Methods in relativistic nuclear physics
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.; Cauvin, M.
1984-01-01
This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)
On the relativistic extended Thomas-Fermi method
International Nuclear Information System (INIS)
Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.
1990-01-01
We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.)
On the relativistic extended Thomas-Fermi method
International Nuclear Information System (INIS)
Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.
1990-01-01
We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation
Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method
Energy Technology Data Exchange (ETDEWEB)
Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)
2015-04-14
Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.
Relativistic nuclear reactions and the intranuclear cascade method
International Nuclear Information System (INIS)
Duarte, S.J.B.
1983-01-01
The intranuclear cascade (INC) procedure is analised as a method to describe the processes of relativistic heavy ions collisions. The effects caused by nucleon concentration during the collision are discussed. It is shown explicitly that the occurence of nonbinary collisions among particles is not at all negligible, in spite of the fact that the convencional INC only permits nucleon-nucleon binary collisions. The relativistic invariance of the results obtained by the INC method is discussed. This is especially important when the method is applied for much higher energies. Many of conventional procedures in the method will give certainly different predictions depending on what system of reference is used. The origin of such non-invariance nature of INC calculations is discussed and an alternative way of defining the INC procedure which presents a better credibility with respect to the relativistic invariance property is proposed. (Author) [pt
Development of ICP-AES based method for the characterization of high level waste
International Nuclear Information System (INIS)
Seshagiri, T.K.; Thulsidas, S.K.; Adya, V.C.; Kumar, Mithlesh; Radhakrishnan, K.; Mary, G.; Kulkarni, P.G.; Bhalerao, Bharti; Pant, D.K.
2011-01-01
An Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method was developed for the trace metal characterization of high level waste solutions (HLW) of different origin and the method was validated by analysis of synthetic samples of simulated high level waste solutions (SHLW) from spent fuels of varying composition. In this context, an inter-laboratory comparison exercise (ILCE) was carried out with the simulated HLW of different spent fuel types, viz., research reactor (RR), pressurized heavy water reactor (PHWR) and fast breeder reactor (FBR). An over view of the ICP-AES determination of trace metallic constituents in such SHLW solutions is presented. The overall agreement between the various laboratories was good. (author)
Determination of traces of thorium in ammonium/sodium diuranate by ICP-AES method
International Nuclear Information System (INIS)
Nair, V.R.; Kartha, K.N.M.
1999-01-01
Full text: Indian Rare Earths Ltd., Alwaye, produces ammonium diuranate from the thorium concentrate, obtained during monazite processing. This process involves a series of steps. The final uranium product obtained always contains microgram amounts of thorium as impurity. An analytical procedure has been standardised for the estimation of microgram amounts of thorium in ammonium/sodium diuranate. The method involves solvent extraction of uranium by using a tertiary amine followed by the determination of thorium by ICP-AES method in the raffinate. The recoveries of thorium were checked by standard addition to the uranium matrix. Limit of detection is adequate for the analysis of nuclear grade material
Nicolás, Paula; Lassalle, Verónica L; Ferreira, María L
2017-02-01
The aim of this manuscript was to study the application of a new method of protein quantification in Candida antarctica lipase B commercial solutions. Error sources associated to the traditional Bradford technique were demonstrated. Eight biocatalysts based on C. antarctica lipase B (CALB) immobilized onto magnetite nanoparticles were used. Magnetite nanoparticles were coated with chitosan (CHIT) and modified with glutaraldehyde (GLUT) and aminopropyltriethoxysilane (APTS). Later, CALB was adsorbed on the modified support. The proposed novel protein quantification method included the determination of sulfur (from protein in CALB solution) by means of Atomic Emission by Inductive Coupling Plasma (AE-ICP). Four different protocols were applied combining AE-ICP and classical Bradford assays, besides Carbon, Hydrogen and Nitrogen (CHN) analysis. The calculated error in protein content using the "classic" Bradford method with bovine serum albumin as standard ranged from 400 to 1200% when protein in CALB solution was quantified. These errors were calculated considering as "true protein content values" the results of the amount of immobilized protein obtained with the improved method. The optimum quantification procedure involved the combination of Bradford method, ICP and CHN analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Collective variables method in relativistic theory
International Nuclear Information System (INIS)
Shurgaya, A.V.
1983-01-01
Classical theory of N-component field is considered. The method of collective variables accurately accounting for conservation laws proceeding from invariance theory under homogeneous Lorentz group is developed within the frames of generalized hamiltonian dynamics. Hyperboloids are invariant surfaces Under the homogeneous Lorentz group. Proceeding from this, field transformation is introduced, and the surface is parametrized so that generators of the homogeneous Lorentz group do not include components dependent on interaction and their effect on the field function is reduced to geometrical. The interaction is completely included in the expression for the energy-momentum vector of the system which is a dynamical value. Gauge is chosen where parameters of four-dimensional translations and their canonically-conjugated pulses are non-physical and thus phase space is determined by parameters of the homogeneous Lorentz group, field function and their canonically-conjugated pulses. So it is managed to accurately account for conservation laws proceeding from the requirement of lorentz-invariance
Vicuña, Cristián Molina; Höweler, Christoph
2017-12-01
The use of AE in machine failure diagnosis has increased over the last years. Most AE-based failure diagnosis strategies use digital signal processing and thus require the sampling of AE signals. High sampling rates are required for this purpose (e.g. 2 MHz or higher), leading to streams of large amounts of data. This situation is aggravated if fine resolution and/or multiple sensors are required. These facts combine to produce bulky data, typically in the range of GBytes, for which sufficient storage space and efficient signal processing algorithms are required. This situation probably explains why, in practice, AE-based methods consist mostly in the calculation of scalar quantities such as RMS and Kurtosis, and the analysis of their evolution in time. While the scalar-based approach offers the advantage of maximum data reduction; it has the disadvantage that most part of the information contained in the raw AE signal is lost unrecoverably. This work presents a method offering large data reduction, while keeping the most important information conveyed by the raw AE signal, useful for failure detection and diagnosis. The proposed method consist in the construction of a synthetic, unevenly sampled signal which envelopes the AE bursts present on the raw AE signal in a triangular shape. The constructed signal - which we call TriSignal - also permits the estimation of most scalar quantities typically used for failure detection. But more importantly, it contains the information of the time of occurrence of the bursts, which is key for failure diagnosis. Lomb-Scargle normalized periodogram is used to construct the TriSignal spectrum, which reveals the frequency content of the TriSignal and provides the same information as the classic AE envelope. The paper includes application examples in planetary gearbox and low-speed rolling element bearing.
Application of uncertainty analysis method for calculations of accident conditions for RP AES-2006
International Nuclear Information System (INIS)
Zajtsev, S.I.; Bykov, M.A.; Zakutaev, M.O.; Siryapin, V.N.; Petkevich, I.G.; Siryapin, N.V.; Borisov, S.L.; Kozlachkov, A.N.
2015-01-01
An analysis of some accidents using the uncertainly assessment methods is given. The list of the variable parameters incorporated the model parameters of the computer codes, initial and boundary conditions of reactor plant, neutronics. On the basis of the performed calculations of the accident conditions using the statistical method, errors assessment is presented in the determination of the main parameters comparable with the acceptance criteria. It was shown that in the investigated accidents the values of the calculated parameters with account for their error obtained from TRAP-KS and KORSAR/GP Codes do not exceed the established acceptance criteria. Besides, these values do not exceed the values obtained in the conservative calculations. A possibility in principle of the actual application of the method of estimation of uncertainty was shown to justify the safety of WWER AES-2006 using the thermal-physical codes KORSAR/GP and TRAP-KS, PANDA and SUSA programs [ru
Intelligence diagnosis method for roller bearings using features of AE signal
International Nuclear Information System (INIS)
Pan, J; Wang, H Q; Wang, F; Yang, J F; Liu, W B
2012-01-01
Rolling bearings are important components in rotating machines, which are wildly used in industrial production. The fault diagnosis technology plays a very important role for quality and life of machines. Based on symptom parameters of acoustic emission (AE) signals, this paper presents an intelligent diagnosis method for roller bearings using the principal component analysis, rough sets, and BP neural network to detect faults and distinguish fault types. The principal component analysis and the rough sets algorithm are used to reduce details of time-domain symptom parameters for training the BP neural network. The BP neural network, which is used for condition diagnosis of roller bearings, can obtain good convergence using the symptom parameters acquired by the principal component analysis and the rough sets during learning, and automatically distinguish fault types during diagnosing. Practical examples are provided to verify the efficiency of the proposed method.
2004-01-01
AE 941 [Arthrovas, Neoretna, Psovascar] is shark cartilage extract that inhibits angiogenesis. AE 941 acts by blocking the two main pathways that contribute to the process of angiogenesis, matrix metalloproteases and the vascular endothelial growth factor signalling pathway. When initial development of AE 941 was being conducted, AEterna assigned the various indications different trademarks. Neovastat was used for oncology, Psovascar was used for dermatology, Neoretna was used for ophthalmology and Arthrovas was used for rheumatology. However, it is unclear if these trademarks will be used in the future and AEterna appears to only be using the Neovastat trademark in its current publications regardless of the indication. AEterna Laboratories signed commercialisation agreements with Grupo Ferrer Internacional SA of Spain and Medac GmbH of Germany in February 2001. Under the terms of the agreement, AEterna has granted exclusive commercialisation and distribution rights to AE 941 in oncology to Grupo Ferrer Internacional for the Southern European countries of France, Belgium, Spain, Greece, Portugal and Italy. It also has rights in Central and South America. Medac GmbH will have marketing rights in Germany, the UK, Scandinavia, Switzerland, Austria, Ireland, the Netherlands and Eastern Europe. In October 2002, AEterna Laboratories announced that it had signed an agreement with Australian healthcare products and services company Mayne Group for marketing AE 941 (as Neovastat) in Australia, New Zealand, Canada and Mexico. In March 2003, AEterna Laboratories announced it has signed an agreement with Korean based LG Life Sciences Ltd for marketing AE 941 (as Neovastat) in South Korea. The agreement provides AEterna with upfront and milestone payments, as well as a return on manufacturing and sales of AE 941. AEterna Laboratories had granted Alcon Laboratories an exclusive worldwide licence for AE 941 for ophthalmic products. However, this licence has been terminated. In
An ICP AES method for determination of dysprosium and terbium in high purity yttrium oxide
International Nuclear Information System (INIS)
Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.
2011-01-01
High purity yttrium finds interesting application in astronavigation, luminescence, nuclear energy and metallurgical industries. Most of these applications require yttrium oxide of highest purity. Consequently there is a need for production of high purity yttrium oxide. Separation and purification of yttrium from other rare earths is a challenging task due to their close chemical properties. Liquid-liquid extraction and ion exchange have been widely used in the production of yttrium oxide of highest purity. Determination of impurities, especially other rare earths, in ppm level is required for process development and chemical characterization of the high purity Y 2 O 3 . Many methods have been described in literature. However since the advent of ICP AES much work in this area has been carried out by this technique. This paper describes the work done for determination of dysprosium (Dy) and terbium (Tb) in yttrium oxide using a high resolution sequential ICP AES. Emission spectra of rare earth elements are very complex and due to this complexity it is important to select spectral interference free analyte lines for determination of rare earths in rare earth matrix. For the determination of Dy and Tb in Y 2 O 3 , sensitive lines of Dy and Tb are selected from the instrument wavelength table and spectral interference free emission lines for the determination is selected by scanning around the selected wavelengths using 5 g/L Y solution and 5 mg/L standard solutions of Dy and Tb prepared in 4% nitric acid. It is found 353.170 nm line of Dy and 350.917 nm line Tb is suitable for quantitative determination. The signal to background ratio increases with increase in matrix concentration, i.e. from 1 to 5 mg/L. The optimum forward power is determined and it is found to be 1100W for Dy and 1000W for Tb. The instrument is calibrated using matrix matched standards containing 5g/L of Y matrix. Samples are dissolved in nitric acid and Y concentration is maintained at 5g/L. Two
Hao, Qiushi; Shen, Yi; Wang, Yan; Zhang, Xin
2018-01-01
Nondestructive test (NDT) of rails has been carried out intermittently in traditional approaches, which highly restricts the detection efficiency under rapid development of high speed railway nowadays. It is necessary to put forward a dynamic rail defect detection method for rail health monitoring. Acoustic emission (AE) as a practical real-time detection technology takes advantage of dynamic AE signal emitted from plastic deformation of material. Detection capacities of AE on rail defects have been verified due to its sensitivity and dynamic merits. Whereas the application under normal train service circumstance has been impeded by synchronous background noises, which are directly linked to the wheel speed. In this paper, surveys on a wheel-rail rolling rig are performed to investigate defect AE signals with varying speed. A dynamic denoising method based on Kalman filter is proposed and its detection effectiveness and flexibility are demonstrated by theory and computational results. Moreover, after comparative analysis of modelling precision at different speeds, it is predicted that the method is also applicable for high speed condition beyond experiments.
Zhou, Li
2018-01-01
This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method. PMID:29466310
Yan, Gang; Zhou, Li
2018-02-21
This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method.
Images Encryption Method using Steganographic LSB Method, AES and RSA algorithm
Moumen, Abdelkader; Sissaoui, Hocine
2017-03-01
Vulnerability of communication of digital images is an extremely important issue nowadays, particularly when the images are communicated through insecure channels. To improve communication security, many cryptosystems have been presented in the image encryption literature. This paper proposes a novel image encryption technique based on an algorithm that is faster than current methods. The proposed algorithm eliminates the step in which the secrete key is shared during the encryption process. It is formulated based on the symmetric encryption, asymmetric encryption and steganography theories. The image is encrypted using a symmetric algorithm, then, the secret key is encrypted by means of an asymmetrical algorithm and it is hidden in the ciphered image using a least significant bits steganographic scheme. The analysis results show that while enjoying the faster computation, our method performs close to optimal in terms of accuracy.
International Nuclear Information System (INIS)
Hajra, Rajkumar; Echer, Ezequiel; Gonzalez, Walter D.; Tsurutani, Bruce T.; Santolik, Ondrej
2015-01-01
Radiation-belt relativistic (E > 0.6, > 2.0, and > 4.0 MeV) electron acceleration is studied for solar cycle 23 (1995-2008). High-intensity, long-duration, continuous AE activity (HILDCAA) events are considered as the basis of the analyses. All of the 35 HILDCAA events under study were found to be characterized by flux enhancements of magnetospheric relativistic electrons of all three energies compared to the pre-event flux levels. For the E > 2.0 MeV electron fluxes, enhancement of >50% occurred during 100% of HILDCAAs. Cluster-4 passes were examined for electromagnetic chorus waves in the 5 < L < 10 and 0 < MLT < 12 region when wave data were available. Fully 100% of these HILDCAA cases were associated with enhanced whistler-mode chorus waves. The enhancements of E > 0.6, > 2.0, and > 4.0 MeV electrons occurred ∼1.0 day, ∼1.5 days, and ∼2.5 days after the statistical HILDCAA onset, respectively. The statistical acceleration rates for the three energy ranges were ∼1.8 × 10 5 , 2.2 × 10 3 , and 1.0 × 10 1 cm –2 s –1 sr –1 d –1 , respectively. The relativistic electron-decay timescales were determined to be ∼7.7, 5.5, and 4.0 days for the three energy ranges, respectively. The HILDCAAs were divided into short-duration (D ≤ 3 days) and long-duration (D > 3 days) events to study the dependence of relativistic electron variation on HILDCAA duration. For long-duration events, the flux enhancements during HILDCAAs with respect to pre-event fluxes were ∼290%, 520%, and 82% for E > 0.6, > 2.0, and > 4.0 MeV electrons, respectively. The enhancements were ∼250%, 400%, and 27% respectively, for short-duration events. The results are discussed with respect to the current understanding of radiation-belt dynamics
Generalized dilatation operator method for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Chemissany, Wissam, E-mail: wissam@stanford.edu [Department of Physics and SITP, Stanford University, Stanford, CA 94305 (United States); Papadimitriou, Ioannis, E-mail: ioannis.papadimitriou@csic.es [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Madrid 28049 (Spain)
2014-10-07
We present a general algorithm for constructing the holographic dictionary for Lifshitz and hyperscaling violating Lifshitz backgrounds for any value of the dynamical exponent z and any value of the hyperscaling violation parameter θ compatible with the null energy condition. The objective of the algorithm is the construction of the general asymptotic solution of the radial Hamilton–Jacobi equation subject to the desired boundary conditions, from which the full dictionary can be subsequently derived. Contrary to the relativistic case, we find that a fully covariant construction of the asymptotic solution for running non-relativistic theories necessitates an expansion in the eigenfunctions of two commuting operators instead of one. This provides a covariant but non-relativistic grading of the expansion, according to the number of time derivatives.
Relativistic rise measurement by cluster counting method in time expansion chamber
International Nuclear Information System (INIS)
Rehak, P.; Walenta, A.H.
1979-10-01
A new approach to the measurement of the ionization energy loss for the charged particle identification in the region of the relativistic rise was tested experimentally. The method consists of determining in a special drift chamber (TEC) the number of clusters of the primary ionization. The method gives almost the full relativistic rise and narrower landau distribution. The consequences for a practical detector are discussed
Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods
Alexander, Steven; Coldwell, R. L.
2015-03-01
The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.
International Nuclear Information System (INIS)
Kanazawa, Toru; Hidaka, Akihide; Kudo, Tamotsu; Nakamura, Takehiko; Fuketa, Toyoshi
2004-06-01
The VEGA (Verification Experiments of radionuclides Gas/Aerosol release) program is being performed at JAERI to understand mechanisms of radionuclides release from irradiated fuel during severe accidents. As a part of evaluation in the program, the mass balances of released and deposited FP (Fission Products) onto the test apparatus are estimated from gamma ray measurement for acid solution leached from the apparatus, but short-life nuclides are difficult to be measured because those in the VEGA fuel have been mostly depleted due to cooling for several years. Moreover, the radionuclides without emitting gamma rays and very small quantity of elements cannot be quantified by gamma ray measurement. Therefore, a microanalysis by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) for the acid solution leached from VEGA apparatuses is being applied to evaluate the released and deposited masses for those elements. Since Cs-134 and -137, which are major FP dissolved in the solution, have high intensity of gamma ray spectrum, they have to be removed from the solution before the microanalysis in order to avoid contamination of ICP system and to decrease exposure to gamma ray. In this report, methods for separation of Cs from acid solution were reviewed and the applicability of them to the ICP-AES analysis was discussed. The method for Cs separation using the inorganic ion exchanger, AMP (Ammonium Molybdate Phosphate) was applied to the solutions of cold and hot test and the effectiveness was examined. The results showed that more than 99.9% of Cs could be removed from the test solutions, and once removed Sb by AMP was recovered by using a complexing agent such as citric acid. Next, the method was applied to an acid solution leached from VEGA-3 apparatus, and ICP-AES analysis was performed for it. The analysis showed that amount of U, Sr and Zr were successfully quantified. Most of elements to be analyzed were measurable except for Sb, Ag and Sn, although
Relativistic effects on magnetic circular dichroism studied by GUHF/SECI method
Honda, Y.; Hada, M.; Ehara, M.; Nakatsuji, H.; Downing, J.; Michl, J.
2002-04-01
Quasi-relativistic formulation of the Magnetic circular dichroism (MCD) Faraday terms are presented using the generalized unrestricted Hartree-Fock (GUHF)/single excitation configuration interaction (SECI) method combined with the finite perturbation method and applied to the MCD of the three n-σ ∗ states ( 3Q1, 3Q0, 1Q1) of CH 3I. The Faraday B term for the 1Q1 state was 0.1976( Debye) 2( Bohr magneton )/(10 3 cm-1) in the non-relativistic theory, but was dramatically improved by the relativistic effect and became 0.0184 in agreement with the experimental values, 0.014 and 0.0257. This change was mainly due to the one-electron spin-orbit (SO1) term rather than the spin-free relativistic (SFR) and the two-electron spin-orbit (SO2) terms.
Estimation of boron, cadmium and cobalt at trace level in magnesium metal using ICP-AES method
International Nuclear Information System (INIS)
Patil, P.B.; Surya Prakash Rao, A.; Dixit, V.S.
2002-01-01
A method is established for the analysis of B, Cd and Co in the magnesium metal using ICP-AES technique in the range 1-50 ppm. Magnesium granules were dissolved in minimum amount of dilute nitric acid and the resultant solution is aspirated through ICP Nebulizer as nitrates Using various concentrations of matrix material 40, 20, 10 and 5 (mg/ml) were attempted to study the matrix effects on the above analytical elements. The optimum matrix concentration 20 mg/ml gave adequate detection limit of 1 ppm. The standard deviation of this method lies ∼ 1-3%. (author)
International Nuclear Information System (INIS)
Coleman, Charles J.; Edwards, Thomas B.
2005-01-01
The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL). Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround
An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan
2018-01-01
In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.
AES, EELS and TRIM simulation method study of InP(100 subjected to Ar+, He+ and H+ ions bombardment.
Directory of Open Access Journals (Sweden)
Abidri B.
2012-06-01
Full Text Available Auger Electron Spectroscopy (AES and Electron Energy Loss Spectroscopy (EELS have been performed in order to investigate the InP(100 surface subjected to ions bombardment. The InP(100 surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.
Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System
International Nuclear Information System (INIS)
Wang Qi
2010-01-01
In this letter, the homotopy analysis method is successfully applied to solve the Relativistic Toda lattice system. Comparisons are made between the results of the proposed method and exact solutions. Analysis results show that homotopy analysis method is a powerful and easy-to-use analytic tool to solve systems of differential-difference equations. (general)
Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method
Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and
ICP-AES method for metals in air. Pt 2 - analysis; final report on project R48113
International Nuclear Information System (INIS)
Taylor, C.; Howe, A.
2002-04-01
An ICP-AES instrument operating procedure has been drafted and incorporated in ISO 15202-3 Workplace air - Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry: Part 3 - Analysis. It is expected that this International Standard will be published during 2003. The performance of the analytical method described ISO 15202-3 was evaluated by carrying out laboratory experiments to determine analytical precision. The uncertainty associated with analytical variability was then combined with other sources of uncertainty arising from the sampling method described in ISO 15202-1. A first draft of a proposed new MDHS on Metals and metalloids in workplace air by Inductively Coupled Plasma Atomic Emission Spectrometry has been prepared based on ISO 15202-1, ISO 15202-2 and ISO 15202-3. It is expected that this will be published in late 2002 or early 2003
Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE
Itai, Akitoshi; Yasukawa, Hiroshi
This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.
