri, Lucas C; Terno, Daniel R
2016-01-01
We describe relations between several relativistic spin observables and derive a Lorentz-invariant characteristic of a reduced spin density matrix. A relativistic position operator that satisfies all the properties of its non-relativistic analogue does not exist. Instead we propose two causality-preserving positive operator-valued measures (POVM) that are based on projections onto one-particle and antiparticle spaces, and on the normalized energy density. They predict identical expectation values for position. The variances differ by less than a quarter of the squared de Broglie wavelength and coincide in the non-relativistic limit. Since the resulting statistical moment operators are not canonical conjugates of momentum, the Heisenberg uncertainty relations need not hold. Indeed, the energy density POVM leads to a lower uncertainty. We reformulate the standard equations of the spin dynamics by explicitly considering the charge-independent acceleration, allowing a consistent treatment of backreaction and incl...
Relativistic Model for two-band Superconductivity
Ohsaku, Tadafumi
2003-01-01
To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.
On Lorentz invariants in relativistic magnetic reconnection
Yang, Shu-Di; Wang, Xiao-Gang
2016-08-01
Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.
On the convexity of Relativistic Hydrodynamics
Ibáñez, José María; Martí, José María; Miralles, Juan Antonio; 10.1088/0264-9381/30/5/057002
2013-01-01
The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 {\\it Relativistic Fluids and Magneto-Fluids} (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr 1989 {\\it Rev. Mod. Phys.} {\\bf 61} 75). The classical limit is recovered.
Benedicks effect in a relativistic simple fluid
Garcia-Perciante, A L; Garcia-Colin, L S
2013-01-01
According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.
New Developments in Relativistic Viscous Hydrodynamics
Romatschke, Paul
2009-01-01
Starting with a brief introduction into the basics of relativistic fluid dynamics, I discuss our current knowledge of a relativistic theory of fluid dynamics in the presence of (mostly shear) viscosity. Derivations based on the generalized second law of thermodynamics, kinetic theory, and a complete second-order gradient expansion are reviewed. The resulting fluid dynamic equations are shown to be consistent for all these derivations, when properly accounting for the respective region of appl...
Limits and Signatures of Relativistic Spaceflight
Yurtsever, Ulvi
2015-01-01
While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave phtotons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Relativistic diffusive motion in random electromagnetic fields
Haba, Z, E-mail: zhab@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Plac Maxa Borna 9 (Poland)
2011-08-19
We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Juettner equilibrium at the inverse temperature {beta}{sup -1} = mc{sup 2}. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
The relativistic geoid: redshift and acceleration potential
Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker
2017-04-01
We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.
Investigation of relativistic runaway electrons
Jaspers, R.; Lopes Cardozo, N.J.; Schueller, F.C. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Finken, K.H.; Mank, G.; Hoenen, F. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Boedo, J. [California Univ., Los Angeles, CA (United States). Inst. of Plasma and Fusion Research
1993-12-31
The runaway generation during disruptions is regarded as a serious problem in future tokamak devices. The number and the high energy of these runaways can lead to considerable damage of wall components. In the TEXTOR tokamak (R{sub 0}=1.75 m, a=0.46 m; I{sub p}=350 kA, B{sub t}=2.25T, flat top time {approx_equal}2 s), low density discharges (n{sub e} < 1x10{sup 19} m{sup -3}) are analyzed to study the creation mechanism and the energy increase of the runaways. This is mainly done by the synchrotron radiation emitted by highly relativistic runaways (> 20 MeV). The general features of this synchrotron radiation will be described in Sect.2. In Sect.3 the creation rate of runaways is derived from this radiation. An intriguing observation made at the end of low density ohmic discharges is a fast increase in the pitch angle (i.e. the ratio of perpendicular to parallel velocity) from the runaways on a time scale of less than 65 {mu}s. This phenomenon is discussed in Sect.4. Finally some conclusions will be drawn on the implications these results have for future tokamak operation. (author) 4 refs., 3 figs.
Causal Categories: Relativistically Interacting Processes
Coecke, Bob; Lal, Raymond
2013-04-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.
Observation of relativistic antihydrogen atoms
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
The Relativistic Heavy Ion Collider
Fischer, Wolfram
The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...