Kohlmeyer U; Breugem PM; Boer JLM de; LAC
1996-01-01
Dit rapport behandelt de prestatiekenmerken van een methode voor de bepaling van totaal-fosfor in grondwater met behulp van ICP-AES met een axiaal plasma (Perkin-Elmer Optima 3000 XL). Met de reeds bestaande methode 'TotP' werden de volgende prestatiekenmerken vastgesteld:
Relativistic convergent close-coupling method applied to electron scattering from mercury
International Nuclear Information System (INIS)
Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor
2010-01-01
We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3 P 0,1,2 states. These cross sections are associated with the formation of negative ion (Hg - ) resonances that could not be resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other relativistic theories.
Heavy meson mass spectra by general relativistic methods
International Nuclear Information System (INIS)
Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.
1984-01-01
By applying the classical methods of general relativity to elementary particles one can get, in a natural way, the observed confinement of their constituents, avoiding any recourse to phenome-nological models such as bag model and allowing the deduction of the heavy meson (i.e. charmonium (J/psi) and bottomium (UPSILON)) mass spectra
Relativistic electrons of the outer radiation belt and methods of their forecast (review
Directory of Open Access Journals (Sweden)
Potapov A.S.
2017-03-01
Full Text Available The paper reviews studies of the dynamics of relativistic electrons in the geosynchronous region. It lists the physical processes that lead to the acceleration of electrons filling the outer radiation belt. As one of the space weather factors, high-energy electron fluxes pose a serious threat to the operation of satellite equipment in one of the most populated orbital regions. Necessity is emphasized for efforts to develop methods for forecasting the situation in this part of the magnetosphere, possible predictors are listed, and their classification is given. An example of a predictive model for forecasting relativistic electron flux with a 1–2-day lead time is proposed. Some questions of practical organization of prediction are discussed; the main objectives of short-term, medium-term, and long-term forecasts are listed.
Confinement and hadron-hadron interactions by general relativistic methods
Recami, Erasmo
By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.
International Nuclear Information System (INIS)
Thode, L.E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner
The fully relativistic implementation of the convergent close-coupling method
International Nuclear Information System (INIS)
Bostock, Christopher James
2011-01-01
The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures. (tutorial)
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics
International Nuclear Information System (INIS)
Le Bourdiec, S.
2007-03-01
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Cross-section studies of relativistic deuteron reactions obtained by activation method
Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N
2014-01-01
The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.
International Nuclear Information System (INIS)
Toyama, F.M.; Nogami, Y.; Zhao, Z.
1993-01-01
For the Dirac equation in one space dimension with a potential of the Lorentz scalar type, we present a complete solution for the problem of constructing a transparent potential. This is a relativistic extension of the Kay-Moses method which was developed for the nonrelativistic Schroedinger equation. There is an infinite family of transparent potentials. The potentials are all related to solutions of a class of coupled, nonlinear Dirac equations. In addition, it is argued that an admixture of a Lorentz vector component in the potential impairs perfect transparency
Biclique cryptanalysis of the full AES
DEFF Research Database (Denmark)
Bogdanov, Andrey; Khovratovich, Dmitry; Rechberger, Christian
2011-01-01
Since Rijndael was chosen as the Advanced Encryption Standard (AES), improving upon 7-round attacks on the 128-bit key variant (out of 10 rounds) or upon 8-round attacks on the 192/256-bit key variants (out of 12/14 rounds) has been one of the most difficult challenges in the cryptanalysis of block...... ciphers for more than a decade. In this paper, we present the novel technique of block cipher cryptanalysis with bicliques, which leads to the following results: The first key recovery method for the full AES-128 with computational complexity 2126.1. The first key recovery method for the full AES-192...... with computational complexity 2189.7. The first key recovery method for the full AES-256 with computational complexity 2254.4. Key recovery methods with lower complexity for the reduced-round versions of AES not considered before, including cryptanalysis of 8-round AES-128 with complexity 2124.9. Preimage search...
International Nuclear Information System (INIS)
Cao Desheng; Duan Shirong; Qin Fengzhou; Li Jinying; Zhang Huaili
1992-01-01
The authors describe a determination method of Ru, Rh and Pd in HLLW with cation-exchange separation and ICP-AES measurement. A sample of HLLW was treated with the hydrochloride acid containing enough sodium chloride, then passed through a strongly acidic cation-exchange resin column, the Ru, Rh and Pd as chloro-complexes go to the eluate while the interference elements are absorbed on the resins in the column. The Ru, Rh and Pd are collected and determined by ICP-AES. The obtained results show that the recovery is 90% and the relative standard deviation is 6% as the Ru content within the range (35-230) x 10 -6 ; the recovery is 106% and RSD is 10% as the Rh content within (2-20) x 10 -6 ; and the recovery of Pd is 72% as its content less than 2 x 10 -6
International Nuclear Information System (INIS)
Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.
1988-01-01
The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available
National Aeronautics and Space Administration — The AES Modular Power Systems (AMPS) project will demonstrate and infuse modular power electronics, batteries, fuel cells, and autonomous control for exploration...
Czech Academy of Sciences Publication Activity Database
Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Santolík, Ondřej
2015-01-01
Roč. 799, č. 1 (2015), 39/1-39/8 ISSN 0004-637X R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : acceleration of particles * magnetic reconnection * relativistic processes * solar wind * waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.909, year: 2015 http://iopscience.iop.org/0004-637X/799/1/39/article
Energy Technology Data Exchange (ETDEWEB)
Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2013-11-15
Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.
Energy Technology Data Exchange (ETDEWEB)
Lazzaro, Andrea; Agostini, Matteo; Budjas, Dusan; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration
2013-07-01
In 2013 the Gerda experiment will be upgraded to its second phase with more than double of the current {sup 76}Ge mass. The additional diodes are custom made Broad Energy Germanium (BEGe) detectors. This design has been chosen to enhance the pulse shape discrimination (PSD) capability, with respect to the Phase I coaxial detectors. The goal of Phase II is to improve by one order of magnitude the current background index; the PSD will bring a major contribution to this result. Since summer 2012 the first set of five enriched BEGe detectors are operated in Gerda Phase I. This offers us the possibility to test the PSD performances and the signal analysis in an environment as close as possible to the Gerda Phase II configuration. In this talk I present the A/E analysis, the calibration of the cut parameters and the results in terms of background reduction for the data taken with these enriched BEGe.
The momentum-loss achromat - a new method for the isotopical separation of relativistic heavy ions
International Nuclear Information System (INIS)
Schmidt, K.H.; Geissel, H.; Muenzenberg, G.; Dufour, J.P.; Hanelt, E.
1987-03-01
The application of the slowing-down process of relativistic heavy ions in a layer of matter in ion-optical devices is theoretically investigated. The modifications of the phase space of the ion beam due to the dissipative forces and the straggling phenomena are discussed. Methods are developed to study the properties of the momentum-loss achromat, an isotope separator consisting of an achromatic magnetic system with an energy degrader located in the intermediate dispersive focal plane. This device separates projectile fragments with respect to A and Z up to uranium over a wide energy range with an efficiency in the order of 50% and with separation times of several hundred nanoseconds. (orig.)
Canright, David; Osvik, Dag Arne
2009-01-01
We explore ways to reduce the number of bit operations required to implement AES. One way involves optimizing the composite field approach for entire rounds of AES. Another way is integrating the Galois multiplications of MixColumns with the linear transformations of the S-box. Combined with careful optimizations, these reduce the number of bit operations to encrypt one block by 9.0%, compared to earlier work that used the composite field only in the S-box. For decryption, ...
Papasotiriou, P. J.; Geroyannis, V. S.
We implement Hartle's perturbation method to the computation of relativistic rigidly rotating neutron star models. The program has been written in SCILAB (© INRIA ENPC), a matrix-oriented high-level programming language. The numerical method is described in very detail and is applied to many models in slow or fast rotation. We show that, although the method is perturbative, it gives accurate results for all practical purposes and it should prove an efficient tool for computing rapidly rotating pulsars.
Quasiparticle method in relativistic mean-field theories of nuclear structure
International Nuclear Information System (INIS)
Ai, H.
1988-01-01
In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Guthrey, Pierson Tyler
The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Comparing models of rapidly rotating relativistic stars constructed by two numerical methods
Stergioulas, Nikolaos; Friedman, John L.
1995-05-01
We present the first direct comparison of codes based on two different numerical methods for constructing rapidly rotating relativistic stars. A code based on the Komatsu-Eriguchi-Hachisu (KEH) method (Komatsu et al. 1989), written by Stergioulas, is compared to the Butterworth-Ipser code (BI), as modified by Friedman, Ipser, & Parker. We compare models obtained by each method and evaluate the accuracy and efficiency of the two codes. The agreement is surprisingly good, and error bars in the published numbers for maximum frequencies based on BI are dominated not by the code inaccuracy but by the number of models used to approximate a continuous sequence of stars. The BI code is faster per iteration, and it converges more rapidly at low density, while KEH converges more rapidly at high density; KEH also converges in regions where BI does not, allowing one to compute some models unstable against collapse that are inaccessible to the BI code. A relatively large discrepancy recently reported (Eriguchi et al. 1994) for models based on Friedman-Pandharipande equation of state is found to arise from the use of two different versions of the equation of state. For two representative equations of state, the two-dimensional space of equilibrium configurations is displayed as a surface in a three-dimensional space of angular momentum, mass, and central density. We find, for a given equation of state, that equilibrium models with maximum values of mass, baryon mass, and angular momentum are (generically) either all unstable to collapse or are all stable. In the first case, the stable model with maximum angular velocity is also the model with maximum mass, baryon mass, and angular momentum. In the second case, the stable models with maximum values of these quantities are all distinct. Our implementation of the KEH method will be available as a public domain program for interested users.
Energy Technology Data Exchange (ETDEWEB)
Shi, Min [Anhui University, School of Physics and Materials Science, Hefei (China); RIKEN Nishina Center, Wako (Japan); Shi, Xin-Xing; Guo, Jian-You [Anhui University, School of Physics and Materials Science, Hefei (China); Niu, Zhong-Ming [Anhui University, School of Physics and Materials Science, Hefei (China); Interdisciplinary Theoretical Science Research Group, RIKEN, Wako (Japan); Sun, Ting-Ting [Zhengzhou University, School of Physics and Engineering, Zhengzhou (China)
2017-03-15
We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)
2016-06-15
The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
Cross-section studies of relativistic deuteron reactions on copper by activation method
Czech Academy of Sciences Publication Activity Database
Suchopár, Martin; Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Chudoba, Petr; Kugler, Andrej; Adam, Jindřich; Závorka, L.; Baldine, A.; Furman, W.; Kadykov, M. G.; Khushvaktov, J.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. V.; Tyutyunnikov, S. I.
2015-01-01
Roč. 344, FEB (2015), s. 63-69 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : relativistic deuteron reactions * cross-sections * copper Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015
Using of methods of over-solution at expert testing of welded joints of tube-guides of AE stations
International Nuclear Information System (INIS)
Badalyan, V.G.; Bazulin, E.G.; Vopilkin, A.Kh.; Grebennikov, D.V.; Tikhonov, D.S.
2000-01-01
Results of practical application of superresolution method to the assessment of defect size in case of expert inspection of welds of the pipelines of atomic power plants are presented. It is shown that the application of above methods increases the frequency band that permits to additionally raise the quality of defect coherent image due to triple improve in radiation resolution, speckle noise reduction and increase in signal-to-structural noise ratio approximately 1.7 times. More precise determining the defect size permits to estimate more accurately the weld strength resource, especially in case of repeated expert inspection [ru
International Nuclear Information System (INIS)
Pramono, Subur; Suparmi, A.; Cari, Cari
2016-01-01
We study the exact solution of Dirac equation in the hyperspherical coordinate under influence of separable q-deformed quantum potentials. The q-deformed hyperbolic Rosen-Morse potential is perturbed by q-deformed noncentral trigonometric Scarf potentials, where all of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equation l_D_-_1 have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Matlab, and the increase of radial quantum number n causes the increase of bound state relativistic energy level in both dimensions D=5 and D=3. The bound state relativistic energy level decreases with increasing of both deformation parameter q and orbital quantum number n_l.
Canright, David; Osvik, Dag Arne
We explore ways to reduce the number of bit operations required to implement AES. One way involves optimizing the composite field approach for entire rounds of AES. Another way is integrating the Galois multiplications of MixColumns with the linear transformations of the S-box. Combined with careful optimizations, these reduce the number of bit operations to encrypt one block by 9.0%, compared to earlier work that used the composite field only in the S-box. For decryption, the improvement is 13.5%. This work may be useful both as a starting point for a bit-sliced software implementation, where reducing operations increases speed, and also for hardware with limited resources.
International Nuclear Information System (INIS)
Jacob, Mary; Radhakrishnan, K.; Dhami, P.S.; Kulkarni, V.T.; Joshi, M.V.; Patwardhan, A.B.; Ramanujam, A.; Mathur, J.N.
1994-01-01
This paper describes the studies carried out for the determination of trace metallic impurities in uranium solutions. Uranium matrix is separated from the impurity elements by its selective extraction using 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (KSM-17, equivalent to PC88A). The aqueous phase is analysed for trace impurities by inductively coupled argon plasma atomic emission spectrometry. The studies also include recovery of impurities at various acidities and spectral interferences of uranium over the analyte element channels. Based on the above studies, a method has been standardised for the analysis of nineteen elements in uranium solutions. The relative standard deviation of the method for various elements is in the range of +- 1-5%. (author). 7 refs., 8 tabs., 1 fig
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Electronic spectra of DyF studied by four-component relativistic configuration interaction methods
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Shigeyoshi, E-mail: syamamot@lets.chukyo-u.ac.jp [School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666 (Japan); Tatewaki, Hiroshi [Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393 (Japan); Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501 (Japan)
2015-03-07
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.
International Nuclear Information System (INIS)
Gonzalez, A.; Gurbindo, J.
1987-01-01
During the last few years, the methods used by EMPRESARIOS AGRUPADOS and INITEC to perform Architect-Engineering work in Spain for nuclear projects has undergone a process of significant change in project management and engineering approaches. Specific practical examples of management techniques and design practices which represent a good record of results will be discussed. They are identified as areas of special interest in developing A/E capabilities for nuclear projects . Command of these areas should produce major payoffs in local participation and contribute to achieving real nuclear engineering capabities in the country. (author)
Energy Technology Data Exchange (ETDEWEB)
Le Bourdiec, S
2007-03-15
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Directory of Open Access Journals (Sweden)
Norouzi J
2012-09-01
Full Text Available Background and Objectives: Enterotoxins and toxic shock syndrome toxin–1 (TSST-1 are an important virulence factor of S. aureus. The purpose of this study was to analyze the presence of S. aureus enterotoxin (sea-see and tst genes in the samples that collected from different sources with PCR method. Methods: During 5 months from 150 collected samples, 80 strains were identified as S. aureus. PCR reaction was used for investigation on the presence of genes for staphylococcal enterotoxins (A-E and toxic shock syndrome toxin-1 (TSST-1. Results: Fifty three samples (66.25% out of 80 samples were positive for one or more ETs and TSST-1 genes. of these positive strains, 17 (32.07% were positive for sea 39 (73.58% for seb, 30 (56.6% for sec, 2 (3.7% for sed, 21 (39.62% for see, and 14 (26.41% for tst. Enterotoxins and tst in 40 samples (75.47% observed.Conclusion: In this study, high prevalence of S. aureus, its enterotoxin, and tst genes were observed in clinical samples, food samples, and healthy people. This fact emphasizes on the role of human as original source and carrier of S. aureus. Also, use of PCR reaction for detection of these genes in S. aureus that isolated from various sources is recommended.
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Toomsoo, Avo; Jürgens, Meit; Kõlli, Raimo; Künnapas, Allan; Albre, Imbi; Tõnutare, Tõnu; Rodima, Ako
2017-04-01
Only small percentage of soil total phosphorus is easily exchangeable between solid and solution phase. Plants are able to assimilate P from environment only in the form of orthophosphate ions (H2PO4- and HPO42-) from soil solution. Deficit of P in soil solution prevents plant normal growth and decreases yield quantity and quality. The excess of P in soil solution causes the pollution of environment and eutrophication of water bodies. Therefore it is important to give to the plant producers the correct fertilization recommendations. Lot of analytical methods are developed for the determination of plant available P in soils. In the Baltic Sea region seven different soils' P analysis methods in use. Each method has its own gradation and often there is more than one gradation for the same method depending from agroecological conditions. For agricultural soils in Estonia there are soil P status gradations according to Mehlich 3, DL and AL methods. Phosphate content in soil can be determined by molybdate method Vis-spectrometrically. Very often for analysis of soils' P content also ICP-OES, ICP-MS and also MP-AES instrumental methods are used The aim of our work was to investigate the possibility of using MP-AES for determination of plant available P in soil by DL method and also to compare how the analysed soils are distributed to M3, AL and DL fertilizer requirement groups according to the P content.
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Fernandez, E; Neipp, C; Belendez, T
2008-01-01
A modified He's homotopy perturbation method is used to calculate higher-order analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The He's homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. The approximate formulae obtained show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation, including the limiting cases of amplitude approaching zero and infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 1.6% for small and large values of oscillation amplitude, while this relative error is 0.65% for two iterations with two harmonics and as low as 0.18% when three harmonics are considered in the second approximation. For the Duffing-harmonic oscillator the relative error is as low as 0.078% when the second approximation is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance methods reveals that the former is very effective and convenient
Damgård, Ivan; Keller, Marcel
We propose several variants of a secure multiparty computation protocol for AES encryption. The best variant requires 2200 + {{400}over{255}} expected elementary operations in expected 70 + {{20}over{255}} rounds to encrypt one 128-bit block with a 128-bit key. We implemented the variants using VIFF, a software framework for implementing secure multiparty computation (MPC). Tests with three players (passive security against at most one corrupted player) in a local network showed that one block can be encrypted in 2 seconds. We also argue that this result could be improved by an optimized implementation.
Energy Technology Data Exchange (ETDEWEB)
Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)
2009-05-15
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.
Energy Technology Data Exchange (ETDEWEB)
Wu, Kailiang [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Tang, Huazhong, E-mail: wukl@pku.edu.cn, E-mail: hztang@math.pku.edu.cn [HEDPS, CAPT and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871 (China)
2017-01-01
The ideal gas equation of state (EOS) with a constant adiabatic index is a poor approximation for most relativistic astrophysical flows, although it is commonly used in relativistic hydrodynamics (RHD). This paper develops high-order accurate, physical-constraints-preserving (PCP), central, discontinuous Galerkin (DG) methods for the one- and two-dimensional special RHD equations with a general EOS. It is built on our theoretical analysis of the admissible states for RHD and the PCP limiting procedure that enforce the admissibility of central DG solutions. The convexity, scaling invariance, orthogonal invariance, and Lax–Friedrichs splitting property of the admissible state set are first proved with the aid of its equivalent form. Then, the high-order central DG methods with the PCP limiting procedure and strong stability-preserving time discretization are proved, to preserve the positivity of the density, pressure, specific internal energy, and the bound of the fluid velocity, maintain high-order accuracy, and be L {sup 1}-stable. The accuracy, robustness, and effectiveness of the proposed methods are demonstrated by several 1D and 2D numerical examples involving large Lorentz factor, strong discontinuities, or low density/pressure, etc.
Sørensen, Lasse K; Olsen, Jeppe; Fleig, Timo
2011-06-07
A string-based coupled-cluster method of general excitation rank and with optimal scaling which accounts for special relativity within the four-component framework is presented. The method opens the way for the treatment of multi-reference problems through an active-space inspired single-reference based state-selective expansion of the model space. The evaluation of the coupled-cluster vector function is implemented by considering contractions of elementary second-quantized operators without setting up the amplitude equations explicitly. The capabilities of the new method are demonstrated in application to the electronic ground state of the bismuth monohydride molecule. In these calculations simulated multi-reference expansions with both doubles and triples excitations into the external space as well as the regular coupled-cluster hierarchy up to full quadruples excitations are compared. The importance of atomic outer core-correlation for obtaining accurate results is shown. Comparison to the non-relativistic framework is performed throughout to illustrate the additional work of the transition to the four-component relativistic framework both in implementation and application. Furthermore, an evaluation of the highest order scaling for general-order expansions is presented. © 2011 American Institute of Physics
A note on Fujikawa's method of determining the critical dimension of the relativistic string
International Nuclear Information System (INIS)
Petcher, D.N.; Holten, J.W. van.
1987-04-01
Fujikawa's derivation of the critical dimension of the relativistic string in the path integral formulation is reconsidered. It is shown that the correct prescription for choosing the functional measure is obtained by requiring standard BRST-invariance without modifications and that Fujikawa's choice of measure is not unique. We find a one-parameter family of BRST-invariant measures even after fixing a gauge for local Weyl rescalings. Gauge independence of the resulting theory is demonstrated in the critical number of dimensions. 13 refs
Orenha, Renato Pereira; Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade; Galembeck, Sérgio Emanuel
2017-05-05
Two treatments of relativistic effects, namely effective core potentials (ECP) and all-electron scalar relativistic effects (DKH2), are used to obtain geometries and chemical reaction energies for a series of ruthenium complexes in B3LYP/def2-TZVP calculations. Specifically, the reaction energies of reduction (A-F), isomerization (G-I), and Cl - negative trans influence in relation to NH 3 (J-L) are considered. The ECP and DKH2 approaches provided geometric parameters close to experimental data and the same ordering for energy changes of reactions A-L. From geometries optimized with ECP, the electronic energies are also determined by means of the same ECP and basis set combined with the computational methods: MP2, M06, BP86, and its derivatives, so as B2PLYP, LC-wPBE, and CCSD(T) (reference method). For reactions A-I, B2PLYP provides the best agreement with CCSD(T) results. Additionally, B3LYP gave the smallest error for the energies of reactions J-L. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
International Nuclear Information System (INIS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre
2008-01-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
International Nuclear Information System (INIS)
Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Pappas, R.A.; Skorpik, J.R.; Dawson, J.F.
1984-10-01
The objective of the program is to develop acoustic emission (AE) methods for continuous monitoring of reactor pressure boundaries to detect and evaluate crack growth. The approach involves three phases: develop relationships to identify crack growth AE signals and to use identified crack growth AE data to estimate flaw severity; evaluate and refine AE/flaw relationships through fatigue testing a heavy section vessel under simulated reactor conditions; and demonstrate continuous AE monitoring on a nuclear power reactor system
Multiple Lookup Table-Based AES Encryption Algorithm Implementation
Gong, Jin; Liu, Wenyi; Zhang, Huixin
Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.
International Nuclear Information System (INIS)
Eshghi, M.; Ikhdair, S. M.