Interaction of Jovian energetic particles with moons and gas tori based on recent Juno/JEDI data
Kollmann, P.; Mauk, B.; Clark, G. B.; Paranicas, C.; Haggerty, D. K.; Rymer, A. M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.
2016-12-01
Juno is the first spacecraft in a polar orbit around Jupiter. It entered orbit in July 2016, will deliver the first science data from near Jupiter at the end of August, and pass very close to Jupiter 4 more times by December. We will use data from the three JEDI instruments onboard that measure ions and electrons in the tens of keV to MeV range while discriminating among ion species. Recording of the full energy and time-of-flight information of a subset of the detected particles will allow distinguishing foreground from contaminating background in many cases. Since Juno will be mostly at high latitudes, the JEDI measurements will differ from the measurements of previous missions that were mostly in the equatorial plane. The increasingly strong radiation environment inwards of Europa's orbit caused contamination and/or dead time effects in many of the previously flown particle instruments, which made it difficult to study this region with the existing data. We expect that Juno's unique orbit and the JEDI design will largely avoid these problems. During one hour of closest approach, Juno will be on magnetic field lines that map within the orbits of the Galilean moons. We will study the data in this region and analyze the intensity dropouts that are caused by the interaction between the particles that bounce along field lines and drift around the planet with the moons and associated gas and plasma tori. Also, we will analyze the rate of intensity change towards Jupiter that is determined by radial transport, potential local source processes, and the range of pitch angles that can reach the changing latitudes.
BIRKHOFF'S EQUATIONS AND GEOMETRICAL THEORY OF ROTATIONAL RELATIVISTIC SYSTEM
LUO SHAO-KAI; CHEN XIANG-WEI; FU JING-LI
2001-01-01
The Birkhoffian and Birkhoff's functions of a rotational relativistic system are constructed, the Pfaff action of rotational relativistic system is defined, the Pfaff-Birkhoff principle of a rotational relativistic system is given, and the Pfaff-Birkhoff-D'Alembert principles and Birkhoff's equations of rotational relativistic system are constructed. The geometrical description of a rotational relativistic system is studied, and the exact properties of Birkhoff's equations and their forms onR × T*M for a rotational relativistic system are obtained. The global analysis of Birkhoff's equations for a rotational relativistic system is studied, the global properties of autonomous, semi-autonomous and non-autonomous rotational relativistic Birkhoff's equations, and the geometrical properties of energy change for rotational relativistic Birkhoff's equations are given.
Relativistic Hotspots in FR II Radio Sources
Chartrand, Alex M.; Miller, B. P.; Brandt, W. N.; Gawronski, M. P.; Cederbloom, S. E.
2011-01-01
We present a list of six FR II radio sources that are candidates to possess hotspots with modestly relativistic (v/c > 0.2) bulk velocities, in contrast to the vast majority of FR II radio sources that possess non-relativistic hotspot bulk velocities (e.g., v/c = 0.03+/- 0.02 from Scheuer 1995). These objects display arm- length and flux-ratio asymmetries between lobes that self-consistently indicate relativistic motion. The candidates are selected from the FIRST 1.4 GHz survey (including but not limited to the catalog of FR II quasars of de Vries et al. 2006) with the requirement that the radio core have a spectroscopic SDSS counterpart. We find no significant difference in the number of neighboring sources within 300 projected kpc of the candidate sources and randomly selected nearby regions. The deprojected and light travel-time corrected lobe distances are not abnormal for FR II sources, and neither are the core-to-lobe flux ratios after correcting for lobe beaming. We briefly consider four possibilities for these type of objects: (i) environmental interactions randomly mimicking relativistic effects, (ii) a restarted jet causing the near hotspot to brighten while the far hotspot still appears faint, (iii) observation during a short interval common to FR II lifetimes during which the hotspot decelerates from relativistic to non-relativistic velocities, and (iv) innately unusual characteristics (e.g., a mass-loaded jet) driving relativistic bulk velocities in the hotspots of a small fraction (< 1%) of FR II objects. We favor the last interpretation but cannot rule out the alternatives. We also comment on the useful external constraints such objects provide to the evaluation of hotspot X-ray emission mechanisms.
A systematic sequence of relativistic approximations.
Dyall, Kenneth G
2002-06-01
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.
RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT
Friedlander, Erwin M.; Heckman, Harry H.
1982-04-01
Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.
Applying Relativistic Reconnection to Blazar Jets
Nalewajko, Krzysztof
2016-01-01
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...
Relativistic mixtures of charged and uncharged particles
Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)
2014-01-14
Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.
General relativistic observables of the GRAIL mission
Turyshev, Slava G; Sazhin, Mikhail V
2012-01-01
We present a realization of astronomical relativistic reference frames in the solar system and its application to the GRAIL mission. We model the necessary spacetime coordinate transformations for light-trip time computations and address some practical aspects of the implementation of the resulting model. We develop all the relevant relativistic coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to compute all observable quantities. We take into account major relativistic effects contributing to the dual one-way range observable, which is derived from one-way signal travel times between the two GRAIL spacecraft. We develop a general relativistic model for this fundamental observable of GRAIL, accurate to 1 $\\mu$m. We develop and present a relativistic model for another key observable of this experiment, the dual one-way range-rate, accurate to 1 $\\mu$m/s. The presented formulation justifies the basic assumptions behind the design of the GRAIL mission. It may also be ...
Chaos and maps in relativistic rynamical systems
L. P. Horwitz
2000-01-01
Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.
Relativistic Consistent Angular-Momentum Projected Shell-Model:Relativistic Mean Field
LI Yan-Song; LONG Gui-Lu
2004-01-01
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shellmodel (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method.In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF)theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained.This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei 16O and 208Pb,the deformed nucleus 20Ne. Good agreement is obtained.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
On the convexity of Relativistic Ideal Magnetohydrodynamics
Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio
2015-01-01
We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...
Relativistic dynamics, Green function and pseudodifferential operators
Cirilo-Lombardo, Diego Julio
2016-01-01
The central role played by pseudodifferential operators in relativistic dynamics is very well know. In this work, operators as the Schrodinger one (e.g: square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by mean of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability : it is non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as Zitterbewegung and rogue waves, are prese...
General relativistic observables for the ACES experiment
Turyshev, Slava G; Toth, Viktor T
2015-01-01
We develop a high-precision model for relativistic observables of the Atomic Clock Ensemble in Space (ACES) experiment on the International Space Station (ISS). We develop all relativistic coordinate transformations that are needed to describe the motion of ACES in Earth orbit and to compute observable quantities. We analyze the accuracy of the required model as it applies to the proper-to-coordinate time transformations, light time equation, and spacecraft equations of motion. We consider various sources of nongravitational noise and their effects on ACES. We estimate the accuracy of orbit reconstruction that is needed to satisfy the ACES science objectives. Based on our analysis, we derive models for the relativistic observables of ACES, which also account for the contribution of atmospheric drag on the clock rate. We include the Earth's oblateness coefficient $J_2$ and the effects of major nongravitational forces on the orbit of the ISS. We demonstrate that the ACES reference frame is pseudo-inertial at th...
Relativistic mirrors in laser plasmas (analytical methods)
Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.
2016-10-01
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.
Exact quantisation of the relativistic Hopfield model
Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)
2016-11-15
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
INTRACLUSTER MEDIUM REHEATING BY RELATIVISTIC JETS
Perucho, Manel; Quilis, Vicent; Marti, Jose-Maria [Departament d' Astronomia i Astrofisica, Universitat de Valencia, c/Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain)
2011-12-10
Galactic jets are powerful energy sources reheating the intracluster medium in galaxy clusters. Their crucial role in the cosmic puzzle, motivated by observations, has been established by a great number of numerical simulations excluding the relativistic nature of these jets. We present the first relativistic simulations of the very long-term evolution of realistic galactic jets. Unexpectedly, our results show no buoyant bubbles, but large cocoon regions compatible with the observed X-ray cavities. The reheating is more efficient and faster than in previous scenarios, and it is produced by the shock wave driven by the jet, that survives for several hundreds of Myr. Therefore, the X-ray cavities in clusters produced by powerful relativistic jets would remain confined by weak shocks for extremely long periods and their detection could be an observational challenge.
The relativistic virial theorem and scale invariance
Gaite, Jose
2013-01-01
The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.
Relativistic Scott correction for atoms and molecules
Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig
2010-01-01
We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...
Exact quantisation of the relativistic Hopfield model
Belgiorno, F; Piazza, F Dalla; Doronzo, M
2016-01-01
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields. The matter fields are represented by a mesoscopic polarization field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalized Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.
Investigation on shock waves stability in relativistic gas dynamics
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density
Nicolis, Alberto
2012-01-01
We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. These would normally be associated with gapless Goldstone excitations. We find that, in fact, their currents interpolate gapped excitations. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.
Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states
Longhi, Stefano
2011-01-01
Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating.
Relativistic QED Plasma at Extremely High Temperature
Masood, Samina S
2016-01-01
Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.
Towards universal quantum computation through relativistic motion
Bruschi, David Edward; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette
2013-01-01
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.
A relativistic and autonomous navigation satellite system
Delva, Pacôme; Kostić, Uros; Carloni, Sante
2011-01-01
A relativistic positioning system has been proposed by Bartolom\\'e Coll in 2002. Since then, several group developed this topic with different approaches. I will present a work done in collaboration with Ljubljana University and the ESA Advanced Concepts Team. We developed a concept, Autonomous Basis of Coordinates, in order to take advantage of the full autonomy of a satellite constellation for navigation and positioning, by means of satellite inter-links. I will present the advantages of this new paradigm and a number of potential application for reference systems, geophysics and relativistic gravitation.
Can Bohmian mechanics be made relativistic?
Dürr, Detlef; Goldstein, Sheldon; Norsen, Travis; Struyve, Ward; Zanghì, Nino
2014-02-08
In relativistic space-time, Bohmian theories can be formulated by introducing a privileged foliation of space-time. The introduction of such a foliation-as extra absolute space-time structure-would seem to imply a clear violation of Lorentz invariance, and thus a conflict with fundamental relativity. Here, we consider the possibility that, instead of positing it as extra structure, the required foliation could be covariantly determined by the wave function. We argue that this allows for the formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant. We conclude with some discussion of whether or not they might also qualify as fundamentally relativistic.
Relativistic Mirrors in Laser Plasmas (Analytical Methods)
Bulanov, Sergei V; Kando, Masaki; Koga, James K
2016-01-01
Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.
Weakly relativistic dispersion of Bernstein waves
Robinson, P. A.
1988-01-01
Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.
Fermion confinement by a relativistic flux tube
Olsson, M G; Williams, K; Olsson, M G; Veseli, S; Williams, K
1996-01-01
We formulate the description of the dynamic confinement of a single fermion by a flux tube. The range of validity extends from the relativistic corrections of a slowly moving quark to the ultra-relativistic motion in a heavy-light meson. The reduced Salpeter equation, also known as the no-pair equation, provides the framework for our discussion. The Regge structure is that of a Nambu string with one end fixed. Numerical solutions are found giving very good fits to heavy-light meson masses. The Isgur-Wise function with a zero recoil slope of \\xi'(1)\\simeq -1.23 is obtained.
Weakly relativistic dispersion of Bernstein waves
Robinson, P. A.
1988-01-01
Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.
Absolute Stability Limit for Relativistic Charged Spheres
Giuliani, Alessandro
2007-01-01
We find an exact solution for the stability limit of relativistic charged spheres for the case of constant gravitational mass density and constant charge density. We argue that this provides an absolute stability limit for any relativistic charged sphere in which the gravitational mass density decreases with radius and the charge density increases with radius. We then provide a cruder absolute stability limit that applies to any charged sphere with a spherically symmetric mass and charge distribution. We give numerical results for all cases. In addition, we discuss the example of a neutral sphere surrounded by a thin, charged shell.
Relativistic wave equations: an operational approach
Dattoli, G.; Sabia, E.; Górska, K.; Horzela, A.; Penson, K. A.
2015-03-01
The use of operator methods of an algebraic nature is shown to be a very powerful tool to deal with different forms of relativistic wave equations. The methods provide either exact or approximate solutions for various forms of differential equations, such as relativistic Schrödinger, Klein-Gordon, and Dirac. We discuss the free-particle hypotheses and those relevant to particles subject to non-trivial potentials. In the latter case we will show how the proposed method leads to easily implementable numerical algorithms.