2014-01-01
A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting Σ = C ps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin—orbit coupling number κ. Special attention is devoted to the case Σ = 0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods. (general)
Price, R H
1993-01-01
Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two speciﬁc areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
National Aeronautics and Space Administration — This page is the repository for the publications resulting from the AePW. This includes the special sessions at conferences: AIAA ASM 2012, Grapevine TX; AIAA SDM...
Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong
2017-04-15
In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms. Copyright © 2017. Published by Elsevier B.V.
Li, Yun; Zhang, Ji; Li, Tao; Liu, Honggao; Li, Jieqing; Wang, Yuanzhong
2017-04-01
In this work, the data fusion strategy of Fourier transform mid infrared (FT-MIR) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used in combination with Support Vector Machine (SVM) to determine the geographic origin of Boletus edulis collected from nine regions of Yunnan Province in China. Firstly, competitive adaptive reweighted sampling (CARS) was used for selecting an optimal combination of key wavenumbers of second derivative FT-MIR spectra, and thirteen elements were sorted with variable importance in projection (VIP) scores. Secondly, thirteen subsets of multi-elements with the best VIP score were generated and each subset was used to fuse with FT-MIR. Finally, the classification models were established by SVM, and the combination of parameter C and γ (gamma) of SVM models was calculated by the approaches of grid search (GS) and genetic algorithm (GA). The results showed that both GS-SVM and GA-SVM models achieved good performances based on the #9 subset and the prediction accuracy in calibration and validation sets of the two models were 81.40% and 90.91%, correspondingly. In conclusion, it indicated that the data fusion strategy of FT-MIR and ICP-AES coupled with the algorithm of SVM can be used as a reliable tool for accurate identification of B. edulis, and it can provide a useful way of thinking for the quality control of edible mushrooms.
The global compendium of Aedes aegypti and Ae. albopictus occurrence
Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.
2015-07-01
Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.
International Nuclear Information System (INIS)
Allen, M.A.; Azuma, O.; Callin, R.S.
1989-03-01
Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
International Nuclear Information System (INIS)
Marks, R.
1985-09-01
Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs
Seino, Junji; Nakai, Hiromi
2012-06-28
An accurate and efficient scheme for two-component relativistic calculations at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level is presented. The present scheme, termed local unitary transformation (LUT), is based on the locality of the relativistic effect. Numerical assessments of the LUT scheme were performed in diatomic molecules such as HX and X(2) (X = F, Cl, Br, I, and At) and hydrogen halide clusters, (HX)(n) (X = F, Cl, Br, and I). Total energies obtained by the LUT method agree well with conventional IODKH results. The computational costs of the LUT method are drastically lower than those of conventional methods since in the former there is linear-scaling with respect to the system size and a small prefactor.
Reconfigurable Secure Video Codec Based on DWT and AES Processor
Directory of Open Access Journals (Sweden)
Rached Tourki
2010-01-01
Full Text Available In this paper, we proposed a secure video codec based on the discrete wavelet transformation (DWT and the Advanced Encryption Standard (AES processor. Either, use of video coding with DWT or encryption using AES is well known. However, linking these two designs to achieve secure video coding is leading. The contributions of our work are as follows. First, a new method for image and video compression is proposed. This codec is a synthesis of JPEG and JPEG2000,which is implemented using Huffman coding to the JPEG and DWT to the JPEG2000. Furthermore, an improved motion estimation algorithm is proposed. Second, the encryptiondecryption effects are achieved by the AES processor. AES is aim to encrypt group of LL bands. The prominent feature of this method is an encryption of LL bands by AES-128 (128-bit keys, or AES-192 (192-bit keys, or AES-256 (256-bit keys.Third, we focus on a method that implements partial encryption of LL bands. Our approach provides considerable levels of security (key size, partial encryption, mode encryption, and has very limited adverse impact on the compression efficiency. The proposed codec can provide up to 9 cipher schemes within a reasonable software cost. Latency, correlation, PSNR and compression rate results are analyzed and shown.
AE Recorder Characteristics and Development.
Energy Technology Data Exchange (ETDEWEB)
Partridge, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curtis, Shane Keawe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McGrogan, David Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-11-01
The Anomalous Environment Recorder (AE Recorder) provides a robust data recording capability for multiple high-shock applications including earth penetrators. The AE Recorder, packaged as a 2.4" di ameter cylinder 3" tall, acquires 12 accelerometer, 2 auxiliary, and 6 discrete signal channels at 250k samples / second. Recording depth is 213 seconds plus 75ms of pre-trigger data. The mechanical, electrical, and firmware are described as well as support electro nics designed for the first use of the recorder.
Zero Field Splitting of the chalcogen diatomics using relativistic correlated wave-function methods
DEFF Research Database (Denmark)
Rota, Jean-Baptiste; Knecht, Stefan; Fleig, Timo
2011-01-01
The spectrum arising from the (π*)2 configuration of the chalcogen dimers, namely the X21, a2 and b0+ states, is calculated using Wave-Function Theory (WFT) based methods. Two-component (2c) and four-component (4c) MultiReference Configuration Interaction (MRCI) and Fock-Space Coupled Cluster (FSCC......) methods are used as well as two-step methods Spin-Orbit Complete Active Space Perturbation Theory at 2nd order (SO-CASPT2) and Spin-Orbit Difference Dedicated Configuration Interaction (SODDCI). The energy of the X21 state corresponds to the Zero-Field Splitting (ZFS) of the ground state spin triplet...
International Nuclear Information System (INIS)
Lasalle, J.
1975-06-01
A new method which greatly simplifies the number of measurements necessary for obtaining the temperature in thermonuclear plasmas, using the relativistic effects of Thomson scattering is presented. A few orders of magnitude are computed for probing the feasibility of such temperature measurements. The data used correspond to magnitudes relating to T.F.R. The characteristics of a filter equipped spectrometer are then defined in view of a double function: separation of the lambda>lambda laser and lambda [fr
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Recent development of relativistic molecular theory
International Nuclear Information System (INIS)
Takahito, Nakajima; Kimihiko, Hirao
2005-01-01
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca; Ilinski, Petr; Saldin, Evgeni; Schneidmiller, Evgeni; Yurkov, Mikhail
2009-05-15
We describe a novel technique to characterize ultrashort electron bunches in Xray Free-Electron Lasers. Namely, we propose to use coherent Optical Transition Radiation to measure three-dimensional (3D) electron density distributions. Our method relies on the combination of two known diagnostics setups, an Optical Replica Synthesizer (ORS) and an Optical Transition Radiation (OTR) imager. Electron bunches are modulated at optical wavelengths in the ORS setup.When these electron bunches pass through a metal foil target, coherent radiation pulses of tens MW power are generated. It is thereafter possible to exploit advantages of coherent imaging techniques, such as direct imaging, diffractive imaging, Fourier holography and their combinations. The proposed method opens up the possibility of real-time, wavelength-limited, single-shot 3D imaging of an ultrashort electron bunch. (orig.)
Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.
2012-01-01
Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...
Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.N.
1981-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
A new method for solving the two-center problem with relativistic potentials
International Nuclear Information System (INIS)
Gareev, F.A.; Gizzatkulov, M.Ch.
1977-01-01
A method has been proposed for the solution of the two-center problem with realistic potentials. It consists of two steps: first, a separable approximation to the single particle potentials is made and then the two-center problem with these separable potentials is solved exactly. The only approximations are introduced at the first stage in a well controllable way. As an example, we have calculated the single-particle energies and wave functions in the field of two 16 O like the Woods-Saxon potentials as functions of their distance R
Loading relativistic Maxwell distributions in particle simulations
International Nuclear Information System (INIS)
Zenitani, Seiji
2015-01-01
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms
Loading relativistic Maxwell distributions in particle simulations
Energy Technology Data Exchange (ETDEWEB)
Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2015-04-15
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Directory of Open Access Journals (Sweden)
Dong Xu
2015-10-01
Full Text Available This paper focuses on the effects of alkline-earth metal titante AETiO3 (AE=Mg, Ca, Sr doping on the microstructure and electric characteristics of CaCu3Ti4O12 thin films prepared by the sol–gel method. The results showed that the grain size of CCTO thin films could be increased by MgTiO3 doping. The movement of the grain boundaries was impeded by the second phases of CaTiO3 and SrTiO3 concentrating at grain boundaries in CaTiO3 and SrTiO3 doped CCTO thin films. Rapid ascent of dielectric constant could be observed in 0.1Mg TiO3 doped CCTO thin films, which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed. In addition, the nonlinear coefficient (α, threshold voltage (VT and leakage current (IL of AETiO3 doped CCTO thin films (AE=Mg, Ca, Sr showed different variation with the increasing content of the MgTiO3, CaTiO3 and SrTiO3.
Reconfigurable Secure Video Codec Based on DWT and AES Processor
Rached Tourki; M. Machhout; B. Bouallegue; M. Atri; M. Zeghid; D. Dia
2010-01-01
In this paper, we proposed a secure video codec based on the discrete wavelet transformation (DWT) and the Advanced Encryption Standard (AES) processor. Either, use of video coding with DWT or encryption using AES is well known. However, linking these two designs to achieve secure video coding is leading. The contributions of our work are as follows. First, a new method for image and video compression is proposed. This codec is a synthesis of JPEG and JPEG2000,which is implemented using Huffm...
Implementasi Algoritma Kriptografi Aes Pada Mikrokontroler Atmega32
Seniman
2011-01-01
The purpose of this study is to develop a microcomputer or microcontroller system which has a feature to encrypt data with AES algorithm. The input comes from keystrokes of keyboard and the result of the encryption process is stored in the microcontroller's EEPROM. The system is developed using the C programming languange with WinAVR interface. The research method being used to develop the system are data library collection such as the hardware datasheet, the specification of AES algorithm an...
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Rumsey, I. C.; Cowen, K. A.; Walker, J. T.; Kelly, T. J.; Hanft, E. A.; Mishoe, K.; Rogers, C.; Proost, R.; Beachley, G. M.; Lear, G.; Frelink, T.; Otjes, R. P.
2014-06-01
Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA) measures water-soluble gases and aerosols at an hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV) program. The assessment was conducted in Research Triangle Park, North Carolina, from 8 September to 8 October 2010 and focused on gaseous SO2, HNO3, and NH3 and aerosol SO42-, NO3-, and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD) between paired hourly results from duplicate MARGA units (MUs), with a performance goal of ≤ 25%. The accuracy of the MARGA was evaluated by calculating the MARPD for each MU relative to the average of the duplicate denuder/filter pack concentrations, with a performance goal of ≤ 40%. Accuracy was also evaluated by using linear regression, where MU concentrations were plotted against the average of the duplicate denuder/filter pack concentrations. From this, a linear least squares line of best fit was applied. The goal was for the slope of the line of best fit to be between 0.8 and 1.2. The MARGA performed well in comparison to the denuder/filter pack for SO2, SO42-, and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3- could not be evaluated due to the different sampling efficiency of coarse NO3- by the MUs and the filter pack. Estimates of "fine" NO3- were calculated for the MUs and the filter pack
Crack classification in concrete beams using AE parameters
Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.
2017-11-01
The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.
AE Characteristics affecting the Notch Effect of the Cold Steel SKD11
Energy Technology Data Exchange (ETDEWEB)
Han, Eung Kyo; Kim, Ki Choong; Kwon, Dong Ho; Kim, Jae Yeor [Hanyang University, Seoul (Korea, Republic of)
1986-11-15
Acoustic Emission is not only expected as a non-destructive evaluation technique in practice but also noted as a new powerful means of evaluation of materials. AE occurs with plastic deformation and propagation of crack, and this patterns of occurrence of AE vary with materials. AE which comes from propagation of crack depends oil the shapes and properties of materials. Like this AE has characteristic of material. The present work is an attempt to evaluate characteristics of carbon steel (SM55C) and Die steel(SKD11) by means of dynamic response of AE method
A Novel Recommendation To AES Limitation
Directory of Open Access Journals (Sweden)
Falguni Patel
2017-07-01
Full Text Available Among all available conventional encryption algorithms the AES Advanced Encryption Standard is the most secured and highly used algorithm. AES algorithm is widely used by variety of applications like Archive and Compression tools File Encryption Encryption File System Disk Partition Encryption Networking Signal Protocol among others. This paper highlights the Brute Force attack and Cryptanalysis attack on AES Algorithm. This paper also discusses about a novel recommendation of a combination model of AES Algorithm and Random-X Cipher.
Performance analysis of AES-Blowfish hybrid algorithm for security of patient medical record data
Mahmud H, Amir; Angga W, Bayu; Tommy; Marwan E, Andi; Siregar, Rosyidah
2018-04-01
A file security is one method to protect data confidentiality, integrity and information security. Cryptography is one of techniques used to secure and guarantee data confidentiality by doing conversion to the plaintext (original message) to cipher text (hidden message) with two important processes, they are encrypt and decrypt. Some researchers proposed a hybrid method to improve data security. In this research we proposed hybrid method of AES-blowfish (BF) to secure the patient’s medical report data into the form PDF file that sources from database. Generation method of private and public key uses two ways of approach, those are RSA method f RSA and ECC. We will analyze impact of these two ways of approach for hybrid method at AES-blowfish based on time and Throughput. Based on testing results, BF method is faster than AES and AES-BF hybrid, however AES-BF hybrid is better for throughput compared with AES and BF is higher.
An introduction to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Attacks and countermeasures on AES and ECC
DEFF Research Database (Denmark)
Tange, Henrik; Andersen, Birger
2013-01-01
AES (Advanced Encryption Standard) is widely used in LTE and Wi-Fi communication systems. AES has recently been exposed to new attacks which have questioned the overall security of AES. The newest attack is a so called biclique attack, which is using the fact that the content of the state array...
Toepassing ICP-AES op het RIKILT
Ruig, de W.G.
1980-01-01
Rapportage over de toepassing van ICP-AES op het RIKILT. Bij ICP-AES worden twee manieren van lichtemissie detectie toegepast nl. simultaan en sequentieel. De voor- en nadelen van ICP-AES t.o.v. AAS worden op een rij gezet.
Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi
2017-07-01
This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.
Seino, Junji; Nakai, Hiromi
2012-10-14
The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.
The relativistic virial theorem
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-11-01
The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)
Shaft Crack Identification Based on Vibration and AE Signals
Directory of Open Access Journals (Sweden)
Wenxiu Lu
2011-01-01
Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.
Localization of relativistic particles
International Nuclear Information System (INIS)
Omnes, R.
1997-01-01
In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics
Relativistic effects in the Thomas--Fermi atom
International Nuclear Information System (INIS)
Waber, J.T.; Canfield, J.M.
1975-01-01
Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values
Infrared observations of AE Aquarii
Tanzi, E. G.; Chincarini, G.; Tarenghi, M.
1981-01-01
Broadband infrared observations of the cataclysmic variable AE Aquarii are reported. The observations were obtained in the J, H, K and L filters with the InSb photometer attached to the 1-m telescope of the European Southern Observatory. The infrared energy distribution observed from 0.35 to 3.5 microns for phase 0.5 suggests a spectral type of K5 V for the secondary and a distance to the system of approximately 70 pc if an absolute magnitude of 7.3 is assumed. Monitoring of the flux at 2.2 microns reveals a variability with an amplitude of approximately 0.3 magnitude over one third of the orbital period, the nature of which is under investigation.
International Nuclear Information System (INIS)
Herrero Fernandez, Zahily; Estevez Alvarez, Juan R.; Montero Alvarez, Alfredo; Pupo Gonzalez, Ivan; Ortueta Milan, Marvic; Mesa Perez, Guillermo; Leyva Bombuse, Dennys; Rodriguez Gonzalez, Maydel; Hernandez Torres, Debora; Padilla Alvarez, Roman; Quejido Cabezas, Alberto J.; Rucandio Saez, Maria I.; Fernandez Diaz, Marta
2011-01-01
This paper presents the results of the analysis of Ca, Fe, Zn, Br, Rb, Sr and Pb in samples of lichens used as biomonitors of air pollution collecting in Havana City during 2009-2010. Two different X-Ray Fluorescence methods were used. First, a combination of Si (Li) detector with an annular 109Cd as primary excitation source was employed. The second system consisted in a Mo X-ray tube with a secondary target of Molybdenum and a X-PIPS detector. In both configurations, the correction of matrix effects was achieved by using the Compton scattering peak. The quantification was performed using calibration curves obtained from different biological Certified Reference Materials. The determination of elements by Inductively Coupled Plasma-Atomic Emission Spectrometry, Inductively Coupled Plasma-Mass Spectrometry and Flame Atomic Absorption Spectrophotometry was carried out in order to evaluate the reliability of XRF methods. No significant differences were found between the obtained results by the different techniques. The levels of concentration of the analyzed elements in the lichens in 2009 and 2010 respectively were similar. The elemental distribution patters obtained for each metal were associated with different sources of contamination. (Author)
American Society for Testing and Materials. Philadelphia
2003-01-01
1.1 This specification covers blended uranium trioxide (UO3), U3O8, or mixtures of the two, powders that are intended for conversion into a sinterable uranium dioxide (UO2) powder by means of a direct reduction process. The UO2 powder product of the reduction process must meet the requirements of Specification C 753 and be suitable for subsequent UO2 pellet fabrication by pressing and sintering methods. This specification applies to uranium oxides with a 235U enrichment less than 5 %. 1.2 This specification includes chemical, physical, and test method requirements for uranium oxide powders as they relate to the suitability of the powder for storage, transportation, and direct reduction to UO2 powder. This specification is applicable to uranium oxide powders for such use from any source. 1.3 The scope of this specification does not comprehensively cover all provisions for preventing criticality accidents, for health and safety, or for shipping. Observance of this specification does not relieve the user of th...
Loading relativistic Maxwell distributions in particle simulations
Zenitani, S.
2015-12-01
In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches
Energy Technology Data Exchange (ETDEWEB)
Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)
2016-05-06
Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.
Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE
Poljak, Mario; Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Stuck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie; Alexiev, Ivailo
2016-01-01
Background. Human immunodeficiency virus type 1 (HIV-1) subtype CRF01_AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01_AE, little is known about its subsequent dispersal pattern. Methods. We assembled a global data set of 2736 CRF01_AE sequences by pooling sequences from public databases and patient-cohort studies. We estimated viral dispersal patterns, using statistical phylogeographic analysis run over bootstrap...
Directory of Open Access Journals (Sweden)
István Molnár
Full Text Available This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.
An Improved Recovery Algorithm for Decayed AES Key Schedule Images
Tsow, Alex
A practical algorithm that recovers AES key schedules from decayed memory images is presented. Halderman et al. [1] established this recovery capability, dubbed the cold-boot attack, as a serious vulnerability for several widespread software-based encryption packages. Our algorithm recovers AES-128 key schedules tens of millions of times faster than the original proof-of-concept release. In practice, it enables reliable recovery of key schedules at 70% decay, well over twice the decay capacity of previous methods. The algorithm is generalized to AES-256 and is empirically shown to recover 256-bit key schedules that have suffered 65% decay. When solutions are unique, the algorithm efficiently validates this property and outputs the solution for memory images decayed up to 60%.
Dynamic AES – Extending the Lifetime?
DEFF Research Database (Denmark)
Tange, Henrik; Andersen, Birger
2014-01-01
proven that AES is vulnerable to side-channelattacks, related sub-key attacks and biclicque attacks. This paper introducesa new dynamic version of AES where the main flow is depending on theTNAF (τ -adic Non-Adjacent Form) value. This new approach can preventside-channel attacks, related sub-key attacks...... and biclique attacks....
Evaluation of fracturing process of soft rocks at great depth by AE measurement and DEM simulation
International Nuclear Information System (INIS)
Aoki, Kenji; Mito, Yoshitada; Kurokawa, Susumu; Matsui, Hiroya; Niunoya, Sumio; Minami, Masayuki
2007-01-01
The authors developed the stress-based evaluation system of EDZ by AE monitoring and Distinct Element Method (DEM) simulation. In order to apply this system to the soft rock site, the authors try to grasp the relationship between AE parameters, stress change and rock fracturing process by performing the high stiffness tri-axial compression tests including AE measurements on the soft rock samples, and its simulations by DEM using bonded particle model. As the result, it is found that change in predominant AE frequency is effective to evaluate fracturing process in sedimentary soft rocks, and the relationship between stress change and fracturing process is also clarified. (author)
AES in deficit on Georgian trade
International Nuclear Information System (INIS)
TREND
2003-01-01
According to Vedomosti journal Russian state energy company RAO JES Rossii paid for Georgian assets acquisition to American company AES only 23 million USD, what is less than a tenth of sum which AES had originally paid for it. Thus total transaction value including debts reached 80 millions USD. But internal documents of American AES confirm that Americans paid 260 millions USD for Georgian assets and they took besides over 60 millions USD of obligations. Russians bought Georgian AES assets through Finnish filial Nordic Oy. Thus they obtained 75 per cent share in Telasi company which operates distributive network in Tbilisi, two blocks of plant in Tbilisi and half share in AES-Transenergy company which exports electric energy from Georgia to Turkey. RAO JES besides got managerial laws on Hramesi company which owns two water plants. Russian company controls one fifth of production and 35 per cent of electric energy sale in Georgia by these assets
Relativistic Theory of Few Body Systems
Energy Technology Data Exchange (ETDEWEB)
Franz Gross
2002-11-01
Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.
On quantization of relativistic string theory
International Nuclear Information System (INIS)
Isaev, A.P.
1982-01-01
Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Energy Technology Data Exchange (ETDEWEB)
Nagano, K; Yamashita, T [Muroran Institute of Technology, Hokkaido (Japan)
1997-05-27
In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.
1982-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
The de Sitter relativistic top theory
International Nuclear Information System (INIS)
Armenta, J.; Nieto, J.A.
2005-01-01
We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory
Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin
2015-02-01
The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was
AE/VCE Unconfirmed Vernal Pools
Vermont Center for Geographic Information — This dataset is derived from a project by the Vermont Center for Ecostudies(VCE) and Arrowwood Environmental(AE) to map vernal pools throughout the state of Vermont....
Vermont Center for Geographic Information — This dataset is derived from a project by the Vermont Center for Ecostudies(VCE) and Arrowwood Environmental(AE) to map vernal pools throughout the state of Vermont....
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Enhanced ATM Security using Biometric Authentication and Wavelet Based AES
Directory of Open Access Journals (Sweden)
Sreedharan Ajish
2016-01-01
Full Text Available The traditional ATM terminal customer recognition systems rely only on bank cards, passwords and such identity verification methods are not perfect and functions are too single. Biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. This paper presents a highly secured ATM banking system using biometric authentication and wavelet based Advanced Encryption Standard (AES algorithm. Two levels of security are provided in this proposed design. Firstly we consider the security level at the client side by providing biometric authentication scheme along with a password of 4-digit long. Biometric authentication is achieved by considering the fingerprint image of the client. Secondly we ensure a secured communication link between the client machine to the bank server using an optimized energy efficient and wavelet based AES processor. The fingerprint image is the data for encryption process and 4-digit long password is the symmetric key for the encryption process. The performance of ATM machine depends on ultra-high-speed encryption, very low power consumption, and algorithmic integrity. To get a low power consuming and ultra-high speed encryption at the ATM machine, an optimized and wavelet based AES algorithm is proposed. In this system biometric and cryptography techniques are used together for personal identity authentication to improve the security level. The design of the wavelet based AES processor is simulated and the design of the energy efficient AES processor is simulated in Quartus-II software. Simulation results ensure its proper functionality. A comparison among other research works proves its superiority.