Stream instabilities in relativistically hot plasma
Shaisultanov, Rashid; Eichler, David
2011-01-01
The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Kaplan, George
2011-01-01
This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
General relativistic tidal heating for Moller pseudotensor
So, Lau Loi
2015-01-01
Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.
Classical simulation of relativistic Zitterbewegung in photonic lattices.
Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander
2010-10-01
We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.
Relativistic heat conduction and thermoelectric properties of nonuniform plasmas
Honda, M
2003-01-01
Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.
Theory of symmetry for a rotational relativistic Birkhoff system
罗绍凯; 陈向炜; 郭永新
2002-01-01
The theory of symmetry for a rotational relativistic Birkhoff system is studied. In terms of the invariance of therotational relativistic Pfaff-Birkhoff-D'Alembert principle under infinitesimal transformations, the Noether symmetriesand conserved quantities of a rotational relativistic Birkhoff system are given. In terms of the invariance of rotationalrelativistic Birkhoff equations under infinitesimal transformations, the Lie symmetries and conserved quantities of therotational relativistic Birkhoff system are given.
Black Sun: Ocular Invisibility of Relativistic Luminous Astrophysical Bodies
Lee, Jeffrey S
2015-01-01
The relativistic Doppler shifting of visible electromagnetic radiation to beyond the human ocular range reduces the incident radiance of the source. Consequently, luminous astrophysical bodies (LABs) can be rendered invisible with sufficient relativistic motion. This paper determines the proper distance as a function of relativistic velocity at which a luminous object attains ocular invisibility.
Introduction to relativistic statistical mechanics classical and quantum
Hakim, Rémi
2011-01-01
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
Light scattering test regarding the relativistic nature of heat
Sandoval-Villalbazo, A
2006-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
Light scattering test regarding the relativistic nature of heat
2005-01-01
The dynamic structure factor of a simple relativistic fluid is calculated. The coupling of acceleration with the heat flux present in Eckart's version of irreversible relativistic thermodynamics is examined using the Rayleigh-Brillouin spectrum of the fluid. A modification of the width of the Rayleigh peak associated to Eckart's picture of the relativistic nature of heat is predicted and estimated.
A Structurally Relativistic Quantum Theory. Part 1: Foundations
Grgin, Emile
2012-01-01
The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.
Magnetic collimation of the relativistic jet in M 87
Gracia, JG; Tsinganos, KT; Bogovalov, SV
2005-01-01
We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-nonrelativistic outer disk-wind. The relativistic outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a n
Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?
Guemez, J.
2010-07-01
A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.
GENERALIZED SIMPLE NONCOMMUTATIVE TORI
无
2002-01-01
The generalized noncommutative torus Tkp of rank n was defined in [4] by the crossed product noncommutative torus Ap of rank n. It is shown in this paper that Tkp is strongly Morita equivalent to Ap, and that Tkp Mp∞ is isomorphic to Ap Mk(C) Mp∞ if and only if the set of prime factors of k is a subset of the set of prime factors of p.
LENTICULAR NONCOMMUTATIVE TORI
无
2003-01-01
All C*-algebras of sections of locally trivial C*-algebra bundles over ∏si=1 Lki (ni)with fibres Aω Mc(C) are constructed, under the assumption that every completely irra-tional noncommutative torus Aω is realized as an inductive limit of circle algebras, whereLki (ni) are lens spaces. Let Lcd be a cd-homogeneous C*-algebra over ∏si=1 Lki (ni) × Tr+2whose cd-homogeneous C*-subalgebra restricted to the subspace Tr × T2 is realized asC(Tr) Al/d Mc(C), and of which no non-trivial matrix algebra can be factored out.The lenticular noncommutative torus Lcd p is defined by twisting C*(Tr+2) C*(Zm-2)in Lcd C*(Zm-2) by a totally skew multiplier ρ on Tr+2 × Zm-2. It is shown thatLcdp Mp∞ is isomorphic to (∏si=1 Lki (ni)) Aρ Mcd(C) Mp∞ if and only if the setof prime factors of cd is a subset of the set of prime factors of p, and that Lcd p is not stablyisomorphic to C(∏si=1 Lki (ni)) Aρ Mcd(C) if the cd-homogeneous C*-subalgebra ofLcdp restricted to some subspace Lki (ni) ∏si=1 Lki (ni) is realized as the crossed productby the obvious non-trivial action of Zki on a cd/ki-homogeneous C*-algebra over S2ni+1 forki an integer greater than 1.