Energy Technology Data Exchange (ETDEWEB)
Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
International Nuclear Information System (INIS)
Kipping, David
2017-01-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
AES, Automated Construction Cost Estimation System
International Nuclear Information System (INIS)
Holder, D.A.
1995-01-01
A - Description of program or function: AES (Automated Estimating System) enters and updates the detailed cost, schedule, contingency, and escalation information contained in a typical construction or other project cost estimates. It combines this information to calculate both un-escalated and escalated and cash flow values for the project. These costs can be reported at varying levels of detail. AES differs from previous versions in at least the following ways: The schedule is entered at the WBS-Participant, Activity level - multiple activities can be assigned to each WBS-Participant combination; the spending curve is defined at the schedule activity level and a weighing factor is defined which determines percentage of cost for the WBS-Participant applied to the schedule activity; Schedule by days instead of Fiscal Year/Quarter; Sales Tax is applied at the Line Item Level- a sales tax codes is selected to indicate Material, Large Single Item, or Professional Services; a 'data filter' has been added to allow user to define data the report is to be generated for. B - Method of solution: Average Escalation Rate: The average escalation for a Bill of is calculated in three steps. 1. A table of quarterly escalation factors is calculated based on the base fiscal year and quarter of the project entered in the estimate record and the annual escalation rates entered in the Standard Value File. 2. The percentage distribution of costs by quarter for the Bill of Material is calculated based on the schedule entered and the curve type. 3. The percent in each fiscal year and quarter in the distribution is multiplied by the escalation factor for the fiscal year and quarter. The sum of these results is the average escalation rate for that Bill of Material. Schedule by curve: The allocation of costs to specific time periods is dependent on three inputs, starting schedule date, ending schedule date, and the percentage of costs allocated to each quarter. Contingency Analysis: The
A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor
International Nuclear Information System (INIS)
Yu, Yeun Ho; Choi, Jin Ho; Kweon, Jin Hwe
2007-01-01
As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the 8x8 matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64 channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the 8x8 matrix piezo electric sensor
Relativistic Boltzmann theory for a plasma
International Nuclear Information System (INIS)
Erkelens, H. van.
1984-01-01
This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)
Maehira, T; Ueda, K; Hasegawa, A
2003-01-01
In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
A Comprehensive Comparison of Relativistic Particle Integrators
Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.
2018-03-01
We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.
Clinical epidemiology of human AE in Europe.
Vuitton, D A; Demonmerot, F; Knapp, J; Richou, C; Grenouillet, F; Chauchet, A; Vuitton, L; Bresson-Hadni, S; Millon, L
2015-10-30
This review gives a critical update of the situation regarding alveolar echinococcosis (AE) in Europe in humans, based on existing publications and on findings of national and European surveillance systems. All sources point to an increase in human cases of AE in the "historic endemic areas" of Europe, namely Germany, Switzerland, Austria and France and to the emergence of human cases in countries where the disease had never been recognised until the end of the 20th century, especially in central-eastern and Baltic countries. Both increase and emergence could be only due to methodological biases; this point is discussed in the review. One explanation may be given by changes in the animal reservoir of the parasite, Echinococcus multilocularis (increase in the global population of foxes in Europe and its urbanisation, as well as a possible increased involvement of pet animals as definitive infectious hosts). The review also focuses onto 2 more original approaches: (1) how changes in therapeutic attitudes toward malignant and chronic inflammatory diseases may affect the epidemiology of AE in the future in Europe, since a recent survey of such cases in France showed the emergence of AE in patients with immune suppression since the beginning of the 21st century; (2) how setting a network of referral centres in Europe based on common studies on the care management of patients might contribute to a better knowledge of AE epidemiology in the future. Copyright © 2015. Published by Elsevier B.V.
Kinetic approach to relativistic dissipation
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
2017-08-01
Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.
International Nuclear Information System (INIS)
Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.
2008-01-01
Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru
15 CFR 758.2 - Automated Export System (AES).
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Automated Export System (AES). 758.2... CLEARANCE REQUIREMENTS § 758.2 Automated Export System (AES). The Census Bureau's Foreign Trade Statistics...) electronically using the Automated Export System (AES). In order to use AES, you must apply directly to the...
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
International Nuclear Information System (INIS)
Strange, P.
2010-01-01
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Directory of Open Access Journals (Sweden)
Oswaldo Paulo Forattini
2000-10-01
Full Text Available OBJETIVO: Observar e comparar o comportamento das espécies de Aedes albopictus e de Ae. scapularis, na localidade de Pedrinhas, litoral sul do Estado de São Paulo, Brasil. MÉTODOS: As observações foram feitas de outubro de 1996 a janeiro de 2000. Foram realizadas coletas sistemáticas de formas adultas mediante a utilização de isca humana, aspirações ambientais e armadilha tipo Shannon. A domiciliação foi estimada pelo índice de Nuorteva e pela razão de sinantropia. RESULTADOS: Foram feitas 87 coletas diurnas, com a obtenção de 872 adultos fêmeas. As médias de Williams', multiplicadas por 100, foram de 118 e 21 para Ae. albopictus nos horários de 7h às 18h e de 18h às 20h, respectivamente. Quanto a Ae. scapularis, foram de 100 e 106 nos mesmos períodos. Esse último revelou pico de atividade crepuscular vespertina. Na aspiração de abrigos, obteve-se o total de 1.124 espécimens, dos quais 226 Ae. albopictus e 898 Ae. scapularis. O período de janeiro a maio correspondeu ao de maior rendimento para ambos os mosquitos. Quanto à armadilha de Shannon, as coletas realizadas na mata revelaram a ausência de Ae. albopictus. No que concerne à domiciliação, esse último mostrou os maiores valores de índices, enquanto Ae. scapularis revelou comportamento de tipo ubiquista. CONCLUSÕES: Os resultados confirmam outras observações, permitindo levantar hipóteses. Em relação a Ae. scapularis, sugere-se que possa existir fenômeno de diapausa das fêmeas no período verão-outono, a qual cessaria no inverno-primavera quando então a atividade seria retomada. Quanto a Ae. albopictus, os dados sugerem que se trata de população em processo adaptativo ao novo ambiente.OBJECTIVE: Aedes albopictus and Ae. scapularis were found living together in the Pedrinhas Village, Southeastern of São Paulo State, Brazil. This finding was a good opportunity to make observations about the mosquitoes' behavior. METHODS: From October 1996 to
Relativistic gas in a Schwarzschild metric
International Nuclear Information System (INIS)
Kremer, Gilberto M
2013-01-01
A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
AES ALGORITHM IMPLEMENTATION IN PROGRAMMING LANGUAGES
Directory of Open Access Journals (Sweden)
Luminiţa DEFTA
2010-12-01
Full Text Available Information encryption represents the usage of an algorithm to convert an unknown message into an encrypted one. It is used to protect the data against unauthorized access. Protected data can be stored on a media device or can be transmitted through the network. In this paper we describe a concrete implementation of the AES algorithm in the Java programming language (available from Java Development Kit 6 libraries and C (using the OpenSSL library. AES (Advanced Encryption Standard is an asymmetric key encryption algorithm formally adopted by the U.S. government and was elected after a long process of standardization.
Chemical separation and ICP-AES determination of rare earths in Al2O3 matrix
International Nuclear Information System (INIS)
Argekar, A.A.; Kulkarni, M.J.; Page, A.G.; Manchanda, V.K.
2005-01-01
A chemical separation-ICP-AES method has been developed for determination of rare earths in alumina matrix. The quantitative separation of rare earths has also been confirmed using radiotracers. (author)
AE monitoring simplified using digital memory storage and source isolation
International Nuclear Information System (INIS)
Hutton, P.H.; Skorpik, J.R.
1977-01-01
The general trend in acoustic emission (AE) monitoring systems has been one of increasing complexity. This is particularly true in systems for continuous monitoring which are usually multichannel (perhaps 20 to 40) and incorporate a dedicated minicomputer. A unique concept which reverses this trend for selected applications has been developed at Battelle-Northwest, Richland, WA. This concept uses solid state digital memories to store acquired data in a permanent form which is easily retrieved. It also uses a fundamental method to accept AE data only from a selected area. The digital memory system is designed for short term or long term (months) monitoring. It has been successfully applied in laboratory testing such as fatigue crack growth studies, as well as field monitoring on bridges and piping to detect crack growth. The features of simplicity, versatility, and low cost contribute to expanded practical application of acoustic emission technology
International Nuclear Information System (INIS)
Le Van Hong; Tran Chi Thanh; Hoang Minh Giang; Le Dai Dien; Nguyen Nhi Dien; Nguyen Minh Tuan
2015-01-01
On November 25, 2009, in Hanoi, the National Assembly had been approved the resolution about policy for investment of nuclear power project in Ninh Thuan province which include two sites, each site has two units with power around 1000 MWe. For the nuclear power project at Ninh Thuan 1, Vietnam Government signed the Joint-Governmental Agreement with Russian Government for building the nuclear power plant with reactor type VVER. At present time, the Russian Consultant proposed four reactor technologies can be used for Ninh Thuan 1 project, namely: AES-91, AES-92, AES-2006/V491 and AES-2006/V392M. This report presents the main reactor engineering systems of nuclear power plants with VVER-1000/1200. The results from analysis, comparison and assessment between the designs of AES-91, AES-92 and AES-2006 are also presented. The obtained results show that the type AES-2006 is appropriate selection for Vietnam. (author)
Symmetric low-voltage powering system for relativistic electronic devices
International Nuclear Information System (INIS)
Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.
2005-01-01
A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver
Multielemental analysis of Korean geological reference samples by INAA, ICP-AES and ICP-MS
International Nuclear Information System (INIS)
Naoki Shirai; Hiroki Takahashi; Yuta Yokozuka; Mitsuru Ebihara; Meiramkhan Toktaganov; Shun Sekimoto
2015-01-01
Six Korean geological reference samples (KB-1, KGB-1, KT-1, KD-1, KG-1 and KG-2) prepared by Korea Institutes of Geoscience and Mineral Resources were analyzed by using INAA, ICP-AES and ICP-MS. Some elements could be determined by both INAA and non-INAA methods (ICP-AES and ICP-MS), and these data are consistent with each other. This study confirms that a combination of ICP-AES and ICP-MS is comparable to INAA in determining a wide range of major, minor and trace elements in geological materials. (author)
International Nuclear Information System (INIS)
Ikhdair Sameer M; Hamzavi Majid
2013-01-01
Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen—Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ (κ± 1)r −2 . In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov—Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets. (general)
Energy Technology Data Exchange (ETDEWEB)
Pollmann, Anna [Bergische Universitaet Wuppertal (Germany); Collaboration: IceCube-Collaboration
2016-07-01
Cosmic ray detectors use air as a radiator for luminescence. In water and ice detectors Cherenkov light is the dominant light producing mechanism when the particle velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light. Luminescence is produced by highly ionizing particles passing through matter due to the excitation of the surrounding atoms. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium. Therefore, the results of measurements, in which luminescence was produced by particles passing through water or ice, vary by two orders of magnitude in intensity. It is shown that, even for the most conservative intensity value, luminescence can be used as a detection method for highly ionizing particles with velocities below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly penetrating exotic particles. In the most optimistic case, luminescence contributes even to the light output of standard model particles.
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging
DEFF Research Database (Denmark)
Persson, Morten; El Ali, Henrik H.; Binderup, Tina
2014-01-01
64Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET...... studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of 64Cu-DOTA-AE105. MethodsFive mice received iv tail injection of 64Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung......Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of 64Cu-DOTA-AE105....
Relativistic and non-relativistic studies of nuclear matter
Banerjee, MK; Tjon, JA
2002-01-01
We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic
Molecular epidemiological study of HIV-1 CRF01_AE transmission in Hong Kong.
Chen, J H K; Wong, K H; Li, P; Chan, K C; Lee, M P; Lam, H Y; Cheng, V C C; Yuen, K Y; Yam, W C
2009-08-15
The objective of this study was to investigate the transmission history of the HIV-1 CRF01_AE epidemics in Hong Kong between 1994 and 2007. A total of 465 HIV-1 CRF01_AE pol sequences were derived from an in-house or a commercial HIV-1 genotyping system. Phylogenies of CRF01_AE sequences were analyzed by the Bayesian coalescent method. CRF01_AE patient population included 363 males (78.1%) and 102 females (21.9%), whereas 65% (314 of 465) were local Chinese. Major transmission routes were heterosexual contact (63%), followed by intravenous drug use (IDU) (19%) and men having sex with men (MSM) (17%). From phylogenetic analysis, local CRF01_AE strains were from multiple origins with 3 separate transmission clusters identified. Cluster 1 consisted mainly of Chinese male IDUs and heterosexuals. Clusters 2 and 3 included mainly local Chinese MSM and non-Chinese Asian IDUs, respectively. Chinese reference isolates available from China (Fujian, Guangxi, or Liaoning) were clonally related to our transmission clusters, demonstrating the epidemiological linkage of CRF01_AE infections between Hong Kong and China. The 3 individual local transmission clusters were estimated to have initiated since late 1980s and late 1990s, causing subsequent epidemics in the early 2000s. This is the first comprehensive molecular epidemiological study of HIV-1 CRF01_AE in Hong Kong. It revealed that MSM contact is becoming a major route of local CRF01_AE transmission in Hong Kong. Epidemiological linkage of CRF01_AE between Hong Kong and China observed in this study indicates the importance of regular molecular epidemiological surveillance for the HIV-1 epidemic in our region.
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Ionization of hydrogen by a relativistic heavy projectile
International Nuclear Information System (INIS)
Hofstetter, S.; Hofmann, C.; Soff, G.
1991-10-01
Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)
Particle Acceleration and Radiative Losses at Relativistic Shocks
Dempsey, P.; Duffy, P.
A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.
Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid
International Nuclear Information System (INIS)
Ignat, M.
1980-01-01
Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Biquaternions and relativistic kinematics
International Nuclear Information System (INIS)
Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.
1979-01-01
The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
Similarity flows in relativistic hydrodynamics
International Nuclear Information System (INIS)
Blaizot, J.P.; Ollitrault, J.Y.
1986-01-01
In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations
Relativistic particle in a box
Alberto, P.; Fiolhais, Carlos; Gil, Victor
1996-01-01
The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case
AES Water Architecture Study Interim Results
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
AE Test of Calcareous Sands with Particle Rushing
Directory of Open Access Journals (Sweden)
Tan Fengyi
2017-08-01
Full Text Available The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1 there was the AE activities on the low confining pressure condition at the beginnig of test, (2 there was more and more AE activities with the continuing of test until to the end, (3 the calcareous sands’ AE activities was on the whole testing, (4 the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Non-relativistic supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1984-01-01
The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.
1983-01-01
In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic few body calculations
International Nuclear Information System (INIS)
Gross, F.
1988-01-01
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Relativistic Polarizable Embedding
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob
2017-01-01
Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Evaluation of the use of envelope analysis and DWT on AE signals generated from degrading shafts
International Nuclear Information System (INIS)
Gu, Dongsik; Kim, Jaegu; Kelimu, Tulugan; Huh, Sun-Chul; Choi, Byeong-Keun
2012-01-01
Vibration analysis is widely used in machinery diagnosis. Wavelet transforms and envelope analysis, which have been implemented in many applications in the condition monitoring of machinery, are applied in the development of a condition monitoring system for early detection of faults generated in several key components of machinery. Early fault detection is a very important factor in condition monitoring and a basic component for the application of condition-based maintenance (CBM) and predictive maintenance (PM). In addition, acoustic emission (AE) sensors have specific characteristics that are highly sensitive to high-frequency and low-energy signals. Therefore, the AE technique has been applied recently in studies on the early detection of failure. In this paper, AE signals caused by crack growth on a rotating shaft were captured through an AE sensor. The AE signatures were pre-processed using the proposed signal processing method, after which power spectrums were generated from the FFT results. In the power spectrum, some peaks from fault frequencies were presented. According to the results, crack growth in rotating machinery can be considered and detected using an AE sensor and the signal processing method.
Relativistic Calculations for Be-like Iron
International Nuclear Information System (INIS)
Yang Jianhui; Zhang Jianping; Li Ping; Li Huili
2008-01-01
Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable
Relativistic Spacecraft Propelled by Directed Energy
Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng
2018-04-01
Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.
Relativistic effects in a rotating coordinate system
International Nuclear Information System (INIS)
Chugreev, Y.V.
1989-01-01
The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center
22 CFR 120.30 - The Automated Export System (AES).
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false The Automated Export System (AES). 120.30... DEFINITIONS § 120.30 The Automated Export System (AES). The Automated Export System (AES) is the Department of... system for collection of export data for the Department of State. In accordance with this subchapter U.S...
Developing A/E capabilities; areas of special interest
International Nuclear Information System (INIS)
Gonzalez, A.; Gurbindo, J.
1988-01-01
During the last few years, the methods used by Empresarios Agrupados and INITEC to perform Architect-Engineering work in Spain for nuclear projects has undergone a process of significant change in project management and engineering approaches. Specific practical examples of management techniques and design practices which represent a good record of results will be discussed. They are identified as areas of special interest in developing A/E capabilities for nuclear projects. Command of these areas should produce major payoffs in local participation and contribute to achieving real nuclear engineering capabilities in the country
Relativistic atomic structure: past, present and future
International Nuclear Information System (INIS)
Grant, I P
2010-01-01
Developments in a relativistic atomic structure have been driven by a combination of advances in experimental methods, in the theory of quantum electrodynamics, in numerical algorithms, computer hardware and software. Today's programs are still in many respects 'legacy codes' containing many features going back nearly half a century. It is time for a rethink.
Obsidian provenance studies in archaeology: A comparison between PIXE, ICP-AES and ICP-MS
International Nuclear Information System (INIS)
Bellot-Gurlet, Ludovic; Poupeau, Gerard; Salomon, Joseph; Calligaro, Thomas; Moignard, Brice; Dran, Jean-Claude; Barrat, Jean-Alix; Pichon, Laurent
2005-01-01
Elemental composition fingerprinting by PIXE technique is very attractive for obsidian provenance studies as it may proceed in a non-destructive mode, even if a more complete elemental characterization can be obtained by ICP-MS and/or ICP-AES. Only few studies have compared results obtained by both methods for solid rock samples. In this work, elemental compositions were determined by ICP-MS/-AES for international geochemical standards and by ICP-MS/-AES and PIXE for inter-laboratory reference obsidians. In addition 49 obsidian source samples and artefacts were analysed by both ICP-MS/-AES and PIXE. Instrumental work and measurement quality control performed for obsidian chemical characterization, underline that PIXE and ICP-MS/-AES provide reproducible, accurate and comparable measurements. In some volcanic districts the limited number of elements dosed by PIXE is sufficient for the discrimination of the potential raw sources of obsidians. Therefore, PIXE can be an advantageous substitute to ICP-MS/-AES techniques for provenance studies
Relativistic collective diffusion in one-dimensional systems
Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong
2018-05-01
The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.
Relativistic Jahn-Teller effect in tetrahedral systems
International Nuclear Information System (INIS)
Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.
2010-01-01
It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.
Pivotal issues on relativistic electrons in ITER
Boozer, Allen H.
2018-03-01
The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.
HDE 323771: a new Herbig Ae star
International Nuclear Information System (INIS)
Persi, P.; Polcaro, V.F.; Viotti, R.
1991-01-01
From an analysis of the blue and red spectrum, and a study of the energy distribution from the optical up to the far infrared, we identify HDE 323771 as a new PMS Herbig Ae star. The P Cygni line profiles observed in the Balmer and Fe II lines indicate the presence of a stellar wind with a velocity of about 250-350 km s -1 . An upper limit of mass loss rate is derived from the observed upper limit for the Br γ luminosity. The near-IR images and the IR energy distribution indicate the presence of an extended circumstellar dust envelope with a temperature of about 1500 K. (author)
ICP-AES determination of trace elements in carbon steel
International Nuclear Information System (INIS)
Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.
2010-01-01
Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high
Numerical Relativistic Quantum Optics
2013-11-08
Camilo, V.M. Kaspi, A.G. Lyne, R.N. Manchester, J.F. Bell, N. D’Amico, N.P.F. McKay, 24 and F. Crawford. Discovery of two high magnetic field radio... pulsars . The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Relativistic studies in actinides
International Nuclear Information System (INIS)
Weinberger, P.; Gonis, A.
1987-01-01
In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Bratek, Łukasz
2015-01-01
Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
Chen, Ming-Chih; Hsiao, Shen-Fu
In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology
Jia, Wen-bin; Xiao, Fu-hai
2013-03-01
The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.
Continuous A.E. monitoring of nuclear systems: some feasibility studies now in-progress in France
International Nuclear Information System (INIS)
Roget, J.; Germain, J.L.
1986-01-01
Continuous A.E. monitoring of Nuclear systems can give some unique information about abnormal behaviour (leak appearance...) or crack initiation or propagation. Some feasibility studies have been undertaken in France in this field and this paper presents the results we have got in two cases. The study showed that an A.E. surveillance of pressurized safety valves indicates the appearance or the presence of a leak. Functioning noise is not a problem in this case. Secondly a large study have been undertaken to test the resistance of the pipe inner sleeve to thermal fatigue. An A.E. monitoring showed that it is possible to separate A.E. due to Crack extension from other signals by a location method in spite of high noise level. A.E. seems applicable for continuous monitoring. So, complementary tests are in progress to confirm and improve these results
Denker, Heiner; Timmen, Ludger; Voigt, Christian; Weyers, Stefan; Peik, Ekkehard; Margolis, Helen S.; Delva, Pacôme; Wolf, Peter; Petit, Gérard
2017-12-01
The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in 10^{18} level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about 0.1 m2 s^{-2} , equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about 2 × 10^{-18}.
Relativistic three-particle theory
International Nuclear Information System (INIS)
Hochauser, S.
1979-01-01
In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)
Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys
Minárik, P.; Král, R.; Janeček, M.
2013-09-01
Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.
Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys
Energy Technology Data Exchange (ETDEWEB)
Minárik, P., E-mail: peter.minarik@mff.cuni.cz [Charles University, Department of Physics of Materials, Prague (Czech Republic); Král, R.; Janeček, M. [Charles University, Department of Physics of Materials, Prague (Czech Republic)
2013-09-15
Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.
Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys
International Nuclear Information System (INIS)
Minárik, P.; Král, R.; Janeček, M.
2013-01-01
Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.
Atomic-AES: A compact implementation of the AES encryption/decryption core
DEFF Research Database (Denmark)
Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco
2016-01-01
The implementation of the AES encryption core by Moradi et al. at Eurocrypt 2011 is one of the smallest in terms of gate area. The circuit takes around 2400 gates and operates on an 8 bit datapath. However this is an encryption only core and unable to cater to block cipher modes like CBC and ELm...
International Nuclear Information System (INIS)
Cowan, R.D.; Grant, I.P.; Fawcett, B.C.; Rose, S.J.
1985-11-01
A Multi-Configuration-Dirac-Fock (MCDF) computer program is adapted to interface with the Hartree-Fock-Relativistic (HFR) program for the RAL IBM mainframe computer. The two codes are integrated into a package which includes the Zeeman Laboratory Slater parameter optimisation routines as well as new RAL routines to further process the HFR and MCDF output. A description of the adaptions to MCDF and new output extensions is included in this report, and details are given regarding HFR FORTRAN subroutines, and lists of Job Control Language (JCL) files for the complete package. (author)
Fundamental problem in the relativistic approach to atomic structure theory
International Nuclear Information System (INIS)
Kagawa, Takashi
1987-01-01
It is known that the relativistic atomic structure theory contains a serious fundamental problem, so-called the Brown-Ravenhall (BR) problem or variational collapse. This problem arises from the fact that the energy spectrum of the relativistic Hamiltonian for many-electron systems is not bounded from below because the negative-energy solutions as well as the positive-energy ones are obtained from the relativistic equation. This report outlines two methods to avoid the BR problem in the relativistic calculation, that is, the projection operator method and the general variation method. The former method is described first. The use of a modified Hamiltonian containing a projection operator which projects the positive-energy solutions in the relativistic wave equation has been proposed to remove the BR difficulty. The problem in the use of the projection operator method is that the projection operator for the system cannot be determined uniquely. The final part of this report outlines the general variation method. This method can be applied to any system, such as relativistic ones whose Hamiltonian is not bounded from below. (Nogami, K.)
Coulomb sum rules in the relativistic Fermi gas model
International Nuclear Information System (INIS)
Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.
1986-11-01
Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer
Institute of Scientific and Technical Information of China (English)
李艳; 林凤云; 罗立骏; 曾令高; 朱照静
2016-01-01
目的:建立硫糖铝中铝离子(Al3+)在大鼠胃组织残留量的测定方法,考察硫糖铝对胃溃疡粘膜的靶向粘附作用.方法:采用干法灰化消解胃组织样品,电感耦合等离子体-原子发射光谱法(ICP-AES)测定给药后不同时间点大鼠胃组织中Al3+的残留量.ICP-AES检测波长为396.153 nm,检测器为电感耦合阵列检测器,载气为氩气.结果:干法灰化大鼠胃溃疡组织,样品消解完全,可满足ICP-AES的检测要求;在选定的最佳条件下用ICP-AES检测Al3+的检出限为8 ng· mL-1,样品间Al3+残留量相对偏差小于13.4％,回收率在96.0％～99.5％之间;给药0.5～4 h时间段内,溃疡胃组织中的Al3+残留率为正常胃组织的2倍以上;给药6h后,正常胃组织中Al3+残留率显著下降,仅为0.84％,而溃疡胃组织在给药16 h后仍高达29％.结论:ICP-AES测定大鼠胃组织中Al3+的残留量准确可行;硫糖铝对胃溃疡粘膜的粘附性显著高于正常胃粘膜,具有良好的靶向性.
Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas
Directory of Open Access Journals (Sweden)
Giuseppe Lacidogna
2015-12-01
Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.
15 CFR Appendix D to Part 30 - AES Filing Citation, Exemption and Exclusion Legends
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false AES Filing Citation, Exemption and... Appendix D to Part 30—AES Filing Citation, Exemption and Exclusion Legends I. USML Proof of Filing Citation AES ITN Example: AES X20060101987654. II. AES Proof of Filing Citation subpart A § 30.7 AES ITN...
Studies on the male sterility-fertility restoration system of AE. Kotschyi 19
International Nuclear Information System (INIS)
Cheng Junyuan; Sun Guoqing; Liu Luxiang; Zhao Linshu; Lu Xiuxia
1996-01-01
Sterile plants were obtained from the distant hybridization between Ae. Kotschyi 19 as the female parent and the Chinese Spring and T. yunnanense King as the male parent. Common wheat lines were used to testcross and backcross with the F 1 sterile plants successively. Male sterile line K-19 with Ae. Kotschyi cytoplasm and common wheat nucleus was bred. Over 10 K-19 MS lines were obtained. They are steady without monoploid. 7 restorers were obtained with the restoring ability from 88.2% to 96.9% according to the domestic method, from 116.4% to 150.4% according to the international method
Development of AE monitoring system for journal bearing
International Nuclear Information System (INIS)
Yoon, Dong Jin; Kwon, Oh Yang; Chung, Min Hwa
1994-01-01
For the purpose of monitoring of the bearing conditions in rotating machinery, a system for journal bearing diagnosis by AE was developed. Acoustic emission technique is used to detect abnormal conditions in the bearing system. And various data such as AE events, rms voltage level of AE signals, and AE parameters were acquired during experiments with the simulated journal bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was accomplished. Bearing diagnosis system is composed of four parts as follows : sensing part for AE sensor and preamplifier, signal processing part for rms-to-dc converting to measure AE rms voltage, interface part for connecting rms signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.
Relativistic Outflows from ADAFs
Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes
2001-04-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Energy efficiency analysis and implementation of AES on an FPGA
Kenney, David
The Advanced Encryption Standard (AES) was developed by Joan Daemen and Vincent Rjimen and endorsed by the National Institute of Standards and Technology in 2001. It was designed to replace the aging Data Encryption Standard (DES) and be useful for a wide range of applications with varying throughput, area, power dissipation and energy consumption requirements. Field Programmable Gate Arrays (FPGAs) are flexible and reconfigurable integrated circuits that are useful for many different applications including the implementation of AES. Though they are highly flexible, FPGAs are often less efficient than Application Specific Integrated Circuits (ASICs); they tend to operate slower, take up more space and dissipate more power. There have been many FPGA AES implementations that focus on obtaining high throughput or low area usage, but very little research done in the area of low power or energy efficient FPGA based AES; in fact, it is rare for estimates on power dissipation to be made at all. This thesis presents a methodology to evaluate the energy efficiency of FPGA based AES designs and proposes a novel FPGA AES implementation which is highly flexible and energy efficient. The proposed methodology is implemented as part of a novel scripting tool, the AES Energy Analyzer, which is able to fully characterize the power dissipation and energy efficiency of FPGA based AES designs. Additionally, this thesis introduces a new FPGA power reduction technique called Opportunistic Combinational Operand Gating (OCOG) which is used in the proposed energy efficient implementation. The AES Energy Analyzer was able to estimate the power dissipation and energy efficiency of the proposed AES design during its most commonly performed operations. It was found that the proposed implementation consumes less energy per operation than any previous FPGA based AES implementations that included power estimations. Finally, the use of Opportunistic Combinational Operand Gating on an AES cipher
Improving the throughput of the AES algorithm with multicore processors
Barnes, A.; Fernando, R.; Mettananda, K.; Ragel, R. G.
2014-01-01
AES, Advanced Encryption Standard, can be considered the most widely used modern symmetric key encryption standard. To encrypt/decrypt a file using the AES algorithm, the file must undergo a set of complex computational steps. Therefore a software implementation of AES algorithm would be slow and consume large amount of time to complete. The immense increase of both stored and transferred data in the recent years had made this problem even more daunting when the need to encrypt/decrypt such d...
Relativistic twins or sextuplets?
International Nuclear Information System (INIS)
Sheldon, Eric
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum cryptography
Kaniewski, Jedrzej
Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Relativistic quarkonium dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1985-06-01
We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters
International Nuclear Information System (INIS)
Araujo, Wilson Roberto Barbosa de
1995-01-01
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)
Relativistic nuclear collisions: theory
International Nuclear Information System (INIS)
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
Relativistic approach to nuclear structure
International Nuclear Information System (INIS)
Nguyen Van Giai; Bouyssy, A.
1987-03-01
Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
AE8/AP8 Implementations in AE9/AP9, IRBEM, and SPENVIS
2014-02-18
period applies to orbit generation only; AE8/AP8 utilizes geomagnetic field models from other epochs as specified in the table below.) SHIELDOSE2 model...finite and semi- infinite slab data tables for Bremsstrahlung have been reversed [Heynderickx, private communication, May 2013]. This correction is...Cain, J. C., S. J. Hendricks, R. A. Langel, and W. V. Hudson (1967), A proposed model for the international geomagnetic reference field, 1965, J
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1992-01-01
In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given
Calculation of relativistic model stars using Regge calculus
International Nuclear Information System (INIS)
Porter, J.
1987-01-01
A new approach to the Regge calculus, developed in a previous paper, is used in conjunction with the velocity potential version of relativistic fluid dynamics due to Schutz [1970, Phys. Rev., D, 2, 2762] to calculate relativistic model stars. The results are compared with those obtained when the Tolman-Oppenheimer-Volkov equations are solved by other numerical methods. The agreement is found to be excellent. (author)
Relativistic treatment of fermion-antifermion bound states
International Nuclear Information System (INIS)
Lucha, W.; Rupprecht, H.; Schoeberl, F.F.
1990-01-01
We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs
Relativistic thermodynamics of Fluids. l
International Nuclear Information System (INIS)
Havas, P.; Swenson, R.J.
1979-01-01
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail
2008-02-01
The objective of the proposed research project is to compare the results of two recently introduced nondestructive load test methods to the existing 24-hour load test method described in Chapter 20 of ACI 318-05. The two new methods of nondestructive...
Influence of a relativistic kinematics on s-wave KN phase shifts in a quark model
International Nuclear Information System (INIS)
Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.
2001-01-01
The I = 1 and I = 0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM) and a relativistic kinematics. The spinless Salpeter equation has been solved numerically using the Fourier grid Hamiltonian method. The results have been compared to the non-relativistic ones. For each isospin channel the phase shifts obtained are not so far from the non-relativistic results. (author)
From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids
Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele
2017-11-01
Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.
Scalar Relativistic Study of the Structure of Rhodium Acetate
Directory of Open Access Journals (Sweden)
Emily E. Edwards
2004-01-01
Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 ÃƒÂ… compared to the experimental value of 2.3855Ã‚Â±0.0005 ÃƒÂ….
Unbelievable security : Matching AES using public key systems
Lenstra, A.K.; Boyd, C.
2001-01-01
The Advanced Encryption Standard (AES) provides three levels of security: 128, 192, and 256 bits. Given a desired level of security for the AES, this paper discusses matching public key sizes for RSA and the ElGamal family of protocols. For the latter both traditional multiplicative groups of finite
Relativistic kinetic theory with applications in astrophysics and cosmology
Vereshchagin, Gregory V
2017-01-01
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...
Test and Verification of AES Used for Image Encryption
Zhang, Yong
2018-03-01
In this paper, an image encryption program based on AES in cipher block chaining mode was designed with C language. The encryption/decryption speed and security performance of AES based image cryptosystem were tested and used to compare the proposed cryptosystem with some existing image cryptosystems based on chaos. Simulation results show that AES can apply to image encryption, which refutes the widely accepted point of view that AES is not suitable for image encryption. This paper also suggests taking the speed of AES based image encryption as the speed benchmark of image encryption algorithms. And those image encryption algorithms whose speeds are lower than the benchmark should be discarded in practical communications.
AE/flaw characterization for nuclear pressure vessels
International Nuclear Information System (INIS)
Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.
1984-01-01
This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization
Measuring the BNF of Soybean Using 15N-Labelled Urea with Different Atom Excess (A.E. Content
Directory of Open Access Journals (Sweden)
A. Citraresmini
2012-12-01
Full Text Available The soybean is a legume which has an ability to supply its major nitrogen need by the biological nitrogen fixation (BNF process. This process is made possible by nodules formed in their roots, colonized by Rhizobium sp.bacteria. An accurate estimation of N gained by BNF is necessary to predict the increase or decrease of chemical fertilizer-N requirements to increase soybean production. Among several methods, the 15N method was used to estimate the ability of legumes to perform BNF. The study involved soybean var. Willis (W and a completely non-BNF soybean var. CV, which is termed as a standard crop. The standard crop is non-nodulated soybean, but it has the same main physiological traits with var. Willis. The aim of this study was to determine whether15N-labelled fertilizer with different %a.e. given to nodulated and non-nodulated soybean would not be of significant consequences for the calculation of N-BNF of W. The treatments applied were different rates of urea (20 kg N/ha and 100 kg N/ha combined with different atom excess percentages (%a.e.15N (2% and 10%. Thus, the combination of treatments were as follows:(1 W-ll (20 kg N; 2% a.e; (2 CV-hl (100 kg N; 2% a.e; (3 W-lh (20 kg N; 10% a.e; (4 CV-hh (100 kg N; 10% a.e; (5 CV-ll (20 kg N; 2% a.e; (6 W-hl (100 kg N; 2% a.e; (7 CV-lh (20 kg N; 10% a.e; (8 W-hh (100 kg N; 10% a.e. The result of the experiment showed that a high %a.e. with a low rate of 15N and a low %a.e. with a high rate of N should be used to study the %N-BNF of nodulated plants.
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Photoionization at relativistic energies
International Nuclear Information System (INIS)
Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.
2000-11-01
At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1993-01-01
This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given
Relativistic plasma dispersion functions
International Nuclear Information System (INIS)
Robinson, P.A.
1986-01-01
The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived
Some problems in relativistic thermodynamics
International Nuclear Information System (INIS)
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
Study of determination of microelements in Chinese herbal medicine by AES
International Nuclear Information System (INIS)
Wei Jiuning
2002-01-01
An AES method has been proposed for micro elements analysis in Chinese herbal medicine and the pretreatments of samples are discussed in detail. The method is proved accurate by analyzing peach leaves with the level of the national standard substance and by comparing results using different methods: the data obtained are accurate and reliable and the method can be used for determination 10 kinds of micro elements in Chinese herbal medicine
Electromagnetic wave propagation in relativistic magnetized plasmas
International Nuclear Information System (INIS)
Weiss, I.
1985-01-01
An improved mathematical technique and a new code for deriving the conductivity tensor for collisionless plasmas have been developed. The method is applicable to a very general case, including both hot (relativistic) and cold magnetized plasmas, with only isotropic equilibrium distributions being considered here. The usual derivation starts from the relativistic Vlasov equation and leads to an integration over an infinite sum of Bessel functions which has to be done numerically. In the new solution the integration is carried out over a product of two Bessel functions only. This reduces the computing time very significantly. An added advantage over existing codes is our capability to perform the computations for waves propagating obliquely to the magnetic field. Both improvements greatly facilitate investigations of properties of the plasma under conditions hitherto unexplored
Local supersymmetry in non-relativistic systems
International Nuclear Information System (INIS)
Urrutia, L.F.; Zanelli, J.
1989-10-01
Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs
On the relativistic calculation of spontaneous emission
International Nuclear Information System (INIS)
Boudet, R.
1993-01-01
In a recent work, Barut and Salamin (1988) have derived a method for calculating the relativistic decay rates in atoms, in a formulation of quantum electrodynamics based upon the electron's self-energy. The decay rate appears as the imaginary part of a formula giving a complex energy shift, the real part of the formula being the Lamb shift. The presence of the the decay rate in the imaginary part of a formula, giving an energy in its real part, may appear a bit strange. A confirmation of the Barut and Alamin calculation, by means of a quite different point of view, would be useful. Therefore in this work the Einstein A coefficients are calculated, in all cases of degeneracies of the Dirac transition currents, by means of the energy balance method. This point of view is based on the balance between the energy released during the transitions of electrons from a higher state to a lower one, and the flux of the Poynting vector of the classical electromagnetic field, created by the electrons, through a sphere a large radius. The particularity of the present work lies in the direct calculation of the relativistic Dirac transition currents and the fact that the dipole and Pauli approximations are avoided. The quantum part of the relativistic calculation is based on the determination of the transition charge currents in the Darwin solutions of the Dirac equation. 13 refs
Conductivity of a relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Conductivity of a relativistic plasma
International Nuclear Information System (INIS)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab
Characterization of Aes nuclear foci in colorectal cancer cells
Itatani, Yoshiro; Sonoshita, Masahiro; Kakizaki, Fumihiko; Okawa, Katsuya; Stifani, Stefano; Itoh, Hideaki; Sakai, Yoshiharu; Taketo, M. Mark
2016-01-01
Amino-terminal enhancer of split (Aes) is a member of Groucho/Transducin-like enhancer (TLE) family. Aes is a recently found metastasis suppressor of colorectal cancer (CRC) that inhibits Notch signalling, and forms nuclear foci together with TLE1. Although some Notch-associated proteins are known to form subnuclear bodies, little is known regarding the dynamics or functions of these structures. Here, we show that Aes nuclear foci in CRC observed under an electron microscope are in a rather amorphous structure, lacking surrounding membrane. Investigation of their behaviour during the cell cycle by time-lapse cinematography showed that Aes nuclear foci dissolve during mitosis and reassemble after completion of cytokinesis. We have also found that heat shock cognate 70 (HSC70) is an essential component of Aes foci. Pharmacological inhibition of the HSC70 ATPase activity with VER155008 reduces Aes focus formation. These results provide insight into the understanding of Aes-mediated inhibition of Notch signalling. PMID:26229111
International Nuclear Information System (INIS)
Kim, Sung Jin; Kwon, Oh Yang; Jang, Yong Joon
2007-01-01
The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by using the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J.; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G.; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne Mieke; Paraskevis, Dimitrios
2015-01-01
Background. Human immunodeficiency virus type 1 (HIV-1) subtype CRF01-AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01-AE, little is known about its subsequent dispersal pattern. Methods. We assembled a global data set
Radiation dominated relativistic current sheets
International Nuclear Information System (INIS)
Jaroschek, C.H.
2008-01-01
Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)
Power efficient and high performance VLSI architecture for AES algorithm
Directory of Open Access Journals (Sweden)
K. Kalaiselvi
2015-09-01
Full Text Available Advanced encryption standard (AES algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06 Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay.
Directory of Open Access Journals (Sweden)
Sudhir
2018-01-01
Full Text Available BACKGROUND Acute encephalitis syndrome is a group of clinical neurologic manifestation caused by wide range of viruses, bacteria, fungus, parasites, spirochetes, chemicals and toxins. According to AES guidelines- Acute encephalitis syndrome due to unknown agent is defined as a suspected case in which no diagnostic testing is performed or in which testing was performed, but no aetiological agent was identified or in which the test results were indeterminate. Acute encephalitis syndrome in children is due to interaction of several factors in combination. The aim of the study is to evaluate the sociocultural and environmental factors, which plays a major role in AES. MATERIALS AND METHODS The study design was non-interventional, hospital-based, prospective study. The study was conducted at Paediatric Department of S.K.M.C.H., Muzaffarpur, Bihar, over a period of January 1, 2015, to July 31, 2017. Infants/children admitted in S.K.M.C.H., Muzaffarpur, were included in study. All defined cases according to AES guidelines were included and 92 infants/children were selected. Percentage, proportion and Chi-square test were performed for statistical analysis. RESULTS Among 92 selected infants/children, AES was highest in rural area, 80 (86.95%. The seasonal incidence of AES was March to July in which highest incidence was found in June, 63 (68.47%. Highest incidence of AES was seen between 1-5 years of age. There was significant statistical association among age of children and AES. AES was more common in male than female. AES was highest in dwellers of kachcha (mud house. AES was highest, 90 (97.82% among children of labour/farmer. AES was highest, 90 (97.82% in which mother was illiterate. Incidence of AES was highest in Hindu religion. All AES, 92 (100% was seen in malnourished/undernourished children. CONCLUSION Sociocultural and environmental factors were the major determinant risk factors for AES. Among these, malnutrition/under nutrition was the
Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma
International Nuclear Information System (INIS)
Nejoh, Yasunori
1994-07-01
Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Relativistic positioning systems: Numerical simulations
Puchades Colmenero, Neus
The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space
Pulsational stability of the SX Phe star AE UMa
Pena, J. H.; Renteria, A.; Villarreal, C.; Pina, D. S.; Soni, A. A.; Guillen, J.; Vargas, K.; Trejo, O.
2016-11-01
From newly determined times of maxima of the SX Phe star AE UMa and a compilation of previous times of maxima, we were able to determine the nature of this star. With uv photometry we determined its physical parameters.
AE/flaw characterization for nuclear pressure vessels
International Nuclear Information System (INIS)
Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.
1983-10-01
Significant progress has been shown toward resolving major problems in continuous AE monitoring to detect cracking in reactor pressure boundries. Application is considered an attainable goal. Major needs are an expanded data base from application testiong and methodology standardization
Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates
Bouzid, Omar M.; Tian, Gui Y.; Cumanan, K.; Neasham, J.
Integration of acoustic wireless technology in structural health monitoring (SHM) applications introduces new challenges due to requirements of high sampling rates, additional communication bandwidth, memory space, and power resources. In order to circumvent these challenges, this chapter proposes a novel solution through building a wireless SHM technique in conjunction with acoustic emission (AE) with field deployment on the structure of a wind turbine. This solution requires a low sampling rate which is lower than the Nyquist rate. In addition, features extracted from aliased AE signals instead of reconstructing the original signals on-board the wireless nodes are exploited to monitor AE events, such as wind, rain, strong hail, and bird strike in different environmental conditions in conjunction with artificial AE sources. Time feature extraction algorithm, in addition to the principal component analysis (PCA) method, is used to extract and classify the relevant information, which in turn is used to classify or recognise a testing condition that is represented by the response signals. This proposed novel technique yields a significant data reduction during the monitoring process of wind turbine blades.
Relativistic positioning systems: perspectives and prospects
Coll Bartolomé
2013-11-01
Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Radiatively driven relativistic spherical winds under relativistic radiative transfer
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
Scattering in relativistic particle mechanics
International Nuclear Information System (INIS)
De Bievre, S.
1986-01-01
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed
Erwin; Etriwati; Gunanti; Handharyani, Ekowati; Noviana, Deni
2017-06-01
A good skin graft histopathology is followed by formation of hair follicle, sweat gland, sebaceous gland, blood vessel, lightly dense connective tissue, epidermis, and dermis layer. This research aimed to observe histopathology feature and cytokeratin AE1/AE3 expression on cat skin post skin grafting within a different period of time. Nine male Indonesian local cats aged 1-2 years old weighing 3-4 kg were separated into three groups. First surgery created defect wound of 2 cm × 2 cm in size to whole groups. The wounds were left alone for several days, differing in interval between each group, respectively: Group I (for 2 days), Group II (for 4 days), and Group III (for 6 days). The second surgery was done to each group which harvested skin of thoracic area and applied it on recipient wound bed. On day 24 th post skin graft was an examination of histopathology and cytokeratin AE1/AE3 immunohistochemistry. Group I donor skin's epidermis layer had not formed completely whereas epidermis of donor skin of Groups II and III had completely formed. In all group hair follicle, sweat gland, sebaceous gland, and neovascularization were found. The density of connective tissue in Group I was very solid than other groups. Cytokeratin AE1/AE3 expression was found on donor skin's epithelial cell in epidermis and dermis layer with very brown intensity for Group II, brown intensity for Group II, and lightly brown for Group I. Histopathological structure and cytokeratin AE1/AE3 expression post skin graft are better in Groups II and III compared to Group I.
Relativistic density matrix in the diagonal momentum representation. Bose-gas
International Nuclear Information System (INIS)
Makhlin, A.N.; Sinyukov, Yu.M.
1984-01-01
The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed
DEFF Research Database (Denmark)
Iliaš, M.; Jensen, Hans Jørgen Aagaard; Bast, R.
2013-01-01
of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly...
Relativistic generalisation of the Kroll-Watson formula
International Nuclear Information System (INIS)
Kaminski, J.Z.
1985-01-01
The relativistic analogue of the space-translation method is derived. Using this method the generalisation of the Kroll-Watson formula [1973, Phys. Rev. A. 8 804] is obtained for the scattering of an arbitrary charged particle (e.g. mesons, hyperons, quarks, etc). The separation of the background and resonant parts of the scattering amplitude is predicted. (author)
AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443
International Nuclear Information System (INIS)
Onwuka, G; Abou-El-Hossein, K; Mkoko, Z
2017-01-01
The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy. (paper)
Relativistic theory of stopping for heavy ions
International Nuclear Information System (INIS)
Lindhard, J.; So/rensen, A.H.
1996-01-01
We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method. Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this deviation can be expressed in terms of the transport cross section, σ tr , for scattering of a free electron by the ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe close-quote s formula; we look into the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in Rutherford scattering. The corresponding relativistic correction is obtained from σ tr for scattering of a Dirac electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the scattering distribution, but merely a single quantity, σ tr , determined by differences of successive phase shifts. For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values of γ=(1-v 2 /c 2 ) -1/2 . An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger than that of the perturbation formula, by a factor of ∼2 endash 3 for heavy ions. But the finite nuclear radius leads to a strong reduction at high energies and the elimination of the factor γ 2 belonging to point nuclei. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Directory of Open Access Journals (Sweden)
Richard Anantua
2018-03-01
Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.
On relativistic irreducible quantum fields fulfilling CCR
International Nuclear Information System (INIS)
Baumann, K.
1987-01-01
Let phi be a relativistic scalar field fulfilling canonical commutation relations (CCR). Furthermore it is assumed that the time zero fields and momenta form an irreducible set. Based on estimates given by Herbst [I. W. Herbst, J. Math. Phys. 17, 1210 (1976)], and by methods developed by Powers [R. T. Powers, Commun. Math. Phys. 4, 145 (1967)], it is shown that phi has to be a free field in n>3 space dimensions. For n = 3 (resp. n = 2) restrictions that look similar to the restriction in a formal :phi 4 : 3 /sub +/ 1 (resp. :phi 6 : 2 /sub +/ 1 ) theory are obtained
Relativistic corrections to fine structure of positronium
International Nuclear Information System (INIS)
Martynenko, A.P.; Faustov, R.N.
1997-01-01
On the basis of the quasipotential method, we have calculated the relativistic corrections in the positronium fine structure intervals 2 3 S 1 -2 3 P J . The contributions of order of mα 6 for the positronium S-levels were obtained from the one-photon, two-photon interactions and the second-order perturbation theory. We have obtained also the contribution of the two-photon annihilation diagrams to the interaction operator of the P-wave positronium. The corrections of order of α 5 R ∞ and α 5 1nαR ∞ to the P-wave energy levels of positronium were calculated
Apparent unambiguousness of relativistic time dilation
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs
Relativistic generalization of strong plasma turbulence
International Nuclear Information System (INIS)
Chian, A.C.-L.
1982-01-01
Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt
Quantum gates via relativistic remote control
Energy Technology Data Exchange (ETDEWEB)
Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)
2014-12-12
We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.
Simultaneous multielement analysis of zirconium alloys by chlorination separation of matrix/ICP-AES
International Nuclear Information System (INIS)
Kato, Kaneharu
1990-01-01
An analytical method combined chlorination separation of matrix with ICP-AES has been developed for reactor grade Zr alloys (Zircaloy-2). A sample (1 g) is taken into a Pt boat and chlorinated with HCl gas of 100 ml/min in a glass reaction tube at ca. 330degC. Matrix Zr of the sample is volatilized and separated as ZrCl 4 . The analytic elements remaining quantitatively as chlorination residue are dissolved in a mixture of mineral acids (6 M HCl 3 ml+conc. HNO 3 0.5 ml+conc. H 2 SO 4 0.2 ml) and diluted to 20 ml with distilled water after filtration. ICP-AES was used for simultaneous multielement determination using a calibration curve method. The present method has the following advantages: simple sample preparation procedure; applicability to any form of samples to determine multielements; simple ICP-AES calibration procedure. This method was successfully applied to the determination of Fe, Ni, Cu, Co, Mn and Pb in the Zr alloys of JAERI CRM's and NBS SRM's. (author)
Instability in relativistic nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1979-11-01
The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)
Cyberinfrastructure for Computational Relativistic Astrophysics
Ott, Christian
2012-01-01
Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.
Future relativistic heavy ion experiments
International Nuclear Information System (INIS)
Pugh, H.G.
1980-12-01
Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned
A relativistic radiation transfer benchmark
International Nuclear Information System (INIS)
Munier, A.
1988-01-01
We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame
Relativistic models of nuclear structure
International Nuclear Information System (INIS)
Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.
1991-01-01
The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Potential topical natural repellent against Ae. aegypti, Culex sp. and Anopheles sp. mosquitoes
Directory of Open Access Journals (Sweden)
Dewi Nur Hodijah
2014-08-01
Full Text Available AbstrakLatar belakang:Minyak atsiri daun sirih diketahui mempunyai daya proteksi. Dibuatkan losion berdasarkan pengantar sediaan farmasi yang ditambahkan minyak atsiri daun nilam. Sediaan losion dipilih agar dapat menempel lebih lama di permukaan kulit. Tujuan penelitian ini untuk membandingkan daya proteksi antara losion dengan penambahan minyak nilam dan losion tanpa penambahan minyak nilam dibandingkan daya proteksi dengan DEET. Metode: Penelitian ini merupakan penelitian eksperimental laboratorium. Semua nyamuk uji berasal dari insektarium laboratorium penelitian kesehatan Loka litbang P2B2 Ciamis. Konsentrasi minyak atsiri daun sirih dalam losion adalah 4%; konsentrasi minyak nilam sebagai zat pengikat adalah 0,4%. Formula yang digunakan yaitu formula dasar yang ada pada pengantar sediaan farmasi. Uji repelensi dilakukan dengan menggunakan metoda yang direkomendasikan oleh Komisi pestisida.Hasil: Dihasilkan formulasi losion yang stabil dan masih memenuhi standar formulasi sediaan. Berdasarkan hasil, diperoleh data bahwa DEET dan losion hasil modifikasi memiliki rata-rata daya proteksi di atas 90% selama 6 jam terhadap nyamuk Ae.aegypti dan Culex sp. Kesimpulan: Penambahan minyak nilam pada losion sirih dapat meningkatkan daya proteksi terhadap hinggapan nyamuk Ae. aegypti dan Culex sp. (Health Science Indones 2014;1:44-8Kata kunci:repelen alamiah, minyak atsiri, daun sirih, daun nilam, Ae. aegypti, Culex sp.AbstractBackground: Betel leaf essential oil lotion has been known to have insect repellent properties. A lotion was made based on a pharmaceutical formula from a monograph where patchouli leaf essential oil was added. A lotion preparation was intended to enhance adherence of the formula on the surface of the skin. The purpose of this study was to compare protection percentage of lotion with patchouli oil and without patchouli oil lotion compared to DEET.Methods: This study is an experimental laboratory-based research. All mosquitoes
Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging
International Nuclear Information System (INIS)
Persson, Morten; El Ali, Henrik H.; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas
2014-01-01
64 Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of 64 Cu-DOTA-AE105. Methods: Five mice received iv tail injection of 64 Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another 64 Cu-DOTA peptide-based tracer, 64 Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using 64 Cu-DOTA-TATE. Results: Human estimates of 64 Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02–0.04 mSv/MBq. The mean effective whole-body dose of 64 Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for 64 Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high
CAFE: A NEW RELATIVISTIC MHD CODE
Energy Technology Data Exchange (ETDEWEB)
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
International Nuclear Information System (INIS)
Sengupta, Arijit; Thulasidas, S.K.; Natarajan, V.
2015-01-01
A comparative study was carried out to determine Ag, Au and Pt in aqueous samples, uranium, zirconium, and thorium based nuclear fuels and associated materials by CCD based ICP-AES and EDXRF. In ICP-AES, the spectral interference of U, Th, Zr matrices on trace level determination of Ag, Au and Pt were studied for different analytical lines of these analytes. The analytical performance of different lines including detection limits, sensitivity, linear dynamic range etc were studied both by ICP-AES and EDXRF. Though EDXRF technique was known its non destructive nature, the overall analytical performance of ICP-AES technique was found to be superior to EDXRF. Based on the spectral contribution from emission rich matrix elements and the analytical performance of different analytical lines of these analytes, a method was developed for direct determination of these analytes by ICP-AES without chemical separation. The method was validated with synthetic samples and compared with EDXRF technique and conventional ICP-AES technique where the major matrix was chemically separated using suitable organic phase containing selective ligands. The ICP-AES method for direct determination of analytes without chemical separation was found to be simple, less time consuming, without generation of organic waste with acceptable analytical performance
On the polarization of Herbig Ae/Be star radiation
Energy Technology Data Exchange (ETDEWEB)
Petrova, N I; Shevchenko, V S
1987-08-01
Results of multicolor UBVRI polarimetry of 14 Herbig Ae/Be stars including 7 stars for which observations of polarization have been made for the first time are presented. 6 bright Herbig Ae/Be stars (As 441, AS 442, LK H..cap alpha..134, LK H..cap alpha..135, Lk H..cap alpha..169 and V517 Cyg) which belong to star formation region connected with IC 5070 show the polarization from 1 to 4.5. per cent with similar theta (approx. 180 deg) (basically of interstellar nature). The polarimetrical variability of BD+46 deg 3471, BD+65 deg 1637, HD 200775 and Lk H..cap alpha..234 is confirmed. Mechanismes of polarization in Herbig Ae/Be stars in circumstellar formations are discussed.
Accomplishments: AE characterization program for remote flaw evaluation
International Nuclear Information System (INIS)
Hutton, P.H.; Schwenk, E.B.; Kurtz, R.J.
1978-01-01
The purpose of the program is to develop an experimental/analytical evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by means of continuously monitoring acoustic emission (AE). The investigation is devoted exclusively to ASTM Type A533, Grade B, Class 1 material. The basic approach to interpretive model development is through laboratory testing of 1 to 1 1 / 2 inch (25.4 to 38 mm) thick fracture mechanics specimens in both fatigue and fracture at both room temperature and 550 0 F (288 0 C). Seven parameters are measured for each AE signal and related to fracture mechanics functions. AE data from fracture testing of 6 inch (152 mm) wall pressure vessels are also incorporated in analysis
A high performance hardware implementation image encryption with AES algorithm
Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab
2011-06-01
This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.
Choosing the governing solutions for FA of AES-2006
International Nuclear Information System (INIS)
Vasilchenko, I.; Dragunov, Y.; Ryzhov, S.; Kobelev, S.; Vyalitsyn, V.; Troyanov, V.
2008-01-01
According to the program approved by the Government of Russia the AES-2006 design intended as a base one for the beginning of realization of the plans on development of the nuclear power engineering of Russia in the near future has been under way now. The most crucial components of the reactor plant are certainly the core and its basic component - FA. In the FA design such factors are concentrated that mainly define safety, profitability, adaptability to manufacture and operation of the fuel and NPP as a whole. As the nearest prototype for AES-2006 the TVS-2M design used at the Balakovo NPP is taken. The report shows on the basis of qualitative and quantitative evaluation that design of TVS-2 and its modifications TVS-2M are in the best compliance with the requirements of the project of the new RP AES-2006. This compliance is confirmed by the operational experience of the basic variant of the design
Little, Eliza; Bajwa, Waheed; Shaman, Jeffrey
2017-08-01
Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.
Relativistic many-body bound systems. Monograph report
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.
1975-04-01
The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
On the relativistic quantum mechanics of two interacting spinless particles
International Nuclear Information System (INIS)
Rizov, V.A.; Sazdjian, H.; Todorov, I.T.
1984-05-01
The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed
The relativistic titls of Giza pyramids' entrance-passages
Aboulfotouh, H.
The tilts of Giza pyramids' entrance-passages have never been considered as if they were the result of relativistic mathematical equations, and never been thought to encode the Earth's obliquity parameters. This paper presents an attempt to retrieve the method of establishing the equations that the pyramids' designer used to quantify the entrance-passages' tilts of these architectonic masterpieces. It proves that the pyramids' designer was able to include the geographic, astronomical and time parameters in one relativistic equation, encoding the date of the design of the Giza pyramids in the tilt of the entrance passage of the great pyramid.
The Post-Newtonian Approximation for Relativistic Compact Binaries
Directory of Open Access Journals (Sweden)
Futamase Toshifumi
2007-03-01
Full Text Available We discuss various aspects of the post-Newtonian approximation in general relativity. After presenting the foundation based on the Newtonian limit, we show a method to derive post-Newtonian equations of motion for relativistic compact binaries based on a surface integral approach and the strong field point particle limit. As an application we derive third post-Newtonian equations of motion for relativistic compact binaries which respect the Lorentz invariance in the post-Newtonian perturbative sense, admit a conserved energy, and are free from any ambiguity.
Relativistic calculation of dielectronic recombination for He-like krypton
Institute of Scientific and Technical Information of China (English)
Shi Xi-Heng; Wang Yan-Sen; Chen Chong-Yang; Gu Ming-Feng
2005-01-01
Dielectronic recombination (DR) cross sections and rate coefficients of He-like Kr are calculated employing the relativistic flexible atomic code, in which autoionization rates are calculated based on the relativistic distorted-wave approximation and the configuration interaction is considered. The Auger and total radiative rates of some strong resonances are listed and compared with the results from multiconfiguration Dirac-Fock and Hebrew University Lawrence Livermore Atomic Code methods. The n-3 scaling law is checked and used to extrapolate rate coefficients. We also show the variation of DR branching ratio with different DR resonances or atomic number Z. The effect of radiative cascades on DR cross sections are studied.
Relativistic mean field calculations in neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)
2014-08-14
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
Towards an exact relativistic theory of Earth's geoid undulation
Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.
2015-08-01
The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided.
Security of the AES with a Secret S-Box
DEFF Research Database (Denmark)
Tiessen, Tyge; Knudsen, Lars Ramkilde; Kölbl, Stefan
2015-01-01
How does the security of the AES change when the S-box is replaced by a secret S-box, about which the adversary has no knowledge? Would it be safe to reduce the number of encryption rounds? In this paper, we demonstrate attacks based on integral cryptanalysis which allow to recover both the secret...... key and the secret S-box for respectively four, five, and six rounds of the AES. Despite the significantly larger amount of secret information which an adversary needs to recover, the attacks are very efficient with time/data complexities of 217/216, 238/240 and 290/264, respectively. Another...
Relativistic Descriptions of Few-Body Systems
International Nuclear Information System (INIS)
Karmanov, V. A.
2011-01-01
A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)
Interplanetary Magnetic Field Guiding Relativistic Particles
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
Modified Redundancy based Technique—a New Approach to Combat Error Propagation Effect of AES
Sarkar, B.; Bhunia, C. T.; Maulik, U.
2012-06-01
Advanced encryption standard (AES) is a great research challenge. It has been developed to replace the data encryption standard (DES). AES suffers from a major limitation of error propagation effect. To tackle this limitation, two methods are available. One is redundancy based technique and the other one is bite based parity technique. The first one has a significant advantage of correcting any error on definite term over the second one but at the cost of higher level of overhead and hence lowering the processing speed. In this paper, a new approach based on the redundancy based technique is proposed that would certainly speed up the process of reliable encryption and hence the secured communication.
ICP-AES analysis of trace elements in serum from animals fed with irradiated food
International Nuclear Information System (INIS)
Huang Zongzhi; Zhou Hongdi
1986-01-01
A method of trace element analysis by ICP-AES in serum from animals fed with irradiated food is described. In order to demonstrate that irradiated food is suitable for human consumption, it is necessary to perform an experiment of animal feeding with these food before use for human. Trace element analysis in animal serum could provide an actual evidence for further human consumption study. 53 serum samples of the rats fed with irradiated food were obtained. After ashed and solved, ICP-AES analysis has been used for determining 20 trace elements in specimen solution. The detection limitation is in the range of 10 -2 -10 -3 ppm for different elements. The recovery of elements is from 70.08% to 98.28%. The relative standard deviation is found to be 0.71% to 11.52%
Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.
Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas
2014-03-01
(64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision
New models of general relativistic static thick disks
Vogt, D.; Letelier, P.S.
2005-01-01
New families of exact general relativistic thick disks are constructed using the "displace, cut, fill, and reflect" method. A class of functions used to fill the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the
What have we learned from relativistic heavy-ion collider?
Indian Academy of Sciences (India)
60, No. 4. — journal of. April 2003 physics pp. 765–786. What have we learned from relativistic heavy-ion collider? ... What do we hope and expect to learn in .... experimental results and difficult numerical, presumably lattice Monte–Carlo simulation, ... For technical reasons, lattice Monte–Carlo methods are very difficult to.
Relativistic quantum mechanics an introduction to relativistic quantum fields
Maiani, Luciano
2016-01-01
Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.
Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment
International Nuclear Information System (INIS)
Comer, G.L.
2004-01-01
Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit
Optimization of DIII-D discharges to avoid AE destabilization
Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori
2017-10-01
The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.
Faster and timing-attack resistant AES-GCM
Käsper, E.; Schwabe, P.; Clavier, C.; Gaj, K.
2009-01-01
We present a bitsliced implementation of AES encryption in counter mode for 64-bit Intel processors. Running at 7.59 cycles/byte on a Core 2, it is up to 25% faster than previous implementations, while simultaneously offering protection against timing attacks. In particular, it is the only
AES/STEM grain boundary analysis of stabilized zirconia ceramics
Winnubst, Aloysius J.A.; Kroot, P.J.M.; Burggraaf, A.J.
1983-01-01
Semiquantitative Auger Electron Spectroscopy (AES) on pure monophasic (ZrO2)0.83(YO1.5)0.17 was used to determine the chemical composition of the grain boundaries. Grain boundary enrichment with Y was observed with an enrichment factor of about 1.5. The difference in activation energy of the ionic
Spectroscopic classification of AT2018aes as a supernova impostor
Andrews, Jennifer; Smith, Nathan; Van Dyk, Schuyler D.
2018-03-01
A visual-wavelength optical spectrum of AT2018aes obtained on UT 2018 Mar 13 (JD 2458190.84) with the Magellan Clay telescope (+ LDSS3 spectrograph, VPH-all grism) reveals a narrow H-alpha emission line with a velocity of 525 km/s, with wings extending to roughly +/-1000 km/s.
Energy Technology Data Exchange (ETDEWEB)
Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.
1999-08-01
We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)
Determination of Boron in Zircaloy by using ICP-AES and Colorimetry
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong-Goo; Pyo, Hyung-Ryul; Choi, Kwang-Soon; Han, Sun-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
Zircaloy has been being widely used in the nuclear industry because of the low cross section of Zirconium against a thermal neutron. Accurate composition data of Zircaloy for Hf, B, and so on having a high cross section against thermal neutron is important to use it as a nuclear material. Accordingly proper determination methods of these elements in Zircaloy are needed. In this study, the application of two methods, ICP-AES and a colorimetry using methylene blue were investigated in order to establish a proper analysis method of Boron in the range from tens to hundreds ug B/g sample of Zircaloy.
Determination of Boron in Zircaloy by using ICP-AES and Colorimetry
International Nuclear Information System (INIS)
Kim, Jong-Goo; Pyo, Hyung-Ryul; Choi, Kwang-Soon; Han, Sun-Ho
2007-01-01
Zircaloy has been being widely used in the nuclear industry because of the low cross section of Zirconium against a thermal neutron. Accurate composition data of Zircaloy for Hf, B, and so on having a high cross section against thermal neutron is important to use it as a nuclear material. Accordingly proper determination methods of these elements in Zircaloy are needed. In this study, the application of two methods, ICP-AES and a colorimetry using methylene blue were investigated in order to establish a proper analysis method of Boron in the range from tens to hundreds ug B/g sample of Zircaloy
Relativistic and separable classical hamiltonian particle dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1981-01-01
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light
Relativistic quantum mechanics of bosons
International Nuclear Information System (INIS)
Ghose, P.; Home, D.; Sinha Roy, M.N.
1993-01-01
We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)
Relativistic electron beams above thunderclouds
DEFF Research Database (Denmark)
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
The relativistic electron wave equation
International Nuclear Information System (INIS)
Dirac, P.A.M.
1977-08-01
The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)
Diffraction radiation from relativistic particles
Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Volatility smile as relativistic effect
Kakushadze, Zura
2017-06-01
We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.
Double Relativistic Electron Accelerating Mirror
Directory of Open Access Journals (Sweden)
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Relativistic shocks and particle acceleration
International Nuclear Information System (INIS)
Heavens, A.F.