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J
2015-01-01
Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...
Rubin, Jacques
2014-01-01
Relativistic stereometric coordinates supplied by relativistic auto-locating positioning systems made up of four satellites supplemented by a fifth one are defined in addition to the well-known emission and reception coordinates. Such a constellation of five satellites defines a so-called relativistic localizing system. The determination of such systems is motivated by the need to not only locate (within a grid) users utilizing receivers but, more generally, to localize any spacetime event. The angles measured on the celestial spheres of the five satellites enter into the definition. Therefore, there are, up to scalings, intrinsic physical coordinates related to the underlying conformal structure of spacetime. Moreover, they indicate that spacetime must be endowed everywhere with a local projective geometry characteristic of a so-called generalized Cartan space locally modeled on four-dimensional, real projective space. The particular process of localization providing the relativistic stereometric coordinates...
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
Relativistic energy loss in a dispersive medium
Houlrik, Jens Madsen
2002-01-01
The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...
A Quantum Relativistic Prisoner's Dilemma Cellular Automaton
Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen
2016-10-01
The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.
Stable discrete representation of relativistically drifting plasmas
Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R
2016-01-01
Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.
KHARZEEV,D.
2004-03-28
This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.
General relativistic aspects of ferromagneto-fluid
Asgekar, G.G.; Patwardhan, C.G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
General relativistic aspects of ferromagneto-fluid.
Asgekar, G. G.; Patwardhan, C. G.
1988-03-01
The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.
Glueball Masses in Relativistic Potential Model
Shpenik, A; Kis, J; Fekete, Yu
2000-01-01
The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.
Turbulent Comptonization in Relativistic Accretion Disks
Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer
2006-01-01
Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.
Relativistic energy loss in a dispersive medium
Houlrik, Jens Madsen
2002-01-01
The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...
Instabilities in a Relativistic Viscous Fluid
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
Workshop on gravitational waves and relativistic astrophysics
Patrick Das Gupta
2004-10-01
Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.
Solitary Waves in Relativistic Electromagnetic Plasma
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Teleportation of the Relativistic Quantum Field
Laiho, R; Nazin, S S
2000-01-01
The process of teleportation of a completely unknown one-particle state of a free relativistic quantum field is considered. In contrast to the non-relativistic quantum mechanics, the teleportation of an unknown state of the quantum field cannot be in principle described in terms of a measurement in a tensor product of two Hilbert spaces to which the unknown state and the state of the EPR-pair belong. The reason is of the existence of a cyclic (vacuum) state common to both the unknown state and the EPR-pair. Due to the common vacuum vector and the microcausality principle (commutation relations for the field operators), the teleportation amplitude contains inevitably contributions which are irrelevant to the teleportation process. Hence in the relativistic theory the teleportation in the sense it is understood in the non-relativistic quantum mechanics proves to be impossible because of the impossibility of the realization of the appropriate measurement as a tensor product of the measurements related to the ind...
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Bodek, K.; Rozpędzik, D.; Zejma, J. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Informatics, Reymonta 4, 30059 Kraków (Poland); Caban, P.; Rembieliński, J.; Włodarczyk, M. [University of Łódź, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90236 Łódź (Poland); Ciborowski, J. [University of Warsaw, Faculty of Physics, Hoza 69, 00681 Warsaw (Poland); Enders, J.; Köhler, A. [Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Kozela, A. [Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31342 Kraków (Poland)
2013-11-07
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method
Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus
2015-04-01
Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d-1, Xe4d-1, and Rn5d-1 ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Whittaker Order Reduction Method of Relativistic Birkhoffian Systems
LUOShao-Kai; HUANGFei-Jiang; LUYi-Bing
2004-01-01
The order reduction method of the relativistic Birkhollian equations is studied. For a relativistic autonomous Birkhotffian system, if the conservative law of the Birkhotffian holds, the conservative quantity can be called the generalized energy integral. Through the generalized energy integral, the order of the system can be reduced. If the relativisticBirkhoffian system has a generalized energy integral, then the Birkhoffian equations can be reduced by at least twodegrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics and the relativistic Lagrangian mechanics are discussed, and the Whittaker order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of theresult.