1988-01-01
In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)
Diffraction radiation from relativistic particles
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)
Gao, Jin-gui; Jiang, Zhao-fang; Luo, Lai-peng
2017-04-01
Taking the MJ3210A motion band saw as the research object, the AE value of the band saw blade vibration was obtained by analyzing the VIBSYS vibration signal acquisition and analysis software system in Beijing, and the change of the AE value of the band saw and the crack was found out. The experimental results show that in the MJ3210A sports car sawing machine, the band saw blade with width of 130 mm is used, and the AE value of the cracked band saw blade is well in the high band saw blade AE value. Under the best working condition of the band saw, the band saw blade AE If the value exceeds 104.7 dB (A) above, it means that the band saw blade has at least one crack length greater than 1.38 mm for the crack defect and the need to replace the band saw blade in time. Different species with saw blade of the AE value is different, white pine wood minimum, the largest oak wood; according to a variety of wood processing AE instrument value to determine the band saw blade crack to the situation; so as to fully rational use of band saw blade, The failure and the degree of development to find a new method.
A Study on the Fracture Behavior of Composite Laminated T-Joints Using AE
International Nuclear Information System (INIS)
Kim, J. H.; Sa, J. W.; Park, B. J.; Ahn, B. W.
1999-01-01
Quasi-static tests such as monotonic tension and loading/unloading tension were performed to investigate the bond characteristics and the failure processes for the T-joint specimens made from fiber/epoxy composite material. Two types of specimens, each consists of two components, e. g. skin and frame. were manufactured by co-curing and secondary bonding. During the monotonic tension test, AE instrument was used to predict AE signal at the initial and middle stage of the damage propagation. The damage initiation and progression were monitored optically using m (Charge Coupled Device) camera. And the internal crack front profile was examined using ultrasonic C-scan. The results indicate that the loads representing the abrupt increase of the AE signal are within the error range of 5 percent comparing to the loads shown in the load-time curve. Also it is shown that the initiation of crack occurred in the noodle region for both co cured and secondarily bonded specimen. The final failure occurred in the noodle region for the co-cured specimen. but at the skin/frame termination point for the secondarily bonded specimen. Based on the results, it was found that two kinds of specimen show different failure modes depending on the manufacturing methods
MODIFIED AES WITH RANDOM S BOX GENERATION TO OVERCOME THE SIDE CHANNEL ASSAULTS USING CLOUD
Directory of Open Access Journals (Sweden)
M. Navaneetha Krishnan
2017-01-01
Full Text Available Development of any communication system with secure and complex cryptographic algorithms highly depends on concepts of data security which is crucial in the current technological world. The security and complexity of the cryptography algorithms need to get increased by randomization of secret keys. To overcome the issues associated to data security and for improvising it during encryption and decryption process over the encrypting device, a novel Secure Side Channel Assault Prevention (SSCAP approach has been projected which will eliminate outflow of side channel messages and also provides effective security over the encrypting device. An effective Enriched AES (E-AES encryption algorithm is proposed to reduce the side channel attack; the modified algorithm in this research shows its improvement in the Generation of Random Multiple S - Box (GRM S-Box which makes it hard to the attacks to break the text which is in encrypted form. Our novel SSCAP approach also improves the security over the original information; it widely minimizes the leakage of the side channel information. Attackers cannot easily get a clue about the proposed S-Box Generation technique. Our E-AES algorithm will be implemented in cloud environment thereby improving the cloud security. The proposed SSCAP approach is judged against the existing security based algorithms on the scale of encryption and decryption time, time taken for generating the key, and performance. The proposed work proves to outperform over all other methods used in the past.
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
Analytic approaches to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hatta, Yoshitaka
2016-12-15
I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
Characteristic manifolds in relativistic hypoelasticity
Energy Technology Data Exchange (ETDEWEB)
Giambo, S [Messina Univ. (Italy). Istituto di Matematica
1978-10-02
The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.
A relativistic quarkonium potential model
International Nuclear Information System (INIS)
Klima, B.; Maor, U.
1984-04-01
We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)
Coordinates in relativistic Hamiltonian mechanics
International Nuclear Information System (INIS)
Sokolov, S.N.
1984-01-01
The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field
Relativistic mechanics with reduced fields
International Nuclear Information System (INIS)
Sokolov, S.N.
1996-01-01
A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru
Theory of a relativistic peniotron
International Nuclear Information System (INIS)
Zhurakhovskii, V.A.
1986-01-01
A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented
Relativistic beaming and quasar statistics
International Nuclear Information System (INIS)
Orr, M.J.L.; Browne, I.W.A.
1982-01-01
The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Prospects for development of powerful, highly efficient, relativistic gyrodevices
International Nuclear Information System (INIS)
Nusinovich, G.S.; Granatstein, V.L.
1992-01-01
For various applications the required parameters of sources of powerful microwave radiation lie far beyond the capabilities of existing tubes. This provokes an interest in reconsidering basic principles of relevant microwave sources in order to search for alternative concepts in their development. One of the most promising devices in the short-wavelength region of microwaves is the cyclotron resonance maser (CRM). During the last decade, two important varieties of CRMs have been distinguished, namely, gyrotrons, which operate at frequencies close to cut-off, and cyclotron autoresonance masers (CARMs), which operate at frequencies far from cut-off. When the axial phase velocity of the wave in properly adjusted to the beam voltage and electron pitch-ratio, the efficiency of relativistic CRMs may be high (≥50%). The method of optimizing efficiency based on a partial compensation of the shift in the relativistic electron cyclotron frequency by the change in the Doppler term can be, in principle, accompanied by a corresponding profiling of the external magnetic field and/or the wave phase velocity in a slightly irregular waveguide. These methods can be used in such relativistic CRMs as relativistic gyrotrons, gyroklystrons, gyro-traveling-wave-tubes and gyrotwistrons. The most important point is their sensitivity to a spread in electron parameters. As the beam voltage grows, the operation becomes more sensitive. However, at relatively low voltages such devices are quite tolerant to electron velocity spread
Nonlinear dynamics of the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-04-01
Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs
Energy Technology Data Exchange (ETDEWEB)
Ito, H; Kuwahara, Y; Nishizawa, O [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, K [Tohoku University, Sendai (Japan). Faculty of Science; Sano, O [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Yokoyama, T; Kudo, R [OYO Corp., Tokyo (Japan); Xue, Z [Kiso-Jiban Consultants Co. Ltd., Tokyo (Japan)
1996-05-01
A total of 5 wells were excavated in the Hanshin-Awaji area (Ikeda, Takarazuka, Tarumi, Hirabayashi and Ikunami) to collect the core samples, which were analyzed by the AE/DR and DSCA methods to determine crustal stresses. For the AE/DR analysis, the core sample was cut in the vertical direction, and in the horizontal direction at intervals of 45{degree}. The sample of unknown orientation was provided with a datum line common for both methods, to compare the results by these methods. A load was applied to the sample, provided with an AE sensor and strain gauge on the sides, in the longitudinal direction. For the DSCA analysis, the core sample was cut into a cube having a side length of 33mm, with a pair of planes directed in parallel to the datum line. A total of 18 strain gauges, 10mm in gauge length, were attached to the cube. The AE/DR analysis gave the maximum and minimum principal stresses in the horizontal plane and stresses in the vertical direction, whereas the DSCA the maximum, intermediate and minimum principal stresses. 3 refs., 7 figs.
Relativistic neoclassical transport coefficients with momentum correction
International Nuclear Information System (INIS)
Marushchenko, I.; Azarenkov, N.A.
2016-01-01
The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.
Determination of Nb and Zr in U-Nb-Zr alloys by ICP-AES
International Nuclear Information System (INIS)
Wang Cuiping; Dong Shizhe; Li Lin; He Meiying
2003-01-01
The U-Nb-Zr alloy sample is dissolved by HNO 3 , H 2 O 2 and HF, and the contents of Nb and Zr in the sample are determined on the JY-70 II type ICP-AES by using the internal standard synchronous dilution method. The range of determination is 1%-10% and 0.33%-3.33%, respectively for Nb and Zr. The relative standard deviation is better than 3.2% for Nb, and 2.5% for Zr. The method is rapid and convenient for determining Nb and Zr in U-Nb-Zr alloy sample
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Relativistic ion acceleration by ultraintense laser interactions
International Nuclear Information System (INIS)
Nakajima, K.; Koga, J.K.; Nakagawa, K.
2001-01-01
There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
International Nuclear Information System (INIS)
Cheng, K.T.; Chen, M.H.; Johnson, W.R.
1994-04-01
A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table
ICP/AES radioactive sample analyses at Pacific Northwest Laboratory
International Nuclear Information System (INIS)
Matsuzaki, C.L.; Hara, F.T.
1986-03-01
Inductively coupled argon plasma atomic emission spectroscopy (ICP/AES) analyses of radioactive materials at Pacific Northwest Laboratory (PNL) began about three years ago upon completion of the installation of a modified Applied Research Laboratory (ARL) 3560. Funding for the purchase and installation of the ICP/AES was provided by the Nuclear Waste Materials Characterization Center (MCC) established at PNL by the Department of Energy in 1979. MCC's objective is to ensure that qualified materials data are available on waste materials. This paper is divided into the following topics: (1) Instrument selection considerations; (2) initial installation of the simultaneous system with the source stand enclosed in a 1/2'' lead-shielded glove box; (3) retrofit installation of the sequential spectrometer; and (4) a brief discussion on several types of samples analyzed. 1 ref., 7 figs., 1 tab
Optical spectrophotometry of oscillations and flickering in AE Aquarii
Welsh, William F.; Horne, Keith; Oke, J. B.
1993-01-01
We observed rapid variations in the nova-like cataclysmic variable AE Aquarii for 1.7 hr with 4.3 s time resolution using the 30-channel (3227-10494 A) spectrophotometer on the Hale 5 m telescope. The 16.5 and 33.0 s oscillations show a featureless blue spectrum that can be represented by a blackbody with temperature and area much smaller than the accretion disk. Models consisting of the sum of a K star spectrum and a hydrogen slab in LTE at T = 6000-10,000 K can fit the spectrum of AE Aquarii reasonably well. The spectrum of a flare indicates optically thin gas with T = 8000-12,000 K. The energy released by the flare is large compared to typical stellar flares.
Magnetic fields of Herbig Ae/Be stars
Directory of Open Access Journals (Sweden)
Hubrig S.
2014-01-01
Full Text Available We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
Accelerating Solution Proposal of AES Using a Graphic Processor
Directory of Open Access Journals (Sweden)
STRATULAT, M.
2011-11-01
Full Text Available The main goal of this work is to analyze the possibility of using a graphic processing unit in non graphical calculations. Graphic Processing Units are being used nowadays not only for game engines and movie encoding/decoding, but also for a vast area of applications, like Cryptography. We used the graphic processing unit as a cryptographic coprocessor in order accelerate AES algorithm. Our implementation of AES is on a GPU using CUDA architecture. The performances obtained show that the CUDA implementation can offer speedups of 11.95Gbps. The tests are conducted in two directions: running the tests on small data sizes that are located in memory and large data that are stored in files on hard drives.
Directory of Open Access Journals (Sweden)
F. L. Guarnieri
2018-01-01
Full Text Available The purpose of this study is to present a wavelet interactive filtering and reconstruction technique and apply this to the solar wind magnetic field components detected at the L1 Lagrange point ∼ 0.01 AU upstream of the Earth. These filtered interplanetary magnetic field (IMF data are fed into a model to calculate a time series which we call AE∗. This model was adjusted assuming that magnetic reconnection associated with southward-directed IMF Bz is the main mechanism transferring energy into the magnetosphere. The calculated AE∗ was compared to the observed AE (auroral electrojet index using cross-correlation analysis. The results show correlations as high as 0.90. Empirical removal of the high-frequency, short-wavelength Alfvénic component in the IMF by wavelet decomposition is shown to dramatically improve the correlation between AE∗ and the observed AE index. It is envisioned that this AE∗ can be used as the main input for a model to forecast relativistic electrons in the Earth's outer radiation belts, which are delayed by ∼ 1 to 2 days from intense AE events.
Guarnieri, Fernando L.; Tsurutani, Bruce T.; Vieira, Luis E. A.; Hajra, Rajkumar; Echer, Ezequiel; Mannucci, Anthony J.; Gonzalez, Walter D.
2018-01-01
The purpose of this study is to present a wavelet interactive filtering and reconstruction technique and apply this to the solar wind magnetic field components detected at the L1 Lagrange point ˜ 0.01 AU upstream of the Earth. These filtered interplanetary magnetic field (IMF) data are fed into a model to calculate a time series which we call AE∗. This model was adjusted assuming that magnetic reconnection associated with southward-directed IMF Bz is the main mechanism transferring energy into the magnetosphere. The calculated AE∗ was compared to the observed AE (auroral electrojet) index using cross-correlation analysis. The results show correlations as high as 0.90. Empirical removal of the high-frequency, short-wavelength Alfvénic component in the IMF by wavelet decomposition is shown to dramatically improve the correlation between AE∗ and the observed AE index. It is envisioned that this AE∗ can be used as the main input for a model to forecast relativistic electrons in the Earth's outer radiation belts, which are delayed by ˜ 1 to 2 days from intense AE events.
Calculation of deuteron wave functions with relativistic interactions
International Nuclear Information System (INIS)
Buck, W.W. III.
1976-01-01
Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
A statistical spectropolarimetric study of Herbig Ae/Be stars
Ababakr, K. M.; Oudmaijer, R. D.; Vink, J. S.
2017-11-01
We present H α linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the H α line is detected in 42 (75 per cent) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disc. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2 per cent. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the H α line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons.
Relativistic Celestial Mechanics of the Solar System
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab
Arzeliès, Henri
1972-01-01
Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int
International Nuclear Information System (INIS)
Castejon, F.; Pavlov, S. S.
2006-01-01
The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid
Superheavy nuclei: a relativistic mean field outlook
International Nuclear Information System (INIS)
Afanasjev, A.V.
2006-01-01
The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Energy Technology Data Exchange (ETDEWEB)
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Relativistic transport theory for hadronic matter
International Nuclear Information System (INIS)
Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.
1991-01-01
We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc
Thermodynamics of polarized relativistic matter
Energy Technology Data Exchange (ETDEWEB)
Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)
2016-07-05
We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.
Observation of relativistic antihydrogen atoms
International Nuclear Information System (INIS)
Blanford, Glenn DelFosse
1998-01-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure
Relativistic heavy ion facilities: worldwide
International Nuclear Information System (INIS)
Schroeder, L.S.
1986-05-01
A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs
Unlimited Relativistic Shock Surfing Acceleration
International Nuclear Information System (INIS)
Ucer, D.; Shapiro, V. D.
2001-01-01
Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing
The magnetosphere in relativistic physics
International Nuclear Information System (INIS)
Zapffe, C.A.
1982-01-01
The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)
International Nuclear Information System (INIS)
Nathan, Usha; Premadas, A.
2013-01-01
A new approach for the beryl mineral sample decomposition and solution preparation method suitable for the elemental analysis using ICP-AES and FAAS is described. For the complete sample decomposition four different decomposition procedures are employed such as with (i) ammonium bi-fluoride alone (ii) a mixture of ammonium bi-fluoride and ammonium sulphate (iii) powdered mixture of NaF and KHF 2 in 1: 3 ratio, and (iv) acid digestion treatment using hydrofluoric acid and nitric acid mixture, and the residue fused with a powdered mixture NaF and KHF 2 . Elements like Be, Al, Fe, Mn, Ti, Cr, Ca, Mg, and Nb are determined by ICP-AES and Na, K, Rb and Cs are determined by FAAS method. Fusion with 2g ammonium bifluoride flux alone is sufficient for the complete decomposition of 0.400 gram sample. The values obtained by this decomposition procedure are agreed well with the reported method. Accuracy of the proposed method was checked by analyzing synthetic samples prepared in the laboratory by mixing high purity oxides having a chemical composition similar to natural beryl mineral. It indicates that the accuracy of the method is very good, and the reproducibility is characterized by the RSD 1 to 4% for the elements studied. (author)
Calculation of relativistic and isotope shifts in Mg I
International Nuclear Information System (INIS)
Berengut, J.C.; Flambaum, V.V.; Kozlov, M.G.
2005-01-01
We present an ab initio method of calculation of the isotope and relativistic shifts in atoms with a few valence electrons. It is based on an energy calculation involving the combination of the configuration-interaction method and many-body perturbation theory. This work is motivated by analyses of quasar absorption spectra that suggest that the fine-structure constant α was smaller at an early epoch. Relativistic shifts are needed to measure this variation of α, while isotope shifts are needed to resolve systematic effects in this study. The isotope shifts can also be used to measure isotopic abundances in gas clouds in the early universe, which are needed to study nuclear reactions in stars and supernovae and test models of chemical evolution. This paper shows that the isotope shift in magnesium can be calculated to very high precision using our method
Relativistic Astrophysics and Cosmology: A Primer
International Nuclear Information System (INIS)
Abramowicz, Marek A
2007-01-01
'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as the text. Their students will be in the author
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...
Relativistic corrections to molecular dynamic dipole polarizabilities
DEFF Research Database (Denmark)
Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard
1995-01-01
obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...
A Primer to Relativistic MOND Theory
Bekenstein, J.D..; Sanders, R.H.
2005-01-01
Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its
Relativistic astrophysics and theory of gravity
International Nuclear Information System (INIS)
Zel'dovich, Ya.B.
1982-01-01
A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology
Einstein Never Approved of Relativistic Mass
Hecht, Eugene
2009-01-01
During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…
A comparative examination of sample treatment procedures for ICAP-AES analysis of biological tissue
De Boer, J. L. M.; Maessen, F. J. M. J.
The objective of this study was to contribute to the evaluation of existing sample preparation procedures for ICAP-AES analysis of biological material. Performance characteristics were established of current digestion procedures comprising extraction, solubilization, pressure digestion, and wet and dry ashing methods. Apart from accuracy and precision, a number of criteria of special interest for the analytical practice was applied. As a test sample served SRM bovine liver. In this material six elements were simultaneously determined. Results showed that every procedure has its defects and advantages. Hence, unambiguous recommendation of standard digestion procedures can be made only when taking into account the specific analytical problem.
Uncertainty assessing of measure result of tungsten in U3O8 by ICP-AES
International Nuclear Information System (INIS)
Du Guirong; Nie Jie; Tang Lilei
2011-01-01
According as the determining method and the assessing criterion,the uncertainty assessing of measure result of tungsten in U 3 O 8 by ICP-AES is researched. With the assessment of each component in detail, the result shows that u rel (sc)> u rel (c)> u rel (F)> u rel (m) by uncertainty contribution. Other uncertainty is random, calculated by repetition. u rel (sc) is contributed to uncertainty mainly. So the general uncertainty is reduced with strict operation to reduce u rel (sc). (authors)
Royer, A; Beguin, S; Sochor, H; Communal, P Y
2000-11-01
An analytical method for the determination of glufosinate ammonium and its principal metabolites, AE F064619 and AE F061517, in water of two different hardnesses (5 and 30 DH, French hardness) has been developed and validated. Samples were spiked at different levels (0. 05 and 0.5 microgram/L) and were purified by column chromatography on ion-exchange resins. After derivatization with glacial acetic acid and trimethylarthoacetate mixture, the derivatives were quantified by using capillary gas chromatography with an ion-trap tandem mass spectrometric detector. Analytical conditions for MS/MS detection were optimized, and the quantification was carried out on the areas of the most representative ions. The limit of quantification was validated at 0.05 microgram/L for each compound. The mean recovery value and the relative standard deviation (n = 20) were 92.0% and 17. 8% for glufosinate ammonium, 90.2% and 15.8% for AE F064619, and 89. 7% and 12.7% for AE F061517.
Relativistic electron kinetic effects on laser diagnostics in burning plasmas
Mirnov, V. V.; Den Hartog, D. J.
2018-02-01
Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.
Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6
International Nuclear Information System (INIS)
Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.
1992-01-01
We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)
Random phase approximation in relativistic approach
International Nuclear Information System (INIS)
Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang
2009-01-01
Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)
Relativistic theory of spontaneous emission
International Nuclear Information System (INIS)
Barut, A.O.; Salamin, Y.I.
1987-06-01
We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs
Physical processes in relativistic plasmas
International Nuclear Information System (INIS)
Svensson, R.
1984-01-01
The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)
24-Hour Relativistic Bit Commitment.
Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo
2016-09-30
Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.
Energy Technology Data Exchange (ETDEWEB)
Moussa, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les developpements angulaires. Enfin on fournit un substitut a la
Geometrical theory of the relativistic string in t=tau gauge
International Nuclear Information System (INIS)
Barbashov, B.M.; Nesterenko, V.V.
1982-01-01
Using the co-moving frame method and the exterior differential forms in the surface theory the classical theory of the relativistic string in the gauge is constructed. The moving frame on the string world-sheet is chosen in a special form. As a result, the theory of the free relativistic string in the four-dimensional space-time is reduced to the D'Alembert equation for one scalar function
Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field
International Nuclear Information System (INIS)
Delsante, A.E.; Frankel, N.E.
1979-01-01
The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given
A relativistic gauge model describing N particles bound by harmonic forces
International Nuclear Information System (INIS)
Filippov, A.T.
1987-01-01
Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods
Relativistic three-body model of pion-deuton elasic scattering
International Nuclear Information System (INIS)
Giraud, Noel.
1978-01-01
The Aaron-Amado-Young equations for the relativistic three-body problem are derived following the Blauckenbecker - Sugar method. The angular momentum reduction is carried out using suitable relative momenta. The pion-deuteron elastic scattering is calculated using the equations in which relativistic kinematics are retained only for the pion. After a general study of the observables in the energy range 25 to 256 MeV, detailed calculations are performed at 142 MeV [fr
Directory of Open Access Journals (Sweden)
G. P. Pavlos
1999-01-01
Full Text Available A long AE index time series is used as a crucial magnetospheric quantity in order to study the underlying dynainics. For this purpose we utilize methods of nonlinear and chaotic analysis of time series. Two basic components of this analysis are the reconstruction of the experimental tiine series state space trajectory of the underlying process and the statistical testing of an null hypothesis. The null hypothesis against which the experimental time series are tested is that the observed AE index signal is generated by a linear stochastic signal possibly perturbed by a static nonlinear distortion. As dis ' ' ating statistics we use geometrical characteristics of the reconstructed state space (Part I, which is the work of this paper and dynamical characteristics (Part II, which is the work a separate paper, and "nonlinear" surrogate data, generated by two different techniques which can mimic the original (AE index signal. lie null hypothesis is tested for geometrical characteristics which are the dimension of the reconstructed trajectory and some new geometrical parameters introduced in this work for the efficient discrimination between the nonlinear stochastic surrogate data and the AE index. Finally, the estimated geometric characteristics of the magnetospheric AE index present new evidence about the nonlinear and low dimensional character of the underlying magnetospheric dynamics for the AE index.
Chaos of the Relativistic Forced van der Pol Oscillator
International Nuclear Information System (INIS)
Ashkenazya, Y.; Gorma, C; Horwitz, L. P.
1998-01-01
A manifestly relativistically covariant form of the van der Pol oscillator in 1 + 1 dimensions is studied. We show that the driven relativistic equations, for which z and t are coupled, relax very quickly to a pair of identical decoupled equations, due to a rapid vanishing of the angular momentum (the boost in 1 + 1 dimensions). A similar effect occurs in the damped driven covariant Duffing oscillator previously treated. This effect is an example of entrainment, or synchronization (phase locking) , of coupled chaotic systems. The Lyapunov exponents are calculated using the very efficient method of Habib and Ryne. We show a Poincare map that demonstrates this effect and maintains remarkable stability in spite of the inevitable accumulation of computer error in the chaotic region. For our choice of parameters, the positive Lyapunov exponent is about 0.242 almost independently of the integration method
ICP-AES determination of rare earths in zirconium with prior chemical separation of the matrix
International Nuclear Information System (INIS)
Rajeswari, B.; Dhawale, B.A.; Page, A.G.; Sastry, M.D.
2002-01-01
Zirconium being one of the most important material in nuclear industry used as a fuel cladding in reactors and an additive in advanced fuels necessitates its characterization for trace metallic contents. Zirconium, as refractory in nature as the rare earth elements, has a complex spectrum comprising of several emission lines. Rare earths, which are high neutron absorbers have to be analysed at very low limits. Hence, to achieve the desired limits, the major matrix has to be separated prior to rare earth determination. The present paper describes the method developed for the separation of rare earths from zirconium by solvent extraction using Trioctyl Phosphine Oxide (TOPO) as the extractant followed by their determination using Inductively Coupled Plasma - Atomic Emission Spectrometric (ICP-AES) method. Initially, radiochemical studies were carried out using known amounts of gamma active tracers of 141 Ce, 152-154 Eu, 153 Gd and 95 Zr for optimisation of extraction conditions using Tl- activated NaI detector. The optimum conditions at 0.5 M TOPO/xylene in 6 M HCl so as to achieve a quantitative recovery of rare earth analytes alongwith a near total extraction of zirconium in the organic phase, was further extended to carry out the studies using ICP-AES method. The recovery of rare earths was found to be quantitative within experimental error with a precision better than 10% RSD. (author)
Quench detection/protection of an HTS coil by AE signals
International Nuclear Information System (INIS)
Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.
2011-01-01
A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.
Multilevel Analysis of Continuous AE from Helicopter Gearbox
Czech Academy of Sciences Publication Activity Database
Chlada, Milan; Převorovský, Zdeněk; Heřmánek, Jan; Krofta, Josef
2014-01-01
Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] R&D Projects: GA MPO FR-TI3/755 Institutional support: RVO:61388998 Keywords : structural health monitoring (SHM) * signal processing * acoustic emission (AE) * diagnostics of helicopter gearbox * wavelet analysis * continuous acoustic emission Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts http://www.ndt.net/events/ECNDT2014/app/content/Paper/630_Chlada_Rev1.pdf
A New Structural-Differential Property of 5-Round AES
DEFF Research Database (Denmark)
Grassi, Lorenzo; Rechberger, Christian; Ronjom, Sondre
2017-01-01
AES is probably the most widely studied and used block cipher. Also versions with a reduced number of rounds are used as a building block in many cryptographic schemes, e.g. several candidates of the SHA-3 and CAESAR competition are based on it.So far, non-random properties which are independent ...... a random permutation with only 2 32 chosen texts that has a computational cost of 2(35.6) look-ups into memory of size 2 36 bytes which has a success probability greater than 99%....
"Storms of crustal stress" and AE earthquake precursors
Directory of Open Access Journals (Sweden)
G. P. Gregori
2010-02-01
Full Text Available Acoustic emission (AE displays violent paroxysms preceding strong earthquakes, observed within some large area (several hundred kilometres wide around the epicentre. We call them "storms of crustal stress" or, briefly "crustal storms". A few case histories are discussed, all dealing with the Italian peninsula, and with the different behaviour shown by the AE records in the Cephalonia island (Greece, which is characterized by a different tectonic setting.
AE is an effective tool for diagnosing the state of some wide slab of the Earth's crust, and for monitoring its evolution, by means of AE of different frequencies. The same effect ought to be detected being time-delayed, when referring to progressively lower frequencies. This results to be an effective check for validating the physical interpretation.
Unlike a seismic event, which involves a much limited focal volume and therefore affects a restricted area on the Earth's surface, a "crustal storm" typically involves some large slab of lithosphere and crust. In general, it cannot be easily reckoned to any specific seismic event. An earthquake responds to strictly local rheological features of the crust, which are eventually activated, and become crucial, on the occasion of a "crustal storm". A "crustal storm" lasts typically few years, eventually involving several destructive earthquakes that hit at different times, at different sites, within that given lithospheric slab.
Concerning the case histories that are here discussed, the lithospheric slab is identified with the Italian peninsula. During 1996–1997 a "crustal storm" was on, maybe elapsing until 2002 (we lack information for the period 1998–2001. Then, a quiet period occurred from 2002 until 26 May 2008, when a new "crustal storm" started, and by the end of 2009 it is still on. During the 1996–1997 "storm" two strong earthquakes occurred (Potenza and
Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes
Energy Technology Data Exchange (ETDEWEB)
Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering
1989-07-01
We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).
Pion interferometry of ultra-relativistic hadronic collisions
International Nuclear Information System (INIS)
Kolehmainen, K.
1986-05-01
Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs
Power Consumption and Calculation Requirement Analysis of AES for WSN IoT.
Hung, Chung-Wen; Hsu, Wen-Ting
2018-05-23
Because of the ubiquity of Internet of Things (IoT) devices, the power consumption and security of IoT systems have become very important issues. Advanced Encryption Standard (AES) is a block cipher algorithm is commonly used in IoT devices. In this paper, the power consumption and cryptographic calculation requirement for different payload lengths and AES encryption types are analyzed. These types include software-based AES-CB, hardware-based AES-ECB (Electronic Codebook Mode), and hardware-based AES-CCM (Counter with CBC-MAC Mode). The calculation requirement and power consumption for these AES encryption types are measured on the Texas Instruments LAUNCHXL-CC1310 platform. The experimental results show that the hardware-based AES performs better than the software-based AES in terms of power consumption and calculation cycle requirements. In addition, in terms of AES mode selection, the AES-CCM-MIC64 mode may be a better choice if the IoT device is considering security, encryption calculation requirement, and low power consumption at the same time. However, if the IoT device is pursuing lower power and the payload length is generally less than 16 bytes, then AES-ECB could be considered.
Towards an exact relativistic theory of Earth's geoid undulation
International Nuclear Information System (INIS)
Kopeikin, Sergei M.; Mazurova, Elena M.; Karpik, Alexander P.
2015-01-01
The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation
Towards an exact relativistic theory of Earth's geoid undulation
Energy Technology Data Exchange (ETDEWEB)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211 (United States); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Mazurova, Elena M., E-mail: e_mazurova@mail.ru [Moscow State University of Geodesy and Cartography, 4 Gorokhovsky Alley, Moscow 105064 (Russian Federation); Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation); Karpik, Alexander P., E-mail: rector@ssga.ru [Siberian State Geodetic Academy, 10 Plakhotny St., Novosibirsk 630108 (Russian Federation)
2015-08-14
The present paper extends the Newtonian concept of the geoid in classic geodesy towards the realm of general relativity by utilizing the covariant geometric methods of the perturbation theory of curved manifolds. It yields a covariant definition of the anomalous (disturbing) gravity potential and formulates differential equation for it in the form of a covariant Laplace equation. The paper also derives the Bruns equation for calculation of geoid's height with full account for relativistic effects beyond the Newtonian approximation. A brief discussion of the relativistic Bruns formula is provided. - Highlights: • We apply general relativity to define the exact concept of relativistic geoid. • We derive relativistic equation of geoid and the reference level surface. • We employ the manifold perturbation theory to discuss geoid's undulation.
Relativistic n-body wave equations in scalar quantum field theory
International Nuclear Information System (INIS)
Emami-Razavi, Mohsen
2006-01-01
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields
International Nuclear Information System (INIS)
Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang
2012-01-01
Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.
Relativistic continuum random phase approximation in spherical nuclei
International Nuclear Information System (INIS)
Daoutidis, Ioannis
2009-01-01
Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)
Relativistic continuum random phase approximation in spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Daoutidis, Ioannis
2009-10-01
Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)
Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato
Directory of Open Access Journals (Sweden)
Xing Ding
2018-05-01
Full Text Available The UGlcAE has the capability of interconverting UDP-d-galacturonic acid and UDP-d-glucuronic acid, and UDP-d-galacturonic acid is an activated precursor for the synthesis of pectins in plants. In this study, we identified nine UGlcAE protein-encoding genes in tomato. The nine UGlcAE genes that were distributed on eight chromosomes in tomato, and the corresponding proteins contained one or two trans-membrane domains. The phylogenetic analysis showed that SlUGlcAE genes could be divided into seven groups, designated UGlcAE1 to UGlcAE6, of which the UGlcAE2 were classified into two groups. Expression profile analysis revealed that the SlUGlcAE genes display diverse expression patterns in various tomato tissues. Selective pressure analysis indicated that all of the amino acid sites of SlUGlcAE proteins are undergoing purifying selection. Fifteen stress-, hormone-, and development-related elements were identified in the upstream regions (0.5 kb of these SlUGlcAE genes. Furthermore, we investigated the expression patterns of SlUGlcAE genes in response to three hormones (indole-3-acetic acid (IAA, gibberellin (GA, and salicylic acid (SA. We detected firmness, pectin contents, and expression levels of UGlcAE family genes during the development of tomato fruit. Here, we systematically summarize the general characteristics of the SlUGlcAE genes in tomato, which could provide a basis for further function studies of tomato UGlcAE genes.
Thermodynamic laws and equipartition theorem in relativistic Brownian motion.
Koide, T; Kodama, T
2011-06-01
We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.
Relativistic effects in resonance absorption
International Nuclear Information System (INIS)
Drake, J.F.; Lee, Y.C.
1976-01-01
The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed
Parton distribution in relativistic hadrons
International Nuclear Information System (INIS)
Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.
1979-01-01
The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance
Czech Academy of Sciences Publication Activity Database
Molnár, I.; Vrána, Jan; Farkas, A.; Kubaláková, Marie; Cseh, A.; Molnár-Láng, M.; Doležel, Jaroslav
2015-01-01
Roč. 116, č. 2 (2015), s. 189-200 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Aegilops markgrafii * Ae. triuncialis * Ae. cylindrica Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.982, year: 2015
Directory of Open Access Journals (Sweden)
Sanjay Chaturvedi
2017-08-01
Full Text Available Abstract Background Acute Encephalitis Syndrome (AES and Japanese Encephalitis (JE stay as poorly understood phenomena in India. Multiple linkages to determinants such as poverty, socio-economic status, gender, environment, and population distribution, make it a greater developmental issue than just a zoonotic disease. Methods A qualitative study was conducted to map knowledge, perceptions and practices of community and health systems level stakeholders. Seventeen interviews with utilizers of AES care, care givers from human and veterinary sectors, Non-governmental Organizations (NGOs, and pig owners and 4 Focused Group Discussions (FGDs with farmers, community leaders, and students were conducted in an endemic north Indian district-Kushinagar. Results Core themes that emerged were: JE/AES been perceived as a deadly disease, but not a major health problem; filthy conditions, filthy water and mosquitoes seen to be associated with JE/AES; pigs not seen as a source of infection; minimal role of government health workers in the first-contact care of acute Illness; no social or cultural resistance to JE vaccination or mosquito control; no gender-based discrimination in the care of acute Illness; and non-utilization of funds available with local self govt. Serious challenges and systematic failures in delivery of care during acute illness, which can critically inform the health systems, were also identified. Conclusion There is an urgent need for promotive interventions to address lack of awareness about the drivers of JE/AES. Delivery of care during acute illness suffers with formidable challenges and systematic failures. A large portion of mortality can be prevented by early institution of rational management at primary and secondary level, and by avoiding wastage of time and resources for investigations and medications that are not actually required.
Secure Data Encryption Through a Combination of AES, RSA and HMAC
Directory of Open Access Journals (Sweden)
E. S. I. Harba
2017-08-01
Full Text Available Secure file transfer based upon well-designed file encryption and authorization systems expend considerable effort to protect passwords and other credentials from being stolen. Transferring and storing passwords in plaintext form leaves them at risk of exposure to attackers, eavesdroppers and spyware. In order to avoid such exposure, powerful encryption/authentication systems use various mechanisms to minimize the possibility that unencrypted credentials will be exposed, as well as be sure that any authentication data that does get transmitted and stored will be of minimal use to an attacker. In this paper we proposed a method to protect data transferring by three hybrid encryption techniques: symmetric AES algorithm used to encrypt files, asymmetric RSA used to encrypt AES password and HMAC to encrypt symmetric password and/or data to ensure a secure transmitting between server-client or client-client from verifying in-between client and server and make it hard to attack by common attacked methods.
Experimental study on the Kaiser effect of AE under multiaxial loading in granite
International Nuclear Information System (INIS)
Watanabe, Hidehiko; Hiroi, Takehiro
2012-01-01
Knowledge of the in-situ stresses is essential for underground excavation design, particularly in evaluating stability of excavation. Acoustic Emission method, which utilizes the Kaiser effect, is one of the simple methods for measuring in-situ stresses. Experiments on the Kaiser effect has been carried out under uniaxial compression and triaxial compression (σ 1 > σ 2 = σ 3 ), but has not been carried out under the three different principal stresses (σ 1 > σ 2 > σ 3 ). In this study, we performed two experiments on the Kaiser effect under multiaxial loading, using a hollow cylindrical granite specimen. The rapidly increasing point of cumulative AE event count was determined as the peak point of AE event count rate increment (AERI). The main results are summarized as follows. (1) In the case of the cyclic incremental σ 1 loading under σ 2 ≠σ 3 , the large peak point of AERI appeared just before the pre-stress level. And as more stresses prior to just before the peak point were estimated, the estimated error showed a tendency to increase. (2) In the case of re-loading under the lower σ 2 and σ 3 more than pre-loading, the estimated stresses using the three peak points of AERI corresponded to the pre-differential stresses (σ 1 -σ 2 ), (σ 1 -σ 3 ) and pre-axial stress σ 1 . The magnitudes of the three principal stresses were estimated under multiaxial loading from the Kaiser effect, using only one specimen. (author)
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.
1989-01-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
New derivation of relativistic dissipative fluid dynamics
International Nuclear Information System (INIS)
Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata
2012-01-01
Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation
Penetration of relativistic heavy ions through matter
International Nuclear Information System (INIS)
Scheidenberger, C.; Geissel, H.
1997-07-01
New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)
Relativistic klystron research for linear colliders
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-09-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab
Whispering gallery effect in relativistic optics
Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.
2018-03-01
relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.
Holographic Aspects of a Relativistic Nonconformal Theory
Directory of Open Access Journals (Sweden)
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
The ionisation equation in a relativistic gas
International Nuclear Information System (INIS)
Kichenassamy, S.; Krikorian, R.A.
1983-01-01
By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)
On the physics of relativistic double layers
International Nuclear Information System (INIS)
Carlqvist, P.
1982-06-01
A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)
Local density approximations for relativistic exchange energies
International Nuclear Information System (INIS)
MacDonald, A.H.
1986-01-01
The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented
Decryption-decompression of AES protected ZIP files on GPUs
Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc
2011-10-01
AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.
The spectrum and variability of radio emission from AE Aquarii
Abada-Simon, Meil; Lecacheux, Alain; Bastian, Tim S.; Bookbinder, Jay A.; Dulk, George A.
1993-01-01
The first detections of the magnetic cataclysmic variable AE Aquarii at millimeter wavelengths are reported. AE Aqr was detected at wavelengths of 3.4 and 1.25 mm. These data are used to show that the time-averaged spectrum is generally well fitted by a power law S(nu) varies as nu exp alpha, where alpha is approximately equal to 0.35-0.60, and that the power law extends to millimeter wavelengths, i.e., the spectral turnover is at a frequency higher than 240 GHz. It is suggested that the spectrum is consistent with that expected from a superposition of flarelike events where the frequency distribution of the initial flux density is a power law f (S0) varies as S0 exp -epsilon, with index epsilon approximately equal to 1.8. Within the context of this model, the high turnover frequency of the radio spectrum implies magnetic field strengths in excess of 250 G in the source.
Loureiro, I.; Escorial, C.; García-Baudin, J.M.; Chueca, C.
2009-01-01
Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F1 hybrids bearing F2 seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with ";Astral" wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphip...
Composition of lunar noble gases traped 2.5 AE and 3.5 AE ago
International Nuclear Information System (INIS)
Eugster, O.
1986-01-01
The times when the soils 74001 and 73261 were exposed on the lunar surface were determined by the U-235 - Xe-136 dating method. The isotopic composition of the trapped noble gases in these two soils is compared with that of the surface correlated noble gases in the young soils 12001 and in the present day solar wind. The surface correlated trapped gases are a mixture of implanted solar wind particles and retrapped lunar atmospheric gases. The observed changes are interpreted as a result of decreasing outgassing of radiogenic Ar-40 and perhaps He-4 and of fissiogenic Xe from the lunar crust. The old soils probably also contain surface correlated Kr-80 and Kr-82 produced by secondary cosmic ray neutron capture of adsorbed or retrapped bromine. To some extent the isotopic composition of the trapped gases in old lunar soil may also have been altered due to diffusion loss from material of low retentivity
Investigation of relativistic laser-plasmas using nuclear diagnostics
International Nuclear Information System (INIS)
Guenther, Marc M.
2011-01-01
The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different (γ,xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the (γ,xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI-Helmholtzzentrum fuer
Relativistic focusing and ponderomotive channeling of intense laser beams
International Nuclear Information System (INIS)
Hafizi, B.; Ting, A.; Sprangle, P.; Hubbard, R. F.
2000-01-01
The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical expression for the effective potential is given. For laser powers exceeding the critical power for relativistic self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase in intensity is possible. (c) 2000 The American Physical Society
Relativistic Band Calculation and the Optical Properties of Gold
DEFF Research Database (Denmark)
Christensen, N Egede; Seraphin, B. O.
1971-01-01
of magnitude as the gaps (approximately 1 eV). Various integrated functions, density of states, joint density of states, and energy distributions of joint density of states are derived from the RAPW calculation. These functions are used in an interpretation of photoemission and static reflectance measurements......The energy band structure of gold is calculated by the relativistic augmented-plane-wave (RAPW) method. A nonrelativistic calculation is also presented, and a comparison between this and the RAPW results demonstrates that the shifts and splittings due to relativistic effects are of the same order...... to trace out the regions in k→ space where the edge and tail transitions occur. It is demonstrated that structure in the static reflection curves are not related to critical points in the band structure. The arguments are supported by calculations of temperature shifts of the critical-point energies...
Characterization of particle states in relativistic classical quantum theory
International Nuclear Information System (INIS)
Horwitz, L.P.; Rabin, Y.
1977-02-01
Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given
Particle Interferometry for Relativistic Heavy-Ion Collisions
Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich
1999-01-01
In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.
Production of spectator hypermatter in relativistic heavy-ion collisions
International Nuclear Information System (INIS)
Botvina, A. S.; Gudima, K. K.; Steinheimer, J.; Bleicher, M.; Mishustin, I. N.
2011-01-01
Possible formation of large hyperfragments in relativistic heavy-ion collisions is studied within two transport models, the Dubna cascade model and UrQMD model. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semiperipheral collisions. We investigate basic characteristics of the produced hyperspectators and estimate the production probabilities of multistrange systems. Advantages of the proposed mechanisms over an alternative coalescence process are analyzed. We also discuss how such hyperfragments can be detected by taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hypernuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.
MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation
Pashkevich, V. V.
2017-03-01
The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.
Auxiliary fields in the geometrical relativistic particle dynamics
International Nuclear Information System (INIS)
Amador, A; Bagatella, N; Rojas, E; Cordero, R
2008-01-01
We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles
Auxiliary fields in the geometrical relativistic particle dynamics
Energy Technology Data Exchange (ETDEWEB)
Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx
2008-03-21
We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.
Laser vacuum acceleration of a relativistic electron bunch
Energy Technology Data Exchange (ETDEWEB)
Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2015-06-30
With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)
Relativistic resonances as non-orthogonal states in Hilbert space
Blum, W
2003-01-01
We analyze the energy-momentum properties of relativistic short-lived particles with the result that they are characterized by two 4-vectors: in addition to the familiar energy-momentum vector (timelike) there is an energy-momentum 'spread vector' (spacelike). The wave functions in space and time for unstable particles are constructed. For the relativistic properties of unstable states we refer to Wigner's method of Poincare group representations that are induced by representations of the space-time translation and rotation groups. If stable particles, unstable particles and resonances are treated as elementary objects that are not fundamentally different one has to take into account that they will not generally be orthogonal to each other in their state space. The scalar product between a stable and an unstable state with otherwise identical properties is calculated in a particular Lorentz frame. The spin of an unstable particle is not infinitely sharp but has a 'spin spread' giving rise to 'spin neighbors'....
Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa
2018-02-01
Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.
The Wigner function in the relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.
2016-12-15
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.
New relativistic generalization of the Heisenberg commutation relations
International Nuclear Information System (INIS)
Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.
1984-01-01
A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator
Relativistic initial conditions for N-body simulations
Energy Technology Data Exchange (ETDEWEB)
Fidler, Christian [Catholic University of Louvain—Center for Cosmology, Particle Physics and Phenomenology (CP3) 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Rampf, Cornelius, E-mail: christian.fidler@uclouvain.be, E-mail: thomas.tram@port.ac.uk, E-mail: rampf@thphys.uni-heidelberg.de, E-mail: robert.crittenden@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: david.wands@port.ac.uk [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)
2017-06-01
Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code. This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.
A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2
International Nuclear Information System (INIS)
Swainson, R.A.; Drake, G.W.F.
1991-01-01
This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)
Time Operator in Relativistic Quantum Mechanics
Khorasani, Sina
2017-07-01
It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.
Fourth sound in relativistic superfluidity theory
International Nuclear Information System (INIS)
Vil'chinskij, S.I.; Fomin, P.I.
1995-01-01
The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined
Relativistic nuclear physics and quantum chromodynamics. Abstracts
International Nuclear Information System (INIS)
1994-01-01
The data of investigations on problems of high energy physics are given. Special attention pays to quantum chromodynamics at large distances, cumulative processes, multiquark states and relativistic nuclear collisions
Hot relativistic winds and the Crab nebula
International Nuclear Information System (INIS)
Fujimura, F.S.; Kennel, C.F.
1981-01-01
Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)
ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER
International Nuclear Information System (INIS)
MCLERRAN, L.
1999-01-01
The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities