WorldWideScience

Sample records for relative standard errors

  1. A Note on Standard Deviation and Standard Error

    Science.gov (United States)

    Hassani, Hossein; Ghodsi, Mansoureh; Howell, Gareth

    2010-01-01

    Many students confuse the standard deviation and standard error of the mean and are unsure which, if either, to use in presenting data. In this article, we endeavour to address these questions and cover some related ambiguities about these quantities.

  2. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  3. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Macarena Suárez-Pellicioni

    Full Text Available This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA and seventeen low math-anxious (LMA individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN, the error positivity component (Pe, classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  4. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    Science.gov (United States)

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  5. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    Science.gov (United States)

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  6. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  8. [Roaming through methodology. XXXVIII. Common misconceptions involving standard deviation and standard error

    NARCIS (Netherlands)

    Mokkink, H.G.A.

    2002-01-01

    Standard deviation and standard error have a clear mutual relationship, but at the same time they differ strongly in the type of information they supply. This can lead to confusion and misunderstandings. Standard deviation describes the variability in a sample of measures of a variable, for instance

  9. A Generalizability Theory Approach to Standard Error Estimates for Bookmark Standard Settings

    Science.gov (United States)

    Lee, Guemin; Lewis, Daniel M.

    2008-01-01

    The bookmark standard-setting procedure is an item response theory-based method that is widely implemented in state testing programs. This study estimates standard errors for cut scores resulting from bookmark standard settings under a generalizability theory model and investigates the effects of different universes of generalization and error…

  10. Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.

    Science.gov (United States)

    Banks, H T; Holm, Kathleen; Robbins, Danielle

    2010-11-01

    We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error which produces non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods.

  11. Standard error propagation in R-matrix model fitting for light elements

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Zhang Rui; Sun Yeying; Liu Tingjin

    2003-01-01

    The error propagation features with R-matrix model fitting 7 Li, 11 B and 17 O systems were researched systematically. Some laws of error propagation were revealed, an empirical formula P j = U j c / U j d = K j · S-bar · √m / √N for describing standard error propagation was established, the most likely error ranges for standard cross sections of 6 Li(n,t), 10 B(n,α0) and 10 B(n,α1) were estimated. The problem that the standard error of light nuclei standard cross sections may be too small results mainly from the R-matrix model fitting, which is not perfect. Yet R-matrix model fitting is the most reliable evaluation method for such data. The error propagation features of R-matrix model fitting for compound nucleus system of 7 Li, 11 B and 17 O has been studied systematically, some laws of error propagation are revealed, and these findings are important in solving the problem mentioned above. Furthermore, these conclusions are suitable for similar model fitting in other scientific fields. (author)

  12. Refractive error magnitude and variability: Relation to age.

    Science.gov (United States)

    Irving, Elizabeth L; Machan, Carolyn M; Lam, Sharon; Hrynchak, Patricia K; Lillakas, Linda

    2018-03-19

    To investigate mean ocular refraction (MOR) and astigmatism, over the human age range and compare severity of refractive error to earlier studies from clinical populations having large age ranges. For this descriptive study patient age, refractive error and history of surgery affecting refraction were abstracted from the Waterloo Eye Study database (WatES). Average MOR, standard deviation of MOR and astigmatism were assessed in relation to age. Refractive distributions for developmental age groups were determined. MOR standard deviation relative to average MOR was evaluated. Data from earlier clinically based studies with similar age ranges were compared to WatES. Right eye refractive errors were available for 5933 patients with no history of surgery affecting refraction. Average MOR varied with age. Children <1 yr of age were the most hyperopic (+1.79D) and the highest magnitude of myopia was found at 27yrs (-2.86D). MOR distributions were leptokurtic, and negatively skewed. The mode varied with age group. MOR variability increased with increasing myopia. Average astigmatism increased gradually to age 60 after which it increased at a faster rate. By 85+ years it was 1.25D. J 0 power vector became increasingly negative with age. J 45 power vector values remained close to zero but variability increased at approximately 70 years. In relation to comparable earlier studies, WatES data were most myopic. Mean ocular refraction and refractive error distribution vary with age. The highest magnitude of myopia is found in young adults. Similar to prevalence, the severity of myopia also appears to have increased since 1931. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  13. Radiological error: analysis, standard setting, targeted instruction and teamworking

    International Nuclear Information System (INIS)

    FitzGerald, Richard

    2005-01-01

    Diagnostic radiology does not have objective benchmarks for acceptable levels of missed diagnoses [1]. Until now, data collection of radiological discrepancies has been very time consuming. The culture within the specialty did not encourage it. However, public concern about patient safety is increasing. There have been recent innovations in compiling radiological interpretive discrepancy rates which may facilitate radiological standard setting. However standard setting alone will not optimise radiologists' performance or patient safety. We must use these new techniques in radiological discrepancy detection to stimulate greater knowledge sharing, targeted instruction and teamworking among radiologists. Not all radiological discrepancies are errors. Radiological discrepancy programmes must not be abused as an instrument for discrediting individual radiologists. Discrepancy rates must not be distorted as a weapon in turf battles. Radiological errors may be due to many causes and are often multifactorial. A systems approach to radiological error is required. Meaningful analysis of radiological discrepancies and errors is challenging. Valid standard setting will take time. Meanwhile, we need to develop top-up training, mentoring and rehabilitation programmes. (orig.)

  14. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    Science.gov (United States)

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  15. Error detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE Standard 802.3

    Science.gov (United States)

    Fujiwara, Toru; Kasami, Tadao; Lin, Shu

    1989-09-01

    The error-detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE Standard 802.3 are investigated. These codes are also used for error detection in the data link layer of the Ethernet, a local area network. The weight distributions for various code lengths are calculated to obtain the probability of undetectable error and that of detectable error for a binary symmetric channel with bit-error rate between 0.00001 and 1/2.

  16. Semiparametric Bernstein–von Mises for the error standard deviation

    NARCIS (Netherlands)

    Jonge, de R.; Zanten, van J.H.

    2013-01-01

    We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein–von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a

  17. Semiparametric Bernstein-von Mises for the error standard deviation

    NARCIS (Netherlands)

    de Jonge, R.; van Zanten, H.

    2013-01-01

    We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein-von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a

  18. Semiparametric Bernstein–von Mises for the error standard deviation

    OpenAIRE

    Jonge, de, R.; Zanten, van, J.H.

    2013-01-01

    We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein–von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regr...

  19. Estimating the Standard Error of the Judging in a modified-Angoff Standards Setting Procedure

    Directory of Open Access Journals (Sweden)

    Robert G. MacCann

    2004-03-01

    Full Text Available For a modified Angoff standards setting procedure, two methods of calculating the standard error of the..judging were compared. The Central Limit Theorem (CLT method is easy to calculate and uses readily..available data. It estimates the variance of mean cut scores as a function of the variance of cut scores within..a judging group, based on the independent judgements at Stage 1 of the process. Its theoretical drawback is..that it is unable to take account of the effects of collaboration among the judges at Stages 2 and 3. The..second method, an application of equipercentile (EQP equating, relies on the selection of very large stable..candidatures and the standardisation of the raw score distributions to remove effects associated with test..difficulty. The standard error estimates were then empirically obtained from the mean cut score variation..observed over a five year period. For practical purposes, the two methods gave reasonable agreement, with..the CLT method working well for the top band, the band that attracts most public attention. For some..bands in English and Mathematics, the CLT standard error was smaller than the EQP estimate, suggesting..the CLT method be used with caution as an approximate guide only.

  20. 47 CFR 1.1167 - Error claims related to regulatory fees.

    Science.gov (United States)

    2010-10-01

    ...) Challenges to determinations or an insufficient regulatory fee payment or delinquent fees should be made in writing. A challenge to a determination that a party is delinquent in paying a standard regulatory fee... 47 Telecommunication 1 2010-10-01 2010-10-01 false Error claims related to regulatory fees. 1.1167...

  1. Scaling prediction errors to reward variability benefits error-driven learning in humans.

    Science.gov (United States)

    Diederen, Kelly M J; Schultz, Wolfram

    2015-09-01

    Effective error-driven learning requires individuals to adapt learning to environmental reward variability. The adaptive mechanism may involve decays in learning rate across subsequent trials, as shown previously, and rescaling of reward prediction errors. The present study investigated the influence of prediction error scaling and, in particular, the consequences for learning performance. Participants explicitly predicted reward magnitudes that were drawn from different probability distributions with specific standard deviations. By fitting the data with reinforcement learning models, we found scaling of prediction errors, in addition to the learning rate decay shown previously. Importantly, the prediction error scaling was closely related to learning performance, defined as accuracy in predicting the mean of reward distributions, across individual participants. In addition, participants who scaled prediction errors relative to standard deviation also presented with more similar performance for different standard deviations, indicating that increases in standard deviation did not substantially decrease "adapters'" accuracy in predicting the means of reward distributions. However, exaggerated scaling beyond the standard deviation resulted in impaired performance. Thus efficient adaptation makes learning more robust to changing variability. Copyright © 2015 the American Physiological Society.

  2. Conditional Standard Errors of Measurement for Scale Scores.

    Science.gov (United States)

    Kolen, Michael J.; And Others

    1992-01-01

    A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)

  3. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  4. Standard deviation and standard error of the mean.

    Science.gov (United States)

    Lee, Dong Kyu; In, Junyong; Lee, Sangseok

    2015-06-01

    In most clinical and experimental studies, the standard deviation (SD) and the estimated standard error of the mean (SEM) are used to present the characteristics of sample data and to explain statistical analysis results. However, some authors occasionally muddle the distinctive usage between the SD and SEM in medical literature. Because the process of calculating the SD and SEM includes different statistical inferences, each of them has its own meaning. SD is the dispersion of data in a normal distribution. In other words, SD indicates how accurately the mean represents sample data. However the meaning of SEM includes statistical inference based on the sampling distribution. SEM is the SD of the theoretical distribution of the sample means (the sampling distribution). While either SD or SEM can be applied to describe data and statistical results, one should be aware of reasonable methods with which to use SD and SEM. We aim to elucidate the distinctions between SD and SEM and to provide proper usage guidelines for both, which summarize data and describe statistical results.

  5. Human errors related to maintenance and modifications

    International Nuclear Information System (INIS)

    Laakso, K.; Pyy, P.; Reiman, L.

    1998-01-01

    The focus in human reliability analysis (HRA) relating to nuclear power plants has traditionally been on human performance in disturbance conditions. On the other hand, some studies and incidents have shown that also maintenance errors, which have taken place earlier in plant history, may have an impact on the severity of a disturbance, e.g. if they disable safety related equipment. Especially common cause and other dependent failures of safety systems may significantly contribute to the core damage risk. The first aim of the study was to identify and give examples of multiple human errors which have penetrated the various error detection and inspection processes of plant safety barriers. Another objective was to generate numerical safety indicators to describe and forecast the effectiveness of maintenance. A more general objective was to identify needs for further development of maintenance quality and planning. In the first phase of this operational experience feedback analysis, human errors recognisable in connection with maintenance were looked for by reviewing about 4400 failure and repair reports and some special reports which cover two nuclear power plant units on the same site during 1992-94. A special effort was made to study dependent human errors since they are generally the most serious ones. An in-depth root cause analysis was made for 14 dependent errors by interviewing plant maintenance foremen and by thoroughly analysing the errors. A more simple treatment was given to maintenance-related single errors. The results were shown as a distribution of errors among operating states i.a. as regards the following matters: in what operational state the errors were committed and detected; in what operational and working condition the errors were detected, and what component and error type they were related to. These results were presented separately for single and dependent maintenance-related errors. As regards dependent errors, observations were also made

  6. What to use to express the variability of data: Standard deviation or standard error of mean?

    Science.gov (United States)

    Barde, Mohini P; Barde, Prajakt J

    2012-07-01

    Statistics plays a vital role in biomedical research. It helps present data precisely and draws the meaningful conclusions. While presenting data, one should be aware of using adequate statistical measures. In biomedical journals, Standard Error of Mean (SEM) and Standard Deviation (SD) are used interchangeably to express the variability; though they measure different parameters. SEM quantifies uncertainty in estimate of the mean whereas SD indicates dispersion of the data from mean. As readers are generally interested in knowing the variability within sample, descriptive data should be precisely summarized with SD. Use of SEM should be limited to compute CI which measures the precision of population estimate. Journals can avoid such errors by requiring authors to adhere to their guidelines.

  7. The Standard Error of a Proportion for Different Scores and Test Length.

    Directory of Open Access Journals (Sweden)

    David A. Walker

    2005-06-01

    Full Text Available This paper examines Smith's (2003 proposed standard error of a proportion index..associated with the idea of reliability as sufficiency of information. A detailed table..indexing all of the standard error values affiliated with assessments that range from 5 to..100 items, where students scored as low as 50% correct and 50% incorrect to as high as..95% correct and 5% incorrect, calculated in increments of 1 percentage point, is..presented, along with distributional qualities. Examples using this measure for classroom..teachers and higher education instructors of assessment are provided.

  8. Development of an analysis rule of diagnosis error for standard method of human reliability analysis

    International Nuclear Information System (INIS)

    Jeong, W. D.; Kang, D. I.; Jeong, K. S.

    2003-01-01

    This paper presents the status of development of Korea standard method for Human Reliability Analysis (HRA), and proposed a standard procedure and rules for the evaluation of diagnosis error probability. The quality of KSNP HRA was evaluated using the requirement of ASME PRA standard guideline, and the design requirement for the standard HRA method was defined. Analysis procedure and rules, developed so far, to analyze diagnosis error probability was suggested as a part of the standard method. And also a study of comprehensive application was performed to evaluate the suitability of the proposed rules

  9. Towards reporting standards for neuropsychological study results: A proposal to minimize communication errors with standardized qualitative descriptors for normalized test scores.

    Science.gov (United States)

    Schoenberg, Mike R; Rum, Ruba S

    2017-11-01

    Rapid, clear and efficient communication of neuropsychological results is essential to benefit patient care. Errors in communication are a lead cause of medical errors; nevertheless, there remains a lack of consistency in how neuropsychological scores are communicated. A major limitation in the communication of neuropsychological results is the inconsistent use of qualitative descriptors for standardized test scores and the use of vague terminology. PubMed search from 1 Jan 2007 to 1 Aug 2016 to identify guidelines or consensus statements for the description and reporting of qualitative terms to communicate neuropsychological test scores was conducted. The review found the use of confusing and overlapping terms to describe various ranges of percentile standardized test scores. In response, we propose a simplified set of qualitative descriptors for normalized test scores (Q-Simple) as a means to reduce errors in communicating test results. The Q-Simple qualitative terms are: 'very superior', 'superior', 'high average', 'average', 'low average', 'borderline' and 'abnormal/impaired'. A case example illustrates the proposed Q-Simple qualitative classification system to communicate neuropsychological results for neurosurgical planning. The Q-Simple qualitative descriptor system is aimed as a means to improve and standardize communication of standardized neuropsychological test scores. Research are needed to further evaluate neuropsychological communication errors. Conveying the clinical implications of neuropsychological results in a manner that minimizes risk for communication errors is a quintessential component of evidence-based practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. What to use to express the variability of data: Standard deviation or standard error of mean?

    OpenAIRE

    Barde, Mohini P.; Barde, Prajakt J.

    2012-01-01

    Statistics plays a vital role in biomedical research. It helps present data precisely and draws the meaningful conclusions. While presenting data, one should be aware of using adequate statistical measures. In biomedical journals, Standard Error of Mean (SEM) and Standard Deviation (SD) are used interchangeably to express the variability; though they measure different parameters. SEM quantifies uncertainty in estimate of the mean whereas SD indicates dispersion of the data from mean. As reade...

  11. Error analysis of isotope dilution mass spectrometry method with internal standard

    International Nuclear Information System (INIS)

    Rizhinskii, M.W.; Vitinskii, M.Y.

    1989-02-01

    The computation algorithms of the normalized isotopic ratios and element concentration by isotope dilution mass spectrometry with internal standard are presented. A procedure based on the Monte-Carlo calculation is proposed for predicting the magnitude of the errors to be expected. The estimation of systematic and random errors is carried out in the case of the certification of uranium and plutonium reference materials as well as for the use of those reference materials in the analysis of irradiated nuclear fuels. 4 refs, 11 figs, 2 tabs

  12. Improvement of least-squares collocation error estimates using local GOCE Tzz signal standard deviations

    DEFF Research Database (Denmark)

    Tscherning, Carl Christian

    2015-01-01

    outside the data area. On the other hand, a comparison of predicted quantities with observed values show that the error also varies depending on the local data standard deviation. This quantity may be (and has been) estimated using the GOCE second order vertical derivative, Tzz, in the area covered...... by the satellite. The ratio between the nearly constant standard deviations of a predicted quantity (e.g. in a 25° × 25° area) and the standard deviations of Tzz in smaller cells (e.g., 1° × 1°) have been used as a scale factor in order to obtain more realistic error estimates. This procedure has been applied...

  13. An overview of intravenous-related medication administration errors as reported to MEDMARX, a national medication error-reporting program.

    Science.gov (United States)

    Hicks, Rodney W; Becker, Shawn C

    2006-01-01

    Medication errors can be harmful, especially if they involve the intravenous (IV) route of administration. A mixed-methodology study using a 5-year review of 73,769 IV-related medication errors from a national medication error reporting program indicates that between 3% and 5% of these errors were harmful. The leading type of error was omission, and the leading cause of error involved clinician performance deficit. Using content analysis, three themes-product shortage, calculation errors, and tubing interconnectivity-emerge and appear to predispose patients to harm. Nurses often participate in IV therapy, and these findings have implications for practice and patient safety. Voluntary medication error-reporting programs afford an opportunity to improve patient care and to further understanding about the nature of IV-related medication errors.

  14. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Science.gov (United States)

    Spüler, Martin; Niethammer, Christian

    2015-01-01

    When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG. PMID:25859204

  15. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  16. Standardizing Medication Error Event Reporting in the U.S. Department of Defense

    National Research Council Canada - National Science Library

    Nosek, Ronald A., Jr; McMeekin, Judy; Rake, Geoffrey W

    2005-01-01

    ...) began an aggressive examination of medical errors and the strategies for minimizing them. A primary goal was the creation of a standardized medication event reporting system, including a central registry for the compilation of reported data...

  17. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  18. Relative Error Evaluation to Typical Open Global dem Datasets in Shanxi Plateau of China

    Science.gov (United States)

    Zhao, S.; Zhang, S.; Cheng, W.

    2018-04-01

    Produced by radar data or stereo remote sensing image pairs, global DEM datasets are one of the most important types for DEM data. Relative error relates to surface quality created by DEM data, so it relates to geomorphology and hydrologic applications using DEM data. Taking Shanxi Plateau of China as the study area, this research evaluated the relative error to typical open global DEM datasets including Shuttle Radar Terrain Mission (SRTM) data with 1 arc second resolution (SRTM1), SRTM data with 3 arc second resolution (SRTM3), ASTER global DEM data in the second version (GDEM-v2) and ALOS world 3D-30m (AW3D) data. Through process and selection, more than 300,000 ICESat/GLA14 points were used as the GCP data, and the vertical error was computed and compared among four typical global DEM datasets. Then, more than 2,600,000 ICESat/GLA14 point pairs were acquired using the distance threshold between 100 m and 500 m. Meanwhile, the horizontal distance between every point pair was computed, so the relative error was achieved using slope values based on vertical error difference and the horizontal distance of the point pairs. Finally, false slope ratio (FSR) index was computed through analyzing the difference between DEM and ICESat/GLA14 values for every point pair. Both relative error and FSR index were categorically compared for the four DEM datasets under different slope classes. Research results show: Overall, AW3D has the lowest relative error values in mean error, mean absolute error, root mean square error and standard deviation error; then the SRTM1 data, its values are a little higher than AW3D data; the SRTM3 and GDEM-v2 data have the highest relative error values, and the values for the two datasets are similar. Considering different slope conditions, all the four DEM data have better performance in flat areas but worse performance in sloping regions; AW3D has the best performance in all the slope classes, a litter better than SRTM1; with slope increasing

  19. Event-Related Potentials for Post-Error and Post-Conflict Slowing

    Science.gov (United States)

    Chang, Andrew; Chen, Chien-Chung; Li, Hsin-Hung; Li, Chiang-Shan R.

    2014-01-01

    In a reaction time task, people typically slow down following an error or conflict, each called post-error slowing (PES) and post-conflict slowing (PCS). Despite many studies of the cognitive mechanisms, the neural responses of PES and PCS continue to be debated. In this study, we combined high-density array EEG and a stop-signal task to examine event-related potentials of PES and PCS in sixteen young adult participants. The results showed that the amplitude of N2 is greater during PES but not PCS. In contrast, the peak latency of N2 is longer for PCS but not PES. Furthermore, error-positivity (Pe) but not error-related negativity (ERN) was greater in the stop error trials preceding PES than non-PES trials, suggesting that PES is related to participants' awareness of the error. Together, these findings extend earlier work of cognitive control by specifying the neural correlates of PES and PCS in the stop signal task. PMID:24932780

  20. A lower bound on the relative error of mixed-state cloning and related operations

    International Nuclear Information System (INIS)

    Rastegin, A E

    2003-01-01

    We extend the concept of the relative error to mixed-state cloning and related physical operations, in which the ancilla contains some information a priori about the input state. The lower bound on the relative error is obtained. It is shown that this result provides further support for a stronger no-cloning theorem

  1. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    Science.gov (United States)

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  2. CORRECTING ERRORS: THE RELATIVE EFFICACY OF DIFFERENT FORMS OF ERROR FEEDBACK IN SECOND LANGUAGE WRITING

    Directory of Open Access Journals (Sweden)

    Chitra Jayathilake

    2013-01-01

    Full Text Available Error correction in ESL (English as a Second Language classes has been a focal phenomenon in SLA (Second Language Acquisition research due to some controversial research results and diverse feedback practices. This paper presents a study which explored the relative efficacy of three forms of error correction employed in ESL writing classes: focusing on the acquisition of one grammar element both for immediate and delayed language contexts, and collecting data from university undergraduates, this study employed an experimental research design with a pretest-treatment-posttests structure. The research revealed that the degree of success in acquiring L2 (Second Language grammar through error correction differs according to the form of the correction and to learning contexts. While the findings are discussed in relation to the previous literature, this paper concludes creating a cline of error correction forms to be promoted in Sri Lankan L2 writing contexts, particularly in ESL contexts in Universities.

  3. Making related errors facilitates learning, but learners do not know it.

    Science.gov (United States)

    Huelser, Barbie J; Metcalfe, Janet

    2012-05-01

    Producing an error, so long as it is followed by corrective feedback, has been shown to result in better retention of the correct answers than does simply studying the correct answers from the outset. The reasons for this surprising finding, however, have not been investigated. Our hypothesis was that the effect might occur only when the errors produced were related to the targeted correct response. In Experiment 1, participants studied either related or unrelated word pairs, manipulated between participants. Participants either were given the cue and target to study for 5 or 10 s or generated an error in response to the cue for the first 5 s before receiving the correct answer for the final 5 s. When the cues and targets were related, error-generation led to the highest correct retention. However, consistent with the hypothesis, no benefit was derived from generating an error when the cue and target were unrelated. Latent semantic analysis revealed that the errors generated in the related condition were related to the target, whereas they were not related to the target in the unrelated condition. Experiment 2 replicated these findings in a within-participants design. We found, additionally, that people did not know that generating an error enhanced memory, even after they had just completed the task that produced substantial benefits.

  4. An emerging network storage management standard: Media error monitoring and reporting information (MEMRI) - to determine optical tape data integrity

    Science.gov (United States)

    Podio, Fernando; Vollrath, William; Williams, Joel; Kobler, Ben; Crouse, Don

    1998-01-01

    Sophisticated network storage management applications are rapidly evolving to satisfy a market demand for highly reliable data storage systems with large data storage capacities and performance requirements. To preserve a high degree of data integrity, these applications must rely on intelligent data storage devices that can provide reliable indicators of data degradation. Error correction activity generally occurs within storage devices without notification to the host. Early indicators of degradation and media error monitoring 333 and reporting (MEMR) techniques implemented in data storage devices allow network storage management applications to notify system administrators of these events and to take appropriate corrective actions before catastrophic errors occur. Although MEMR techniques have been implemented in data storage devices for many years, until 1996 no MEMR standards existed. In 1996 the American National Standards Institute (ANSI) approved the only known (world-wide) industry standard specifying MEMR techniques to verify stored data on optical disks. This industry standard was developed under the auspices of the Association for Information and Image Management (AIIM). A recently formed AIIM Optical Tape Subcommittee initiated the development of another data integrity standard specifying a set of media error monitoring tools and media error monitoring information (MEMRI) to verify stored data on optical tape media. This paper discusses the need for intelligent storage devices that can provide data integrity metadata, the content of the existing data integrity standard for optical disks, and the content of the MEMRI standard being developed by the AIIM Optical Tape Subcommittee.

  5. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  6. Parts of the Whole: Error Estimation for Science Students

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2017-01-01

    Full Text Available It is important for science students to understand not only how to estimate error sizes in measurement data, but also to see how these errors contribute to errors in conclusions they may make about the data. Relatively small errors in measurement, errors in assumptions, and roundoff errors in computation may result in large error bounds on computed quantities of interest. In this column, we look closely at a standard method for measuring the volume of cancer tumor xenografts to see how small errors in each of these three factors may contribute to relatively large observed errors in recorded tumor volumes.

  7. Assessing errors related to characteristics of the items measured

    International Nuclear Information System (INIS)

    Liggett, W.

    1980-01-01

    Errors that are related to some intrinsic property of the items measured are often encountered in nuclear material accounting. An example is the error in nondestructive assay measurements caused by uncorrected matrix effects. Nuclear material accounting requires for each materials type one measurement method for which bounds on these errors can be determined. If such a method is available, a second method might be used to reduce costs or to improve precision. If the measurement error for the first method is longer-tailed than Gaussian, then precision might be improved by measuring all items by both methods. 8 refs

  8. WASP (Write a Scientific Paper) using Excel - 6: Standard error and confidence interval.

    Science.gov (United States)

    Grech, Victor

    2018-03-01

    The calculation of descriptive statistics includes the calculation of standard error and confidence interval, an inevitable component of data analysis in inferential statistics. This paper provides pointers as to how to do this in Microsoft Excel™. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Technical errors in MR arthrography

    International Nuclear Information System (INIS)

    Hodler, Juerg

    2008-01-01

    This article discusses potential technical problems of MR arthrography. It starts with contraindications, followed by problems relating to injection technique, contrast material and MR imaging technique. For some of the aspects discussed, there is only little published evidence. Therefore, the article is based on the personal experience of the author and on local standards of procedures. Such standards, as well as medico-legal considerations, may vary from country to country. Contraindications for MR arthrography include pre-existing infection, reflex sympathetic dystrophy and possibly bleeding disorders, avascular necrosis and known allergy to contrast media. Errors in injection technique may lead to extra-articular collection of contrast agent or to contrast agent leaking from the joint space, which may cause diagnostic difficulties. Incorrect concentrations of contrast material influence image quality and may also lead to non-diagnostic examinations. Errors relating to MR imaging include delays between injection and imaging and inadequate choice of sequences. Potential solutions to the various possible errors are presented. (orig.)

  10. Technical errors in MR arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, Juerg [Orthopaedic University Hospital of Balgrist, Radiology, Zurich (Switzerland)

    2008-01-15

    This article discusses potential technical problems of MR arthrography. It starts with contraindications, followed by problems relating to injection technique, contrast material and MR imaging technique. For some of the aspects discussed, there is only little published evidence. Therefore, the article is based on the personal experience of the author and on local standards of procedures. Such standards, as well as medico-legal considerations, may vary from country to country. Contraindications for MR arthrography include pre-existing infection, reflex sympathetic dystrophy and possibly bleeding disorders, avascular necrosis and known allergy to contrast media. Errors in injection technique may lead to extra-articular collection of contrast agent or to contrast agent leaking from the joint space, which may cause diagnostic difficulties. Incorrect concentrations of contrast material influence image quality and may also lead to non-diagnostic examinations. Errors relating to MR imaging include delays between injection and imaging and inadequate choice of sequences. Potential solutions to the various possible errors are presented. (orig.)

  11. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  12. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s. 5 figures

  13. Quantifying relative importance: Computing standardized effects in models with binary outcomes

    Science.gov (United States)

    Grace, James B.; Johnson, Darren; Lefcheck, Jonathan S.; Byrnes, Jarrett E.K.

    2018-01-01

    Scientists commonly ask questions about the relative importances of processes, and then turn to statistical models for answers. Standardized coefficients are typically used in such situations, with the goal being to compare effects on a common scale. Traditional approaches to obtaining standardized coefficients were developed with idealized Gaussian variables in mind. When responses are binary, complications arise that impact standardization methods. In this paper, we review, evaluate, and propose new methods for standardizing coefficients from models that contain binary outcomes. We first consider the interpretability of unstandardized coefficients and then examine two main approaches to standardization. One approach, which we refer to as the Latent-Theoretical or LT method, assumes that underlying binary observations there exists a latent, continuous propensity linearly related to the coefficients. A second approach, which we refer to as the Observed-Empirical or OE method, assumes responses are purely discrete and estimates error variance empirically via reference to a classical R2 estimator. We also evaluate the standard formula for calculating standardized coefficients based on standard deviations. Criticisms of this practice have been persistent, leading us to propose an alternative formula that is based on user-defined “relevant ranges”. Finally, we implement all of the above in an open-source package for the statistical software R.

  14. Relating physician's workload with errors during radiation therapy planning.

    Science.gov (United States)

    Mazur, Lukasz M; Mosaly, Prithima R; Hoyle, Lesley M; Jones, Ellen L; Chera, Bhishamjit S; Marks, Lawrence B

    2014-01-01

    To relate subjective workload (WL) levels to errors for routine clinical tasks. Nine physicians (4 faculty and 5 residents) each performed 3 radiation therapy planning cases. The WL levels were subjectively assessed using National Aeronautics and Space Administration Task Load Index (NASA-TLX). Individual performance was assessed objectively based on the severity grade of errors. The relationship between the WL and performance was assessed via ordinal logistic regression. There was an increased rate of severity grade of errors with increasing WL (P value = .02). As the majority of the higher NASA-TLX scores, and the majority of the performance errors were in the residents, our findings are likely most pertinent to radiation oncology centers with training programs. WL levels may be an important factor contributing to errors during radiation therapy planning tasks. Published by Elsevier Inc.

  15. Performance monitoring and error significance in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert

    2010-05-01

    Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Preparing Emergency Medicine Residents to Disclose Medical Error Using Standardized Patients

    Directory of Open Access Journals (Sweden)

    Carmen N. Spalding

    2017-12-01

    Full Text Available Introduction Emergency Medicine (EM is a unique clinical learning environment. The American College of Graduate Medical Education Clinical Learning Environment Review Pathways to Excellence calls for “hands-on training” of disclosure of medical error (DME during residency. Training and practicing key elements of DME using standardized patients (SP may enhance preparedness among EM residents in performing this crucial skill in a clinical setting. Methods This training was developed to improve resident preparedness in DME in the clinical setting. Objectives included the following: the residents will be able to define a medical error; discuss ethical and professional standards of DME; recognize common barriers to DME; describe key elements in effective DME to patients and families; and apply key elements during a SP encounter. The four-hour course included didactic and experiential learning methods, and was created collaboratively by core EM faculty and subject matter experts in conflict resolution and healthcare simulation. Educational media included lecture, video exemplars of DME communication with discussion, small group case-study discussion, and SP encounters. We administered a survey assessing for preparedness in DME pre-and post-training. A critical action checklist was administered to assess individual performance of key elements of DME during the evaluated SP case. A total of 15 postgraduate-year 1 and 2 EM residents completed the training. Results After the course, residents reported increased comfort with and preparedness in performing several key elements in DME. They were able to demonstrate these elements in a simulated setting using SP. Residents valued the training, rating the didactic, SP sessions, and overall educational experience very high. Conclusion Experiential learning using SP is effective in improving resident knowledge of and preparedness in performing medical error disclosure. This educational module can be adapted

  17. Asymptotic Standard Errors for Item Response Theory True Score Equating of Polytomous Items

    Science.gov (United States)

    Cher Wong, Cheow

    2015-01-01

    Building on previous works by Lord and Ogasawara for dichotomous items, this article proposes an approach to derive the asymptotic standard errors of item response theory true score equating involving polytomous items, for equivalent and nonequivalent groups of examinees. This analytical approach could be used in place of empirical methods like…

  18. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    Science.gov (United States)

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  19. Dysfunctional error-related processing in incarcerated youth with elevated psychopathic traits

    Science.gov (United States)

    Maurer, J. Michael; Steele, Vaughn R.; Cope, Lora M.; Vincent, Gina M.; Stephen, Julia M.; Calhoun, Vince D.; Kiehl, Kent A.

    2016-01-01

    Adult psychopathic offenders show an increased propensity towards violence, impulsivity, and recidivism. A subsample of youth with elevated psychopathic traits represent a particularly severe subgroup characterized by extreme behavioral problems and comparable neurocognitive deficits as their adult counterparts, including perseveration deficits. Here, we investigate response-locked event-related potential (ERP) components (the error-related negativity [ERN/Ne] related to early error-monitoring processing and the error-related positivity [Pe] involved in later error-related processing) in a sample of incarcerated juvenile male offenders (n = 100) who performed a response inhibition Go/NoGo task. Psychopathic traits were assessed using the Hare Psychopathy Checklist: Youth Version (PCL:YV). The ERN/Ne and Pe were analyzed with classic windowed ERP components and principal component analysis (PCA). Using linear regression analyses, PCL:YV scores were unrelated to the ERN/Ne, but were negatively related to Pe mean amplitude. Specifically, the PCL:YV Facet 4 subscale reflecting antisocial traits emerged as a significant predictor of reduced amplitude of a subcomponent underlying the Pe identified with PCA. This is the first evidence to suggest a negative relationship between adolescent psychopathy scores and Pe mean amplitude. PMID:26930170

  20. Association of medication errors with drug classifications, clinical units, and consequence of errors: Are they related?

    Science.gov (United States)

    Muroi, Maki; Shen, Jay J; Angosta, Alona

    2017-02-01

    Registered nurses (RNs) play an important role in safe medication administration and patient safety. This study examined a total of 1276 medication error (ME) incident reports made by RNs in hospital inpatient settings in the southwestern region of the United States. The most common drug class associated with MEs was cardiovascular drugs (24.7%). Among this class, anticoagulants had the most errors (11.3%). The antimicrobials was the second most common drug class associated with errors (19.1%) and vancomycin was the most common antimicrobial that caused errors in this category (6.1%). MEs occurred more frequently in the medical-surgical and intensive care units than any other hospital units. Ten percent of MEs reached the patients with harm and 11% reached the patients with increased monitoring. Understanding the contributing factors related to MEs, addressing and eliminating risk of errors across hospital units, and providing education and resources for nurses may help reduce MEs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Estimates and Standard Errors for Ratios of Normalizing Constants from Multiple Markov Chains via Regeneration.

    Science.gov (United States)

    Doss, Hani; Tan, Aixin

    2014-09-01

    In the classical biased sampling problem, we have k densities π 1 (·), …, π k (·), each known up to a normalizing constant, i.e. for l = 1, …, k , π l (·) = ν l (·)/ m l , where ν l (·) is a known function and m l is an unknown constant. For each l , we have an iid sample from π l , · and the problem is to estimate the ratios m l /m s for all l and all s . This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the π l 's are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case.

  2. [Event-related EEG potentials associated with error detection in psychiatric disorder: literature review].

    Science.gov (United States)

    Balogh, Lívia; Czobor, Pál

    2010-01-01

    Error-related bioelectric signals constitute a special subgroup of event-related potentials. Researchers have identified two evoked potential components to be closely related to error processing, namely error-related negativity (ERN) and error-positivity (Pe), and they linked these to specific cognitive functions. In our article first we give a brief description of these components, then based on the available literature, we review differences in error-related evoked potentials observed in patients across psychiatric disorders. The PubMed and Medline search engines were used in order to identify all relevant articles, published between 2000 and 2009. For the purpose of the current paper we reviewed publications summarizing results of clinical trials. Patients suffering from schizophrenia, anorexia nervosa or borderline personality disorder exhibited a decrease in the amplitude of error-negativity when compared with healthy controls, while in cases of depression and anxiety an increase in the amplitude has been observed. Some of the articles suggest specific personality variables, such as impulsivity, perfectionism, negative emotions or sensitivity to punishment to underlie these electrophysiological differences. Research in the field of error-related electric activity has come to the focus of psychiatry research only recently, thus the amount of available data is significantly limited. However, since this is a relatively new field of research, the results available at present are noteworthy and promising for future electrophysiological investigations in psychiatric disorders.

  3. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO3 standards

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s

  4. A parallel row-based algorithm for standard cell placement with integrated error control

    Science.gov (United States)

    Sargent, Jeff S.; Banerjee, Prith

    1989-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.

  5. Error Analysis of Determining Airplane Location by Global Positioning System

    OpenAIRE

    Hajiyev, Chingiz; Burat, Alper

    1999-01-01

    This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.

  6. Comprehensive analysis of a medication dosing error related to CPOE.

    Science.gov (United States)

    Horsky, Jan; Kuperman, Gilad J; Patel, Vimla L

    2005-01-01

    This case study of a serious medication error demonstrates the necessity of a comprehensive methodology for the analysis of failures in interaction between humans and information systems. The authors used a novel approach to analyze a dosing error related to computer-based ordering of potassium chloride (KCl). The method included a chronological reconstruction of events and their interdependencies from provider order entry usage logs, semistructured interviews with involved clinicians, and interface usability inspection of the ordering system. Information collected from all sources was compared and evaluated to understand how the error evolved and propagated through the system. In this case, the error was the product of faults in interaction among human and system agents that methods limited in scope to their distinct analytical domains would not identify. The authors characterized errors in several converging aspects of the drug ordering process: confusing on-screen laboratory results review, system usability difficulties, user training problems, and suboptimal clinical system safeguards that all contributed to a serious dosing error. The results of the authors' analysis were used to formulate specific recommendations for interface layout and functionality modifications, suggest new user alerts, propose changes to user training, and address error-prone steps of the KCl ordering process to reduce the risk of future medication dosing errors.

  7. Masked and unmasked error-related potentials during continuous control and feedback

    Science.gov (United States)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the

  8. Relating faults in diagnostic reasoning with diagnostic errors and patient harm.

    NARCIS (Netherlands)

    Zwaan, L.; Thijs, A.; Wagner, C.; Wal, G. van der; Timmermans, D.R.M.

    2012-01-01

    Purpose: The relationship between faults in diagnostic reasoning, diagnostic errors, and patient harm has hardly been studied. This study examined suboptimal cognitive acts (SCAs; i.e., faults in diagnostic reasoning), related them to the occurrence of diagnostic errors and patient harm, and studied

  9. Conditional standard errors of measurement for composite scores on the Wechsler Preschool and Primary Scale of Intelligence-Third Edition.

    Science.gov (United States)

    Price, Larry R; Raju, Nambury; Lurie, Anna; Wilkins, Charles; Zhu, Jianjun

    2006-02-01

    A specific recommendation of the 1999 Standards for Educational and Psychological Testing by the American Educational Research Association, the American Psychological Association, and the National Council on Measurement in Education is that test publishers report estimates of the conditional standard error of measurement (SEM). Procedures for calculating the conditional (score-level) SEM based on raw scores are well documented; however, few procedures have been developed for estimating the conditional SEM of subtest or composite scale scores resulting from a nonlinear transformation. Item response theory provided the psychometric foundation to derive the conditional standard errors of measurement and confidence intervals for composite scores on the Wechsler Preschool and Primary Scale of Intelligence-Third Edition.

  10. The impact of work-related stress on medication errors in Eastern Region Saudi Arabia.

    Science.gov (United States)

    Salam, Abdul; Segal, David M; Abu-Helalah, Munir Ahmad; Gutierrez, Mary Lou; Joosub, Imran; Ahmed, Wasim; Bibi, Rubina; Clarke, Elizabeth; Qarni, Ali Ahmed Al

    2018-05-07

    To examine the relationship between overall level and source-specific work-related stressors on medication errors rate. A cross-sectional study examined the relationship between overall levels of stress, 25 source-specific work-related stressors and medication error rate based on documented incident reports in Saudi Arabia (SA) hospital, using secondary databases. King Abdulaziz Hospital in Al-Ahsa, Eastern Region, SA. Two hundred and sixty-nine healthcare professionals (HCPs). The odds ratio (OR) and corresponding 95% confidence interval (CI) for HCPs documented incident report medication errors and self-reported sources of Job Stress Survey. Multiple logistic regression analysis identified source-specific work-related stress as significantly associated with HCPs who made at least one medication error per month (P stress were two times more likely to make at least one medication error per month than non-stressed HCPs (OR: 1.95, P = 0.081). This is the first study to use documented incident reports for medication errors rather than self-report to evaluate the level of stress-related medication errors in SA HCPs. Job demands, such as social stressors (home life disruption, difficulties with colleagues), time pressures, structural determinants (compulsory night/weekend call duties) and higher income, were significantly associated with medication errors whereas overall stress revealed a 2-fold higher trend.

  11. Technology-related medication errors in a tertiary hospital: a 5-year analysis of reported medication incidents.

    Science.gov (United States)

    Samaranayake, N R; Cheung, S T D; Chui, W C M; Cheung, B M Y

    2012-12-01

    Healthcare technology is meant to reduce medication errors. The objective of this study was to assess unintended errors related to technologies in the medication use process. Medication incidents reported from 2006 to 2010 in a main tertiary care hospital were analysed by a pharmacist and technology-related errors were identified. Technology-related errors were further classified as socio-technical errors and device errors. This analysis was conducted using data from medication incident reports which may represent only a small proportion of medication errors that actually takes place in a hospital. Hence, interpretation of results must be tentative. 1538 medication incidents were reported. 17.1% of all incidents were technology-related, of which only 1.9% were device errors, whereas most were socio-technical errors (98.1%). Of these, 61.2% were linked to computerised prescription order entry, 23.2% to bar-coded patient identification labels, 7.2% to infusion pumps, 6.8% to computer-aided dispensing label generation and 1.5% to other technologies. The immediate causes for technology-related errors included, poor interface between user and computer (68.1%), improper procedures or rule violations (22.1%), poor interface between user and infusion pump (4.9%), technical defects (1.9%) and others (3.0%). In 11.4% of the technology-related incidents, the error was detected after the drug had been administered. A considerable proportion of all incidents were technology-related. Most errors were due to socio-technical issues. Unintended and unanticipated errors may happen when using technologies. Therefore, when using technologies, system improvement, awareness, training and monitoring are needed to minimise medication errors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Intelligence and Neurophysiological Markers of Error Monitoring Relate to Children's Intellectual Humility.

    Science.gov (United States)

    Danovitch, Judith H; Fisher, Megan; Schroder, Hans; Hambrick, David Z; Moser, Jason

    2017-09-18

    This study explored developmental and individual differences in intellectual humility (IH) among 127 children ages 6-8. IH was operationalized as children's assessment of their knowledge and willingness to delegate scientific questions to experts. Children completed measures of IH, theory of mind, motivational framework, and intelligence, and neurophysiological measures indexing early (error-related negativity [ERN]) and later (error positivity [Pe]) error-monitoring processes related to cognitive control. Children's knowledge self-assessment correlated with question delegation, and older children showed greater IH than younger children. Greater IH was associated with higher intelligence but not with social cognition or motivational framework. ERN related to self-assessment, whereas Pe related to question delegation. Thus, children show separable epistemic and social components of IH that may differentially contribute to metacognition and learning. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  13. Relating Complexity and Error Rates of Ontology Concepts. More Complex NCIt Concepts Have More Errors.

    Science.gov (United States)

    Min, Hua; Zheng, Ling; Perl, Yehoshua; Halper, Michael; De Coronado, Sherri; Ochs, Christopher

    2017-05-18

    Ontologies are knowledge structures that lend support to many health-information systems. A study is carried out to assess the quality of ontological concepts based on a measure of their complexity. The results show a relation between complexity of concepts and error rates of concepts. A measure of lateral complexity defined as the number of exhibited role types is used to distinguish between more complex and simpler concepts. Using a framework called an area taxonomy, a kind of abstraction network that summarizes the structural organization of an ontology, concepts are divided into two groups along these lines. Various concepts from each group are then subjected to a two-phase QA analysis to uncover and verify errors and inconsistencies in their modeling. A hierarchy of the National Cancer Institute thesaurus (NCIt) is used as our test-bed. A hypothesis pertaining to the expected error rates of the complex and simple concepts is tested. Our study was done on the NCIt's Biological Process hierarchy. Various errors, including missing roles, incorrect role targets, and incorrectly assigned roles, were discovered and verified in the two phases of our QA analysis. The overall findings confirmed our hypothesis by showing a statistically significant difference between the amounts of errors exhibited by more laterally complex concepts vis-à-vis simpler concepts. QA is an essential part of any ontology's maintenance regimen. In this paper, we reported on the results of a QA study targeting two groups of ontology concepts distinguished by their level of complexity, defined in terms of the number of exhibited role types. The study was carried out on a major component of an important ontology, the NCIt. The findings suggest that more complex concepts tend to have a higher error rate than simpler concepts. These findings can be utilized to guide ongoing efforts in ontology QA.

  14. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Science.gov (United States)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  15. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Directory of Open Access Journals (Sweden)

    S. Esselborn

    2018-03-01

    Full Text Available Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year, and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ, the Groupe de Recherche de Géodésie Spatiale (GRGS, and the Goddard Space Flight Center (GSFC. The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr−1 (27 % of the corresponding sea level variability and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr−1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test

  16. Error-related brain activity predicts cocaine use after treatment at 3-month follow-up.

    Science.gov (United States)

    Marhe, Reshmi; van de Wetering, Ben J M; Franken, Ingmar H A

    2013-04-15

    Relapse after treatment is one of the most important problems in drug dependency. Several studies suggest that lack of cognitive control is one of the causes of relapse. In this study, a relative new electrophysiologic index of cognitive control, the error-related negativity, is investigated to examine its suitability as a predictor of relapse. The error-related negativity was measured in 57 cocaine-dependent patients during their first week in detoxification treatment. Data from 49 participants were used to predict cocaine use at 3-month follow-up. Cocaine use at follow-up was measured by means of self-reported days of cocaine use in the last month verified by urine screening. A multiple hierarchical regression model was used to examine the predictive value of the error-related negativity while controlling for addiction severity and self-reported craving in the week before treatment. The error-related negativity was the only significant predictor in the model and added 7.4% of explained variance to the control variables, resulting in a total of 33.4% explained variance in the prediction of days of cocaine use at follow-up. A reduced error-related negativity measured during the first week of treatment was associated with more days of cocaine use at 3-month follow-up. Moreover, the error-related negativity was a stronger predictor of recent cocaine use than addiction severity and craving. These results suggest that underactive error-related brain activity might help to identify patients who are at risk of relapse as early as in the first week of detoxification treatment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  18. Error Analysis of Relative Calibration for RCS Measurement on Ground Plane Range

    Directory of Open Access Journals (Sweden)

    Wu Peng-fei

    2012-03-01

    Full Text Available Ground plane range is a kind of outdoor Radar Cross Section (RCS test range used for static measurement of full-size or scaled targets. Starting from the characteristics of ground plane range, the impact of environments on targets and calibrators is analyzed during calibration in the RCS measurements. The error of relative calibration produced by the different illumination of target and calibrator is studied. The relative calibration technique used in ground plane range is to place the calibrator on a fixed and auxiliary pylon somewhere between the radar and the target under test. By considering the effect of ground reflection and antenna pattern, the relationship between the magnitude of echoes and the position of calibrator is discussed. According to the different distances between the calibrator and target, the difference between free space and ground plane range is studied and the error of relative calibration is calculated. Numerical simulation results are presented with useful conclusions. The relative calibration error varies with the position of calibrator, frequency and antenna beam width. In most case, set calibrator close to the target may keep the error under control.

  19. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    Science.gov (United States)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  20. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  1. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  2. Investigating Medication Errors in Educational Health Centers of Kermanshah

    Directory of Open Access Journals (Sweden)

    Mohsen Mohammadi

    2015-08-01

    Full Text Available Background and objectives : Medication errors can be a threat to the safety of patients. Preventing medication errors requires reporting and investigating such errors. The present study was conducted with the purpose of investigating medication errors in educational health centers of Kermanshah. Material and Methods: The present research is an applied, descriptive-analytical study and is done as a survey. Error Report of Ministry of Health and Medical Education was used for data collection. The population of the study included all the personnel (nurses, doctors, paramedics of educational health centers of Kermanshah. Among them, those who reported the committed errors were selected as the sample of the study. The data analysis was done using descriptive statistics and Chi 2 Test using SPSS version 18. Results: The findings of the study showed that most errors were related to not using medication properly, the least number of errors were related to improper dose, and the majority of errors occurred in the morning. The most frequent reason for errors was staff negligence and the least frequent was the lack of knowledge. Conclusion: The health care system should create an environment for detecting and reporting errors by the personnel, recognizing related factors causing errors, training the personnel and create a good working environment and standard workload.

  3. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  4. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  5. The role of hand of error and stimulus orientation in the relationship between worry and error-related brain activity: Implications for theory and practice.

    Science.gov (United States)

    Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S

    2015-10-01

    Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.

  6. The impact of statistical adjustment on conditional standard errors of measurement in the assessment of physician communication skills.

    Science.gov (United States)

    Raymond, Mark R; Clauser, Brian E; Furman, Gail E

    2010-10-01

    The use of standardized patients to assess communication skills is now an essential part of assessing a physician's readiness for practice. To improve the reliability of communication scores, it has become increasingly common in recent years to use statistical models to adjust ratings provided by standardized patients. This study employed ordinary least squares regression to adjust ratings, and then used generalizability theory to evaluate the impact of these adjustments on score reliability and the overall standard error of measurement. In addition, conditional standard errors of measurement were computed for both observed and adjusted scores to determine whether the improvements in measurement precision were uniform across the score distribution. Results indicated that measurement was generally less precise for communication ratings toward the lower end of the score distribution; and the improvement in measurement precision afforded by statistical modeling varied slightly across the score distribution such that the most improvement occurred in the upper-middle range of the score scale. Possible reasons for these patterns in measurement precision are discussed, as are the limitations of the statistical models used for adjusting performance ratings.

  7. Standardized error severity score (ESS) ratings to quantify risk associated with child restraint system (CRS) and booster seat misuse.

    Science.gov (United States)

    Rudin-Brown, Christina M; Kramer, Chelsea; Langerak, Robin; Scipione, Andrea; Kelsey, Shelley

    2017-11-17

    Although numerous research studies have reported high levels of error and misuse of child restraint systems (CRS) and booster seats in experimental and real-world scenarios, conclusions are limited because they provide little information regarding which installation issues pose the highest risk and thus should be targeted for change. Beneficial to legislating bodies and researchers alike would be a standardized, globally relevant assessment of the potential injury risk associated with more common forms of CRS and booster seat misuse, which could be applied with observed error frequency-for example, in car seat clinics or during prototype user testing-to better identify and characterize the installation issues of greatest risk to safety. A group of 8 leading world experts in CRS and injury biomechanics, who were members of an international child safety project, estimated the potential injury severity associated with common forms of CRS and booster seat misuse. These injury risk error severity score (ESS) ratings were compiled and compared to scores from previous research that had used a similar procedure but with fewer respondents. To illustrate their application, and as part of a larger study examining CRS and booster seat labeling requirements, the new standardized ESS ratings were applied to objective installation performance data from 26 adult participants who installed a convertible (rear- vs. forward-facing) CRS and booster seat in a vehicle, and a child test dummy in the CRS and booster seat, using labels that only just met minimal regulatory requirements. The outcome measure, the risk priority number (RPN), represented the composite scores of injury risk and observed installation error frequency. Variability within the sample of ESS ratings in the present study was smaller than that generated in previous studies, indicating better agreement among experts on what constituted injury risk. Application of the new standardized ESS ratings to installation

  8. Running Records and First Grade English Learners: An Analysis of Language Related Errors

    Science.gov (United States)

    Briceño, Allison; Klein, Adria F.

    2018-01-01

    The purpose of this study was to determine if first-grade English Learners made patterns of language related errors when reading, and if so, to identify those patterns and how teachers coded language related errors when analyzing English Learners' running records. Using research from the fields of both literacy and Second Language Acquisition, we…

  9. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    Science.gov (United States)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  10. A new accuracy measure based on bounded relative error for time series forecasting.

    Science.gov (United States)

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  11. Quantitative autoradiography of semiconductor materials by means of diffused phosphorus standards

    International Nuclear Information System (INIS)

    Treutler, H.C.; Freyer, K.

    1983-01-01

    A suitable standard sample was developed and tested on the basis of phosphorus for the quantitative autoradiography of elements of interest in semiconductor technology. By the aid of silicon disks with a phosphorus concentration of 6x10 17 atomsxcm - 2 the error of the quantitative autoradiogprahic method is determined. The relative mean error of the density measurement is at best +-4%; the relative mean error of the determination of phosphorus concentration by use of an error-free standard sample is about +-15%. The method will be extended to other elements by use of this standard sample of phosphorus. (author)

  12. An investigation of Saudi Arabian MR radiographers' knowledge and confidence in relation to MR image-quality-related errors

    International Nuclear Information System (INIS)

    Alsharif, W.; Davis, M.; McGee, A.; Rainford, L.

    2017-01-01

    Objective: To investigate MR radiographers' current knowledge base and confidence level in relation to quality-related errors within MR images. Method: Thirty-five MR radiographers within 16 MRI departments in the Kingdom of Saudi Arabia (KSA) independently reviewed a prepared set of 25 MR images, naming the error, specifying the error-correction strategy, scoring how confident they were in recognising this error and suggesting a correction strategy by using a scale of 1–100. The datasets were obtained from MRI departments in the KSA to represent the range of images which depicted excellent, acceptable and poor image quality. Results: The findings demonstrated a low level of radiographer knowledge in identifying the type of quality errors and when suggesting an appropriate strategy to rectify those errors. The findings show that only (n = 7) 20% of the radiographers could correctly name what the quality errors were in 70% of the dataset, and none of the radiographers correctly specified the error-correction strategy in more than 68% of the MR datasets. The confidence level of radiography participants in their ability to state the type of image quality errors was significantly different (p < 0.001) for who work in different hospital types. Conclusion: The findings of this study suggest there is a need to establish a national association for MR radiographers to monitor training and the development of postgraduate MRI education in Saudi Arabia to improve the current status of the MR radiographers' knowledge and direct high quality service delivery. - Highlights: • MR radiographers recognised the existence of the image quality related errors. • A few MR radiographers were able to correctly identify which image quality errors were being shown. • None of MR radiographers were able to correctly specify error-correction strategy of the image quality errors. • A low level of knowledge was demonstrated in identifying and rectify image quality errors.

  13. A standard curve based method for relative real time PCR data processing

    Directory of Open Access Journals (Sweden)

    Krause Andreas

    2005-03-01

    Full Text Available Abstract Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II The optimal threshold is selected automatically from regression parameters of the standard curve. (III Crossing points (CPs are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV The means and their variances are calculated for CPs in PCR replicas. (V The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that

  14. Error-related negativity and tic history in pediatric obsessive-compulsive disorder.

    Science.gov (United States)

    Hanna, Gregory L; Carrasco, Melisa; Harbin, Shannon M; Nienhuis, Jenna K; LaRosa, Christina E; Chen, Poyu; Fitzgerald, Kate D; Gehring, William J

    2012-09-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential after an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relation of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes in patients with tic-related OCD, patients with non-tic-related OCD, and healthy controls. The ERN, correct response negativity, and error number were measured during an Eriksen flanker task to assess performance monitoring in 44 youth with a lifetime diagnosis of OCD and 44 matched healthy controls ranging in age from 10 to 19 years. Nine youth with OCD had a lifetime history of tics. ERN amplitude was significantly increased in patients with OCD compared with healthy controls. ERN amplitude was significantly larger in patients with non-tic-related OCD than in patients with tic-related OCD or controls. ERN amplitude had a significant negative correlation with age in healthy controls but not in patients with OCD. Instead, in patients with non-tic-related OCD, ERN amplitude had a significant positive correlation with age at onset of OCD symptoms. ERN amplitude in patients was unrelated to OCD symptom severity, current diagnostic status, or treatment effects. The results provide further evidence of increased error-related brain activity in pediatric OCD. The difference in the ERN between patients with tic-related and those with non-tic-related OCD provides preliminary evidence of a neurobiological difference between these two OCD subtypes. The results indicate the ERN is a trait-like measurement that may serve as a biomarker for non-tic-related OCD. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  16. Error-Related Negativity and Tic History in Pediatric Obsessive-Compulsive Disorder

    Science.gov (United States)

    Hanna, Gregory L.; Carrasco, Melisa; Harbin, Shannon M.; Nienhuis, Jenna K.; LaRosa, Christina E.; Chen, Poyu; Fitzgerald, Kate D.; Gehring, William J.

    2012-01-01

    Objective: The error-related negativity (ERN) is a negative deflection in the event-related potential after an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relation of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes…

  17. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  18. Age-related changes in error processing in young children: A school-based investigation

    Directory of Open Access Journals (Sweden)

    Jennie K. Grammer

    2014-07-01

    Full Text Available Growth in executive functioning (EF skills play a role children's academic success, and the transition to elementary school is an important time for the development of these abilities. Despite this, evidence concerning the development of the ERP components linked to EF, including the error-related negativity (ERN and the error positivity (Pe, over this period is inconclusive. Data were recorded in a school setting from 3- to 7-year-old children (N = 96, mean age = 5 years 11 months as they performed a Go/No-Go task. Results revealed the presence of the ERN and Pe on error relative to correct trials at all age levels. Older children showed increased response inhibition as evidenced by faster, more accurate responses. Although developmental changes in the ERN were not identified, the Pe increased with age. In addition, girls made fewer mistakes and showed elevated Pe amplitudes relative to boys. Based on a representative school-based sample, findings indicate that the ERN is present in children as young as 3, and that development can be seen in the Pe between ages 3 and 7. Results varied as a function of gender, providing insight into the range of factors associated with developmental changes in the complex relations between behavioral and electrophysiological measures of error processing.

  19. Research on Human-Error Factors of Civil Aircraft Pilots Based On Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Guo Yundong

    2018-01-01

    Full Text Available In consideration of the situation that civil aviation accidents involve many human-error factors and show the features of typical grey systems, an index system of civil aviation accident human-error factors is built using human factor analysis and classification system model. With the data of accidents happened worldwide between 2008 and 2011, the correlation between human-error factors can be analyzed quantitatively using the method of grey relational analysis. Research results show that the order of main factors affecting pilot human-error factors is preconditions for unsafe acts, unsafe supervision, organization and unsafe acts. The factor related most closely with second-level indexes and pilot human-error factors is the physical/mental limitations of pilots, followed by supervisory violations. The relevancy between the first-level indexes and the corresponding second-level indexes and the relevancy between second-level indexes can also be analyzed quantitatively.

  20. Working memory capacity and task goals modulate error-related ERPs.

    Science.gov (United States)

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  1. Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model.

    Science.gov (United States)

    Hellström, Åke; Rammsayer, Thomas H

    2015-10-01

    Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström's sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St-Co, Co-St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St-Co than for Co-St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.

  2. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    Science.gov (United States)

    2016-03-01

    CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  3. Composite Reliability and Standard Errors of Measurement for a Seven-Subtest Short Form of the Wechsler Adult Intelligence Scale-Revised.

    Science.gov (United States)

    Schretlen, David; And Others

    1994-01-01

    Composite reliability and standard errors of measurement were computed for prorated Verbal, Performance, and Full-Scale intelligence quotient (IQ) scores from a seven-subtest short form of the Wechsler Adult Intelligence Scale-Revised. Results with 1,880 adults (standardization sample) indicate that this form is as reliable as the complete test.…

  4. Error-Related Negativity and Tic History in Pediatric Obsessive-Compulsive Disorder (OCD)

    Science.gov (United States)

    Hanna, Gregory L.; Carrasco, Melisa; Harbin, Shannon M.; Nienhuis, Jenna K.; LaRosa, Christina E.; Chen, Poyu; Fitzgerald, Kate D.; Gehring, William J.

    2012-01-01

    Objective The error-related negativity (ERN) is a negative deflection in the event-related potential following an incorrect response, which is often increased in patients with obsessive-compulsive disorder (OCD). However, the relationship of the ERN to comorbid tic disorders has not been examined in patients with OCD. This study compared ERN amplitudes in patients with tic-related OCD, patients with non-tic-related OCD, and healthy controls. Method The ERN, correct response negativity, and error number were measured during an Eriksen flanker task to assess performance monitoring in 44 youth with a lifetime diagnosis of OCD and 44 matched healthy controls ranging in age from 10 to 19 years. Nine youth with OCD had a lifetime history of tics. Results ERN amplitudewas significantly increased in OCD patients compared to healthy controls. ERN amplitude was significantly larger in patients with non-tic-related OCD than either patients with tic-related OCD or controls. ERN amplitude had a significant negative correlation with age in healthy controls but not patients with OCD. Instead, in patients with non-tic-related OCD, ERN amplitude had a significant positive correlation with age at onset of OCD symptoms. ERN amplitude in patients was unrelated to OCD symptom severity, current diagnostic status, or treatment effects. Conclusions The results provide further evidence of increased error-related brain activity in pediatric OCD. The difference in the ERN between patients with tic-related and non-tic-related OCD provides preliminary evidence of a neurobiological difference between these two OCD subtypes. The results indicate the ERN is a trait-like measure that may serve as a biomarker for non-tic-related OCD. PMID:22917203

  5. Guidelines for system modeling: pre-accident human errors, rev.0

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors.

  6. Guidelines for system modeling: pre-accident human errors, rev.0

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, W. D.; Lee, Y. H.; Hwang, M. J.; Yang, J. E.

    2004-01-01

    The evaluation results of Human Reliability Analysis (HRA) of pre-accident human errors in the probabilistic safety assessment (PSA) for the Korea Standard Nuclear Power Plant (KSNP) using the ASME PRA standard show that more than 50% of 10 items to be improved are related to the identification and screening analysis for them. Thus, we developed a guideline for modeling pre-accident human errors for the system analyst to resolve some items to be improved for them. The developed guideline consists of modeling criteria for the pre-accident human errors (identification, qualitative screening, and common restoration errors) and detailed guidelines for pre-accident human errors relating to testing, maintenance, and calibration works of nuclear power plants (NPPs). The system analyst use the developed guideline and he or she applies it to the system which he or she takes care of. The HRA analyst review the application results of the system analyst. We applied the developed guideline to the auxiliary feed water system of the KSNP to show the usefulness of it. The application results of the developed guideline show that more than 50% of the items to be improved for pre-accident human errors of auxiliary feed water system are resolved. The guideline for modeling pre-accident human errors developed in this study can be used for other NPPs as well as the KSNP. It is expected that both use of the detailed procedure, to be developed in the future, for the quantification of pre-accident human errors and the guideline developed in this study will greatly enhance the PSA quality in the HRA of pre-accident human errors

  7. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    Science.gov (United States)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  8. Senior High School Students' Errors on the Use of Relative Words

    Science.gov (United States)

    Bao, Xiaoli

    2015-01-01

    Relative clause is one of the most important language points in College English Examination. Teachers have been attaching great importance to the teaching of relative clause, but the outcomes are not satisfactory. Based on Error Analysis theory, this article aims to explore the reasons why senior high school students find it difficult to choose…

  9. Bootstrap-Based Improvements for Inference with Clustered Errors

    OpenAIRE

    Doug Miller; A. Colin Cameron; Jonah B. Gelbach

    2006-01-01

    Microeconometrics researchers have increasingly realized the essential need to account for any within-group dependence in estimating standard errors of regression parameter estimates. The typical preferred solution is to calculate cluster-robust or sandwich standard errors that permit quite general heteroskedasticity and within-cluster error correlation, but presume that the number of clusters is large. In applications with few (5-30) clusters, standard asymptotic tests can over-reject consid...

  10. Model parameter-related optimal perturbations and their contributions to El Niño prediction errors

    Science.gov (United States)

    Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua

    2018-04-01

    Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.

  11. Fast motion-including dose error reconstruction for VMAT with and without MLC tracking

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Keall, Paul J.; Grau, Cai

    2014-01-01

    of the algorithm for reconstruction of dose and motion-induced dose errors throughout the tracking and non-tracking beam deliveries was quantified. Doses were reconstructed with a mean dose difference relative to the measurements of -0.5% (5.5% standard deviation) for cumulative dose. More importantly, the root...... validate a simple model for fast motion-including dose error reconstruction applicable to intrafractional QA of MLC tracking treatments of moving targets. MLC tracking experiments were performed on a standard linear accelerator with prototype MLC tracking software guided by an electromagnetic transponder......-mean-square deviation between reconstructed and measured motion-induced 3%/3 mm γ failure rates (dose error) was 2.6%. The mean computation time for each calculation of dose and dose error was 295 ms. The motion-including dose reconstruction allows accurate temporal and spatial pinpointing of errors in absorbed dose...

  12. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  13. Statistical evaluation of design-error related accidents

    International Nuclear Information System (INIS)

    Ott, K.O.; Marchaterre, J.F.

    1980-01-01

    In a recently published paper (Campbell and Ott, 1979), a general methodology was proposed for the statistical evaluation of design-error related accidents. The evaluation aims at an estimate of the combined residual frequency of yet unknown types of accidents lurking in a certain technological system. Here, the original methodology is extended, as to apply to a variety of systems that evolves during the development of large-scale technologies. A special categorization of incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of the nuclear power reactor technology, considering serious accidents that involve in the accident-progression a particular design inadequacy

  14. Practical application of the theory of errors in measurement

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the practical application of the theory of errors in measurement. The topics of the chapter include fixing on a maximum desired error, selecting a maximum error, the procedure for limiting the error, utilizing a standard procedure, setting specifications for a standard procedure, and selecting the number of measurements to be made

  15. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    Science.gov (United States)

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed

  16. Formulation of uncertainty relation of error and disturbance in quantum measurement by using quantum estimation theory

    International Nuclear Information System (INIS)

    Yu Watanabe; Masahito Ueda

    2012-01-01

    Full text: When we try to obtain information about a quantum system, we need to perform measurement on the system. The measurement process causes unavoidable state change. Heisenberg discussed a thought experiment of the position measurement of a particle by using a gamma-ray microscope, and found a trade-off relation between the error of the measured position and the disturbance in the momentum caused by the measurement process. The trade-off relation epitomizes the complementarity in quantum measurements: we cannot perform a measurement of an observable without causing disturbance in its canonically conjugate observable. However, at the time Heisenberg found the complementarity, quantum measurement theory was not established yet, and Kennard and Robertson's inequality erroneously interpreted as a mathematical formulation of the complementarity. Kennard and Robertson's inequality actually implies the indeterminacy of the quantum state: non-commuting observables cannot have definite values simultaneously. However, Kennard and Robertson's inequality reflects the inherent nature of a quantum state alone, and does not concern any trade-off relation between the error and disturbance in the measurement process. In this talk, we report a resolution to the complementarity in quantum measurements. First, we find that it is necessary to involve the estimation process from the outcome of the measurement for quantifying the error and disturbance in the quantum measurement. We clarify the implicitly involved estimation process in Heisenberg's gamma-ray microscope and other measurement schemes, and formulate the error and disturbance for an arbitrary quantum measurement by using quantum estimation theory. The error and disturbance are defined in terms of the Fisher information, which gives the upper bound of the accuracy of the estimation. Second, we obtain uncertainty relations between the measurement errors of two observables [1], and between the error and disturbance in the

  17. Standard Errors for National Trends in International Large-Scale Assessments in the Case of Cross-National Differential Item Functioning

    Science.gov (United States)

    Sachse, Karoline A.; Haag, Nicole

    2017-01-01

    Standard errors computed according to the operational practices of international large-scale assessment studies such as the Programme for International Student Assessment's (PISA) or the Trends in International Mathematics and Science Study (TIMSS) may be biased when cross-national differential item functioning (DIF) and item parameter drift are…

  18. Analysis of errors in forensic science

    Directory of Open Access Journals (Sweden)

    Mingxiao Du

    2017-01-01

    Full Text Available Reliability of expert testimony is one of the foundations of judicial justice. Both expert bias and scientific errors affect the reliability of expert opinion, which in turn affects the trustworthiness of the findings of fact in legal proceedings. Expert bias can be eliminated by replacing experts; however, it may be more difficult to eliminate scientific errors. From the perspective of statistics, errors in operation of forensic science include systematic errors, random errors, and gross errors. In general, process repetition and abiding by the standard ISO/IEC:17025: 2005, general requirements for the competence of testing and calibration laboratories, during operation are common measures used to reduce errors that originate from experts and equipment, respectively. For example, to reduce gross errors, the laboratory can ensure that a test is repeated several times by different experts. In applying for forensic principles and methods, the Federal Rules of Evidence 702 mandate that judges consider factors such as peer review, to ensure the reliability of the expert testimony. As the scientific principles and methods may not undergo professional review by specialists in a certain field, peer review serves as an exclusive standard. This study also examines two types of statistical errors. As false-positive errors involve a higher possibility of an unfair decision-making, they should receive more attention than false-negative errors.

  19. Task types and error types involved in the human-related unplanned reactor trip events

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Park, Jin Kyun

    2008-01-01

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed

  20. Task types and error types involved in the human-related unplanned reactor trip events

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1%), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

  1. Laboratory errors and patient safety.

    Science.gov (United States)

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  2. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  3. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  4. Standard error of measurement of 5 health utility indexes across the range of health for use in estimating reliability and responsiveness.

    Science.gov (United States)

    Palta, Mari; Chen, Han-Yang; Kaplan, Robert M; Feeny, David; Cherepanov, Dasha; Fryback, Dennis G

    2011-01-01

    Standard errors of measurement (SEMs) of health-related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics, and is a component of reliability. To estimate the SEM of 5 HRQoL indexes. The National Health Measurement Study (NHMS) was a population-based survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures. A total of 3844 randomly selected adults from the noninstitutionalized population aged 35 to 89 y in the contiguous United States and 265 cataract patients. The SF6-36v2™, QWB-SA, EQ-5D, HUI2, and HUI3 were included. An item-response theory approach captured joint variation in indexes into a composite construct of health (theta). The authors estimated 1) the test-retest standard deviation (SEM-TR) from COMHS, 2) the structural standard deviation (SEM-S) around theta from NHMS, and 3) reliability coefficients. SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2), and 0.134 (HUI3), whereas SEM-S was 0.071, 0.094, 0.084, 0.074, and 0.117, respectively. These yield reliability coefficients 0.66 (COMHS) and 0.71 (NHMS) for SF-6D, 0.59 and 0.64 for QWB-SA, 0.61 and 0.70 for EQ-5D, 0.64 and 0.80 for HUI2, and 0.75 and 0.77 for HUI3, respectively. The SEM varied across levels of health, especially for HUI2, HUI3, and EQ-5D, and was influenced by ceiling effects. Limitations. Repeated measures were 5 mo apart, and estimated theta contained measurement error. The 2 types of SEM are similar and substantial for all the indexes and vary across health.

  5. Error-related negativities during spelling judgments expose orthographic knowledge.

    Science.gov (United States)

    Harris, Lindsay N; Perfetti, Charles A; Rickles, Benjamin

    2014-02-01

    In two experiments, we demonstrate that error-related negativities (ERNs) recorded during spelling decisions can expose individual differences in lexical knowledge. The first experiment found that the ERN was elicited during spelling decisions and that its magnitude was correlated with independent measures of subjects' spelling knowledge. In the second experiment, we manipulated the phonology of misspelled stimuli and observed that ERN magnitudes were larger when misspelled words altered the phonology of their correctly spelled counterparts than when they preserved it. Thus, when an error is made in a decision about spelling, the brain processes indexed by the ERN reflect both phonological and orthographic input to the decision process. In both experiments, ERN effect sizes were correlated with assessments of lexical knowledge and reading, including offline spelling ability and spelling-mediated vocabulary knowledge. These results affirm the interdependent nature of orthographic, semantic, and phonological knowledge components while showing that spelling knowledge uniquely influences the ERN during spelling decisions. Finally, the study demonstrates the value of ERNs in exposing individual differences in lexical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    KAUST Repository

    Hall, Eric Joseph

    2016-12-08

    We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.

  7. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  8. Measurement error models with uncertainty about the error variance

    NARCIS (Netherlands)

    Oberski, D.L.; Satorra, A.

    2013-01-01

    It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing

  9. Standards for Educational Public Relations and Communications Professionals.

    Science.gov (United States)

    Chappelow, Marsha A.

    2003-01-01

    Describes National School Public Relations Association standards for school public relations and communications professionals and program. Includes reactions and comments about new Association standards from seven superintendents and four school public-relations professionals. (PKP)

  10. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  11. Errores innatos del metabolismo de las purinas y otras enfermedades relacionadas Inborn purine metabolism errors and other related diseases

    Directory of Open Access Journals (Sweden)

    Jiovanna Contreras Roura

    2012-06-01

    growth, recurrent infections, self-mutilation, immunodeficiencies, unexplainable haemolytic anemia, gout-related arthritis, family history, consanguinity and adverse reactions to those drugs that are analogous of purines. The study of these diseases generally begins by quantifying serum uric acid and uric acid present in the urine which is the final product of purine metabolism in human beings. Diet and drug consumption are among the pathological, physiological and clinical conditions capable of changing the level of this compound. This review was intended to disseminate information on the inborn purine metabolism errors as well as to facilitate the interpretation of the uric acid levels and other biochemical markers making the diagnosis of these diseases possible. The tables relating these diseases to the excretory levels of uric acid and other biochemical markers, the altered enzymes, the clinical symptoms, the model of inheritance, and in some cases, the suggested treatment. This paper allowed us to affirm that variations in the uric acid levels and the presence of other biochemical markers in urine are important tools in screening some inborn purine metabolism errors, and also other related pathological conditions.

  12. Diagnostic errors in pediatric radiology

    International Nuclear Information System (INIS)

    Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.

    2011-01-01

    Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)

  13. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  14. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A

    2009-01-01

    The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

  15. Error-related negativity varies with the activation of gender stereotypes.

    Science.gov (United States)

    Ma, Qingguo; Shu, Liangchao; Wang, Xiaoyi; Dai, Shenyi; Che, Hongmin

    2008-09-19

    The error-related negativity (ERN) was suggested to reflect the response-performance monitoring process. The purpose of this study is to investigate how the activation of gender stereotypes influences the ERN. Twenty-eight male participants were asked to complete a tool or kitchenware identification task. The prime stimulus is a picture of a male or female face and the target stimulus is either a kitchen utensil or a hand tool. The ERN amplitude on male-kitchenware trials is significantly larger than that on female-kitchenware trials, which reveals the low-level, automatic activation of gender stereotypes. The ERN that was elicited in this task has two sources--operation errors and the conflict between the gender stereotype activation and the non-prejudice beliefs. And the gender stereotype activation may be the key factor leading to this difference of ERN. In other words, the stereotype activation in this experimental paradigm may be indexed by the ERN.

  16. The content of lexical stimuli and self-reported physiological state modulate error-related negativity amplitude.

    Science.gov (United States)

    Benau, Erik M; Moelter, Stephen T

    2016-09-01

    The Error-Related Negativity (ERN) and Correct-Response Negativity (CRN) are brief event-related potential (ERP) components-elicited after the commission of a response-associated with motivation, emotion, and affect. The Error Positivity (Pe) typically appears after the ERN, and corresponds to awareness of having committed an error. Although motivation has long been established as an important factor in the expression and morphology of the ERN, physiological state has rarely been explored as a variable in these investigations. In the present study, we investigated whether self-reported physiological state (SRPS; wakefulness, hunger, or thirst) corresponds with ERN amplitude and type of lexical stimuli. Participants completed a SRPS questionnaire and then completed a speeded Lexical Decision Task with words and pseudowords that were either food-related or neutral. Though similar in frequency and length, food-related stimuli elicited increased accuracy, faster errors, and generated a larger ERN and smaller CRN than neutral words. Self-reported thirst correlated with improved accuracy and smaller ERN and CRN amplitudes. The Pe and Pc (correct positivity) were not impacted by physiological state or by stimulus content. The results indicate that physiological state and manipulations of lexical content may serve as important avenues for future research. Future studies that apply more sensitive measures of physiological and motivational state (e.g., biomarkers for satiety) or direct manipulations of satiety may be a useful technique for future research into response monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Outlier Removal and the Relation with Reporting Errors and Quality of Psychological Research

    Science.gov (United States)

    Bakker, Marjan; Wicherts, Jelte M.

    2014-01-01

    Background The removal of outliers to acquire a significant result is a questionable research practice that appears to be commonly used in psychology. In this study, we investigated whether the removal of outliers in psychology papers is related to weaker evidence (against the null hypothesis of no effect), a higher prevalence of reporting errors, and smaller sample sizes in these papers compared to papers in the same journals that did not report the exclusion of outliers from the analyses. Methods and Findings We retrieved a total of 2667 statistical results of null hypothesis significance tests from 153 articles in main psychology journals, and compared results from articles in which outliers were removed (N = 92) with results from articles that reported no exclusion of outliers (N = 61). We preregistered our hypotheses and methods and analyzed the data at the level of articles. Results show no significant difference between the two types of articles in median p value, sample sizes, or prevalence of all reporting errors, large reporting errors, and reporting errors that concerned the statistical significance. However, we did find a discrepancy between the reported degrees of freedom of t tests and the reported sample size in 41% of articles that did not report removal of any data values. This suggests common failure to report data exclusions (or missingness) in psychological articles. Conclusions We failed to find that the removal of outliers from the analysis in psychological articles was related to weaker evidence (against the null hypothesis of no effect), sample size, or the prevalence of errors. However, our control sample might be contaminated due to nondisclosure of excluded values in articles that did not report exclusion of outliers. Results therefore highlight the importance of more transparent reporting of statistical analyses. PMID:25072606

  18. A Model of Self-Monitoring Blood Glucose Measurement Error.

    Science.gov (United States)

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  19. Software platform for managing the classification of error- related potentials of observers

    Science.gov (United States)

    Asvestas, P.; Ventouras, E.-C.; Kostopoulos, S.; Sidiropoulos, K.; Korfiatis, V.; Korda, A.; Uzunolglu, A.; Karanasiou, I.; Kalatzis, I.; Matsopoulos, G.

    2015-09-01

    Human learning is partly based on observation. Electroencephalographic recordings of subjects who perform acts (actors) or observe actors (observers), contain a negative waveform in the Evoked Potentials (EPs) of the actors that commit errors and of observers who observe the error-committing actors. This waveform is called the Error-Related Negativity (ERN). Its detection has applications in the context of Brain-Computer Interfaces. The present work describes a software system developed for managing EPs of observers, with the aim of classifying them into observations of either correct or incorrect actions. It consists of an integrated platform for the storage, management, processing and classification of EPs recorded during error-observation experiments. The system was developed using C# and the following development tools and frameworks: MySQL, .NET Framework, Entity Framework and Emgu CV, for interfacing with the machine learning library of OpenCV. Up to six features can be computed per EP recording per electrode. The user can select among various feature selection algorithms and then proceed to train one of three types of classifiers: Artificial Neural Networks, Support Vector Machines, k-nearest neighbour. Next the classifier can be used for classifying any EP curve that has been inputted to the database.

  20. A Relative View on Tracking Error

    NARCIS (Netherlands)

    W.G.P.M. Hallerbach (Winfried); I. Pouchkarev (Igor)

    2005-01-01

    textabstractWhen delegating an investment decisions to a professional manager, investors often anchor their mandate to a specific benchmark. The manager’s exposure to risk is controlled by means of a tracking error volatility constraint. It depends on market conditions whether this constraint is

  1. Error-related ERP components and individual differences in punishment and reward sensitivity

    NARCIS (Netherlands)

    Boksem, Maarten A. S.; Tops, Mattie; Wester, Anne E.; Meijman, Theo F.; Lorist, Monique M.

    2006-01-01

    Although the focus of the discussion regarding the significance of the error related negatively (ERN/Ne) has been on the cognitive factors reflected in this component, there is now a growing body of research that describes influences of motivation, affective style and other factors of personality on

  2. Novel relations between the ergodic capacity and the average bit error rate

    KAUST Repository

    Yilmaz, Ferkan

    2011-11-01

    Ergodic capacity and average bit error rate have been widely used to compare the performance of different wireless communication systems. As such recent scientific research and studies revealed strong impact of designing and implementing wireless technologies based on these two performance indicators. However and to the best of our knowledge, the direct links between these two performance indicators have not been explicitly proposed in the literature so far. In this paper, we propose novel relations between the ergodic capacity and the average bit error rate of an overall communication system using binary modulation schemes for signaling with a limited bandwidth and operating over generalized fading channels. More specifically, we show that these two performance measures can be represented in terms of each other, without the need to know the exact end-to-end statistical characterization of the communication channel. We validate the correctness and accuracy of our newly proposed relations and illustrated their usefulness by considering some classical examples. © 2011 IEEE.

  3. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Directory of Open Access Journals (Sweden)

    Małgorzata Kossowska

    2018-03-01

    Full Text Available Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure. We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400 due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure, religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure.

  4. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure.

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure).

  5. Religious Fundamentalism Modulates Neural Responses to Error-Related Words: The Role of Motivation Toward Closure

    Science.gov (United States)

    Kossowska, Małgorzata; Szwed, Paulina; Wyczesany, Miroslaw; Czarnek, Gabriela; Wronka, Eligiusz

    2018-01-01

    Examining the relationship between brain activity and religious fundamentalism, this study explores whether fundamentalist religious beliefs increase responses to error-related words among participants intolerant to uncertainty (i.e., high in the need for closure) in comparison to those who have a high degree of toleration for uncertainty (i.e., those who are low in the need for closure). We examine a negative-going event-related brain potentials occurring 400 ms after stimulus onset (the N400) due to its well-understood association with the reactions to emotional conflict. Religious fundamentalism and tolerance of uncertainty were measured on self-report measures, and electroencephalographic neural reactivity was recorded as participants were performing an emotional Stroop task. In this task, participants read neutral words and words related to uncertainty, errors, and pondering, while being asked to name the color of the ink with which the word is written. The results confirm that among people who are intolerant of uncertainty (i.e., those high in the need for closure), religious fundamentalism is associated with an increased N400 on error-related words compared with people who tolerate uncertainty well (i.e., those low in the need for closure). PMID:29636709

  6. Evidence for specificity of the impact of punishment on error-related brain activity in high versus low trait anxious individuals.

    Science.gov (United States)

    Meyer, Alexandria; Gawlowska, Magda

    2017-10-01

    A previous study suggests that when participants were punished with a loud noise after committing errors, the error-related negativity (ERN) was enhanced in high trait anxious individuals. The current study sought to extend these findings by examining the ERN in conditions when punishment was related and unrelated to error commission as a function of individual differences in trait anxiety symptoms; further, the current study utilized an electric shock as an aversive unconditioned stimulus. Results confirmed that the ERN was increased when errors were punished among high trait anxious individuals compared to low anxious individuals; this effect was not observed when punishment was unrelated to errors. Findings suggest that the threat-value of errors may underlie the association between certain anxious traits and punishment-related increases in the ERN. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prevention of prescription errors by computerized, on-line, individual patient related surveillance of drug order entry.

    Science.gov (United States)

    Oliven, A; Zalman, D; Shilankov, Y; Yeshurun, D; Odeh, M

    2002-01-01

    Computerized prescription of drugs is expected to reduce the number of many preventable drug ordering errors. In the present study we evaluated the usefullness of a computerized drug order entry (CDOE) system in reducing prescription errors. A department of internal medicine using a comprehensive CDOE, which included also patient-related drug-laboratory, drug-disease and drug-allergy on-line surveillance was compared to a similar department in which drug orders were handwritten. CDOE reduced prescription errors to 25-35%. The causes of errors remained similar, and most errors, on both departments, were associated with abnormal renal function and electrolyte balance. Residual errors remaining on the CDOE-using department were due to handwriting on the typed order, failure to feed patients' diseases, and system failures. The use of CDOE was associated with a significant reduction in mean hospital stay and in the number of changes performed in the prescription. The findings of this study both quantity the impact of comprehensive CDOE on prescription errors and delineate the causes for remaining errors.

  8. Calibration of Flick standards

    International Nuclear Information System (INIS)

    Thalmann, Ruedi; Spiller, Jürg; Küng, Alain; Jusko, Otto

    2012-01-01

    Flick standards or magnification standards are widely used for an efficient and functional calibration of the sensitivity of form measuring instruments. The results of a recent measurement comparison have shown to be partially unsatisfactory and revealed problems related to the calibration of these standards. In this paper the influence factors for the calibration of Flick standards using roundness measurement instruments are discussed in detail, in particular the bandwidth of the measurement chain, residual form errors of the device under test, profile distortions due to the diameter of the probing element and questions related to the definition of the measurand. The different contributions are estimated using simulations and are experimentally verified. Also alternative methods to calibrate Flick standards are investigated. Finally the practical limitations of Flick standard calibration are shown and the usability of Flick standards both to calibrate the sensitivity of roundness instruments and to check the filter function of such instruments is analysed. (paper)

  9. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Science.gov (United States)

    Sosic-Vasic, Zrinka; Ulrich, Martin; Ruchsow, Martin; Vasic, Nenad; Grön, Georg

    2012-01-01

    The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness) and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI). A second strong positive correlation was observed in the anterior cingulate gyrus (ACC). Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  10. The modulating effect of personality traits on neural error monitoring: evidence from event-related FMRI.

    Directory of Open Access Journals (Sweden)

    Zrinka Sosic-Vasic

    Full Text Available The present study investigated the association between traits of the Five Factor Model of Personality (Neuroticism, Extraversion, Openness for Experiences, Agreeableness, and Conscientiousness and neural correlates of error monitoring obtained from a combined Eriksen-Flanker-Go/NoGo task during event-related functional magnetic resonance imaging in 27 healthy subjects. Individual expressions of personality traits were measured using the NEO-PI-R questionnaire. Conscientiousness correlated positively with error signaling in the left inferior frontal gyrus and adjacent anterior insula (IFG/aI. A second strong positive correlation was observed in the anterior cingulate gyrus (ACC. Neuroticism was negatively correlated with error signaling in the inferior frontal cortex possibly reflecting the negative inter-correlation between both scales observed on the behavioral level. Under present statistical thresholds no significant results were obtained for remaining scales. Aligning the personality trait of Conscientiousness with task accomplishment striving behavior the correlation in the left IFG/aI possibly reflects an inter-individually different involvement whenever task-set related memory representations are violated by the occurrence of errors. The strong correlations in the ACC may indicate that more conscientious subjects were stronger affected by these violations of a given task-set expressed by individually different, negatively valenced signals conveyed by the ACC upon occurrence of an error. Present results illustrate that for predicting individual responses to errors underlying personality traits should be taken into account and also lend external validity to the personality trait approach suggesting that personality constructs do reflect more than mere descriptive taxonomies.

  11. Random error in cardiovascular meta-analyses

    DEFF Research Database (Denmark)

    Albalawi, Zaina; McAlister, Finlay A; Thorlund, Kristian

    2013-01-01

    BACKGROUND: Cochrane reviews are viewed as the gold standard in meta-analyses given their efforts to identify and limit systematic error which could cause spurious conclusions. The potential for random error to cause spurious conclusions in meta-analyses is less well appreciated. METHODS: We exam...

  12. Characterization of XR-RV3 GafChromic{sup ®} films in standard laboratory and in clinical conditions and means to evaluate uncertainties and reduce errors

    Energy Technology Data Exchange (ETDEWEB)

    Farah, J., E-mail: jad.farah@irsn.fr; Clairand, I.; Huet, C. [External Dosimetry Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP-17, 92260 Fontenay-aux-Roses (France); Trianni, A. [Medical Physics Department, Udine University Hospital S. Maria della Misericordia (AOUD), p.le S. Maria della Misericordia, 15, 33100 Udine (Italy); Ciraj-Bjelac, O. [Vinca Institute of Nuclear Sciences (VINCA), P.O. Box 522, 11001 Belgrade (Serbia); De Angelis, C. [Department of Technology and Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161 Rome (Italy); Delle Canne, S. [Fatebenefratelli San Giovanni Calibita Hospital (FBF), UOC Medical Physics - Isola Tiberina, 00186 Rome (Italy); Hadid, L.; Waryn, M. J. [Radiology Department, Hôpital Jean Verdier (HJV), Avenue du 14 Juillet, 93140 Bondy Cedex (France); Jarvinen, H.; Siiskonen, T. [Radiation and Nuclear Safety Authority (STUK), P.O. Box 14, 00881 Helsinki (Finland); Negri, A. [Veneto Institute of Oncology (IOV), Via Gattamelata 64, 35124 Padova (Italy); Novák, L. [National Radiation Protection Institute (NRPI), Bartoškova 28, 140 00 Prague 4 (Czech Republic); Pinto, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA-INMRI), C.R. Casaccia, Via Anguillarese 301, I-00123 Santa Maria di Galeria (RM) (Italy); Knežević, Ž. [Ruđer Bošković Institute (RBI), Bijenička c. 54, 10000 Zagreb (Croatia)

    2015-07-15

    Purpose: To investigate the optimal use of XR-RV3 GafChromic{sup ®} films to assess patient skin dose in interventional radiology while addressing the means to reduce uncertainties in dose assessment. Methods: XR-Type R GafChromic films have been shown to represent the most efficient and suitable solution to determine patient skin dose in interventional procedures. As film dosimetry can be associated with high uncertainty, this paper presents the EURADOS WG 12 initiative to carry out a comprehensive study of film characteristics with a multisite approach. The considered sources of uncertainties include scanner, film, and fitting-related errors. The work focused on studying film behavior with clinical high-dose-rate pulsed beams (previously unavailable in the literature) together with reference standard laboratory beams. Results: First, the performance analysis of six different scanner models has shown that scan uniformity perpendicular to the lamp motion axis and that long term stability are the main sources of scanner-related uncertainties. These could induce errors of up to 7% on the film readings unless regularly checked and corrected. Typically, scan uniformity correction matrices and reading normalization to the scanner-specific and daily background reading should be done. In addition, the analysis on multiple film batches has shown that XR-RV3 films have generally good uniformity within one batch (<1.5%), require 24 h to stabilize after the irradiation and their response is roughly independent of dose rate (<5%). However, XR-RV3 films showed large variations (up to 15%) with radiation quality both in standard laboratory and in clinical conditions. As such, and prior to conducting patient skin dose measurements, it is mandatory to choose the appropriate calibration beam quality depending on the characteristics of the x-ray systems that will be used clinically. In addition, yellow side film irradiations should be preferentially used since they showed a lower

  13. Social Errors in Four Cultures: Evidence about Universal Forms of Social Relations.

    Science.gov (United States)

    Fiske, Alan Page

    1993-01-01

    To test the cross-cultural generality of relational-models theory, 4 studies with 70 adults examined social errors of substitution of persons for Bengali, Korean, Chinese, and Vai (Liberia and Sierra Leone) subjects. In all four cultures, people tend to substitute someone with whom they have the same basic relationship. (SLD)

  14. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    Science.gov (United States)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  15. Standard error of measurement of five health utility indexes across the range of health for use in estimating reliability and responsiveness

    Science.gov (United States)

    Palta, Mari; Chen, Han-Yang; Kaplan, Robert M.; Feeny, David; Cherepanov, Dasha; Fryback, Dennis

    2011-01-01

    Background Standard errors of measurement (SEMs) of health related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics and provides guidance on using indexes on the individual and group level. SEM is also a component of reliability. Purpose To estimate SEM of five HRQoL indexes. Design The National Health Measurement Study (NHMS) was a population based telephone survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures 1 and 6 months post cataract surgery. Subjects 3844 randomly selected adults from the non-institutionalized population 35 to 89 years old in the contiguous United States and 265 cataract patients. Measurements The SF6-36v2™, QWB-SA, EQ-5D, HUI2 and HUI3 were included. An item-response theory (IRT) approach captured joint variation in indexes into a composite construct of health (theta). We estimated: (1) the test-retest standard deviation (SEM-TR) from COMHS, (2) the structural standard deviation (SEM-S) around the composite construct from NHMS and (3) corresponding reliability coefficients. Results SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2) and 0.134 (HUI3), while SEM-S was 0.071, 0.094, 0.084, 0.074 and 0.117, respectively. These translate into reliability coefficients for SF-6D: 0.66 (COMHS) and 0.71 (NHMS), for QWB: 0.59 and 0.64, for EQ-5D: 0.61 and 0.70 for HUI2: 0.64 and 0.80, and for HUI3: 0.75 and 0.77, respectively. The SEM varied considerably across levels of health, especially for HUI2, HUI3 and EQ-5D, and was strongly influenced by ceiling effects. Limitations Repeated measures were five months apart and estimated theta contain measurement error. Conclusions The two types of SEM are similar and substantial for all the indexes, and vary across the range of health. PMID:20935280

  16. Reliable channel-adapted error correction: Bacon-Shor code recovery from amplitude damping

    NARCIS (Netherlands)

    Á. Piedrafita (Álvaro); J.M. Renes (Joseph)

    2017-01-01

    textabstractWe construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve

  17. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Influence of Installation Errors On the Output Data of the Piezoelectric Vibrations Transducers

    Science.gov (United States)

    Kozuch, Barbara; Chelmecki, Jaroslaw; Tatara, Tadeusz

    2017-10-01

    The paper examines an influence of installation errors of the piezoelectric vibrations transducers on the output data. PCB Piezotronics piezoelectric accelerometers were used to perform calibrations by comparison. The measurements were performed with TMS 9155 Calibration Workstation version 5.4.0 at frequency in the range of 5Hz - 2000Hz. Accelerometers were fixed on the calibration station in a so-called back-to-back configuration in accordance with the applicable international standard - ISO 16063-21: Methods for the calibration of vibration and shock transducers - Part 21: Vibration calibration by comparison to a reference transducer. The first accelerometer was calibrated by suitable methods with traceability to a primary reference transducer. Each subsequent calibration was performed when changing one setting in relation to the original calibration. The alterations were related to negligence and failures in relation to the above-mentioned standards and operating guidelines - e.g. the sensor was not tightened or appropriate substance was not placed. Also, there was modified the method of connection which was in the standards requirements. Different kind of wax, light oil, grease and other assembly methods were used. The aim of the study was to verify the significance of standards requirements and to estimate of their validity. The authors also wanted to highlight the most significant calibration errors. Moreover, relation between various appropriate methods of the connection was demonstrated.

  19. The impact of a brief mindfulness meditation intervention on cognitive control and error-related performance monitoring

    Directory of Open Access Journals (Sweden)

    Michael J Larson

    2013-07-01

    Full Text Available Meditation is associated with positive health behaviors and improved cognitive control. One mechanism for the relationship between meditation and cognitive control is changes in activity of the anterior cingulate cortex-mediated neural pathways. The error-related negativity (ERN and error positivity (Pe components of the scalp-recorded event-related potential (ERP represent cingulate-mediated functions of performance monitoring that may be modulated by mindfulness meditation. We utilized a flanker task, an experimental design, and a brief mindfulness intervention in a sample of 55 healthy non-meditators (n = 28 randomly assigned to the mindfulness group and n = 27 randomly assigned to the control group to examine autonomic nervous system functions as measured by blood pressure and indices of cognitive control as measured by response times, error rates, post-error slowing, and the ERN and Pe components of the ERP. Systolic blood pressure significantly differentiated groups following the mindfulness intervention and following the flanker task. There were non-significant differences between the mindfulness and control groups for response times, post-error slowing, and error rates on the flanker task. Amplitude and latency of the ERN did not differ between groups; however, amplitude of the Pe was significantly smaller in individuals in the mindfulness group than in the control group. Findings suggest that a brief mindfulness intervention is associated with reduced autonomic arousal and decreased amplitude of the Pe, an ERP associated with error awareness, attention, and motivational salience, but does not alter amplitude of the ERN or behavioral performance. Implications for brief mindfulness interventions and state versus trait affect theories of the ERN are discussed. Future research examining graded levels of mindfulness and tracking error awareness will clarify relationship between mindfulness and performance monitoring.

  20. Statistical evaluation of design-error related nuclear reactor accidents

    International Nuclear Information System (INIS)

    Ott, K.O.; Marchaterre, J.F.

    1981-01-01

    In this paper, general methodology for the statistical evaluation of design-error related accidents is proposed that can be applied to a variety of systems that evolves during the development of large-scale technologies. The evaluation aims at an estimate of the combined ''residual'' frequency of yet unknown types of accidents ''lurking'' in a certain technological system. A special categorization in incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of U.S. nuclear power reactor technology, considering serious accidents (category 2 events) that involved, in the accident progression, a particular design inadequacy. 9 refs

  1. Measurements of stem diameter: implications for individual- and stand-level errors.

    Science.gov (United States)

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when

  2. The refractive index in electron microscopy and the errors of its approximations

    Energy Technology Data Exchange (ETDEWEB)

    Lentzen, M.

    2017-05-15

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. - Highlights: • The standard model for the refractive index in electron microscopy is investigated. • The error of the standard model is proportional to the electric potential squared. • Relativistically correct error terms are derived from the energy-momentum relation. • The errors are assessed for Coulomb scattering varying energy and atomic number. • Errors of scattering cross-sections are pronounced at large angles and attain 10%.

  3. The refractive index in electron microscopy and the errors of its approximations

    International Nuclear Information System (INIS)

    Lentzen, M.

    2017-01-01

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. - Highlights: • The standard model for the refractive index in electron microscopy is investigated. • The error of the standard model is proportional to the electric potential squared. • Relativistically correct error terms are derived from the energy-momentum relation. • The errors are assessed for Coulomb scattering varying energy and atomic number. • Errors of scattering cross-sections are pronounced at large angles and attain 10%.

  4. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  5. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    Science.gov (United States)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  6. SCIAMACHY WFM-DOAS XCO2: reduction of scattering related errors

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2012-10-01

    Full Text Available Global observations of column-averaged dry air mole fractions of carbon dioxide (CO2, denoted by XCO2 , retrieved from SCIAMACHY on-board ENVISAT can provide important and missing global information on the distribution and magnitude of regional CO2 surface fluxes. This application has challenging precision and accuracy requirements. In a previous publication (Heymann et al., 2012, it has been shown by analysing seven years of SCIAMACHY WFM-DOAS XCO2 (WFMDv2.1 that unaccounted thin cirrus clouds can result in significant errors. In order to enhance the quality of the SCIAMACHY XCO2 data product, we have developed a new version of the retrieval algorithm (WFMDv2.2, which is described in this manuscript. It is based on an improved cloud filtering and correction method using the 1.4 μm strong water vapour absorption and 0.76 μm O2-A bands. The new algorithm has been used to generate a SCIAMACHY XCO2 data set covering the years 2003–2009. The new XCO2 data set has been validated using ground-based observations from the Total Carbon Column Observing Network (TCCON. The validation shows a significant improvement of the new product (v2.2 in comparison to the previous product (v2.1. For example, the standard deviation of the difference to TCCON at Darwin, Australia, has been reduced from 4 ppm to 2 ppm. The monthly regional-scale scatter of the data (defined as the mean intra-monthly standard deviation of all quality filtered XCO2 retrievals within a radius of 350 km around various locations has also been reduced, typically by a factor of about 1.5. Overall, the validation of the new WFMDv2.2 XCO2 data product can be summarised by a single measurement precision of 3.8 ppm, an estimated regional-scale (radius of 500 km precision of monthly averages of 1.6 ppm and an estimated regional-scale relative accuracy of 0.8 ppm. In addition to the comparison with the limited number of TCCON sites, we also present a comparison with NOAA's global CO2 modelling

  7. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  8. Relative Error Model Reduction via Time-Weighted Balanced Stochastic Singular Perturbation

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2012-01-01

    A new mixed method for relative error model reduction of linear time invariant (LTI) systems is proposed in this paper. This order reduction technique is mainly based upon time-weighted balanced stochastic model reduction method and singular perturbation model reduction technique. Compared...... by using the concept and properties of the reciprocal systems. The results are further illustrated by two practical numerical examples: a model of CD player and a model of the atmospheric storm track....

  9. Driving error and anxiety related to iPod mp3 player use in a simulated driving experience.

    Science.gov (United States)

    Harvey, Ashley R; Carden, Randy L

    2009-08-01

    Driver distraction due to cellular phone usage has repeatedly been shown to increase the risk of vehicular accidents; however, the literature regarding the use of other personal electronic devices while driving is relatively sparse. It was hypothesized that the usage of an mp3 player would result in an increase in not only driving error while operating a driving simulator, but driver anxiety scores as well. It was also hypothesized that anxiety scores would be positively related to driving errors when using an mp3 player. 32 participants drove through a set course in a driving simulator twice, once with and once without an iPod mp3 player, with the order counterbalanced. Number of driving errors per course, such as leaving the road, impacts with stationary objects, loss of vehicular control, etc., and anxiety were significantly higher when an iPod was in use. Anxiety scores were unrelated to number of driving errors.

  10. Work-related falls among union carpenters in Washington State before and after the Vertical Fall Arrest Standard.

    Science.gov (United States)

    Lipscomb, Hester J; Li, Leiming; Dement, John

    2003-08-01

    Washington State enacted a change in their fall standard for the construction industry in 1991, preceding the Safety Standard for Fall Protection in the Construction Industry promulgated by Federal OSHA in 1994. We evaluated changes in the rate of falls from elevations and measures of severity among a large cohort of union carpenters after the fall standard change in Washington State, taking into account the temporal trends in their overall injury rates. There was a significant decrease in the rate of falls from height after the standard went into effect, even after adjusting for the overall decrease in work-related injuries among this cohort. Much of the decrease was immediate, likely representing the publicity surrounding fatal falls and subsequent promulgation of the standard. The greatest decrease was seen between 3 and 3(1/2) years after the standard went into effect. There was a significant reduction in mean paid lost days per event after the standard change and there was a significant reduction in mean cost per fall when adjusting for age and the temporal trend for costs among non-fall injuries. Through the use of observational methods we have demonstrated significant effects of the Washington State Vertical Fall Arrest Standard among carpenters in the absence of a control or comparison group. Without controlling for the temporal trend in overall injury rates, the rate of decline in falls appeared significantly greater, but the more pronounced, but delayed, decline was not seen. The analyses demonstrate potential error in failing to account for temporal patterns or assuming that a decline after an intervention is related to the intervention. Copyright 2003 Wiley-Liss, Inc.

  11. Self-Reported and Observed Punitive Parenting Prospectively Predicts Increased Error-Related Brain Activity in Six-Year-Old Children.

    Science.gov (United States)

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J; Kujawa, Autumn J; Laptook, Rebecca S; Torpey, Dana C; Klein, Daniel N

    2015-07-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission--although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children's ERN approximately 3 years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately 3 years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children's error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to confirm this

  12. Self-reported and observed punitive parenting prospectively predicts increased error-related brain activity in six-year-old children

    Science.gov (United States)

    Meyer, Alexandria; Proudfit, Greg Hajcak; Bufferd, Sara J.; Kujawa, Autumn J.; Laptook, Rebecca S.; Torpey, Dana C.; Klein, Daniel N.

    2017-01-01

    The error-related negativity (ERN) is a negative deflection in the event-related potential (ERP) occurring approximately 50 ms after error commission at fronto-central electrode sites and is thought to reflect the activation of a generic error monitoring system. Several studies have reported an increased ERN in clinically anxious children, and suggest that anxious children are more sensitive to error commission—although the mechanisms underlying this association are not clear. We have previously found that punishing errors results in a larger ERN, an effect that persists after punishment ends. It is possible that learning-related experiences that impact sensitivity to errors may lead to an increased ERN. In particular, punitive parenting might sensitize children to errors and increase their ERN. We tested this possibility in the current study by prospectively examining the relationship between parenting style during early childhood and children’s ERN approximately three years later. Initially, 295 parents and children (approximately 3 years old) participated in a structured observational measure of parenting behavior, and parents completed a self-report measure of parenting style. At a follow-up assessment approximately three years later, the ERN was elicited during a Go/No-Go task, and diagnostic interviews were completed with parents to assess child psychopathology. Results suggested that both observational measures of hostile parenting and self-report measures of authoritarian parenting style uniquely predicted a larger ERN in children 3 years later. We previously reported that children in this sample with anxiety disorders were characterized by an increased ERN. A mediation analysis indicated that ERN magnitude mediated the relationship between harsh parenting and child anxiety disorder. Results suggest that parenting may shape children’s error processing through environmental conditioning and thereby risk for anxiety, although future work is needed to

  13. Differences among Job Positions Related to Communication Errors at Construction Sites

    Science.gov (United States)

    Takahashi, Akiko; Ishida, Toshiro

    In a previous study, we classified the communicatio n errors at construction sites as faulty intention and message pattern, inadequate channel pattern, and faulty comprehension pattern. This study seeks to evaluate the degree of risk of communication errors and to investigate differences among people in various job positions in perception of communication error risk . Questionnaires based on the previous study were a dministered to construction workers (n=811; 149 adminis trators, 208 foremen and 454 workers). Administrators evaluated all patterns of communication error risk equally. However, foremen and workers evaluated communication error risk differently in each pattern. The common contributing factors to all patterns wer e inadequate arrangements before work and inadequate confirmation. Some factors were common among patterns but other factors were particular to a specific pattern. To help prevent future accidents at construction sites, administrators should understand how people in various job positions perceive communication errors and propose human factors measures to prevent such errors.

  14. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  15. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, Miguel; Alessie, Rob; Teulings, Coen

    2010-01-01

    The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these

  16. Reducing matrix effect error in EDXRF: Comparative study of using standard and standard less methods for stainless steel samples

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muhammad; Wilfred, P.

    2013-01-01

    Even though EDXRF analysis has major advantages in the analysis of stainless steel samples such as simultaneous determination of the minor elements, analysis can be done without sample preparation and non-destructive analysis, the matrix issue arise from the inter element interaction can make the the final quantitative result to be in accurate. The paper relates a comparative quantitative analysis using standard and standard less methods in the determination of these elements. Standard method was done by plotting regression calibration graphs of the interested elements using BCS certified stainless steel standards. Different calibration plots were developed based on the available certified standards and these stainless steel grades include low alloy steel, austenitic, ferritic and high speed. The standard less method on the other hand uses a mathematical modelling with matrix effect correction derived from Lucas-Tooth and Price model. Further improvement on the accuracy of the standard less method was done by inclusion of pure elements into the development of the model. Discrepancy tests were then carried out for these quantitative methods on different certified samples and the results show that the high speed method is most reliable for determining of Ni and the standard less method for Mn. (Author)

  17. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    Science.gov (United States)

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  18. Error tracking in a clinical biochemistry laboratory

    DEFF Research Database (Denmark)

    Szecsi, Pal Bela; Ødum, Lars

    2009-01-01

    BACKGROUND: We report our results for the systematic recording of all errors in a standard clinical laboratory over a 1-year period. METHODS: Recording was performed using a commercial database program. All individuals in the laboratory were allowed to report errors. The testing processes were cl...

  19. ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals

    International Nuclear Information System (INIS)

    Vogel, J.E.

    1983-01-01

    1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x

  20. Evolutionary Naturalism and the Logical Structure of Valuation: The Other Side of Error Theory

    Directory of Open Access Journals (Sweden)

    Richard A Richards

    2006-01-01

    Full Text Available On one standard philosophical position adopted by evolutionary naturalists, human ethical systems are nothing more than evolutionary adaptations that facilitate social behavior. Belief in an absolute moral foundation is therefore in error. But evolutionary naturalism, by its commitment to the basic valutional concept of fitness, reveals another, logical error: standard conceptions of value in terms of simple predication and properties are mistaken. Valuation has instead, a relational structure that makes reference to respects, subjects and environments. This relational nature is illustrated by the analogy commonly drawn between value and color. Color perception, as recognized by the ecological concept, is relational and dependent on subject and environment. In a similar way, value is relational and dependent on subject and environment. This makes value subjective, but also objective in that it is grounded on facts about mattering. At bottom, values are complex relational facts. The view presented here, unlike other prominent relational and naturalistic conceptions of value, recognizes the full range of valuation in nature. The advantages of this relational conception are first, that it gets valuation right; second, it provides a framework to better explain and understand valuation in all its varieties and patterns.

  1. Evolutionary Naturalism and the Logical Structure of Valuation: The Other Side of Error Theory

    Directory of Open Access Journals (Sweden)

    Richard A Richards

    2005-01-01

    Full Text Available On one standard philosophical position adopted by evolutionary naturalists, human ethical systems are nothing more than evolutionary adaptations that facilitate social behavior. Belief in an absolute moral foundation is therefore in error. But evolutionary naturalism, by its commitment to the basic valutional concept of fitness, reveals another, logical error: standard conceptions of value in terms of simple predication and properties are mistaken. Valuation has instead, a relational structure that makes reference to respects, subjects and environments. This relational nature is illustrated by the analogy commonly drawn between value and color. Color perception, as recognized by the ecological concept, is relational and dependent on subject and environment. In a similar way, value is relational and dependent on subject and environment. This makes value subjective, but also objective in that it is grounded on facts about mattering. At bottom, values are complex relational facts. The view presented here, unlike other prominent relational and naturalistic conceptions of value, recognizes the full range of valuation in nature. The advantages of this relational conception are first, that it gets valuation right; second, it provides a framework to better explain and understand valuation in all its varieties and patterns.

  2. Reducing patient identification errors related to glucose point-of-care testing

    Directory of Open Access Journals (Sweden)

    Gaurav Alreja

    2011-01-01

    Full Text Available Background: Patient identification (ID errors in point-of-care testing (POCT can cause test results to be transferred to the wrong patient′s chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Materials and Methods: Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number is checked against patient registration data from admission, discharge, and transfer (ADT feeds and only matched results are transferred to the patient′s electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. Results: When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015% in comparison with 61.5 errors/month (0.319% before implementing the new meters. Conclusion: Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT.

  3. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    Science.gov (United States)

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  4. Did I Do That? Expectancy Effects of Brain Stimulation on Error-related Negativity and Sense of Agency.

    Science.gov (United States)

    Hoogeveen, Suzanne; Schjoedt, Uffe; van Elk, Michiel

    2018-06-19

    This study examines the effects of expected transcranial stimulation on the error(-related) negativity (Ne or ERN) and the sense of agency in participants who perform a cognitive control task. Placebo transcranial direct current stimulation was used to elicit expectations of transcranially induced cognitive improvement or impairment. The improvement/impairment manipulation affected both the Ne/ERN and the sense of agency (i.e., whether participants attributed errors to oneself or the brain stimulation device): Expected improvement increased the ERN in response to errors compared with both impairment and control conditions. Expected impairment made participants falsely attribute errors to the transcranial stimulation. This decrease in sense of agency was correlated with a reduced ERN amplitude. These results show that expectations about transcranial stimulation impact users' neural response to self-generated errors and the attribution of responsibility-especially when actions lead to negative outcomes. We discuss our findings in relation to predictive processing theory according to which the effect of prior expectations on the ERN reflects the brain's attempt to generate predictive models of incoming information. By demonstrating that induced expectations about transcranial stimulation can have effects at a neural level, that is, beyond mere demand characteristics, our findings highlight the potential for placebo brain stimulation as a promising tool for research.

  5. Dye shift: a neglected source of genotyping error in molecular ecology.

    Science.gov (United States)

    Sutton, Jolene T; Robertson, Bruce C; Jamieson, Ian G

    2011-05-01

    Molecular ecologists must be vigilant in detecting and accounting for genotyping error, yet potential errors stemming from dye-induced mobility shift (dye shift) may be frequently neglected and largely unknown to researchers who employ 3-primer systems with automated genotyping. When left uncorrected, dye shift can lead to mis-scoring alleles and even to falsely calling new alleles if different dyes are used to genotype the same locus in subsequent reactions. When we used four different fluorophore labels from a standard dye set to genotype the same set of loci, differences in the resulting size estimates for a single allele ranged from 2.07 bp to 3.68 bp. The strongest effects were associated with the fluorophore PET, and relative degree of dye shift was inversely related to locus size. We found little evidence in the literature that dye shift is regularly accounted for in 3-primer studies, despite knowledge of this phenomenon existing for over a decade. However, we did find some references to erroneous standard correction factors for the same set of dyes that we tested. We thus reiterate the need for strict quality control when attempting to reduce possible sources of genotyping error, and in cases where different dyes are applied to a single locus, perhaps mistakenly, we strongly discourage researchers from assuming generic correction patterns. © 2011 Blackwell Publishing Ltd.

  6. An error-related negativity potential investigation of response monitoring function in individuals with Internet addiction disorder

    Directory of Open Access Journals (Sweden)

    Zhenhe eZhou

    2013-09-01

    Full Text Available Internet addiction disorder (IAD is an impulse disorder or at least related to impulse control disorder. Deficits in executive functioning, including response monitoring, have been proposed as a hallmark feature of impulse control disorders. The error-related negativity (ERN reflects individual’s ability to monitor behavior. Since IAD belongs to a compulsive-impulsive spectrum disorder, theoretically, it should present response monitoring functional deficit characteristics of some disorders, such as substance dependence, ADHD or alcohol abuse, testing with an Erikson flanker task. Up to now, no studies on response monitoring functional deficit in IAD were reported. The purpose of the present study was to examine whether IAD displays response monitoring functional deficit characteristics in a modified Erikson flanker task.23 subjects were recruited as IAD group. 23 matched age, gender and education healthy persons were recruited as control group. All participants completed the modified Erikson flanker task while measured with event-related potentials (ERPs. IAD group made more total error rates than did controls (P < 0.01; Reactive times for total error responses in IAD group were shorter than did controls (P < 0.01. The mean ERN amplitudes of total error response conditions at frontal electrode sites and at central electrode sites of IAD group were reduced compared with control group (all P < 0.01. These results revealed that IAD displays response monitoring functional deficit characteristics and shares ERN characteristics of compulsive-impulsive spectrum disorder.

  7. Imagery of Errors in Typing

    Science.gov (United States)

    Rieger, Martina; Martinez, Fanny; Wenke, Dorit

    2011-01-01

    Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…

  8. Standard practice for construction of a stepped block and its use to estimate errors produced by speed-of-sound measurement systems for use on solids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice provides a means for evaluating both systematic and random errors for ultrasonic speed-of-sound measurement systems which are used for evaluating material characteristics associated with residual stress and which may also be used for nondestructive measurements of the dynamic elastic moduli of materials. Important features and construction details of a reference block crucial to these error evaluations are described. This practice can be used whenever the precision and bias of sound speed values are in question. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Analysis of Wind Speed Forecasting Error Effects on Automatic Generation Control Performance

    Directory of Open Access Journals (Sweden)

    H. Rajabi Mashhadi

    2014-09-01

    Full Text Available The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more fluctuations and make system more unbalance. Then AGC loop helps to adjust system frequency and the scheduled tie-line powers. The quality of AGC loop is measured by some indices. A good index is a proper measure shows the AGC performance just as the power system operates. One of well-known measures in literature which was introduced by NERC is Control Performance Standards(CPS. Previously it is claimed that a key factor in CPS index is related to standard deviation of generation error, installed power and frequency response. This paper focuses on impact of a several hours-ahead wind speed forecast error on this factor. Furthermore evaluation of conventional control performances in the power systems with large-scale wind turbine penetration is studied. Effects of wind speed standard deviation and also degree of wind farm penetration are analyzed and importance of mentioned factor are criticized. In addition, influence of mean wind speed forecast error on this factor is investigated. The study system is a two area system which there is significant wind farm in one of those. The results show that mean wind speed forecast error has considerable effect on AGC performance while the mentioned key factor is insensitive to this mean error.

  10. An individual differences approach to multiple-target visual search errors: How search errors relate to different characteristics of attention.

    Science.gov (United States)

    Adamo, Stephen H; Cain, Matthew S; Mitroff, Stephen R

    2017-12-01

    A persistent problem in visual search is that searchers are more likely to miss a target if they have already found another in the same display. This phenomenon, the Subsequent Search Miss (SSM) effect, has remained despite being a known issue for decades. Increasingly, evidence supports a resource depletion account of SSM errors-a previously detected target consumes attentional resources leaving fewer resources available for the processing of a second target. However, "attention" is broadly defined and is composed of many different characteristics, leaving considerable uncertainty about how attention affects second-target detection. The goal of the current study was to identify which attentional characteristics (i.e., selection, limited capacity, modulation, and vigilance) related to second-target misses. The current study compared second-target misses to an attentional blink task and a vigilance task, which both have established measures that were used to operationally define each of four attentional characteristics. Second-target misses in the multiple-target search were correlated with (1) a measure of the time it took for the second target to recovery from the blink in the attentional blink task (i.e., modulation), and (2) target sensitivity (d') in the vigilance task (i.e., vigilance). Participants with longer recovery and poorer vigilance had more second-target misses in the multiple-target visual search task. The results add further support to a resource depletion account of SSM errors and highlight that worse modulation and poor vigilance reflect a deficit in attentional resources that can account for SSM errors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Online adaptation of a c-VEP Brain-computer Interface(BCI) based on error-related potentials and unsupervised learning.

    Science.gov (United States)

    Spüler, Martin; Rosenstiel, Wolfgang; Bogdan, Martin

    2012-01-01

    The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based on the detection of error-related potentials is possible, without knowing the true class labels.

  12. Electrophysiological Endophenotypes and the Error-Related Negativity (ERN) in Autism Spectrum Disorder: A Family Study

    Science.gov (United States)

    Clawson, Ann; South, Mikle; Baldwin, Scott A.; Larson, Michael J.

    2017-01-01

    We examined the error-related negativity (ERN) as an endophenotype of ASD by comparing the ERN in families of ASD probands to control families. We hypothesized that ASD probands and families would display reduced-amplitude ERN relative to controls. Participants included 148 individuals within 39 families consisting of a mother, father, sibling,…

  13. The influence of different error estimates in the detection of postoperative cognitive dysfunction using reliable change indices with correction for practice effects.

    Science.gov (United States)

    Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A

    2007-02-01

    The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.

  14. Enhanced error related negativity amplitude in medication-naïve, comorbidity-free obsessive compulsive disorder.

    Science.gov (United States)

    Nawani, Hema; Narayanaswamy, Janardhanan C; Basavaraju, Shrinivasa; Bose, Anushree; Mahavir Agarwal, Sri; Venkatasubramanian, Ganesan; Janardhan Reddy, Y C

    2018-04-01

    Error monitoring and response inhibition is a key cognitive deficit in obsessive-compulsive disorder (OCD). Frontal midline regions such as the cingulate cortex and pre-supplementary motor area are considered critical brain substrates of this deficit. Electrophysiological equivalent of the above dysfunction is a fronto-central event related potential (ERP) which occurs after an error called the error related negativity (ERN). In this study, we sought to compare the ERN parameters between medication-naïve, comorbidity-free subjects with OCD and healthy controls (HC). Age, sex and handedness matched subjects with medication-naïve, comorbidity-free OCD (N = 16) and Healthy Controls (N = 17) performed a modified version of the flanker task while EEG was acquired for ERN. EEG signals were recorded from the electrodes FCz and Cz. Clinical severity of OCD was assessed using the Yale Brown Obsessive Compulsive Scale. The subjects with OCD had significantly greater ERN amplitude at Cz and FCz. There were no significant correlations between ERN measures and illness severity measures. Overactive performance monitoring as evidenced by enhanced ERN amplitude could be considered as a biomarker for OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  16. How Much Confidence Can We Have in EU-SILC? Complex Sample Designs and the Standard Error of the Europe 2020 Poverty Indicators

    Science.gov (United States)

    Goedeme, Tim

    2013-01-01

    If estimates are based on samples, they should be accompanied by appropriate standard errors and confidence intervals. This is true for scientific research in general, and is even more important if estimates are used to inform and evaluate policy measures such as those aimed at attaining the Europe 2020 poverty reduction target. In this article I…

  17. Method for decoupling error correction from privacy amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)

    2003-04-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.

  18. Method for decoupling error correction from privacy amplification

    International Nuclear Information System (INIS)

    Lo, Hoi-Kwong

    2003-01-01

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  19. Impact of error management culture on knowledge performance in professional service firms

    Directory of Open Access Journals (Sweden)

    Tabea Scheel

    2014-01-01

    Full Text Available Knowledge is the most crucial resource of the 21st century. For professional service firms (PSFs, knowledge represents the input as well as the output, and thus the fundamental base for performance. As every organization, PSFs have to deal with errors – and how they do that indicates their error culture. Considering the positive potential of errors (e.g., innovation, error management culture is positively related to organizational performance. This longitudinal quantitative study investigates the impact of error management culture on knowledge performance in four waves. The study was conducted in 131 PSFs, i.e. tax accounting offices. As a standard quality management system (QMS was assumed to moderate the relationship between error management culture and knowledge performance, offices' ISO 9000 certification was assessed. Error management culture correlated positively with knowledge performance at a significant level and predicted knowledge performance one year later. While the ISO 9000 certification correlated positively with knowledge performance, its assumed moderation of the relationship between error management culture and knowledge performance was not consistent. The process-oriented QMS seems to function as facilitator for the more behavior-oriented error management culture. However, the benefit of ISO 9000 certification for tax accounting remains to be proven. Given the impact of error management culture on knowledge performance, PSFs should focus on actively promoting positive attitudes towards errors.

  20. A Monte Carlo error simulation applied to calibration-free X-ray diffraction phase analysis

    International Nuclear Information System (INIS)

    Braun, G.E.

    1986-01-01

    Quantitative phase analysis of a system of n phases can be effected without the need for calibration standards provided at least n different mixtures of these phases are available. A series of linear equations relating diffracted X-ray intensities, weight fractions and quantitation factors coupled with mass balance relationships can be solved for the unknown weight fractions and factors. Uncertainties associated with the measured X-ray intensities, owing to counting of random X-ray quanta, are used to estimate the errors in the calculated parameters utilizing a Monte Carlo simulation. The Monte Carlo approach can be generalized and applied to any quantitative X-ray diffraction phase analysis method. Two examples utilizing mixtures of CaCO 3 , Fe 2 O 3 and CaF 2 with an α-SiO 2 (quartz) internal standard illustrate the quantitative method and corresponding error analysis. One example is well conditioned; the other is poorly conditioned and, therefore, very sensitive to errors in the measured intensities. (orig.)

  1. Role of memory errors in quantum repeaters

    International Nuclear Information System (INIS)

    Hartmann, L.; Kraus, B.; Briegel, H.-J.; Duer, W.

    2007-01-01

    We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory and (ii) introducing two operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e., without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an order of magnitude with reasonable overhead in physical resources. We outline the architecture of a quantum repeater that can possibly ensure intercontinental quantum communication

  2. (AJST) RELATIVE EFFICIENCY OF NON-PARAMETRIC ERROR ...

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    on 100 bootstrap samples, a sample of size n being taken with replacement in each initial sample of size n. .... the overlap (or optimal error rate) of the populations. However, the expression (2.3) for the computation of ..... Analysis and Machine Intelligence, 9, 628-633. Lachenbruch P. A. (1967). An almost unbiased method ...

  3. Method for evaluation of risk due to seismic related design and construction errors based on past reactor experience

    International Nuclear Information System (INIS)

    Gonzalez Cuesta, M.; Okrent, D.

    1985-01-01

    This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered

  4. Chernobyl - system accident or human error?

    International Nuclear Information System (INIS)

    Stang, E.

    1996-01-01

    Did human error cause the Chernobyl disaster? The standard point of view is that operator error was the root cause of the disaster. This was also the view of the Soviet Accident Commission. The paper analyses the operator errors at Chernobyl in a system context. The reactor operators committed errors that depended upon a lot of other failures that made up a complex accident scenario. The analysis is based on Charles Perrow's analysis of technological disasters. Failure possibility is an inherent property of high-risk industrial installations. The Chernobyl accident consisted of a chain of events that were both extremely improbable and difficult to predict. It is not reasonable to put the blame for the disaster on the operators. (author)

  5. Using snowball sampling method with nurses to understand medication administration errors.

    Science.gov (United States)

    Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In

    2009-02-01

    We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non

  6. Comparisons of ANSI standards cited in the NRC standard review plan, NUREG-0800 and related documents

    International Nuclear Information System (INIS)

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Pawlowski, R.A.; Spiesman, J.B.

    1995-11-01

    This report provides the results of comparisons of the cited and latest versions of ANSI standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC's Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review

  7. Comparisons of ASTM standards cited in the NRC standard review plan, NUREG-0800 and related documents

    International Nuclear Information System (INIS)

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Pawlowski, R.A.; Spiesman, J.B.

    1995-10-01

    This report provides the results of comparisons of the cited and latest versions of ASTM standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC's Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review

  8. Errors in practical measurement in surveying, engineering, and technology

    International Nuclear Information System (INIS)

    Barry, B.A.; Morris, M.D.

    1991-01-01

    This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems

  9. Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning

    Science.gov (United States)

    Meshkat, Leila; Bryant, Larry

    2014-01-01

    Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.

  10. Telemetry Standards, RCC Standard 106-17. Chapter 8. Digital Data Bus Acquisition Formatting Standard

    Science.gov (United States)

    2017-07-01

    incorrect word count/message and illegal mode codes are not considered bus errors. 8.6.2 Source Signal The source of data is a signal conforming to...Telemetry Standards, RCC Standard 106-17 Chapter 8, July 2017 CHAPTER 8 Digital Data Bus Acquisition Formatting Standard Acronyms...check FCS frame check sequence HDDR high-density digital recording MIL-STD Military Standard msb most significant bit PCM pulse code modulation

  11. Enhanced Named Entity Extraction via Error-Driven Aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Lemmond, T D; Perry, N C; Guensche, J W; Nitao, J J; Glaser, R E; Kidwell, P; Hanley, W G

    2010-02-22

    Despite recent advances in named entity extraction technologies, state-of-the-art extraction tools achieve insufficient accuracy rates for practical use in many operational settings. However, they are not generally prone to the same types of error, suggesting that substantial improvements may be achieved via appropriate combinations of existing tools, provided their behavior can be accurately characterized and quantified. In this paper, we present an inference methodology for the aggregation of named entity extraction technologies that is founded upon a black-box analysis of their respective error processes. This method has been shown to produce statistically significant improvements in extraction relative to standard performance metrics and to mitigate the weak performance of entity extractors operating under suboptimal conditions. Moreover, this approach provides a framework for quantifying uncertainty and has demonstrated the ability to reconstruct the truth when majority voting fails.

  12. Medical Error Types and Causes Made by Nurses in Turkey

    Directory of Open Access Journals (Sweden)

    Dilek Kucuk Alemdar

    2013-06-01

    Full Text Available AIM: This study was carried out as a descriptive study in order to determine types, causes and prevalence of medical errors made by nurses in Turkey. METHOD: Seventy eight (78 nurses who have worked in a randomly selected hospital from five hospitals in Giresun city centre were enrolled in the study. The data was collected by the researchers using the ‘Information Form for Nurses’ and ‘Medical Error Form’. The Medical Error Form consists of 2 parts and 40 items including types and causes of medical errors. Nurses’ socio-demographic variables, medical error types and causes were evaluated using the percentage distribution and mean. RESULTS: The mean age of the nurses was 25.5 years, with a standard deviation 6.03 years. 50% of the nurses graduated health professional high school in the study. 53.8% of the nurses are single, 63.1% worked between 1-5 years, 71.8% day and night shifts and 42.3% in medical clinics. The common types of medical errors were hospital infection rate of 15.4%, diagnostic errors 12.8%, needle or cutting tool injuries and problems related to drug usage which has side effects 10.3%. In the study 38.5% of the nurses reported that they thought the cause of medical error highly was tiredness, 36.4% increased workload and 34.6% long working hours. CONCLUSION: As a result of the present study, nurses mentioned hospital infection, diagnostic errors, needle or cutting tool injuries as the most common medical errors and fatigue, over work load and long working hours as the most common medical error reasons. [TAF Prev Med Bull 2013; 12(3.000: 307-314

  13. The computation of equating errors in international surveys in education.

    Science.gov (United States)

    Monseur, Christian; Berezner, Alla

    2007-01-01

    Since the IEA's Third International Mathematics and Science Study, one of the major objectives of international surveys in education has been to report trends in achievement. The names of the two current IEA surveys reflect this growing interest: Trends in International Mathematics and Science Study (TIMSS) and Progress in International Reading Literacy Study (PIRLS). Similarly a central concern of the OECD's PISA is with trends in outcomes over time. To facilitate trend analyses these studies link their tests using common item equating in conjunction with item response modelling methods. IEA and PISA policies differ in terms of reporting the error associated with trends. In IEA surveys, the standard errors of the trend estimates do not include the uncertainty associated with the linking step while PISA does include a linking error component in the standard errors of trend estimates. In other words, PISA implicitly acknowledges that trend estimates partly depend on the selected common items, while the IEA's surveys do not recognise this source of error. Failing to recognise the linking error leads to an underestimation of the standard errors and thus increases the Type I error rate, thereby resulting in reporting of significant changes in achievement when in fact these are not significant. The growing interest of policy makers in trend indicators and the impact of the evaluation of educational reforms appear to be incompatible with such underestimation. However, the procedure implemented by PISA raises a few issues about the underlying assumptions for the computation of the equating error. After a brief introduction, this paper will describe the procedure PISA implemented to compute the linking error. The underlying assumptions of this procedure will then be discussed. Finally an alternative method based on replication techniques will be presented, based on a simulation study and then applied to the PISA 2000 data.

  14. Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope

    Science.gov (United States)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing

    2018-03-01

    The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.

  15. Team errors: definition and taxonomy

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Reason, James

    1999-01-01

    In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors

  16. Unitary Application of the Quantum Error Correction Codes

    International Nuclear Information System (INIS)

    You Bo; Xu Ke; Wu Xiaohua

    2012-01-01

    For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.

  17. ENAA of iodine in standard reference material lyophilized human urine

    International Nuclear Information System (INIS)

    Zhang Yongbao; Wang Ke; Wang Ganfeng

    1997-01-01

    The contents of iodine in two kinds of standard reference materials lyophilized human urine are determined by ENAA. The sensitivity of this method is ten times higher than that of TNAA, and the relative standard deviations of ten measurements are 2.9% and 3.3%, respectively. Two certificated reference samples are used for verification of the analysis. The analytical results are in agreement with the recommended values, and the relative error is less than 3%

  18. On the effect of numerical errors in large eddy simulations of turbulent flows

    International Nuclear Information System (INIS)

    Kravchenko, A.G.; Moin, P.

    1997-01-01

    Aliased and dealiased numerical simulations of a turbulent channel flow are performed using spectral and finite difference methods. Analytical and numerical studies show that aliasing errors are more destructive for spectral and high-order finite-difference calculations than for low-order finite-difference simulations. Numerical errors have different effects for different forms of the nonlinear terms in the Navier-Stokes equations. For divergence and convective forms, spectral methods are energy-conserving only if dealiasing is performed. For skew-symmetric and rotational forms, both spectral and finite-difference methods are energy-conserving even in the presence of aliasing errors. It is shown that discrepancies between the results of dealiased spectral and standard nondialiased finite-difference methods are due to both aliasing and truncation errors with the latter being the leading source of differences. The relative importance of aliasing and truncation errors as compared to subgrid scale model terms in large eddy simulations is analyzed and discussed. For low-order finite-difference simulations, truncation errors can exceed the magnitude of the subgrid scale term. 25 refs., 17 figs., 1 tab

  19. Understanding Problem-Solving Errors by Students with Learning Disabilities in Standards-Based and Traditional Curricula

    Science.gov (United States)

    Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley

    2016-01-01

    Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…

  20. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  1. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    Science.gov (United States)

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  2. Putting a face on medical errors: a patient perspective.

    Science.gov (United States)

    Kooienga, Sarah; Stewart, Valerie T

    2011-01-01

    Knowledge of the patient's perspective on medical error is limited. Research efforts have centered on how best to disclose error and how patients desire to have medical error disclosed. On the basis of a qualitative descriptive component of a mixed method study, a purposive sample of 30 community members told their stories of medical error. Their experiences focused on lack of communication, missed communication, or provider's poor interpersonal style of communication, greatly contrasting with the formal definition of error as failure to follow a set standard of care. For these participants, being a patient was more important than error or how an error is disclosed. The patient's understanding of error must be a key aspect of any quality improvement strategy. © 2010 National Association for Healthcare Quality.

  3. Establishment and application of medication error classification standards in nursing care based on the International Classification of Patient Safety

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Zhu

    2014-09-01

    Conclusion: Application of this classification system will help nursing administrators to accurately detect system- and process-related defects leading to medication errors, and enable the factors to be targeted to improve the level of patient safety management.

  4. EEG-based decoding of error-related brain activity in a real-world driving task

    Science.gov (United States)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  5. Progress in the improved lattice calculation of direct CP-violation in the Standard Model

    Science.gov (United States)

    Kelly, Christopher

    2018-03-01

    We discuss the ongoing effort by the RBC & UKQCD collaborations to improve our lattice calculation of the measure of Standard Model direct CP violation, ɛ', with physical kinematics. We present our progress in decreasing the (dominant) statistical error and discuss other related activities aimed at reducing the systematic errors.

  6. Diagnostic errors related to acute abdominal pain in the emergency department.

    Science.gov (United States)

    Medford-Davis, Laura; Park, Elizabeth; Shlamovitz, Gil; Suliburk, James; Meyer, Ashley N D; Singh, Hardeep

    2016-04-01

    Diagnostic errors in the emergency department (ED) are harmful and costly. We reviewed a selected high-risk cohort of patients presenting to the ED with abdominal pain to evaluate for possible diagnostic errors and associated process breakdowns. We conducted a retrospective chart review of ED patients >18 years at an urban academic hospital. A computerised 'trigger' algorithm identified patients possibly at high risk for diagnostic errors to facilitate selective record reviews. The trigger determined patients to be at high risk because they: (1) presented to the ED with abdominal pain, and were discharged home and (2) had a return ED visit within 10 days that led to a hospitalisation. Diagnostic errors were defined as missed opportunities to make a correct or timely diagnosis based on the evidence available during the first ED visit, regardless of patient harm, and included errors that involved both ED and non-ED providers. Errors were determined by two independent record reviewers followed by team consensus in cases of disagreement. Diagnostic errors occurred in 35 of 100 high-risk cases. Over two-thirds had breakdowns involving the patient-provider encounter (most commonly history-taking or ordering additional tests) and/or follow-up and tracking of diagnostic information (most commonly follow-up of abnormal test results). The most frequently missed diagnoses were gallbladder pathology (n=10) and urinary infections (n=5). Diagnostic process breakdowns in ED patients with abdominal pain most commonly involved history-taking, ordering insufficient tests in the patient-provider encounter and problems with follow-up of abnormal test results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Applying Intelligent Algorithms to Automate the Identification of Error Factors.

    Science.gov (United States)

    Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han

    2018-05-03

    Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.

  8. Errors in second moments estimated from monostatic Doppler sodar winds. II. Application to field measurements

    DEFF Research Database (Denmark)

    Gaynor, J. E.; Kristensen, Leif

    1986-01-01

    Observatory tower. The approximate magnitude of the error due to spatial and temporal pulse volume separation is presented as a function of mean wind angle relative to the sodar configuration and for several antenna pulsing orders. Sodar-derived standard deviations of the lateral wind component, before...

  9. High cortisol awakening response is associated with impaired error monitoring and decreased post-error adjustment.

    Science.gov (United States)

    Zhang, Liang; Duan, Hongxia; Qin, Shaozheng; Yuan, Yiran; Buchanan, Tony W; Zhang, Kan; Wu, Jianhui

    2015-01-01

    The cortisol awakening response (CAR), a rapid increase in cortisol levels following morning awakening, is an important aspect of hypothalamic-pituitary-adrenocortical axis activity. Alterations in the CAR have been linked to a variety of mental disorders and cognitive function. However, little is known regarding the relationship between the CAR and error processing, a phenomenon that is vital for cognitive control and behavioral adaptation. Using high-temporal resolution measures of event-related potentials (ERPs) combined with behavioral assessment of error processing, we investigated whether and how the CAR is associated with two key components of error processing: error detection and subsequent behavioral adjustment. Sixty university students performed a Go/No-go task while their ERPs were recorded. Saliva samples were collected at 0, 15, 30 and 60 min after awakening on the two consecutive days following ERP data collection. The results showed that a higher CAR was associated with slowed latency of the error-related negativity (ERN) and a higher post-error miss rate. The CAR was not associated with other behavioral measures such as the false alarm rate and the post-correct miss rate. These findings suggest that high CAR is a biological factor linked to impairments of multiple steps of error processing in healthy populations, specifically, the automatic detection of error and post-error behavioral adjustment. A common underlying neural mechanism of physiological and cognitive control may be crucial for engaging in both CAR and error processing.

  10. Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems

    Science.gov (United States)

    Lutz, Robyn R.

    1993-01-01

    This paper analyzes the root causes of safety-related software errors in safety-critical, embedded systems. The results show that software errors identified as potentially hazardous to the system tend to be produced by different error mechanisms than non- safety-related software errors. Safety-related software errors are shown to arise most commonly from (1) discrepancies between the documented requirements specifications and the requirements needed for correct functioning of the system and (2) misunderstandings of the software's interface with the rest of the system. The paper uses these results to identify methods by which requirements errors can be prevented. The goal is to reduce safety-related software errors and to enhance the safety of complex, embedded systems.

  11. Prepopulated radiology report templates: a prospective analysis of error rate and turnaround time.

    Science.gov (United States)

    Hawkins, C M; Hall, S; Hardin, J; Salisbury, S; Towbin, A J

    2012-08-01

    Current speech recognition software allows exam-specific standard reports to be prepopulated into the dictation field based on the radiology information system procedure code. While it is thought that prepopulating reports can decrease the time required to dictate a study and the overall number of errors in the final report, this hypothesis has not been studied in a clinical setting. A prospective study was performed. During the first week, radiologists dictated all studies using prepopulated standard reports. During the second week, all studies were dictated after prepopulated reports had been disabled. Final radiology reports were evaluated for 11 different types of errors. Each error within a report was classified individually. The median time required to dictate an exam was compared between the 2 weeks. There were 12,387 reports dictated during the study, of which, 1,173 randomly distributed reports were analyzed for errors. There was no difference in the number of errors per report between the 2 weeks; however, radiologists overwhelmingly preferred using a standard report both weeks. Grammatical errors were by far the most common error type, followed by missense errors and errors of omission. There was no significant difference in the median dictation time when comparing studies performed each week. The use of prepopulated reports does not alone affect the error rate or dictation time of radiology reports. While it is a useful feature for radiologists, it must be coupled with other strategies in order to decrease errors.

  12. Passive quantum error correction of linear optics networks through error averaging

    Science.gov (United States)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  13. Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF

    KAUST Repository

    Hoteit, Ibrahim

    2015-03-17

    The stochastic ensemble Kalman filter (EnKF) updates its ensemble members with observations perturbed with noise sampled from the distribution of the observational errors. This was shown to introduce noise into the system and may become pronounced when the ensemble size is smaller than the rank of the observational error covariance, which is often the case in real oceanic and atmospheric data assimilation applications. This work introduces an efficient serial scheme to mitigate the impact of observations’ perturbations sampling in the analysis step of the EnKF, which should provide more accurate ensemble estimates of the analysis error covariance matrices. The new scheme is simple to implement within the serial EnKF algorithm, requiring only the approximation of the EnKF sample forecast error covariance matrix by a matrix with one rank less. The new EnKF scheme is implemented and tested with the Lorenz-96 model. Results from numerical experiments are conducted to compare its performance with the EnKF and two standard deterministic EnKFs. This study shows that the new scheme enhances the behavior of the EnKF and may lead to better performance than the deterministic EnKFs even when implemented with relatively small ensembles.

  14. Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF

    KAUST Repository

    Hoteit, Ibrahim; Pham, D.-T.; El Gharamti, Mohamad; Luo, X.

    2015-01-01

    The stochastic ensemble Kalman filter (EnKF) updates its ensemble members with observations perturbed with noise sampled from the distribution of the observational errors. This was shown to introduce noise into the system and may become pronounced when the ensemble size is smaller than the rank of the observational error covariance, which is often the case in real oceanic and atmospheric data assimilation applications. This work introduces an efficient serial scheme to mitigate the impact of observations’ perturbations sampling in the analysis step of the EnKF, which should provide more accurate ensemble estimates of the analysis error covariance matrices. The new scheme is simple to implement within the serial EnKF algorithm, requiring only the approximation of the EnKF sample forecast error covariance matrix by a matrix with one rank less. The new EnKF scheme is implemented and tested with the Lorenz-96 model. Results from numerical experiments are conducted to compare its performance with the EnKF and two standard deterministic EnKFs. This study shows that the new scheme enhances the behavior of the EnKF and may lead to better performance than the deterministic EnKFs even when implemented with relatively small ensembles.

  15. Operator- and software-related post-experimental variability and source of error in 2-DE analysis.

    Science.gov (United States)

    Millioni, Renato; Puricelli, Lucia; Sbrignadello, Stefano; Iori, Elisabetta; Murphy, Ellen; Tessari, Paolo

    2012-05-01

    In the field of proteomics, several approaches have been developed for separating proteins and analyzing their differential relative abundance. One of the oldest, yet still widely used, is 2-DE. Despite the continuous advance of new methods, which are less demanding from a technical standpoint, 2-DE is still compelling and has a lot of potential for improvement. The overall variability which affects 2-DE includes biological, experimental, and post-experimental (software-related) variance. It is important to highlight how much of the total variability of this technique is due to post-experimental variability, which, so far, has been largely neglected. In this short review, we have focused on this topic and explained that post-experimental variability and source of error can be further divided into those which are software-dependent and those which are operator-dependent. We discuss these issues in detail, offering suggestions for reducing errors that may affect the quality of results, summarizing the advantages and drawbacks of each approach.

  16. EG type radioactive calibration standards

    International Nuclear Information System (INIS)

    1980-01-01

    EG standards are standards with a radioactive substance deposited as a solution on filtration paper and after drying sealed into a plastic disc or cylinder shaped casing. They serve the official testing of X-ray and gamma spectrometers and as test sources. The table shows the types of used radionuclides, nominal values of activity and total error of determination not exceeding +-4%. Activity of standards is calculated from the charge and the specific activity of standard solution used for the preparation of the standard. Tightness and surface contamination is measured for each standard. The manufacturer, UVVVR Praha, gives a guarantee for the given values of activity and total error of determination. (M.D.)

  17. On nonstationarity-related errors in modal combination rules of the response spectrum method

    Science.gov (United States)

    Pathak, Shashank; Gupta, Vinay K.

    2017-10-01

    Characterization of seismic hazard via (elastic) design spectra and the estimation of linear peak response of a given structure from this characterization continue to form the basis of earthquake-resistant design philosophy in various codes of practice all over the world. Since the direct use of design spectrum ordinates is a preferred option for the practicing engineers, modal combination rules play central role in the peak response estimation. Most of the available modal combination rules are however based on the assumption that nonstationarity affects the structural response alike at the modal and overall response levels. This study considers those situations where this assumption may cause significant errors in the peak response estimation, and preliminary models are proposed for the estimation of the extents to which nonstationarity affects the modal and total system responses, when the ground acceleration process is assumed to be a stationary process. It is shown through numerical examples in the context of complete-quadratic-combination (CQC) method that the nonstationarity-related errors in the estimation of peak base shear may be significant, when strong-motion duration of the excitation is too small compared to the period of the system and/or the response is distributed comparably in several modes. It is also shown that these errors are reduced marginally with the use of the proposed nonstationarity factor models.

  18. Parameters and error of a theoretical model

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.

    1986-09-01

    We propose a definition for the error of a theoretical model of the type whose parameters are determined from adjustment to experimental data. By applying a standard statistical method, the maximum-likelihoodlmethod, we derive expressions for both the parameters of the theoretical model and its error. We investigate the derived equations by solving them for simulated experimental and theoretical quantities generated by use of random number generators. 2 refs., 4 tabs

  19. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  20. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    Science.gov (United States)

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  1. Task engagement and the relationships between the error-related negativity, agreeableness, behavioral shame proneness and cortisol

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.; Wester, Anne E.; Lorist, Monicque M.; Meijman, Theo F.

    Previous results suggest that both cortisol. mobilization and the error-related negativity (ERN/Ne) reflect goal engagement, i.e. the mobilization and allocation of attentional and physiological resources. Personality measures of negative affectivity have been associated both to high cortisol levels

  2. Interpreting the change detection error matrix

    NARCIS (Netherlands)

    Oort, van P.A.J.

    2007-01-01

    Two different matrices are commonly reported in assessment of change detection accuracy: (1) single date error matrices and (2) binary change/no change error matrices. The third, less common form of reporting, is the transition error matrix. This paper discuses the relation between these matrices.

  3. Moderating Argos location errors in animal tracking data

    Science.gov (United States)

    Douglas, David C.; Weinziert, Rolf; Davidson, Sarah C.; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2012-01-01

    1. The Argos System is used worldwide to satellite-track free-ranging animals, but location errors can range from tens of metres to hundreds of kilometres. Low-quality locations (Argos classes A, 0, B and Z) dominate animal tracking data. Standard-quality animal tracking locations (Argos classes 3, 2 and 1) have larger errors than those reported in Argos manuals.

  4. Intervention strategies for the management of human error

    Science.gov (United States)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  5. Errors in abdominal computed tomography

    International Nuclear Information System (INIS)

    Stephens, S.; Marting, I.; Dixon, A.K.

    1989-01-01

    Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab

  6. Low relative error in consumer-grade GPS units make them ideal for measuring small-scale animal movement patterns

    Directory of Open Access Journals (Sweden)

    Greg A. Breed

    2015-08-01

    Full Text Available Consumer-grade GPS units are a staple of modern field ecology, but the relatively large error radii reported by manufacturers (up to 10 m ostensibly precludes their utility in measuring fine-scale movement of small animals such as insects. Here we demonstrate that for data collected at fine spatio-temporal scales, these devices can produce exceptionally accurate data on step-length and movement patterns of small animals. With an understanding of the properties of GPS error and how it arises, it is possible, using a simple field protocol, to use consumer grade GPS units to collect step-length data for the movement of small animals that introduces a median error as small as 11 cm. These small error rates were measured in controlled observations of real butterfly movement. Similar conclusions were reached using a ground-truth test track prepared with a field tape and compass and subsequently measured 20 times using the same methodology as the butterfly tracking. Median error in the ground-truth track was slightly higher than the field data, mostly between 20 and 30 cm, but even for the smallest ground-truth step (70 cm, this is still a signal-to-noise ratio of 3:1, and for steps of 3 m or more, the ratio is greater than 10:1. Such small errors relative to the movements being measured make these inexpensive units useful for measuring insect and other small animal movements on small to intermediate scales with budgets orders of magnitude lower than survey-grade units used in past studies. As an additional advantage, these units are simpler to operate, and insect or other small animal trackways can be collected more quickly than either survey-grade units or more traditional ruler/gird approaches.

  7. Rectifying calibration error of Goldmann applanation tonometer is easy!

    Directory of Open Access Journals (Sweden)

    Nikhil S Choudhari

    2014-01-01

    Full Text Available Purpose: Goldmann applanation tonometer (GAT is the current Gold standard tonometer. However, its calibration error is common and can go unnoticed in clinics. Its company repair has limitations. The purpose of this report is to describe a self-taught technique of rectifying calibration error of GAT. Materials and Methods: Twenty-nine slit-lamp-mounted Haag-Streit Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland were included in this cross-sectional interventional pilot study. The technique of rectification of calibration error of the tonometer involved cleaning and lubrication of the instrument followed by alignment of weights when lubrication alone didn′t suffice. We followed the South East Asia Glaucoma Interest Group′s definition of calibration error tolerance (acceptable GAT calibration error within ±2, ±3 and ±4 mm Hg at the 0, 20 and 60-mm Hg testing levels, respectively. Results: Twelve out of 29 (41.3% GATs were out of calibration. The range of positive and negative calibration error at the clinically most important 20-mm Hg testing level was 0.5 to 20 mm Hg and -0.5 to -18 mm Hg, respectively. Cleaning and lubrication alone sufficed to rectify calibration error of 11 (91.6% faulty instruments. Only one (8.3% faulty GAT required alignment of the counter-weight. Conclusions: Rectification of calibration error of GAT is possible in-house. Cleaning and lubrication of GAT can be carried out even by eye care professionals and may suffice to rectify calibration error in the majority of faulty instruments. Such an exercise may drastically reduce the downtime of the Gold standard tonometer.

  8. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  9. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    Science.gov (United States)

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  10. Establishment of an authenticated physical standard for gamma spectrometric determination of the U-235 content of MTR fuel and evaluation of measurement procedures

    International Nuclear Information System (INIS)

    Fleck, C.M.

    1979-12-01

    Measurements of U-235 content in a standard MTR fuel element were carried out, using scintillation and semi-conductor spectrometers. Three different types of measurement were carried out: a) Comparison of different primary standards among one another and with single fuel plates. b) Calibration of the MTR fuel element as an authenticated physical standard. c) Evaluation of over all errors in assay measurements on MTR fuel elements. The error of the whole assay measurement will be approximately 0.9%. The Uranium distribution in the single fuel plates is the original source of error. In the case of equal Uranium contents in all fuel plates of one fuel assembly, the error of assay measurements would be about 0.3% relative to the primary standards

  11. Performance monitoring in the anterior cingulate is not all error related: expectancy deviation and the representation of action-outcome associations.

    Science.gov (United States)

    Oliveira, Flavio T P; McDonald, John J; Goodman, David

    2007-12-01

    Several converging lines of evidence suggest that the anterior cingulate cortex (ACC) is selectively involved in error detection or evaluation of poor performance. Here we challenge this notion by presenting event-related potential (ERP) evidence that the feedback-elicited error-related negativity, an ERP component attributed to the ACC, can be elicited by positive feedback when a person is expecting negative feedback and vice versa. These results suggest that performance monitoring in the ACC is not limited to error processing. We propose that the ACC acts as part of a more general performance-monitoring system that is activated by violations in expectancy. Further, we propose that the common observation of increased ACC activity elicited by negative events could be explained by an overoptimistic bias in generating expectations of performance. These results could shed light into neurobehavioral disorders, such as depression and mania, associated with alterations in performance monitoring and also in judgments of self-related events.

  12. Perceptual error and the culture of open disclosure in Australian radiology.

    Science.gov (United States)

    Pitman, A G

    2006-06-01

    The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Errors in diagnostic radiology comprise perceptual errors, which are a failure of detection, and interpretation errors, which are errors of diagnosis. Perceptual errors are subject to rules of human perception and can be expected in a proportion of observations by any human observer including a trained professional under ideal conditions. Current legal standards of medical negligence make no allowance for perceptual errors, comparing human performance to an ideal standard. Diagnostic radiology in Australia has a culture of open disclosure, where full unbiased evidence from an examination is provided to the patient together with the report. This practice benefits the public by allowing genuine differences of opinion and also by allowing a second chance of correct diagnosis in cases of perceptual error. The culture of open disclosure, which is unique to diagnostic radiology, places radiologists at distinct medicolegal disadvantage compared with other specialties. (i) Perceptual error should be acknowledged as an integral inevitable part of diagnostic radiology; (ii) culture of open disclosure should be encouraged by the profession; and (iii) a pragmatic definition of medical negligence should reflect the imperfect performance of human observers.

  13. Perceptual error and the culture of open disclosure in Australian radiology

    International Nuclear Information System (INIS)

    Pitman, A.G.

    2006-01-01

    The work of diagnostic radiology consists of the complete detection of all abnormalities in an imaging examination and their accurate diagnosis. Errors in diagnostic radiology comprise perceptual errors, which are a failure of detection, and interpretation errors, which are errors of diagnosis. Perceptual errors are subject to rules of human perception and can be expected in a proportion of observations by any human observer including a trained professional under ideal conditions. Current legal standards of medical negligence make no allowance for perceptual errors, comparing human performance to an ideal standard. Diagnostic radiology in Australia has a culture of open disclosure, where full unbiased evidence from an examination is provided to the patient together with the report. This practice benefits the public by allowing genuine differences of opinion and also by allowing a second chance of correct diagnosis in cases of perceptual error. The culture of open disclosure, which is unique to diagnostic radiology, places radiologists at distinct medicolegal disadvantage compared with other specialties, (i) Perceptual error should be acknowledged as an integral inevitable part of diagnostic radiology; (ii) culture of open disclosure should be encouraged by the profession; and (iii) a pragmatic definition of medical negligence should reflect the imperfect performance of human observers Copyright (2006) Blackwell Publishing Asia Pty Ltd

  14. First order error corrections in common introductory physics experiments

    Science.gov (United States)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  15. The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning.

    Science.gov (United States)

    Popa, Laurentiu S; Streng, Martha L; Hewitt, Angela L; Ebner, Timothy J

    2016-04-01

    The cerebellum is essential for error-driven motor learning and is strongly implicated in detecting and correcting for motor errors. Therefore, elucidating how motor errors are represented in the cerebellum is essential in understanding cerebellar function, in general, and its role in motor learning, in particular. This review examines how motor errors are encoded in the cerebellar cortex in the context of a forward internal model that generates predictions about the upcoming movement and drives learning and adaptation. In this framework, sensory prediction errors, defined as the discrepancy between the predicted consequences of motor commands and the sensory feedback, are crucial for both on-line movement control and motor learning. While many studies support the dominant view that motor errors are encoded in the complex spike discharge of Purkinje cells, others have failed to relate complex spike activity with errors. Given these limitations, we review recent findings in the monkey showing that complex spike modulation is not necessarily required for motor learning or for simple spike adaptation. Also, new results demonstrate that the simple spike discharge provides continuous error signals that both lead and lag the actual movements in time, suggesting errors are encoded as both an internal prediction of motor commands and the actual sensory feedback. These dual error representations have opposing effects on simple spike discharge, consistent with the signals needed to generate sensory prediction errors used to update a forward internal model.

  16. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  17. Spacecraft and propulsion technician error

    Science.gov (United States)

    Schultz, Daniel Clyde

    Commercial aviation and commercial space similarly launch, fly, and land passenger vehicles. Unlike aviation, the U.S. government has not established maintenance policies for commercial space. This study conducted a mixed methods review of 610 U.S. space launches from 1984 through 2011, which included 31 failures. An analysis of the failure causal factors showed that human error accounted for 76% of those failures, which included workmanship error accounting for 29% of the failures. With the imminent future of commercial space travel, the increased potential for the loss of human life demands that changes be made to the standardized procedures, training, and certification to reduce human error and failure rates. Several recommendations were made by this study to the FAA's Office of Commercial Space Transportation, space launch vehicle operators, and maintenance technician schools in an effort to increase the safety of the space transportation passengers.

  18. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  19. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  20. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  1. Detecting errors in micro and trace analysis by using statistics

    DEFF Research Database (Denmark)

    Heydorn, K.

    1993-01-01

    By assigning a standard deviation to each step in an analytical method it is possible to predict the standard deviation of each analytical result obtained by this method. If the actual variability of replicate analytical results agrees with the expected, the analytical method is said...... to be in statistical control. Significant deviations between analytical results from different laboratories reveal the presence of systematic errors, and agreement between different laboratories indicate the absence of systematic errors. This statistical approach, referred to as the analysis of precision, was applied...

  2. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    Science.gov (United States)

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  3. Quantitative relations between beta-gamma mixed-field dosimeter responses and dose-equivalent conversion factors according to the testing standard

    International Nuclear Information System (INIS)

    Gupta, V.P.

    1982-08-01

    The conventional two-element personnel dosimeters, usually having two thick TLD (thermoluminescent dosimetry) ribbons, are used extensively for radiation protection dosimetry. Many of these dosimeters are used for the measurement of beta and gamma radiation doses received in mixed beta-gamma fields. Severe limitations exist, however, on the relative magnitudes and energies of these fields that may be measured simultaneously. Moreover, due to a well-known energy dependence of these dosimeters, particularly for the beta-radiations, systematic errors will occur whenever the differences in workplaces and calibration radiation energies exist. A simple mathematical approach is presented to estimate the deep and shallow dose equivalent values at different energies for such dosimeters. The formulae correlate the dosimeter responses and dose equivalent conversion factors at different energies by taking into account the guidelines of the adopted ANSI Standard N13.11 and the dosimetry practices followed by most dosimeter processors. This standard is to be used in a mandatory testing program in the United States

  4. Sensation seeking and error processing.

    Science.gov (United States)

    Zheng, Ya; Sheng, Wenbin; Xu, Jing; Zhang, Yuanyuan

    2014-09-01

    Sensation seeking is defined by a strong need for varied, novel, complex, and intense stimulation, and a willingness to take risks for such experience. Several theories propose that the insensitivity to negative consequences incurred by risks is one of the hallmarks of sensation-seeking behaviors. In this study, we investigated the time course of error processing in sensation seeking by recording event-related potentials (ERPs) while high and low sensation seekers performed an Eriksen flanker task. Whereas there were no group differences in ERPs to correct trials, sensation seeking was associated with a blunted error-related negativity (ERN), which was female-specific. Further, different subdimensions of sensation seeking were related to ERN amplitude differently. These findings indicate that the relationship between sensation seeking and error processing is sex-specific. Copyright © 2014 Society for Psychophysiological Research.

  5. God will forgive: reflecting on God's love decreases neurophysiological responses to errors.

    Science.gov (United States)

    Good, Marie; Inzlicht, Michael; Larson, Michael J

    2015-03-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God's love may be more effective, relative to God's wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God's love reduces our ability to detect and emotionally react to conflict between one's behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God's love vs punishment on the error-related negativity (ERN)--a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made 'religious' errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God's love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God's punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God's love is prominent in the minds of believers. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Determination of sampling constants in NBS geochemical standard reference materials

    International Nuclear Information System (INIS)

    Filby, R.H.; Bragg, A.E.; Grimm, C.A.

    1986-01-01

    Recently Filby et al. showed that, for several elements, National Bureau of Standards (NBS) Fly Ash standard reference material (SRM) 1633a was a suitable reference material for microanalysis (sample weights 2 , and the mean sample weight, W vector, K/sub s/ = (S/sub s/%) 2 W vector, could not be determined from these data because it was not possible to quantitate other sources of error in the experimental variances. K/sub s/ values for certified elements in geochemical SRMs provide important homogeneity information for microanalysis. For mineralogically homogeneous SRMs (i.e., small K/sub s/ values for associated elements) such as the proposed clays, it is necessary to determine K/sub s/ by analysis of very small sample aliquots to maximize the subsampling variance relative to other sources of error. This source of error and the blank correction for the sample container can be eliminated by determining K/sub s/ from radionuclide activities of weighed subsamples of a preirradiated SRM

  7. Patient safety incident reports related to traditional Japanese Kampo medicines: medication errors and adverse drug events in a university hospital for a ten-year period.

    Science.gov (United States)

    Shimada, Yutaka; Fujimoto, Makoto; Nogami, Tatsuya; Watari, Hidetoshi; Kitahara, Hideyuki; Misawa, Hiroki; Kimbara, Yoshiyuki

    2017-12-21

    Kampo medicine is traditional Japanese medicine, which originated in ancient traditional Chinese medicine, but was introduced and developed uniquely in Japan. Today, Kampo medicines are integrated into the Japanese national health care system. Incident reporting systems are currently being widely used to collect information about patient safety incidents that occur in hospitals. However, no investigations have been conducted regarding patient safety incident reports related to Kampo medicines. The aim of this study was to survey and analyse incident reports related to Kampo medicines in a Japanese university hospital to improve future patient safety. We selected incident reports related to Kampo medicines filed in Toyama University Hospital from May 2007 to April 2017, and investigated them in terms of medication errors and adverse drug events. Out of 21,324 total incident reports filed in the 10-year survey period, we discovered 108 Kampo medicine-related incident reports. However, five cases were redundantly reported; thus, the number of actual incidents was 103. Of those, 99 incidents were classified as medication errors (77 administration errors, 15 dispensing errors, and 7 prescribing errors), and four were adverse drug events, namely Kampo medicine-induced interstitial pneumonia. The Kampo medicine (crude drug) that was thought to induce interstitial pneumonia in all four cases was Scutellariae Radix, which is consistent with past reports. According to the incident severity classification system recommended by the National University Hospital Council of Japan, of the 99 medication errors, 10 incidents were classified as level 0 (an error occurred, but the patient was not affected) and 89 incidents were level 1 (an error occurred that affected the patient, but did not cause harm). Of the four adverse drug events, two incidents were classified as level 2 (patient was transiently harmed, but required no treatment), and two incidents were level 3b (patient was

  8. Composite Gauss-Legendre Quadrature with Error Control

    Science.gov (United States)

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  9. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  10. The relative impact of sizing errors on steam generator tube failure probability

    International Nuclear Information System (INIS)

    Cizelj, L.; Dvorsek, T.

    1998-01-01

    The Outside Diameter Stress Corrosion Cracking (ODSCC) at tube support plates is currently the major degradation mechanism affecting the steam generator tubes made of Inconel 600. This caused development and licensing of degradation specific maintenance approaches, which addressed two main failure modes of the degraded piping: tube rupture; and excessive leakage through degraded tubes. A methodology aiming at assessing the efficiency of a given set of possible maintenance approaches has already been proposed by the authors. It pointed out better performance of the degradation specific over generic approaches in (1) lower probability of single and multiple steam generator tube rupture (SGTR), (2) lower estimated accidental leak rates and (3) less tubes plugged. A sensitivity analysis was also performed pointing out the relative contributions of uncertain input parameters to the tube rupture probabilities. The dominant contribution was assigned to the uncertainties inherent to the regression models used to correlate the defect size and tube burst pressure. The uncertainties, which can be estimated from the in-service inspections, are further analysed in this paper. The defect growth was found to have significant and to some extent unrealistic impact on the probability of single tube rupture. Since the defect growth estimates were based on the past inspection records they strongly depend on the sizing errors. Therefore, an attempt was made to filter out the sizing errors and to arrive at more realistic estimates of the defect growth. The impact of different assumptions regarding sizing errors on the tube rupture probability was studied using a realistic numerical example. The data used is obtained from a series of inspection results from Krsko NPP with 2 Westinghouse D-4 steam generators. The results obtained are considered useful in safety assessment and maintenance of affected steam generators. (author)

  11. Friendship at work and error disclosure

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Mao

    2017-10-01

    Full Text Available Organizations rely on contextual factors to promote employee disclosure of self-made errors, which induces a resource dilemma (i.e., disclosure entails costing one's own resources to bring others resources and a friendship dilemma (i.e., disclosure is seemingly easier through friendship, yet the cost of friendship is embedded. This study proposes that friendship at work enhances error disclosure and uses conservation of resources theory as underlying explanation. A three-wave survey collected data from 274 full-time employees with a variety of occupational backgrounds. Empirical results indicated that friendship enhanced error disclosure partially through relational mechanisms of employees’ attitudes toward coworkers (i.e., employee engagement and of coworkers’ attitudes toward employees (i.e., perceived social worth. Such effects hold when controlling for established predictors of error disclosure. This study expands extant perspectives on employee error and the theoretical lenses used to explain the influence of friendship at work. We propose that, while promoting error disclosure through both contextual and relational approaches, organizations should be vigilant about potential incongruence.

  12. Measuring worst-case errors in a robot workcell

    International Nuclear Information System (INIS)

    Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.

    1997-10-01

    Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot's model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors

  13. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  14. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    Science.gov (United States)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  15. Using total quality management approach to improve patient safety by preventing medication error incidences*.

    Science.gov (United States)

    Yousef, Nadin; Yousef, Farah

    2017-09-04

    Whereas one of the predominant causes of medication errors is a drug administration error, a previous study related to our investigations and reviews estimated that the incidences of medication errors constituted 6.7 out of 100 administrated medication doses. Therefore, we aimed by using six sigma approach to propose a way that reduces these errors to become less than 1 out of 100 administrated medication doses by improving healthcare professional education and clearer handwritten prescriptions. The study was held in a General Government Hospital. First, we systematically studied the current medication use process. Second, we used six sigma approach by utilizing the five-step DMAIC process (Define, Measure, Analyze, Implement, Control) to find out the real reasons behind such errors. This was to figure out a useful solution to avoid medication error incidences in daily healthcare professional practice. Data sheet was used in Data tool and Pareto diagrams were used in Analyzing tool. In our investigation, we reached out the real cause behind administrated medication errors. As Pareto diagrams used in our study showed that the fault percentage in administrated phase was 24.8%, while the percentage of errors related to prescribing phase was 42.8%, 1.7 folds. This means that the mistakes in prescribing phase, especially because of the poor handwritten prescriptions whose percentage in this phase was 17.6%, are responsible for the consequent) mistakes in this treatment process later on. Therefore, we proposed in this study an effective low cost strategy based on the behavior of healthcare workers as Guideline Recommendations to be followed by the physicians. This method can be a prior caution to decrease errors in prescribing phase which may lead to decrease the administrated medication error incidences to less than 1%. This improvement way of behavior can be efficient to improve hand written prescriptions and decrease the consequent errors related to administrated

  16. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Unreliability and error in the military's "gold standard" measure of sexual harassment by education and gender.

    Science.gov (United States)

    Murdoch, Maureen; Pryor, John B; Griffin, Joan M; Ripley, Diane Cowper; Gackstetter, Gary D; Polusny, Melissa A; Hodges, James S

    2011-01-01

    The Department of Defense's "gold standard" sexual harassment measure, the Sexual Harassment Core Measure (SHCore), is based on an earlier measure that was developed primarily in college women. Furthermore, the SHCore requires a reading grade level of 9.1. This may be higher than some troops' reading abilities and could generate unreliable estimates of their sexual harassment experiences. Results from 108 male and 96 female soldiers showed that the SHCore's temporal stability and alternate-forms reliability was significantly worse (a) in soldiers without college experience compared to soldiers with college experience and (b) in men compared to women. For men without college experience, almost 80% of the temporal variance in SHCore scores was attributable to error. A plain language version of the SHCore had mixed effects on temporal stability depending on education and gender. The SHCore may be particularly ill suited for evaluating population trends of sexual harassment in military men without college experience.

  18. High dose gamma-ray standard

    International Nuclear Information System (INIS)

    Macrin, R.; Moraru, R.

    1999-01-01

    The high gamma-ray doses produced in a gamma irradiator are used, mainly, for radiation processing, i.e. sterilization of medical products, processing of food, modifications of polymers, irradiation of electronic devices, a.s.o. The used absorbed doses depend on the application and cover the range 10 Gy to 100 MGy. The regulations in our country require that the response of the dosimetry systems, used for the irradiation of food and medical products, be calibrated and traceable to the national standards. In order to be sure that the products receive the desired absorbed dose, appropriate dosimetric measurements must be performed, including the calibration of the dosemeters and their traceability to the national standards. The high dose gamma-ray measurements are predominantly based on the use of reference radiochemical dosemeters. Among them the ferrous sulfate can be used as reference dosemeter for low doses (up to 400 Gy) but due to its characteristics it deserves to be considered a standard dosemeter and to be used for transferring the conventional absorbed dose to other chemical dosemeters used for absorbed doses up to 100 MGy. The study of the ferrous sulfate dosemeter consisted in preparing many batches of solution by different operators in quality assurance conditions and in determining for all batches the linearity, the relative intrinsic error, the repeatability and the reproducibility. The principal results are the following: the linear regression coefficient: 0.999, the relative intrinsic error: max.6 %, the repeatability (for P* = 95 %): max.3 %, the reproducibility (P* = 95%): max.5 %. (authors)

  19. IAS 8, Accounting Policies, Changes in Accounting Estimates and Errors – A Closer Look

    OpenAIRE

    Muthupandian, K S

    2008-01-01

    The International Accounting Standards Board issued the revised version of the International Accounting Standard 8, Accounting Policies, Changes in Accounting Estimates and Errors. The objective of IAS 8 is to prescribe the criteria for selecting, applying and changing accounting policies, together with the accounting treatment and disclosure of changes in accounting policies, changes in accounting estimates and the corrections of errors. This article presents a closer look of the standard (o...

  20. Phase Error Modeling and Its Impact on Precise Orbit Determination of GRACE Satellites

    Directory of Open Access Journals (Sweden)

    Jia Tu

    2012-01-01

    Full Text Available Limiting factors for the precise orbit determination (POD of low-earth orbit (LEO satellite using dual-frequency GPS are nowadays mainly encountered with the in-flight phase error modeling. The phase error is modeled as a systematic and a random component each depending on the direction of GPS signal reception. The systematic part and standard deviation of random part in phase error model are, respectively, estimated by bin-wise mean and standard deviation values of phase postfit residuals computed by orbit determination. By removing the systematic component and adjusting the weight of phase observation data according to standard deviation of random component, the orbit can be further improved by POD approach. The GRACE data of 1–31 January 2006 are processed, and three types of orbit solutions, POD without phase error model correction, POD with mean value correction of phase error model, and POD with phase error model correction, are obtained. The three-dimensional (3D orbit improvements derived from phase error model correction are 0.0153 m for GRACE A and 0.0131 m for GRACE B, and the 3D influences arisen from random part of phase error model are 0.0068 m and 0.0075 m for GRACE A and GRACE B, respectively. Thus the random part of phase error model cannot be neglected for POD. It is also demonstrated by phase postfit residual analysis, orbit comparison with JPL precise science orbit, and orbit validation with KBR data that the results derived from POD with phase error model correction are better than another two types of orbit solutions generated in this paper.

  1. Diagnostic errors in interpretation of pediatric musculoskeletal radiographs at common injury sites

    International Nuclear Information System (INIS)

    Bisset, George S.; Crowe, James

    2014-01-01

    Extremity pain represents one of the most common reasons for obtaining conventional radiographs in childhood. Despite the frequency of these examinations little is known about the incidence of diagnostic errors by interpreting pediatric radiologists. The purpose of this study was to develop a standard error rate of pediatric radiologists by double-reading of extremity radiographs (elbow, wrists, knees and ankles) in children presenting with a history of trauma or pain. During a 6-month period all major extremity radiographs (excluding digits) obtained at a large pediatric referral hospital for evaluation of pain or trauma were reviewed by two senior pediatric radiologists and compared to the official interpretation. All radiographs were interpreted initially by a board-certified pediatric radiologist with a Certificate of Added Qualification (CAQ). We reviewed 3,865 radiographic series in children and young adults 2-20 years of age. We tabulated misses and overcalls. We did not assess the clinical significance of the errors. There were 61 miss errors and 44 overcalls in 1,235 abnormal cases and 2,630 normal cases, for a 1.6% miss rate and a 1.1% overcall rate. Misses and overcalls were most common in the ankle. Interpretive errors by pediatric radiologists reviewing certain musculoskeletal radiographs are relatively infrequent. Diagnostic errors in the form of a miss or overcall occurred in 2.7% of the radiographs. (orig.)

  2. Computer-related standards for the petroleum industry

    International Nuclear Information System (INIS)

    Winczewski, L.M.

    1992-01-01

    Rapid application of the computer to all areas of the petroleum industry is straining the capabilities of corporations and vendors to efficiently integrate computer tools into the work environment. Barriers to this integration arose form decades of competitive development of proprietary applications formats, along with compilation of data bases in isolation. Rapidly emerging industry-wide standards relating to computer applications and data management are poised to topple these barriers. This paper identifies the most active players within a rapidly evolving group of cooperative standardization activities sponsored by the petroleum industry. Summarized are their objectives, achievements, current activities and relationships to each other. The trends of these activities are assessed and projected

  3. Effectiveness of Toyota process redesign in reducing thyroid gland fine-needle aspiration error.

    Science.gov (United States)

    Raab, Stephen S; Grzybicki, Dana Marie; Sudilovsky, Daniel; Balassanian, Ronald; Janosky, Janine E; Vrbin, Colleen M

    2006-10-01

    Our objective was to determine whether the Toyota Production System process redesign resulted in diagnostic error reduction for patients who underwent cytologic evaluation of thyroid nodules. In this longitudinal, nonconcurrent cohort study, we compared the diagnostic error frequency of a thyroid aspiration service before and after implementation of error reduction initiatives consisting of adoption of a standardized diagnostic terminology scheme and an immediate interpretation service. A total of 2,424 patients underwent aspiration. Following terminology standardization, the false-negative rate decreased from 41.8% to 19.1% (P = .006), the specimen nondiagnostic rate increased from 5.8% to 19.8% (P Toyota process change led to significantly fewer diagnostic errors for patients who underwent thyroid fine-needle aspiration.

  4. A randomized controlled trial comparing customized versus standard headrests for head and neck radiotherapy immobilization in terms of set-up errors, patient comfort and staff satisfaction (ICORG 08-09)

    International Nuclear Information System (INIS)

    Howlin, C.; O'Shea, E.; Dunne, M.; Mullaney, L.; McGarry, M.; Clayton-Lea, A.; Finn, M.; Carter, P.; Garret, B.; Thirion, P.

    2015-01-01

    Purpose: To recommend a specific headrest, customized or standard, for head and neck radiotherapy patients in our institution based primarily on an evaluation of set-up accuracy, taking into account a comparison of patient comfort, staff and patient satisfaction, and resource implications. Methods and materials: Between 2008 and 2009, 40 head and neck patients were randomized to either a standard (Arm A, n = 21) or customized (Arm B, n = 19) headrest, and immobilized with a customized thermoplastic mask. Set-up accuracy was assessed using electronic portal images (EPI). Random and systematic set-up errors for each arm were determined from 668 EPIs, which were analyzed by one Radiation Therapist. Patient comfort was assessed using a visual analogue scale (VAS) and staff satisfaction was measured using an in-house questionnaire. Resource implications were also evaluated. Results: The difference in set-up errors between arms was not significant in any direction. However, in this study the standard headrest (SH) arm performed well, with set-up errors comparative to customized headrests (CHs) in previous studies. CHs require regular monitoring and 47% were re-vacuumed making them more resource intensive. Patient comfort and staff satisfaction were comparable in both arms. Conclusion: The SH provided similar treatment accuracy and patient comfort compared with the CH. The large number of CHs that needed to be re-vacuumed undermines their reliability for radiotherapy schedules that extend beyond 34 days from the initial CT scan. Accordingly the CH was more resource intensive without improving the accuracy of positioning, thus the standard headrest is recommended for continued use at our institution

  5. Multicenter Assessment of Gram Stain Error Rates.

    Science.gov (United States)

    Samuel, Linoj P; Balada-Llasat, Joan-Miquel; Harrington, Amanda; Cavagnolo, Robert

    2016-06-01

    Gram stains remain the cornerstone of diagnostic testing in the microbiology laboratory for the guidance of empirical treatment prior to availability of culture results. Incorrectly interpreted Gram stains may adversely impact patient care, and yet there are no comprehensive studies that have evaluated the reliability of the technique and there are no established standards for performance. In this study, clinical microbiology laboratories at four major tertiary medical care centers evaluated Gram stain error rates across all nonblood specimen types by using standardized criteria. The study focused on several factors that primarily contribute to errors in the process, including poor specimen quality, smear preparation, and interpretation of the smears. The number of specimens during the evaluation period ranged from 976 to 1,864 specimens per site, and there were a total of 6,115 specimens. Gram stain results were discrepant from culture for 5% of all specimens. Fifty-eight percent of discrepant results were specimens with no organisms reported on Gram stain but significant growth on culture, while 42% of discrepant results had reported organisms on Gram stain that were not recovered in culture. Upon review of available slides, 24% (63/263) of discrepant results were due to reader error, which varied significantly based on site (9% to 45%). The Gram stain error rate also varied between sites, ranging from 0.4% to 2.7%. The data demonstrate a significant variability between laboratories in Gram stain performance and affirm the need for ongoing quality assessment by laboratories. Standardized monitoring of Gram stains is an essential quality control tool for laboratories and is necessary for the establishment of a quality benchmark across laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    Science.gov (United States)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  7. A spectrum standardization approach for laser-induced breakdown spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhe, E-mail: zhewang@mail.tsinghua.edu.cn; Li Lizhi; West, Logan; Li Zheng, E-mail: lz-dte@tsinghua.edu.cn; Ni Weidou

    2012-02-15

    This paper follows and completes a previous presentation of a spectrum normalization method for laser-induced breakdown spectroscopy (LIBS) measurements by converting the experimentally recorded line intensity at varying operational conditions to the intensity that would be obtained under a 'standard state' condition, characterized by a standard plasma temperature, electron number density, and total number density of the interested species. At first, for each laser shot and corresponding spectrum, the line intensities of the interested species are converted to the intensity at a fixed plasma temperature and electron number density, but with varying total number density. Under this state, if the influence of changing plasma morphology is neglected, the sum of multiple spectral line intensities for the measured element is proportional to the total number density of the specific element. Therefore, the fluctuation of the total number density, or the variation of ablation mass, can be compensated for by applying the proportional relationship. The application of this method to Cu in 29 brass alloy samples, showed an improvement over the commonly applied normalization method with regard to measurement precision and accuracy. The average relative standard deviation (RSD) value, average value of the error bar, R{sup 2}, root mean square error of prediction (RMSEP), and average value of the maximum relative error were: 5.29%, 0.68%, 0.98, 2.72%, 16.97%, respectively, while the above parameter values for normalization with the whole spectrum area were: 8.61%, 1.37%, 0.95, 3.28%, 29.19%, respectively. - Highlights: Black-Right-Pointing-Pointer Intensity converted into an ideal standard plasma state for uncertainty reduction. Black-Right-Pointing-Pointer Ablated mass fluctuations compensated by variation of sum of multiple intensities. Black-Right-Pointing-Pointer A spectrum standardization model established. Black-Right-Pointing-Pointer Results in both uncertainty

  8. [The approaches to factors which cause medication error--from the analyses of many near-miss cases related to intravenous medication which nurses experienced].

    Science.gov (United States)

    Kawamura, H

    2001-03-01

    Given the complexity of the intravenous medication process, systematic thinking is essential to reduce medication errors. Two thousand eight hundred cases of 'Hiyari-Hatto' were analyzed. Eight important factors which cause intravenous medication error were clarified as a result. In the following I summarize the systematic approach for each factor. 1. Failed communication of information: illegible handwritten orders, and inaccurate verbal orders and copying cause medication error. Rules must be established to prevent miscommunication. 2. Error-prone design of the hardware: Look-alike packaging and labeling of drugs and the poor design of infusion pumps cause errors. The human-hardware interface should be improved by error-resistant design by manufacturers. 3. Patient names similar to simultaneously operating surgical procedures and interventions: This factor causes patient misidentification. Automated identification devices should be introduced into health care settings. 4. Interruption in the middle of tasks: The efficient assignment of medical work and business work should be made. 5. Inaccurate mixing procedure and insufficient mixing space: Mixing procedures must be standardized and the layout of the working space must be examined. 6. Time pressure: Mismatch between workload and manpower should be improved by reconsidering the work to be done. 7. Lack of information about high alert medications: The pharmacist should play a greater role in the medication process overall. 8. Poor knowledge and skill of recent graduates: Training methods and tools to prevent medication errors must be developed.

  9. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    Science.gov (United States)

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  10. Reducing number entry errors: solving a widespread, serious problem.

    Science.gov (United States)

    Thimbleby, Harold; Cairns, Paul

    2010-10-06

    Number entry is ubiquitous: it is required in many fields including science, healthcare, education, government, mathematics and finance. People entering numbers are to be expected to make errors, but shockingly few systems make any effort to detect, block or otherwise manage errors. Worse, errors may be ignored but processed in arbitrary ways, with unintended results. A standard class of error (defined in the paper) is an 'out by 10 error', which is easily made by miskeying a decimal point or a zero. In safety-critical domains, such as drug delivery, out by 10 errors generally have adverse consequences. Here, we expose the extent of the problem of numeric errors in a very wide range of systems. An analysis of better error management is presented: under reasonable assumptions, we show that the probability of out by 10 errors can be halved by better user interface design. We provide a demonstration user interface to show that the approach is practical.To kill an error is as good a service as, and sometimes even better than, the establishing of a new truth or fact. (Charles Darwin 1879 [2008], p. 229).

  11. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  12. Apologies and Medical Error

    Science.gov (United States)

    2008-01-01

    One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177

  13. Error-Detecting Identification Codes for Algebra Students.

    Science.gov (United States)

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  14. Human Error Mechanisms in Complex Work Environments

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1988-01-01

    will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations...

  15. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance

    International Nuclear Information System (INIS)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-01-01

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s -1 ) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s -1 ) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s -1 ) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm -1 of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  16. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance.

    Science.gov (United States)

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-12-07

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s(-1)) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s(-1)) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s(-1)) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm(-1) of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  17. Measurement errors in voice-key naming latency for Hiragana.

    Science.gov (United States)

    Yamada, Jun; Tamaoka, Katsuo

    2003-12-01

    This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.

  18. Increased errors and decreased performance at night: A systematic review of the evidence concerning shift work and quality.

    Science.gov (United States)

    de Cordova, Pamela B; Bradford, Michelle A; Stone, Patricia W

    2016-02-15

    Shift workers have worse health outcomes than employees who work standard business hours. However, it is unclear how this poorer health shift may be related to employee work productivity. The purpose of this systematic review is to assess the relationship between shift work and errors and performance. Searches of MEDLINE/PubMed, EBSCOhost, and CINAHL were conducted to identify articles that examined the relationship between shift work, errors, quality, productivity, and performance. All articles were assessed for study quality. A total of 435 abstracts were screened with 13 meeting inclusion criteria. Eight studies were rated to be of strong, methodological quality. Nine studies demonstrated a positive relationship that night shift workers committed more errors and had decreased performance. Night shift workers have worse health that may contribute to errors and decreased performance in the workplace.

  19. Invariance and variability in interaction error-related potentials and their consequences for classification

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Kapeller, Christoph; Hintermüller, Christoph; Guger, Christoph; Peer, Angelika

    2017-12-01

    Objective. This paper discusses the invariance and variability in interaction error-related potentials (ErrPs), where a special focus is laid upon the factors of (1) the human mental processing required to assess interface actions (2) time (3) subjects. Approach. Three different experiments were designed as to vary primarily with respect to the mental processes that are necessary to assess whether an interface error has occurred or not. The three experiments were carried out with 11 subjects in a repeated-measures experimental design. To study the effect of time, a subset of the recruited subjects additionally performed the same experiments on different days. Main results. The ErrP variability across the different experiments for the same subjects was found largely attributable to the different mental processing required to assess interface actions. Nonetheless, we found that interaction ErrPs are empirically invariant over time (for the same subject and same interface) and to a lesser extent across subjects (for the same interface). Significance. The obtained results may be used to explain across-study variability of ErrPs, as well as to define guidelines for approaches to the ErrP classifier transferability problem.

  20. God will forgive: reflecting on God’s love decreases neurophysiological responses to errors

    Science.gov (United States)

    Inzlicht, Michael; Larson, Michael J.

    2015-01-01

    In religions where God is portrayed as both loving and wrathful, religious beliefs may be a source of fear as well as comfort. Here, we consider if God’s love may be more effective, relative to God’s wrath, for soothing distress, but less effective for helping control behavior. Specifically, we assess whether contemplating God’s love reduces our ability to detect and emotionally react to conflict between one’s behavior and overarching religious standards. We do so within a neurophysiological framework, by observing the effects of exposure to concepts of God’s love vs punishment on the error-related negativity (ERN)—a neural signal originating in the anterior cingulate cortex that is associated with performance monitoring and affective responses to errors. Participants included 123 students at Brigham Young University, who completed a Go/No-Go task where they made ‘religious’ errors (i.e. ostensibly exhibited pro-alcohol tendencies). Reflecting on God’s love caused dampened ERNs and worse performance on the Go/No-Go task. Thinking about God’s punishment did not affect performance or ERNs. Results suggest that one possible reason religiosity is generally linked to positive well-being may be because of a decreased affective response to errors that occurs when God’s love is prominent in the minds of believers. PMID:25062839

  1. Human errors in NPP operations

    International Nuclear Information System (INIS)

    Sheng Jufang

    1993-01-01

    Based on the operational experiences of nuclear power plants (NPPs), the importance of studying human performance problems is described. Statistical analysis on the significance or frequency of various root-causes and error-modes from a large number of human-error-related events demonstrate that the defects in operation/maintenance procedures, working place factors, communication and training practices are primary root-causes, while omission, transposition, quantitative mistake are the most frequent among the error-modes. Recommendations about domestic research on human performance problem in NPPs are suggested

  2. Measuring Articulatory Error Consistency in Children with Developmental Apraxia of Speech

    Science.gov (United States)

    Betz, Stacy K.; Stoel-Gammon, Carol

    2005-01-01

    Error inconsistency is often cited as a characteristic of children with speech disorders, particularly developmental apraxia of speech (DAS); however, few researchers operationally define error inconsistency and the definitions that do exist are not standardized across studies. This study proposes three formulas for measuring various aspects of…

  3. Practical Insights from Initial Studies Related to Human Error Analysis Project (HEAP)

    International Nuclear Information System (INIS)

    Follesoe, Knut; Kaarstad, Magnhild; Droeivoldsmo, Asgeir; Hollnagel, Erik; Kirwan; Barry

    1996-01-01

    This report presents practical insights made from an analysis of the three initial studies in the Human Error Analysis Project (HEAP), and the first study in the US NRC Staffing Project. These practical insights relate to our understanding of diagnosis in Nuclear Power Plant (NPP) emergency scenarios and, in particular, the factors that influence whether a diagnosis will succeed or fail. The insights reported here focus on three inter-related areas: (1) the diagnostic strategies and styles that have been observed in single operator and team-based studies; (2) the qualitative aspects of the key operator support systems, namely VDU interfaces, alarms, training and procedures, that have affected the outcome of diagnosis; and (3) the overall success rates of diagnosis and the error types that have been observed in the various studies. With respect to diagnosis, certain patterns have emerged from the various studies, depending on whether operators were alone or in teams, and on their familiarity with the process. Some aspects of the interface and alarm systems were found to contribute to diagnostic failures while others supported performance and recovery. Similar results were found for training and experience. Furthermore, the availability of procedures did not preclude the need for some diagnosis. With respect to HRA and PSA, it was possible to record the failure types seen in the studies, and in some cases to give crude estimates of the failure likelihood for certain scenarios. Although these insights are interim in nature, they do show the type of information that can be derived from these studies. More importantly, they clarify aspects of our understanding of diagnosis in NPP emergencies, including implications for risk assessment, operator support systems development, and for research into diagnosis in a broader range of fields than the nuclear power industry. (author)

  4. Mismeasurement and the resonance of strong confounders: correlated errors.

    Science.gov (United States)

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  5. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  6. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    Science.gov (United States)

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not

  7. An Empirical State Error Covariance Matrix for Batch State Estimation

    Science.gov (United States)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  8. Error or "act of God"? A study of patients' and operating room team members' perceptions of error definition, reporting, and disclosure.

    Science.gov (United States)

    Espin, Sherry; Levinson, Wendy; Regehr, Glenn; Baker, G Ross; Lingard, Lorelei

    2006-01-01

    Calls abound for a culture change in health care to improve patient safety. However, effective change cannot proceed without a clear understanding of perceptions and beliefs about error. In this study, we describe and compare operative team members' and patients' perceptions of error, reporting of error, and disclosure of error. Thirty-nine interviews of team members (9 surgeons, 9 nurses, 10 anesthesiologists) and patients (11) were conducted at 2 teaching hospitals using 4 scenarios as prompts. Transcribed responses to open questions were analyzed by 2 researchers for recurrent themes using the grounded-theory method. Yes/no answers were compared across groups using chi-square analyses. Team members and patients agreed on what constitutes an error. Deviation from standards and negative outcome were emphasized as definitive features. Patients and nurse professionals differed significantly in their perception of whether errors should be reported. Nurses were willing to report only events within their disciplinary scope of practice. Although most patients strongly advocated full disclosure of errors (what happened and how), team members preferred to disclose only what happened. When patients did support partial disclosure, their rationales varied from that of team members. Both operative teams and patients define error in terms of breaking the rules and the concept of "no harm no foul." These concepts pose challenges for treating errors as system failures. A strong culture of individualism pervades nurses' perception of error reporting, suggesting that interventions are needed to foster collective responsibility and a constructive approach to error identification.

  9. Medication errors detected in non-traditional databases

    DEFF Research Database (Denmark)

    Perregaard, Helene; Aronson, Jeffrey K; Dalhoff, Kim

    2015-01-01

    AIMS: We have looked for medication errors involving the use of low-dose methotrexate, by extracting information from Danish sources other than traditional pharmacovigilance databases. We used the data to establish the relative frequencies of different types of errors. METHODS: We searched four...... errors, whereas knowledge-based errors more often resulted in near misses. CONCLUSIONS: The medication errors in this survey were most often action-based (50%) and knowledge-based (34%), suggesting that greater attention should be paid to education and surveillance of medical personnel who prescribe...

  10. The Error Reporting in the ATLAS TDAQ System

    Science.gov (United States)

    Kolos, Serguei; Kazarov, Andrei; Papaevgeniou, Lykourgos

    2015-05-01

    The ATLAS Error Reporting provides a service that allows experts and shift crew to track and address errors relating to the data taking components and applications. This service, called the Error Reporting Service (ERS), gives to software applications the opportunity to collect and send comprehensive data about run-time errors, to a place where it can be intercepted in real-time by any other system component. Other ATLAS online control and monitoring tools use the ERS as one of their main inputs to address system problems in a timely manner and to improve the quality of acquired data. The actual destination of the error messages depends solely on the run-time environment, in which the online applications are operating. When an application sends information to ERS, depending on the configuration, it may end up in a local file, a database, distributed middleware which can transport it to an expert system or display it to users. Thanks to the open framework design of ERS, new information destinations can be added at any moment without touching the reporting and receiving applications. The ERS Application Program Interface (API) is provided in three programming languages used in the ATLAS online environment: C++, Java and Python. All APIs use exceptions for error reporting but each of them exploits advanced features of a given language to simplify the end-user program writing. For example, as C++ lacks language support for exceptions, a number of macros have been designed to generate hierarchies of C++ exception classes at compile time. Using this approach a software developer can write a single line of code to generate a boilerplate code for a fully qualified C++ exception class declaration with arbitrary number of parameters and multiple constructors, which encapsulates all relevant static information about the given type of issues. When a corresponding error occurs at run time, the program just need to create an instance of that class passing relevant values to one

  11. Hesitation and error: Does product placement in an emergency department influence hand hygiene performance?

    Science.gov (United States)

    Stackelroth, Jenny; Sinnott, Michael; Shaban, Ramon Z

    2015-09-01

    Existing research has consistently demonstrated poor compliance by health care workers with hand hygiene standards. This study examined the extent to which incorrect hand hygiene occurred as a result of the inability to easily distinguish between different hand hygiene solutions placed at washbasins. A direct observational method was used using ceiling-mounted, motion-activated video camera surveillance in a tertiary referral emergency department in Australia. Data from a 24-hour period on day 10 of the recordings were collected into the Hand Hygiene-Technique Observation Tool based on Feldman's criteria as modified by Larson and Lusk. A total of 459 episodes of hand hygiene were recorded by 6 video cameras in the 24-hour period. The observed overall rate of error in this study was 6.2% (27 episodes). In addition an overall rate of hesitation was 5.8% (26 episodes). There was no statistically significant difference in error rates with the 2 hand washbasin configurations. The amelioration of causes of error and hesitation by standardization of the appearance and relative positioning of hand hygiene solutions at washbasins may translate in to improved hand hygiene behaviors. Placement of moisturizer at the washbasin may not be essential. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  12. Wind and load forecast error model for multiple geographically distributed forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Yuri V.; Reyes-Spindola, Jorge F.; Samaan, Nader; Diao, Ruisheng; Hafen, Ryan P. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2010-07-01

    The impact of wind and load forecast errors on power grid operations is frequently evaluated by conducting multi-variant studies, where these errors are simulated repeatedly as random processes based on their known statistical characteristics. To simulate these errors correctly, we need to reflect their distributions (which do not necessarily follow a known distribution law), standard deviations. auto- and cross-correlations. For instance, load and wind forecast errors can be closely correlated in different zones of the system. This paper introduces a new methodology for generating multiple cross-correlated random processes to produce forecast error time-domain curves based on a transition probability matrix computed from an empirical error distribution function. The matrix will be used to generate new error time series with statistical features similar to observed errors. We present the derivation of the method and some experimental results obtained by generating new error forecasts together with their statistics. (orig.)

  13. A Novel Artificial Fish Swarm Algorithm for Recalibration of Fiber Optic Gyroscope Error Parameters

    Directory of Open Access Journals (Sweden)

    Yanbin Gao

    2015-05-01

    Full Text Available The artificial fish swarm algorithm (AFSA is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes’ pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  14. A novel artificial fish swarm algorithm for recalibration of fiber optic gyroscope error parameters.

    Science.gov (United States)

    Gao, Yanbin; Guan, Lianwu; Wang, Tingjun; Sun, Yunlong

    2015-05-05

    The artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligent techniques, which is widely utilized for optimization purposes. Fiber optic gyroscope (FOG) error parameters such as scale factors, biases and misalignment errors are relatively unstable, especially with the environmental disturbances and the aging of fiber coils. These uncalibrated error parameters are the main reasons that the precision of FOG-based strapdown inertial navigation system (SINS) degraded. This research is mainly on the application of a novel artificial fish swarm algorithm (NAFSA) on FOG error coefficients recalibration/identification. First, the NAFSA avoided the demerits (e.g., lack of using artificial fishes' pervious experiences, lack of existing balance between exploration and exploitation, and high computational cost) of the standard AFSA during the optimization process. To solve these weak points, functional behaviors and the overall procedures of AFSA have been improved with some parameters eliminated and several supplementary parameters added. Second, a hybrid FOG error coefficients recalibration algorithm has been proposed based on NAFSA and Monte Carlo simulation (MCS) approaches. This combination leads to maximum utilization of the involved approaches for FOG error coefficients recalibration. After that, the NAFSA is verified with simulation and experiments and its priorities are compared with that of the conventional calibration method and optimal AFSA. Results demonstrate high efficiency of the NAFSA on FOG error coefficients recalibration.

  15. Relations between the technological standards and technological appropriation

    Directory of Open Access Journals (Sweden)

    Carlos Alberto PRADO GUERRERO

    2010-06-01

    Full Text Available The objective of this study is to analyze the educational practices of using Blackboard in blended learning environments with students of higher education to understand the relationship between technological appropriation and standards of educational technology. To achieve that goal, the following research question was raised: ¿To what extent are the standards of education technology with the appropriation of technology in blended learning environments in higher educa­tion related? The contextual framework of this work includes the following topics: the institution, teaching, teachers and students. The design methodology that was used is of a correlation type. Correlations were carried out to determine the frequency and level in the technological standards as well as the appropriation of technology. In the comparison of the results obtained by the students, the teachers and the platform; we found that students in the school study showed a high degree of technology ownership and this was the same for the performance shown on the technological standards. It was established that teachers play a key role in developing the techno­logical appropriation of students and performance in technology standards.

  16. Spent fuel bundle counter sequence error manual - BRUCE NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  17. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  18. Empirical study of the GARCH model with rational errors

    International Nuclear Information System (INIS)

    Chen, Ting Ting; Takaishi, Tetsuya

    2013-01-01

    We use the GARCH model with a fat-tailed error distribution described by a rational function and apply it to stock price data on the Tokyo Stock Exchange. To determine the model parameters we perform Bayesian inference to the model. Bayesian inference is implemented by the Metropolis-Hastings algorithm with an adaptive multi-dimensional Student's t-proposal density. In order to compare our model with the GARCH model with the standard normal errors, we calculate the information criteria AIC and DIC, and find that both criteria favor the GARCH model with a rational error distribution. We also calculate the accuracy of the volatility by using the realized volatility and find that a good accuracy is obtained for the GARCH model with a rational error distribution. Thus we conclude that the GARCH model with a rational error distribution is superior to the GARCH model with the normal errors and it can be used as an alternative GARCH model to those with other fat-tailed distributions

  19. The orthopaedic error index: development and application of a novel national indicator for assessing the relative safety of hospital care using a cross-sectional approach.

    Science.gov (United States)

    Panesar, Sukhmeet S; Netuveli, Gopalakrishnan; Carson-Stevens, Andrew; Javad, Sundas; Patel, Bhavesh; Parry, Gareth; Donaldson, Liam J; Sheikh, Aziz

    2013-11-21

    The Orthopaedic Error Index for hospitals aims to provide the first national assessment of the relative safety of provision of orthopaedic surgery. Cross-sectional study (retrospective analysis of records in a database). The National Reporting and Learning System is the largest national repository of patient-safety incidents in the world with over eight million error reports. It offers a unique opportunity to develop novel approaches to enhancing patient safety, including investigating the relative safety of different healthcare providers and specialties. We extracted all orthopaedic error reports from the system over 1 year (2009-2010). The Orthopaedic Error Index was calculated as a sum of the error propensity and severity. All relevant hospitals offering orthopaedic surgery in England were then ranked by this metric to identify possible outliers that warrant further attention. 155 hospitals reported 48 971 orthopaedic-related patient-safety incidents. The mean Orthopaedic Error Index was 7.09/year (SD 2.72); five hospitals were identified as outliers. Three of these units were specialist tertiary hospitals carrying out complex surgery; the remaining two outlier hospitals had unusually high Orthopaedic Error Indexes: mean 14.46 (SD 0.29) and 15.29 (SD 0.51), respectively. The Orthopaedic Error Index has enabled identification of hospitals that may be putting patients at disproportionate risk of orthopaedic-related iatrogenic harm and which therefore warrant further investigation. It provides the prototype of a summary index of harm to enable surveillance of unsafe care over time across institutions. Further validation and scrutiny of the method will be required to assess its potential to be extended to other hospital specialties in the UK and also internationally to other health systems that have comparable national databases of patient-safety incidents.

  20. Effects of variable transformations on errors in FORM results

    International Nuclear Information System (INIS)

    Qin Quan; Lin Daojin; Mei Gang; Chen Hao

    2006-01-01

    On the basis of studies on second partial derivatives of the variable transformation functions for nine different non-normal variables the paper comprehensively discusses the effects of the transformation on FORM results and shows that senses and values of the errors in FORM results depend on distributions of the basic variables, whether resistances or actions basic variables represent, and the design point locations in the standard normal space. The transformations of the exponential or Gamma resistance variables can generate +24% errors in the FORM failure probability, and the transformation of Frechet action variables could generate -31% errors

  1. Physical Principles of Development of the State Standard of Biological Cell Polarizability

    Science.gov (United States)

    Shuvalov, G. V.; Generalov, K. V.; Generalov, V. M.; Kruchinina, M. V.; Koptev, E. S.; Minin, O. V.; Minin, I. V.

    2018-03-01

    A new state standard of biological cell polarizability based on micron-size latex particles has been developed. As a standard material, it is suggested to use polystyrene. Values of the polarizability calculated for erythrocytes and values of the polarizability of micron-size spherical latex particles measured with measuring-computing complexes agree within the limits of satisfactory relative error. The Standard allows one the unit of polarizability measurements [m3] to be assigned to cells and erythrocytes for the needs of medicine.

  2. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    Science.gov (United States)

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  3. Towards automatic global error control: Computable weak error expansion for the tau-leap method

    KAUST Repository

    Karlsson, Peer Jesper; Tempone, Raul

    2011-01-01

    This work develops novel error expansions with computable leading order terms for the global weak error in the tau-leap discretization of pure jump processes arising in kinetic Monte Carlo models. Accurate computable a posteriori error approximations are the basis for adaptive algorithms, a fundamental tool for numerical simulation of both deterministic and stochastic dynamical systems. These pure jump processes are simulated either by the tau-leap method, or by exact simulation, also referred to as dynamic Monte Carlo, the Gillespie Algorithm or the Stochastic Simulation Slgorithm. Two types of estimates are presented: an a priori estimate for the relative error that gives a comparison between the work for the two methods depending on the propensity regime, and an a posteriori estimate with computable leading order term. © de Gruyter 2011.

  4. Bandwagon effects and error bars in particle physics

    Science.gov (United States)

    Jeng, Monwhea

    2007-02-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit "bandwagon effects": reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations.

  5. Bandwagon effects and error bars in particle physics

    International Nuclear Information System (INIS)

    Jeng, Monwhea

    2007-01-01

    We study historical records of experiments on particle masses, lifetimes, and widths, both for signs of expectation bias, and to compare actual errors with reported error bars. We show that significant numbers of particle properties exhibit 'bandwagon effects': reported values show trends and clustering as a function of the year of publication, rather than random scatter about the mean. While the total amount of clustering is significant, it is also fairly small; most individual particle properties do not display obvious clustering. When differences between experiments are compared with the reported error bars, the deviations do not follow a normal distribution, but instead follow an exponential distribution for up to ten standard deviations

  6. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    KAUST Repository

    Hall, Eric Joseph; Hoel, Hå kon; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2016-01-01

    posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations

  7. Comparison of computer workstation with film for detecting setup errors

    International Nuclear Information System (INIS)

    Fritsch, D.S.; Boxwala, A.A.; Raghavan, S.; Coffee, C.; Major, S.A.; Muller, K.E.; Chaney, E.L.

    1997-01-01

    Purpose/Objective: Workstations designed for portal image interpretation by radiation oncologists provide image displays and image processing and analysis tools that differ significantly compared with the standard clinical practice of inspecting portal films on a light box. An implied but unproved assumption associated with the clinical implementation of workstation technology is that patient care is improved, or at least not adversely affected. The purpose of this investigation was to conduct observer studies to test the hypothesis that radiation oncologists can detect setup errors using a workstation at least as accurately as when following standard clinical practice. Materials and Methods: A workstation, PortFolio, was designed for radiation oncologists to display and inspect digital portal images for setup errors. PortFolio includes tools to enhance images; align cross-hairs, field edges, and anatomic structures on reference and acquired images; measure distances and angles; and view registered images superimposed on one another. In a well designed and carefully controlled observer study, nine radiation oncologists, including attendings and residents, used PortFolio to detect setup errors in realistic digitally reconstructed portal (DRPR) images computed from the NLM visible human data using a previously described approach † . Compared with actual portal images where absolute truth is ill defined or unknown, the DRPRs contained known translation or rotation errors in the placement of the fields over target regions in the pelvis and head. Twenty DRPRs with randomly induced errors were computed for each site. The induced errors were constrained to a plane at the isocenter of the target volume and perpendicular to the central axis of the treatment beam. Images used in the study were also printed on film. Observers interpreted the film-based images using standard clinical practice. The images were reviewed in eight sessions. During each session five images were

  8. Comparisons of ANS, ASME, AWS, and NFPA standards cited in the NRC standard review plan, NUREG-0800, and related documents

    International Nuclear Information System (INIS)

    Ankrum, A.R.; Bohlander, K.L.; Gilbert, E.R.; Spiesman, J.B.

    1995-11-01

    This report provides the results of comparisons of the cited and latest versions of ANS, ASME, AWS and NFPA standards cited in the NRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants (NUREG 0800) and related documents. The comparisons were performed by Battelle Pacific Northwest Laboratories in support of the NRC's Standard Review Plan Update and Development Program. Significant changes to the standards, from the cited version to the latest version, are described and discussed in a tabular format for each standard. Recommendations for updating each citation in the Standard Review Plan are presented. Technical considerations and suggested changes are included for related regulatory documents (i.e., Regulatory Guides and the Code of Federal Regulations) citing the standard. The results and recommendations presented in this document have not been subjected to NRC staff review

  9. An error taxonomy system for analysis of haemodialysis incidents.

    Science.gov (United States)

    Gu, Xiuzhu; Itoh, Kenji; Suzuki, Satoshi

    2014-12-01

    This paper describes the development of a haemodialysis error taxonomy system for analysing incidents and predicting the safety status of a dialysis organisation. The error taxonomy system was developed by adapting an error taxonomy system which assumed no specific specialty to haemodialysis situations. Its application was conducted with 1,909 incident reports collected from two dialysis facilities in Japan. Over 70% of haemodialysis incidents were reported as problems or complications related to dialyser, circuit, medication and setting of dialysis condition. Approximately 70% of errors took place immediately before and after the four hours of haemodialysis therapy. Error types most frequently made in the dialysis unit were omission and qualitative errors. Failures or complications classified to staff human factors, communication, task and organisational factors were found in most dialysis incidents. Device/equipment/materials, medicine and clinical documents were most likely to be involved in errors. Haemodialysis nurses were involved in more incidents related to medicine and documents, whereas dialysis technologists made more errors with device/equipment/materials. This error taxonomy system is able to investigate incidents and adverse events occurring in the dialysis setting but is also able to estimate safety-related status of an organisation, such as reporting culture. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  10. Protocol for Usability Testing and Validation of the ISO Draft International Standard 19223 for Lung Ventilators

    Science.gov (United States)

    2017-01-01

    Background Clinicians, such as respiratory therapists and physicians, are often required to set up pieces of medical equipment that use inconsistent terminology. Current lung ventilator terminology that is used by different manufacturers contributes to the risk of usage errors, and in turn the risk of ventilator-associated lung injuries and other conditions. Human factors and communication issues are often associated with ventilator-related sentinel events, and inconsistent ventilator terminology compounds these issues. This paper describes our proposed protocol, which will be implemented at the University of Waterloo, Canada when this project is externally funded. Objective We propose to determine whether a standardized vocabulary improves the ease of use, safety, and utility as it relates to the usability of medical devices, compared to legacy medical devices from multiple manufacturers, which use different terms. Methods We hypothesize that usage errors by clinicians will be lower when standardization is consistently applied by all manufacturers. The proposed study will experimentally examine the impact of standardized nomenclature on performance declines in the use of an unfamiliar ventilator product in clinically relevant scenarios. Participants will be respiratory therapy practitioners and trainees, and we propose studying approximately 60 participants. Results The work reported here is in the proposal phase. Once the protocol is implemented, we will report the results in a follow-up paper. Conclusions The proposed study will help us better understand the effects of standardization on medical device usability. The study will also help identify any terms in the International Organization for Standardization (ISO) Draft International Standard (DIS) 19223 that may be associated with recurrent errors. Amendments to the standard will be proposed if recurrent errors are identified. This report contributes a protocol that can be used to assess the effect of

  11. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    Science.gov (United States)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  12. Laser tracker error determination using a network measurement

    International Nuclear Information System (INIS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-01-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies

  13. Vaginismus and dyspareunia: relationship with general and sex-related moral standards.

    Science.gov (United States)

    Borg, Charmaine; de Jong, Peter J; Weijmar Schultz, Willibrord

    2011-01-01

    Relatively strong adherence to conservative values and/or relatively strict sex-related moral standards logically restricts the sexual repertoire and will lower the threshold for experiencing negative emotions in a sexual context. In turn, this may generate withdrawal and avoidance behavior, which is at the nucleus of vaginismus. To examine whether indeed strong adherence to conservative morals and/or strict sexual standards may be involved in vaginismus. The Schwartz Value Survey (SVS) to investigate the individual's value pattern and the Sexual Disgust Questionnaire (SDQ) to index the willingness to perform certain sexual activities as an indirect measure of sex-related moral standards. The SVS and SDQ were completed by three groups: women diagnosed with vaginismus (N=24), a group of women diagnosed with dyspareunia (N=24), and a healthy control group of women without sexual complaints (N=32). Specifically, the vaginismus group showed relatively low scores on liberal values together with comparatively high scores on conservative values. Additionally, the vaginismus group was more restricted in their readiness to perform particular sex-related behaviors than the control group. The dyspareunia group, on both the SVS and the SDQ, placed between the vaginismus and the control group, but not significantly different than either of the groups. The findings are consistent with the view that low liberal and high conservative values, along with restricted sexual standards, are involved in the development/maintenance of vaginismus. © 2010 International Society for Sexual Medicine.

  14. Error signals in the subthalamic nucleus are related to post-error slowing in patients with Parkinson's disease

    NARCIS (Netherlands)

    Siegert, S.; Herrojo Ruiz, M.; Brücke, C.; Hueble, J.; Schneider, H.G.; Ullsperger, M.; Kühn, A.A.

    2014-01-01

    Error monitoring is essential for optimizing motor behavior. It has been linked to the medial frontal cortex, in particular to the anterior midcingulate cortex (aMCC). The aMCC subserves its performance-monitoring function in interaction with the basal ganglia (BG) circuits, as has been demonstrated

  15. Benchmark test cases for evaluation of computer-based methods for detection of setup errors: realistic digitally reconstructed electronic portal images with known setup errors

    International Nuclear Information System (INIS)

    Fritsch, Daniel S.; Raghavan, Suraj; Boxwala, Aziz; Earnhart, Jon; Tracton, Gregg; Cullip, Timothy; Chaney, Edward L.

    1997-01-01

    Purpose: The purpose of this investigation was to develop methods and software for computing realistic digitally reconstructed electronic portal images with known setup errors for use as benchmark test cases for evaluation and intercomparison of computer-based methods for image matching and detecting setup errors in electronic portal images. Methods and Materials: An existing software tool for computing digitally reconstructed radiographs was modified to compute simulated megavoltage images. An interface was added to allow the user to specify which setup parameter(s) will contain computer-induced random and systematic errors in a reference beam created during virtual simulation. Other software features include options for adding random and structured noise, Gaussian blurring to simulate geometric unsharpness, histogram matching with a 'typical' electronic portal image, specifying individual preferences for the appearance of the 'gold standard' image, and specifying the number of images generated. The visible male computed tomography data set from the National Library of Medicine was used as the planning image. Results: Digitally reconstructed electronic portal images with known setup errors have been generated and used to evaluate our methods for automatic image matching and error detection. Any number of different sets of test cases can be generated to investigate setup errors involving selected setup parameters and anatomic volumes. This approach has proved to be invaluable for determination of error detection sensitivity under ideal (rigid body) conditions and for guiding further development of image matching and error detection methods. Example images have been successfully exported for similar use at other sites. Conclusions: Because absolute truth is known, digitally reconstructed electronic portal images with known setup errors are well suited for evaluation of computer-aided image matching and error detection methods. High-quality planning images, such as

  16. Unintentional Pharmaceutical-Related Medication Errors Caused by Laypersons Reported to the Toxicological Information Centre in the Czech Republic.

    Science.gov (United States)

    Urban, Michal; Leššo, Roman; Pelclová, Daniela

    2016-07-01

    The purpose of the article was to study unintentional pharmaceutical-related poisonings committed by laypersons that were reported to the Toxicological Information Centre in the Czech Republic. Identifying frequency, sources, reasons and consequences of the medication errors in laypersons could help to reduce the overall rate of medication errors. Records of medication error enquiries from 2013 to 2014 were extracted from the electronic database, and the following variables were reviewed: drug class, dosage form, dose, age of the subject, cause of the error, time interval from ingestion to the call, symptoms, prognosis at the time of the call and first aid recommended. Of the calls, 1354 met the inclusion criteria. Among them, central nervous system-affecting drugs (23.6%), respiratory drugs (18.5%) and alimentary drugs (16.2%) were the most common drug classes involved in the medication errors. The highest proportion of the patients was in the youngest age subgroup 0-5 year-old (46%). The reasons for the medication errors involved the leaflet misinterpretation and mistaken dose (53.6%), mixing up medications (19.2%), attempting to reduce pain with repeated doses (6.4%), erroneous routes of administration (2.2%), psychiatric/elderly patients (2.7%), others (9.0%) or unknown (6.9%). A high proportion of children among the patients may be due to the fact that children's dosages for many drugs vary by their weight, and more medications come in a variety of concentrations. Most overdoses could be prevented by safer labelling, proper cap closure systems for liquid products and medication reconciliation by both physicians and pharmacists. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  18. Sensitivity of dose-finding studies to observation errors.

    Science.gov (United States)

    Zohar, Sarah; O'Quigley, John

    2009-11-01

    The purpose of Phase I designs is to estimate the MTD (maximum tolerated dose, in practice a dose with some given acceptable rate of toxicity) while, at the same time, minimizing the number of patients treated at doses too far removed from the MTD. Our purpose here is to investigate the sensitivity of conclusions from dose-finding designs to recording or observation errors. Certain toxicities may go undetected and, conversely, certain non-toxicities may be incorrectly recorded as dose-limiting toxicities. Recording inaccuracies would be expected to have an influence on final and within trial recommendations and, in this paper, we study in greater depth this question. We focus, in particular on three designs used currently; the standard '3+3' design, the grouped up-and-down design [M. Gezmu, N. Flournoy, Group up-and-down designs for dose finding. Journal of Statistical Planning and Inference 2006; 136 (6): 1749-1764.] and the continual reassessment method (CRM, [J. O'Quigley, M. Pepe, L. Fisher, Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 1990; 46 (1): 33-48.]). A non-toxicity incorrectly recorded as a toxicity (error of first kind) has a greater influence in general than the converse (error of second kind). These results are illustrated via figures which suggest that the standard '3+3' design in particular is sensitive to errors of the second kind. Such errors can have a very important impact on drug development in that, if carried through to the Phase 2 and Phase 3 studies, we can significantly increase the probability of failure to detect efficacy as a result of having delivered an inadequate dose.

  19. Temporal dynamics of conflict monitoring and the effects of one or two conflict sources on error-(related) negativity.

    Science.gov (United States)

    Armbrecht, Anne-Simone; Wöhrmann, Anne; Gibbons, Henning; Stahl, Jutta

    2010-09-01

    The present electrophysiological study investigated the temporal development of response conflict and the effects of diverging conflict sources on error(-related) negativity (Ne). Eighteen participants performed a combined stop-signal flanker task, which was comprised of two different conflict sources: a left-right and a go-stop response conflict. It is assumed that the Ne reflects the activity of a conflict monitoring system and thus increases according to (i) the number of conflict sources and (ii) the temporal development of the conflict activity. No increase of the Ne amplitude after double errors (comprising two conflict sources) as compared to hand- and stop-errors (comprising one conflict source) was found, whereas a higher Ne amplitude was observed after a delayed stop-signal onset. The results suggest that the Ne is not sensitive to an increase in the number of conflict sources, but to the temporal dynamics of a go-stop response conflict. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. INFLUENCE OF MECHANICAL ERRORS IN A ZOOM CAMERA

    Directory of Open Access Journals (Sweden)

    Alfredo Gardel

    2011-05-01

    Full Text Available As it is well known, varying the focus and zoom of a camera lens system changes the alignment of the lens components resulting in a displacement of the image centre and field of view. Thus, knowledge of how the image centre shifts may be important for some aspects of camera calibration. As shown in other papers, the pinhole model is not adequate for zoom lenses. To ensure a calibration model for these lenses, the calibration parameters must be adjusted. The geometrical modelling of a zoom lens is realized from its lens specifications. The influence on the calibration parameters is calculated by introducing mechanical errors in the mobile lenses. Figures are given describing the errors obtained in the principal point coordinates and also in its standard deviation. A comparison is then made with the errors that come from the incorrect detection of the calibration points. It is concluded that mechanical errors of actual zoom lenses can be neglected in the calibration process because detection errors have more influence on the camera parameters.

  1. Standard Establishment Through Scenarios (SETS): A new technique for occupational fitness standards.

    Science.gov (United States)

    Blacklock, R E; Reilly, T J; Spivock, M; Newton, P S; Olinek, S M

    2015-01-01

    An objective and scientific task analysis provides the basis for establishing legally defensible Physical Employment Standards (PES), based on common and essential occupational tasks. Infrequent performance of these tasks creates challenges when developing PES based on criterion, or content validity. Develop a systematic approach using Subject Matter Experts (SME) to provide tasks with 1) an occupationally relevant scenario considered common to all personnel; 2) a minimum performance standard defined by time, distance, load or work. Examples provided here relate to the development of a new PES for the Canadian Armed Forces (CAF). SME of various experience are selected based on their eligibility criteria. SME are required to define a reasonable scenario for each task from personal experience, provide occupational performance requirements of the scenario in sub-groups, and discuss and agree by consensus vote on the final standard based on the definition of essential. A common and essential task for the CAF is detailed as a case example of process application. Techniques to avoid common SME rating errors are discussed and advantages to the method described. The SETS method was developed as a systematic approach to setting occupational performance standards and qualifying information from SME.

  2. Measurement Errors and Uncertainties Theory and Practice

    CERN Document Server

    Rabinovich, Semyon G

    2006-01-01

    Measurement Errors and Uncertainties addresses the most important problems that physicists and engineers encounter when estimating errors and uncertainty. Building from the fundamentals of measurement theory, the author develops the theory of accuracy of measurements and offers a wealth of practical recommendations and examples of applications. This new edition covers a wide range of subjects, including: - Basic concepts of metrology - Measuring instruments characterization, standardization and calibration -Estimation of errors and uncertainty of single and multiple measurements - Modern probability-based methods of estimating measurement uncertainty With this new edition, the author completes the development of the new theory of indirect measurements. This theory provides more accurate and efficient methods for processing indirect measurement data. It eliminates the need to calculate the correlation coefficient - a stumbling block in measurement data processing - and offers for the first time a way to obtain...

  3. Formal Analysis of Soft Errors using Theorem Proving

    Directory of Open Access Journals (Sweden)

    Sofiène Tahar

    2013-07-01

    Full Text Available Modeling and analysis of soft errors in electronic circuits has traditionally been done using computer simulations. Computer simulations cannot guarantee correctness of analysis because they utilize approximate real number representations and pseudo random numbers in the analysis and thus are not well suited for analyzing safety-critical applications. In this paper, we present a higher-order logic theorem proving based method for modeling and analysis of soft errors in electronic circuits. Our developed infrastructure includes formalized continuous random variable pairs, their Cumulative Distribution Function (CDF properties and independent standard uniform and Gaussian random variables. We illustrate the usefulness of our approach by modeling and analyzing soft errors in commonly used dynamic random access memory sense amplifier circuits.

  4. Verification of unfold error estimates in the unfold operator code

    International Nuclear Information System (INIS)

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. copyright 1997 American Institute of Physics

  5. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeil; Kim, J. H.; Jang, S. C

    2007-03-15

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  6. A Human Reliability Analysis of Post- Accident Human Errors in the Low Power and Shutdown PSA of KSNP

    International Nuclear Information System (INIS)

    Kang, Daeil; Kim, J. H.; Jang, S. C.

    2007-03-01

    Korea Atomic Energy Research Institute, using the ANS low power and shutdown (LPSD) probabilistic risk assessment (PRA) Standard, evaluated the LPSD PSA model of the KSNP, Yonggwang Units 5 and 6, and identified the items to be improved. The evaluation results of human reliability analysis (HRA) of the post-accident human errors in the LPSD PSA model for the KSNP showed that 10 items among 19 items of supporting requirements for those in the ANS PRA Standard were identified as them to be improved. Thus, we newly carried out a HRA for post-accident human errors in the LPSD PSA model for the KSNP. Following tasks are the improvements in the HRA of post-accident human errors of the LPSD PSA model for the KSNP compared with the previous one: Interviews with operators in the interpretation of the procedure, modeling of operator actions, and the quantification results of human errors, site visit. Applications of limiting value to the combined post-accident human errors. Documentation of information of all the input and bases for the detailed quantifications and the dependency analysis using the quantification sheets The assessment results for the new HRA results of post-accident human errors using the ANS LPSD PRA Standard show that above 80% items of its supporting requirements for post-accident human errors were graded as its Category II. The number of the re-estimated human errors using the LPSD Korea Standard HRA method is 385. Among them, the number of individual post-accident human errors is 253. The number of dependent post-accident human errors is 135. The quantification results of the LPSD PSA model for the KSNP with new HEPs show that core damage frequency (CDF) is increased by 5.1% compared with the previous baseline CDF It is expected that this study results will be greatly helpful to improve the PSA quality for the domestic nuclear power plants because they have sufficient PSA quality to meet the Category II of Supporting Requirements for the post

  7. Relationship between Recent Flight Experience and Pilot Error General Aviation Accidents

    Science.gov (United States)

    Nilsson, Sarah J.

    Aviation insurance agents and fixed-base operation (FBO) owners use recent flight experience, as implied by the 90-day rule, to measure pilot proficiency in physical airplane skills, and to assess the likelihood of a pilot error accident. The generally accepted premise is that more experience in a recent timeframe predicts less of a propensity for an accident, all other factors excluded. Some of these aviation industry stakeholders measure pilot proficiency solely by using time flown within the past 90, 60, or even 30 days, not accounting for extensive research showing aeronautical decision-making and situational awareness training decrease the likelihood of a pilot error accident. In an effort to reduce the pilot error accident rate, the Federal Aviation Administration (FAA) has seen the need to shift pilot training emphasis from proficiency in physical airplane skills to aeronautical decision-making and situational awareness skills. However, current pilot training standards still focus more on the former than on the latter. The relationship between pilot error accidents and recent flight experience implied by the FAA's 90-day rule has not been rigorously assessed using empirical data. The intent of this research was to relate recent flight experience, in terms of time flown in the past 90 days, to pilot error accidents. A quantitative ex post facto approach, focusing on private pilots of single-engine general aviation (GA) fixed-wing aircraft, was used to analyze National Transportation Safety Board (NTSB) accident investigation archival data. The data were analyzed using t-tests and binary logistic regression. T-tests between the mean number of hours of recent flight experience of tricycle gear pilots involved in pilot error accidents (TPE) and non-pilot error accidents (TNPE), t(202) = -.200, p = .842, and conventional gear pilots involved in pilot error accidents (CPE) and non-pilot error accidents (CNPE), t(111) = -.271, p = .787, indicate there is no

  8. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    Science.gov (United States)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  9. Classification of Error Related Brain Activity in an Auditory Identification Task with Conditions of Varying Complexity

    Science.gov (United States)

    Kakkos, I.; Gkiatis, K.; Bromis, K.; Asvestas, P. A.; Karanasiou, I. S.; Ventouras, E. M.; Matsopoulos, G. K.

    2017-11-01

    The detection of an error is the cognitive evaluation of an action outcome that is considered undesired or mismatches an expected response. Brain activity during monitoring of correct and incorrect responses elicits Event Related Potentials (ERPs) revealing complex cerebral responses to deviant sensory stimuli. Development of accurate error detection systems is of great importance both concerning practical applications and in investigating the complex neural mechanisms of decision making. In this study, data are used from an audio identification experiment that was implemented with two levels of complexity in order to investigate neurophysiological error processing mechanisms in actors and observers. To examine and analyse the variations of the processing of erroneous sensory information for each level of complexity we employ Support Vector Machines (SVM) classifiers with various learning methods and kernels using characteristic ERP time-windowed features. For dimensionality reduction and to remove redundant features we implement a feature selection framework based on Sequential Forward Selection (SFS). The proposed method provided high accuracy in identifying correct and incorrect responses both for actors and for observers with mean accuracy of 93% and 91% respectively. Additionally, computational time was reduced and the effects of the nesting problem usually occurring in SFS of large feature sets were alleviated.

  10. Shared dosimetry error in epidemiological dose-response analyses

    International Nuclear Information System (INIS)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of 'possible' dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed

  11. A national physician survey of diagnostic error in paediatrics.

    Science.gov (United States)

    Perrem, Lucy M; Fanshawe, Thomas R; Sharif, Farhana; Plüddemann, Annette; O'Neill, Michael B

    2016-10-01

    This cross-sectional survey explored paediatric physician perspectives regarding diagnostic errors. All paediatric consultants and specialist registrars in Ireland were invited to participate in this anonymous online survey. The response rate for the study was 54 % (n = 127). Respondents had a median of 9-year clinical experience (interquartile range (IQR) 4-20 years). A diagnostic error was reported at least monthly by 19 (15.0 %) respondents. Consultants reported significantly less diagnostic errors compared to trainees (p value = 0.01). Cognitive error was the top-ranked contributing factor to diagnostic error, with incomplete history and examination considered to be the principal cognitive error. Seeking a second opinion and close follow-up of patients to ensure that the diagnosis is correct were the highest-ranked, clinician-based solutions to diagnostic error. Inadequate staffing levels and excessive workload were the most highly ranked system-related and situational factors. Increased access to and availability of consultants and experts was the most highly ranked system-based solution to diagnostic error. We found a low level of self-perceived diagnostic error in an experienced group of paediatricians, at variance with the literature and warranting further clarification. The results identify perceptions on the major cognitive, system-related and situational factors contributing to diagnostic error and also key preventative strategies. • Diagnostic errors are an important source of preventable patient harm and have an estimated incidence of 10-15 %. • They are multifactorial in origin and include cognitive, system-related and situational factors. What is New: • We identified a low rate of self-perceived diagnostic error in contrast to the existing literature. • Incomplete history and examination, inadequate staffing levels and excessive workload are cited as the principal contributing factors to diagnostic error in this study.

  12. IEEE Std 382-1980: IEEE standard for qualification of safety-related valve actuators

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. This standard may also be used to separately qualify actuator components. This standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of all safety-related functions of power-driven valve actuators

  13. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.

    Science.gov (United States)

    Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You

    2013-11-04

    A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

  14. Exploring Senior Residents' Intraoperative Error Management Strategies: A Potential Measure of Performance Improvement.

    Science.gov (United States)

    Law, Katherine E; Ray, Rebecca D; D'Angelo, Anne-Lise D; Cohen, Elaine R; DiMarco, Shannon M; Linsmeier, Elyse; Wiegmann, Douglas A; Pugh, Carla M

    The study aim was to determine whether residents' error management strategies changed across 2 simulated laparoscopic ventral hernia (LVH) repair procedures after receiving feedback on their initial performance. We hypothesize that error detection and recovery strategies would improve during the second procedure without hands-on practice. Retrospective review of participant procedural performances of simulated laparoscopic ventral herniorrhaphy. A total of 3 investigators reviewed procedure videos to identify surgical errors. Errors were deconstructed. Error management events were noted, including error identification and recovery. Residents performed the simulated LVH procedures during a course on advanced laparoscopy. Participants had 30 minutes to complete a LVH procedure. After verbal and simulator feedback, residents returned 24 hours later to perform a different, more difficult simulated LVH repair. Senior (N = 7; postgraduate year 4-5) residents in attendance at the course participated in this study. In the first LVH procedure, residents committed 121 errors (M = 17.14, standard deviation = 4.38). Although the number of errors increased to 146 (M = 20.86, standard deviation = 6.15) during the second procedure, residents progressed further in the second procedure. There was no significant difference in the number of errors committed for both procedures, but errors shifted to the late stage of the second procedure. Residents changed the error types that they attempted to recover (χ 2 5 =24.96, perrors, but decreased for strategy errors. Residents also recovered the most errors in the late stage of the second procedure (p error management strategies changed between procedures following verbal feedback on their initial performance and feedback from the simulator. Errors and recovery attempts shifted to later steps during the second procedure. This may reflect residents' error management success in the earlier stages, which allowed further progression in the

  15. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  16. Cultural differences in categorical memory errors persist with age.

    Science.gov (United States)

    Gutchess, Angela; Boduroglu, Aysecan

    2018-01-02

    This cross-sectional experiment examined the influence of aging on cross-cultural differences in memory errors. Previous research revealed that Americans committed more categorical memory errors than Turks; we tested whether the cognitive constraints associated with aging impacted the pattern of memory errors across cultures. Furthermore, older adults are vulnerable to memory errors for semantically-related information, and we assessed whether this tendency occurs across cultures. Younger and older adults from the US and Turkey studied word pairs, with some pairs sharing a categorical relationship and some unrelated. Participants then completed a cued recall test, generating the word that was paired with the first. These responses were scored for correct responses or different types of errors, including categorical and semantic. The tendency for Americans to commit more categorical memory errors emerged for both younger and older adults. In addition, older adults across cultures committed more memory errors, and these were for semantically-related information (including both categorical and other types of semantic errors). Heightened vulnerability to memory errors with age extends across cultural groups, and Americans' proneness to commit categorical memory errors occurs across ages. The findings indicate some robustness in the ways that age and culture influence memory errors.

  17. Standards and reliability in evaluation: when rules of thumb don't apply.

    Science.gov (United States)

    Norcini, J J

    1999-10-01

    The purpose of this paper is to identify situations in which two rules of thumb in evaluation do not apply. The first rule is that all standards should be absolute. When selection decisions are being made or when classroom tests are given, however, relative standards may be better. The second rule of thumb is that every test should have a reliability of .80 or better. Depending on the circumstances, though, the standard error of measurement, the consistency of pass/fail classifications, and the domain-referenced reliability coefficients may be better indicators of reproducibility.

  18. Performance Errors in Weight Training and Their Correction.

    Science.gov (United States)

    Downing, John H.; Lander, Jeffrey E.

    2002-01-01

    Addresses general performance errors in weight training, also discussing each category of error separately. The paper focuses on frequency and intensity, incorrect training velocities, full range of motion, and symmetrical training. It also examines specific errors related to the bench press, squat, military press, and bent- over and seated row…

  19. Data error effects on net radiation and evapotranspiration estimation

    International Nuclear Information System (INIS)

    Llasat, M.C.; Snyder, R.L.

    1998-01-01

    The objective of this paper is to evaluate the potential error in estimating the net radiation and reference evapotranspiration resulting from errors in the measurement or estimation of weather parameters. A methodology for estimating the net radiation using hourly weather variables measured at a typical agrometeorological station (e.g., solar radiation, temperature and relative humidity) is presented. Then the error propagation analysis is made for net radiation and for reference evapotranspiration. Data from the Raimat weather station, which is located in the Catalonia region of Spain, are used to illustrate the error relationships. The results show that temperature, relative humidity and cloud cover errors have little effect on the net radiation or reference evapotranspiration. A 5°C error in estimating surface temperature leads to errors as big as 30 W m −2 at high temperature. A 4% solar radiation (R s ) error can cause a net radiation error as big as 26 W m −2 when R s ≈ 1000 W m −2 . However, the error is less when cloud cover is calculated as a function of the solar radiation. The absolute error in reference evapotranspiration (ET o ) equals the product of the net radiation error and the radiation term weighting factor [W = Δ(Δ1+γ)] in the ET o equation. Therefore, the ET o error varies between 65 and 85% of the R n error as air temperature increases from about 20° to 40°C. (author)

  20. Evidentiary standards for forensic anthropology.

    Science.gov (United States)

    Christensen, Angi M; Crowder, Christian M

    2009-11-01

    As issues of professional standards and error rates continue to be addressed in the courts, forensic anthropologists should be proactive by developing and adhering to professional standards of best practice. There has been recent increased awareness and interest in critically assessing some of the techniques used by forensic anthropologists, but issues such as validation, error rates, and professional standards have seldom been addressed. Here we explore the legal impetus for this trend and identify areas where we can improve regarding these issues. We also discuss the recent formation of a Scientific Working Group for Forensic Anthropology (SWGANTH), which was created with the purposes of encouraging discourse among anthropologists and developing and disseminating consensus guidelines for the practice of forensic anthropology. We believe it is possible and advisable for anthropologists to seek and espouse research and methodological techniques that meet higher standards to ensure quality and consistency in our field.

  1. Segmentation error and macular thickness measurements obtained with spectral-domain optical coherence tomography devices in neovascular age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Moosang Kim

    2013-01-01

    Full Text Available Purpose: To evaluate frequency and severity of segmentation errors of two spectral-domain optical coherence tomography (SD-OCT devices and error effect on central macular thickness (CMT measurements. Materials and Methods: Twenty-seven eyes of 25 patients with neovascular age-related macular degeneration, examined using the Cirrus HD-OCT and Spectralis HRA + OCT, were retrospectively reviewed. Macular cube 512 × 128 and 5-line raster scans were performed with the Cirrus and 512 × 25 volume scans with the Spectralis. Frequency and severity of segmentation errors were compared between scans. Results: Segmentation error frequency was 47.4% (baseline, 40.7% (1 month, 40.7% (2 months, and 48.1% (6 months for the Cirrus, and 59.3%, 62.2%, 57.8%, and 63.7%, respectively, for the Spectralis, differing significantly between devices at all examinations (P < 0.05, except at baseline. Average error score was 1.21 ± 1.65 (baseline, 0.79 ± 1.18 (1 month, 0.74 ± 1.12 (2 months, and 0.96 ± 1.11 (6 months for the Cirrus, and 1.73 ± 1.50, 1.54 ± 1.35, 1.38 ± 1.40, and 1.49 ± 1.30, respectively, for the Spectralis, differing significantly at 1 month and 2 months (P < 0.02. Automated and manual CMT measurements by the Spectralis were larger than those by the Cirrus. Conclusions: The Cirrus HD-OCT had a lower frequency and severity of segmentation error than the Spectralis HRA + OCT. SD-OCT error should be considered when evaluating retinal thickness.

  2. Game Design Principles based on Human Error

    Directory of Open Access Journals (Sweden)

    Guilherme Zaffari

    2016-03-01

    Full Text Available This paper displays the result of the authors’ research regarding to the incorporation of Human Error, through design principles, to video game design. In a general way, designers must consider Human Error factors throughout video game interface development; however, when related to its core design, adaptations are in need, since challenge is an important factor for fun and under the perspective of Human Error, challenge can be considered as a flaw in the system. The research utilized Human Error classifications, data triangulation via predictive human error analysis, and the expanded flow theory to allow the design of a set of principles in order to match the design of playful challenges with the principles of Human Error. From the results, it was possible to conclude that the application of Human Error in game design has a positive effect on player experience, allowing it to interact only with errors associated with the intended aesthetics of the game.

  3. State-independent error-disturbance trade-off for measurement operators

    International Nuclear Information System (INIS)

    Zhou, S.S.; Wu, Shengjun; Chau, H.F.

    2016-01-01

    In general, classical measurement statistics of a quantum measurement is disturbed by performing an additional incompatible quantum measurement beforehand. Using this observation, we introduce a state-independent definition of disturbance by relating it to the distinguishability problem between two classical statistical distributions – one resulting from a single quantum measurement and the other from a succession of two quantum measurements. Interestingly, we find an error-disturbance trade-off relation for any measurements in two-dimensional Hilbert space and for measurements with mutually unbiased bases in any finite-dimensional Hilbert space. This relation shows that error should be reduced to zero in order to minimize the sum of error and disturbance. We conjecture that a similar trade-off relation with a slightly relaxed definition of error can be generalized to any measurements in an arbitrary finite-dimensional Hilbert space.

  4. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    Science.gov (United States)

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer

  5. Sources of variability and systematic error in mouse timing behavior.

    Science.gov (United States)

    Gallistel, C R; King, Adam; McDonald, Robert

    2004-01-01

    In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.

  6. Error mapping of high-speed AFM systems

    Science.gov (United States)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  7. Death Certification Errors and the Effect on Mortality Statistics.

    Science.gov (United States)

    McGivern, Lauri; Shulman, Leanne; Carney, Jan K; Shapiro, Steven; Bundock, Elizabeth

    Errors in cause and manner of death on death certificates are common and affect families, mortality statistics, and public health research. The primary objective of this study was to characterize errors in the cause and manner of death on death certificates completed by non-Medical Examiners. A secondary objective was to determine the effects of errors on national mortality statistics. We retrospectively compared 601 death certificates completed between July 1, 2015, and January 31, 2016, from the Vermont Electronic Death Registration System with clinical summaries from medical records. Medical Examiners, blinded to original certificates, reviewed summaries, generated mock certificates, and compared mock certificates with original certificates. They then graded errors using a scale from 1 to 4 (higher numbers indicated increased impact on interpretation of the cause) to determine the prevalence of minor and major errors. They also compared International Classification of Diseases, 10th Revision (ICD-10) codes on original certificates with those on mock certificates. Of 601 original death certificates, 319 (53%) had errors; 305 (51%) had major errors; and 59 (10%) had minor errors. We found no significant differences by certifier type (physician vs nonphysician). We did find significant differences in major errors in place of death ( P statistics. Surveillance and certifier education must expand beyond local and state efforts. Simplifying and standardizing underlying literal text for cause of death may improve accuracy, decrease coding errors, and improve national mortality statistics.

  8. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    Science.gov (United States)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  9. Republished error management: Descriptions of verbal communication errors between staff. An analysis of 84 root cause analysis-reports from Danish hospitals

    DEFF Research Database (Denmark)

    Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris

    2011-01-01

    Introduction Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety...... and characteristics of verbal communication errors such as handover errors and error during teamwork. Results Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13...... (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between...

  10. EPIC: an Error Propagation/Inquiry Code

    International Nuclear Information System (INIS)

    Baker, A.L.

    1985-01-01

    The use of a computer program EPIC (Error Propagation/Inquiry Code) will be discussed. EPIC calculates the variance of a materials balance closed about a materials balance area (MBA) in a processing plant operated under steady-state conditions. It was designed for use in evaluating the significance of inventory differences in the Department of Energy (DOE) nuclear plants. EPIC rapidly estimates the variance of a materials balance using average plant operating data. The intent is to learn as much as possible about problem areas in a process with simple straightforward calculations assuming a process is running in a steady-state mode. EPIC is designed to be used by plant personnel or others with little computer background. However, the user should be knowledgeable about measurement errors in the system being evaluated and have a limited knowledge of how error terms are combined in error propagation analyses. EPIC contains six variance equations; the appropriate equation is used to calculate the variance at each measurement point. After all of these variances are calculated, the total variance for the MBA is calculated using a simple algebraic sum of variances. The EPIC code runs on any computer that accepts a standard form of the BASIC language. 2 refs., 1 fig., 6 tabs

  11. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  12. Improvement of precision method of spectrophotometry with inner standardization and its use in plutonium solutions analysis

    International Nuclear Information System (INIS)

    Stepanov, A.V.; Stepanov, D.A.; Nikitina, S.A.; Gogoleva, T.D.; Grigor'eva, M.G.; Bulyanitsa, L.S.; Panteleev, Yu.A.; Pevtsova, E.V.; Domkin, V.D.; Pen'kin, M.V.

    2006-01-01

    Precision method of spectrophotometry with inner standardization is used for analysis of pure Pu solutions. Improvement of the spectrophotometer and spectrophotometric method of analysis is done to decrease accidental constituent of relative error of the method. Influence of U, Np impurities and corrosion products on systematic constituent of error of the method, and effect of fluoride-ion on completeness of Pu oxidation in sample preparation are studied [ru

  13. Analysis and Compensation for Gear Accuracy with Setting Error in Form Grinding

    Directory of Open Access Journals (Sweden)

    Chenggang Fang

    2015-01-01

    Full Text Available In the process of form grinding, gear setting error was the main factor that influenced the form grinding accuracy; we proposed an effective method to improve form grinding accuracy that corrected the error by controlling the machine operations. Based on establishing the geometry model of form grinding and representing the gear setting errors as homogeneous coordinate, tooth mathematic model was obtained and simplified under the gear setting error. Then, according to the gear standard of ISO1328-1: 1997 and the ANSI/AGMA 2015-1-A01: 2002, the relationship was investigated by changing the gear setting errors with respect to tooth profile deviation, helix deviation, and cumulative pitch deviation, respectively, under the condition of gear eccentricity error, gear inclination error, and gear resultant error. An error compensation method was proposed based on solving sensitivity coefficient matrix of setting error in a five-axis CNC form grinding machine; simulation and experimental results demonstrated that the method can effectively correct the gear setting error, as well as further improving the forming grinding accuracy.

  14. Errors in radiographic recognition in the emergency room

    International Nuclear Information System (INIS)

    Britton, C.A.; Cooperstein, L.A.

    1986-01-01

    For 6 months we monitored the frequency and type of errors in radiographic recognition made by radiology residents on call in our emergency room. A relatively low error rate was observed, probably because the authors evaluated cognitive errors only, rather than include those of interpretation. The most common missed finding was a small fracture, particularly on the hands or feet. First-year residents were most likely to make an error, but, interestingly, our survey revealed a small subset of upper-level residents who made a disproportionate number of errors

  15. Estimators of the Relations of Equivalence, Tolerance and Preference Based on Pairwise Comparisons with Random Errors

    Directory of Open Access Journals (Sweden)

    Leszek Klukowski

    2012-01-01

    Full Text Available This paper presents a review of results of the author in the area of estimation of the relations of equivalence, tolerance and preference within a finite set based on multiple, independent (in a stochastic way pairwise comparisons with random errors, in binary and multivalent forms. These estimators require weaker assumptions than those used in the literature on the subject. Estimates of the relations are obtained based on solutions to problems from discrete optimization. They allow application of both types of comparisons - binary and multivalent (this fact relates to the tolerance and preference relations. The estimates can be verified in a statistical way; in particular, it is possible to verify the type of the relation. The estimates have been applied by the author to problems regarding forecasting, financial engineering and bio-cybernetics. (original abstract

  16. Vaginismus and dyspareunia : Relationship with general and sex-related moral standards

    NARCIS (Netherlands)

    Borg, Charmaine; de Jong, Peter J.; Schultz, Willibrord Weijmar

    Introduction. Relatively strong adherence to conservative values and/or relatively strict sex-related moral standards logically restricts the sexual repertoire and will lower the threshold for experiencing negative emotions in a sexual context. In turn, this may generate withdrawal and avoidance

  17. Comparison of ETF´s performance related to the tracking error

    Directory of Open Access Journals (Sweden)

    Michaela Dorocáková

    2017-12-01

    Full Text Available With the development of financial markets, there is also immediate expansion of fund industry, which is a representative issue of collective investment. The purpose of index funds is to replicate returns and risk of underling index to the largest possible extent, with tracking error being one of the most monitored performance indicator of these passively managed funds. The aim of this paper is to describe several perspectives concerning indexing, index funds and exchange-traded funds, to explain the issue of tracking error with its examination and subsequent comparison of such funds provided by leading investment management companies with regard to different methods used for its evaluation. Our research shows that the decisive factor for occurrence of copy deviation is fund size and fund´s stock consolidation. In addition, performance differences between exchange-traded fund and its benchmark tend to show the signs of seasonality in the sense of increasing in the last months of a year.

  18. Students’ Written Production Error Analysis in the EFL Classroom Teaching: A Study of Adult English Learners Errors

    Directory of Open Access Journals (Sweden)

    Ranauli Sihombing

    2016-12-01

    Full Text Available Errors analysis has become one of the most interesting issues in the study of Second Language Acquisition. It can not be denied that some teachers do not know a lot about error analysis and related theories of how L1, L2 or foreign language acquired. In addition, the students often feel upset since they find a gap between themselves and the teachers for the errors the students make and the teachers’ understanding about the error correction. The present research aims to investigate what errors adult English learners make in written production of English. The significances of the study is to know what errors students make in writing that the teachers can find solution to the errors the students make for a better English language teaching and learning especially in teaching English for adults. The study employed qualitative method. The research was undertaken at an airline education center in Bandung. The result showed that syntax errors are more frequently found than morphology errors, especially in terms of verb phrase errors. It is recommended that it is important for teacher to know the theory of second language acquisition in order to know how the students learn and produce theirlanguage. In addition, it will be advantages for teachers if they know what errors students frequently make in their learning, so that the teachers can give solution to the students for a better English language learning achievement.   DOI: https://doi.org/10.24071/llt.2015.180205

  19. A New Method to Detect and Correct the Critical Errors and Determine the Software-Reliability in Critical Software-System

    International Nuclear Information System (INIS)

    Krini, Ossmane; Börcsök, Josef

    2012-01-01

    In order to use electronic systems comprising of software and hardware components in safety related and high safety related applications, it is necessary to meet the Marginal risk numbers required by standards and legislative provisions. Existing processes and mathematical models are used to verify the risk numbers. On the hardware side, various accepted mathematical models, processes, and methods exist to provide the required proof. To this day, however, there are no closed models or mathematical procedures known that allow for a dependable prediction of software reliability. This work presents a method that makes a prognosis on the residual critical error number in software. Conventional models lack this ability and right now, there are no methods that forecast critical errors. The new method will show that an estimate of the residual error number of critical errors in software systems is possible by using a combination of prediction models, a ratio of critical errors, and the total error number. Subsequently, the critical expected value-function at any point in time can be derived from the new solution method, provided the detection rate has been calculated using an appropriate estimation method. Also, the presented method makes it possible to make an estimate on the critical failure rate. The approach is modelled on a real process and therefore describes two essential processes - detection and correction process.

  20. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  1. Medication administration errors in Eastern Saudi Arabia

    International Nuclear Information System (INIS)

    Mir Sadat-Ali

    2010-01-01

    To assess the prevalence and characteristics of medication errors (ME) in patients admitted to King Fahd University Hospital, Alkhobar, Kingdom of Saudi Arabia. Medication errors are documented by the nurses and physicians standard reporting forms (Hospital Based Incident Report). The study was carried out in King Fahd University Hospital, Alkhobar, Kingdom of Saudi Arabia and all the incident reports were collected during the period from January 2008 to December 2009. The incident reports were analyzed for age, gender, nationality, nursing unit, and time where ME was reported. The data were analyzed and the statistical significance differences between groups were determined by Student's t-test, and p-values of <0.05 using confidence interval of 95% were considered significant. There were 38 ME reported for the study period. The youngest patient was 5 days and the oldest 70 years. There were 31 Saudis, and 7 non-Saudi patients involved. The most common error was missed medication, which was seen in 15 (39.5%) patients. Over 15 (39.5%) of errors occurred in 2 units (pediatric medicine, and obstetrics and gynecology). Nineteen (50%) of the errors occurred during the 3-11 pm shift. Our study shows that the prevalence of ME in our institution is low, in comparison with the world literature. This could be due to under reporting of the errors, and we believe that ME reporting should be made less punitive so that ME can be studied and preventive measures implemented (Author).

  2. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    Science.gov (United States)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  3. Operator quantum error-correcting subsystems for self-correcting quantum memories

    International Nuclear Information System (INIS)

    Bacon, Dave

    2006-01-01

    The most general method for encoding quantum information is not to encode the information into a subspace of a Hilbert space, but to encode information into a subsystem of a Hilbert space. Recently this notion has led to a more general notion of quantum error correction known as operator quantum error correction. In standard quantum error-correcting codes, one requires the ability to apply a procedure which exactly reverses on the error-correcting subspace any correctable error. In contrast, for operator error-correcting subsystems, the correction procedure need not undo the error which has occurred, but instead one must perform corrections only modulo the subsystem structure. This does not lead to codes which differ from subspace codes, but does lead to recovery routines which explicitly make use of the subsystem structure. Here we present two examples of such operator error-correcting subsystems. These examples are motivated by simple spatially local Hamiltonians on square and cubic lattices. In three dimensions we provide evidence, in the form a simple mean field theory, that our Hamiltonian gives rise to a system which is self-correcting. Such a system will be a natural high-temperature quantum memory, robust to noise without external intervening quantum error-correction procedures

  4. Does semantic impairment explain surface dyslexia? VLSM evidence for a double dissociation between regularization errors in reading and semantic errors in picture naming

    Directory of Open Access Journals (Sweden)

    Sara Pillay

    2014-04-01

    Full Text Available The correlation between semantic deficits and exception word regularization errors ("surface dyslexia" in semantic dementia has been taken as strong evidence for involvement of semantic codes in exception word pronunciation. Rare cases with semantic deficits but no exception word reading deficit have been explained as due to individual differences in reading strategy, but this account is hotly debated. Semantic dementia is a diffuse process that always includes semantic impairment, making lesion localization difficult and independent assessment of semantic deficits and reading errors impossible. We addressed this problem using voxel-based lesion symptom mapping in 38 patients with left hemisphere stroke. Patients were all right-handed, native English speakers and at least 6 months from stroke onset. Patients performed an oral reading task that included 80 exception words (words with inconsistent orthographic-phonologic correspondence, e.g., pint, plaid, glove. Regularization errors were defined as plausible but incorrect pronunciations based on application of spelling-sound correspondence rules (e.g., 'plaid' pronounced as "played". Two additional tests examined explicit semantic knowledge and retrieval. The first measured semantic substitution errors during naming of 80 standard line drawings of objects. This error type is generally presumed to arise at the level of concept selection. The second test (semantic matching required patients to match a printed sample word (e.g., bus with one of two alternative choice words (e.g., car, taxi on the basis of greater similarity of meaning. Lesions were labeled on high-resolution T1 MRI volumes using a semi-automated segmentation method, followed by diffeomorphic registration to a template. VLSM used an ANCOVA approach to remove variance due to age, education, and total lesion volume. Regularization errors during reading were correlated with damage in the posterior half of the middle temporal gyrus and

  5. Errors due to random noise in velocity measurement using incoherent-scatter radar

    Directory of Open Access Journals (Sweden)

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  6. North error estimation based on solar elevation errors in the third step of sky-polarimetric Viking navigation.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Egri, Ádám; Horváth, Gábor

    2016-07-01

    The theory of sky-polarimetric Viking navigation has been widely accepted for decades without any information about the accuracy of this method. Previously, we have measured the accuracy of the first and second steps of this navigation method in psychophysical laboratory and planetarium experiments. Now, we have tested the accuracy of the third step in a planetarium experiment, assuming that the first and second steps are errorless. Using the fists of their outstretched arms, 10 test persons had to estimate the elevation angles (measured in numbers of fists and fingers) of black dots (representing the position of the occluded Sun) projected onto the planetarium dome. The test persons performed 2400 elevation estimations, 48% of which were more accurate than ±1°. We selected three test persons with the (i) largest and (ii) smallest elevation errors and (iii) highest standard deviation of the elevation error. From the errors of these three persons, we calculated their error function, from which the North errors (the angles with which they deviated from the geographical North) were determined for summer solstice and spring equinox, two specific dates of the Viking sailing period. The range of possible North errors Δ ω N was the lowest and highest at low and high solar elevations, respectively. At high elevations, the maximal Δ ω N was 35.6° and 73.7° at summer solstice and 23.8° and 43.9° at spring equinox for the best and worst test person (navigator), respectively. Thus, the best navigator was twice as good as the worst one. At solstice and equinox, high elevations occur the most frequently during the day, thus high North errors could occur more frequently than expected before. According to our findings, the ideal periods for sky-polarimetric Viking navigation are immediately after sunrise and before sunset, because the North errors are the lowest at low solar elevations.

  7. A crowdsourcing workflow for extracting chemical-induced disease relations from free text.

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I; Good, Benjamin M; Su, Andrew I

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available athttps://github.com/SuLab/crowd_cid_relexDatabase URL:https://github.com/SuLab/crowd_cid_relex. © The Author(s) 2016. Published by Oxford University Press.

  8. A crowdsourcing workflow for extracting chemical-induced disease relations from free text

    Science.gov (United States)

    Li, Tong Shu; Bravo, Àlex; Furlong, Laura I.; Good, Benjamin M.; Su, Andrew I.

    2016-01-01

    Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available at https://github.com/SuLab/crowd_cid_relex Database URL: https://github.com/SuLab/crowd_cid_relex PMID:27087308

  9. 77 FR 50757 - Charging Standard Administrative Fees for Nonprogram-Related Information

    Science.gov (United States)

    2012-08-22

    ... are announcing the standardized administrative fees we will charge to recover our full cost of... will ensure fees are consistent and that we collect the full cost of supplying our information when a... standard fees that are calculated to reflect the full cost of providing information for nonprogram-related...

  10. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... the small value is often the sum of large positive and negative errors. Almost no significant correlation is found between forecast errors in the 3 years. Correspondingly, no significant correlation coefficient is found between forecasts errors in the 3 main energy sectors. Therefore, a relatively small...

  11. Methods for determining and processing 3D errors and uncertainties for AFM data analysis

    Science.gov (United States)

    Klapetek, P.; Nečas, D.; Campbellová, A.; Yacoot, A.; Koenders, L.

    2011-02-01

    This paper describes the processing of three-dimensional (3D) scanning probe microscopy (SPM) data. It is shown that 3D volumetric calibration error and uncertainty data can be acquired for both metrological atomic force microscope systems and commercial SPMs. These data can be used within nearly all the standard SPM data processing algorithms to determine local values of uncertainty of the scanning system. If the error function of the scanning system is determined for the whole measurement volume of an SPM, it can be converted to yield local dimensional uncertainty values that can in turn be used for evaluation of uncertainties related to the acquired data and for further data processing applications (e.g. area, ACF, roughness) within direct or statistical measurements. These have been implemented in the software package Gwyddion.

  12. Methods for determining and processing 3D errors and uncertainties for AFM data analysis

    International Nuclear Information System (INIS)

    Klapetek, P; Campbellová, A; Nečas, D; Yacoot, A; Koenders, L

    2011-01-01

    This paper describes the processing of three-dimensional (3D) scanning probe microscopy (SPM) data. It is shown that 3D volumetric calibration error and uncertainty data can be acquired for both metrological atomic force microscope systems and commercial SPMs. These data can be used within nearly all the standard SPM data processing algorithms to determine local values of uncertainty of the scanning system. If the error function of the scanning system is determined for the whole measurement volume of an SPM, it can be converted to yield local dimensional uncertainty values that can in turn be used for evaluation of uncertainties related to the acquired data and for further data processing applications (e.g. area, ACF, roughness) within direct or statistical measurements. These have been implemented in the software package Gwyddion

  13. Automation of Commanding at NASA: Reducing Human Error in Space Flight

    Science.gov (United States)

    Dorn, Sarah J.

    2010-01-01

    Automation has been implemented in many different industries to improve efficiency and reduce human error. Reducing or eliminating the human interaction in tasks has been proven to increase productivity in manufacturing and lessen the risk of mistakes by humans in the airline industry. Human space flight requires the flight controllers to monitor multiple systems and react quickly when failures occur so NASA is interested in implementing techniques that can assist in these tasks. Using automation to control some of these responsibilities could reduce the number of errors the flight controllers encounter due to standard human error characteristics. This paper will investigate the possibility of reducing human error in the critical area of manned space flight at NASA.

  14. Analysis of error patterns in clinical radiotherapy

    International Nuclear Information System (INIS)

    Macklis, Roger; Meier, Tim; Barrett, Patricia; Weinhous, Martin

    1996-01-01

    Purpose: Until very recently, prescription errors and adverse treatment events have rarely been studied or reported systematically in oncology. We wished to understand the spectrum and severity of radiotherapy errors that take place on a day-to-day basis in a high-volume academic practice and to understand the resource needs and quality assurance challenges placed on a department by rapid upswings in contract-based clinical volumes requiring additional operating hours, procedures, and personnel. The goal was to define clinical benchmarks for operating safety and to detect error-prone treatment processes that might function as 'early warning' signs. Methods: A multi-tiered prospective and retrospective system for clinical error detection and classification was developed, with formal analysis of the antecedents and consequences of all deviations from prescribed treatment delivery, no matter how trivial. A department-wide record-and-verify system was operational during this period and was used as one method of treatment verification and error detection. Brachytherapy discrepancies were analyzed separately. Results: During the analysis year, over 2000 patients were treated with over 93,000 individual fields. A total of 59 errors affecting a total of 170 individual treated fields were reported or detected during this period. After review, all of these errors were classified as Level 1 (minor discrepancy with essentially no potential for negative clinical implications). This total treatment delivery error rate (170/93, 332 or 0.18%) is significantly better than corresponding error rates reported for other hospital and oncology treatment services, perhaps reflecting the relatively sophisticated error avoidance and detection procedures used in modern clinical radiation oncology. Error rates were independent of linac model and manufacturer, time of day (normal operating hours versus late evening or early morning) or clinical machine volumes. There was some relationship to

  15. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  16. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  17. The Rhetoric of Arrogance: The Public Relations Response of the Standard Oil Trust.

    Science.gov (United States)

    Boyd, Josh

    2001-01-01

    Illustrates one of the earliest American public relations debacles (ending in the dissolution of the Standard Oil Trust in 1911). Presents background on Standard Oil and offers an overview Ida Tarbell's influential "History of the Standard Oil company." Argues that Standard failed to respond to these accounts adequately, reinforcing…

  18. The standardization of data relational mode in the materials database for nuclear power engineering

    International Nuclear Information System (INIS)

    Wang Xinxuan

    1996-01-01

    A relational database needs standard data relation ships. The data relation ships include hierarchical structures and repeat set records. Code database is created and the relational database is created between spare parts and materials and properties of the materials. The data relation ships which are not standard are eliminated and all the relation modes are made to meet the demands of the 3NF (Third Norm Form)

  19. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2018-07-01

    Associations between fine particulate matter (PM2.5) exposure concentrations and a wide variety of undesirable outcomes, from autism and auto theft to elderly mortality, suicide, and violent crime, have been widely reported. Influential articles have argued that reducing National Ambient Air Quality Standards for PM2.5 is desirable to reduce these outcomes. Yet, other studies have found that reducing black smoke and other particulate matter by as much as 70% and dozens of micrograms per cubic meter has not detectably affected all-cause mortality rates even after decades, despite strong, statistically significant positive exposure concentration-response (C-R) associations between them. This paper examines whether this disconnect between association and causation might be explained in part by ignored estimation errors in estimated exposure concentrations. We use EPA air quality monitor data from the Los Angeles area of California to examine the shapes of estimated C-R functions for PM2.5 when the true C-R functions are assumed to be step functions with well-defined response thresholds. The estimated C-R functions mistakenly show risk as smoothly increasing with concentrations even well below the response thresholds, thus incorrectly predicting substantial risk reductions from reductions in concentrations that do not affect health risks. We conclude that ignored estimation errors obscure the shapes of true C-R functions, including possible thresholds, possibly leading to unrealistic predictions of the changes in risk caused by changing exposures. Instead of estimating improvements in public health per unit reduction (e.g., per 10 µg/m 3 decrease) in average PM2.5 concentrations, it may be essential to consider how interventions change the distributions of exposure concentrations. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Error Cost Escalation Through the Project Life Cycle

    Science.gov (United States)

    Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory

    2004-01-01

    It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units

  1. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  2. On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2017-11-01

    Full Text Available Observation with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and duration of precipitation events. In this study, the errors resulting from temporal and spatial sampling of precipitation events were quantified and examined using the latest version (V4 of the Global Precipitation Measurement (GPM mission integrated multi-satellite retrievals for GPM (IMERG, which is available since spring of 2014. Relative mean square error was calculated at 0.1° × 0.1° every 0.5 h between the degraded (temporally and spatially and original IMERG products. The temporal and spatial degradation was performed by producing three-hour (T3, six-hour (T6, 0.5° × 0.5° (S5, and 1.0° × 1.0° (S10 maps. The results show generally larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20°S–20°N. Similarly, the relative error of T3 exceeds S5 poleward of 20°S–20°N, but does not exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios are generally less sensitive to seasonal changes. The results also show that the spatial and temporal relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal relative errors are observed over ocean than over land. Quantification of such spatiotemporal effects provides additional insights into evaluation studies, especially when different products are cross-compared at a range of spatiotemporal scales.

  3. Error forecasting schemes of error correction at receiver

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-08-01

    To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)

  4. Heat flow of standard depth

    International Nuclear Information System (INIS)

    Cull, J.P.

    1981-01-01

    Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)

  5. Dissociable genetic contributions to error processing: a multimodal neuroimaging study.

    Directory of Open Access Journals (Sweden)

    Yigal Agam

    Full Text Available Neuroimaging studies reliably identify two markers of error commission: the error-related negativity (ERN, an event-related potential, and functional MRI activation of the dorsal anterior cingulate cortex (dACC. While theorized to reflect the same neural process, recent evidence suggests that the ERN arises from the posterior cingulate cortex not the dACC. Here, we tested the hypothesis that these two error markers also have different genetic mediation.We measured both error markers in a sample of 92 comprised of healthy individuals and those with diagnoses of schizophrenia, obsessive-compulsive disorder or autism spectrum disorder. Participants performed the same task during functional MRI and simultaneously acquired magnetoencephalography and electroencephalography. We examined the mediation of the error markers by two single nucleotide polymorphisms: dopamine D4 receptor (DRD4 C-521T (rs1800955, which has been associated with the ERN and methylenetetrahydrofolate reductase (MTHFR C677T (rs1801133, which has been associated with error-related dACC activation. We then compared the effects of each polymorphism on the two error markers modeled as a bivariate response.We replicated our previous report of a posterior cingulate source of the ERN in healthy participants in the schizophrenia and obsessive-compulsive disorder groups. The effect of genotype on error markers did not differ significantly by diagnostic group. DRD4 C-521T allele load had a significant linear effect on ERN amplitude, but not on dACC activation, and this difference was significant. MTHFR C677T allele load had a significant linear effect on dACC activation but not ERN amplitude, but the difference in effects on the two error markers was not significant.DRD4 C-521T, but not MTHFR C677T, had a significant differential effect on two canonical error markers. Together with the anatomical dissociation between the ERN and error-related dACC activation, these findings suggest that

  6. Traceability and standardization of large dose measurement

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1989-01-01

    The reliability of dose control for radiation sterilization and food irradiation depends on the relative errors in measurements made by different dosimeters and the level of process control techniques as well as traceability. International efforts have been made for standardization of dose measurement procedures and process control techniques. A system for traceability of large dose measurement has already been established in the U.S. and Britain, and it has become urgent in Japan to establish a traceability system. For process control for radiation sterilization of medical tools, dose measurement is replacing the use of a biological indicator to play a more important role in relation to sterilization assurance. AAMI is making efforts to establish implementation standards for process control for industrial sterilization with electron beam. In Japan, the Radiation Irradiation Promotion Association has developed a manual 'Measurement of Dose of Electron Beam for Irradiation' to be used by users of electron beam for irradiation. Further efforts are required to establish a proper traceability system and standardization of dose measurement. (N.K.)

  7. Characteristics of patients making serious inhaler errors with a dry powder inhaler and association with asthma-related events in a primary care setting

    Science.gov (United States)

    Westerik, Janine A. M.; Carter, Victoria; Chrystyn, Henry; Burden, Anne; Thompson, Samantha L.; Ryan, Dermot; Gruffydd-Jones, Kevin; Haughney, John; Roche, Nicolas; Lavorini, Federico; Papi, Alberto; Infantino, Antonio; Roman-Rodriguez, Miguel; Bosnic-Anticevich, Sinthia; Lisspers, Karin; Ställberg, Björn; Henrichsen, Svein Høegh; van der Molen, Thys; Hutton, Catherine; Price, David B.

    2016-01-01

    Abstract Objective: Correct inhaler technique is central to effective delivery of asthma therapy. The study aim was to identify factors associated with serious inhaler technique errors and their prevalence among primary care patients with asthma using the Diskus dry powder inhaler (DPI). Methods: This was a historical, multinational, cross-sectional study (2011–2013) using the iHARP database, an international initiative that includes patient- and healthcare provider-reported questionnaires from eight countries. Patients with asthma were observed for serious inhaler errors by trained healthcare providers as predefined by the iHARP steering committee. Multivariable logistic regression, stepwise reduced, was used to identify clinical characteristics and asthma-related outcomes associated with ≥1 serious errors. Results: Of 3681 patients with asthma, 623 (17%) were using a Diskus (mean [SD] age, 51 [14]; 61% women). A total of 341 (55%) patients made ≥1 serious errors. The most common errors were the failure to exhale before inhalation, insufficient breath-hold at the end of inhalation, and inhalation that was not forceful from the start. Factors significantly associated with ≥1 serious errors included asthma-related hospitalization the previous year (odds ratio [OR] 2.07; 95% confidence interval [CI], 1.26–3.40); obesity (OR 1.75; 1.17–2.63); poor asthma control the previous 4 weeks (OR 1.57; 1.04–2.36); female sex (OR 1.51; 1.08–2.10); and no inhaler technique review during the previous year (OR 1.45; 1.04–2.02). Conclusions: Patients with evidence of poor asthma control should be targeted for a review of their inhaler technique even when using a device thought to have a low error rate. PMID:26810934

  8. Leniency programs and socially beneficial cooperation: Effects of type I errors

    Directory of Open Access Journals (Sweden)

    Natalia Pavlova

    2016-12-01

    Full Text Available This study operationalizes the concept of hostility tradition in antitrust as mentioned by Oliver Williamson and Ronald Coase through erroneous law enforcement effects. The antitrust agency may commit type I, not just type II, errors when evaluating an agreement in terms of cartels. Moreover, firms can compete in a standard way, collude or engage in cooperative agreements that improve efficiency. The antitrust agency may misinterpret such cooperative agreements, committing a type I error (over-enforcement. The model set-up is drawn from Motta and Polo (2003 and is extended as described above using the findings of Ghebrihiwet and Motchenkova (2010. Three effects play a role in this environment. Type I errors may induce firms that would engage in socially efficient cooperation absent errors to opt for collusion (the deserved punishment effect. For other parameter configurations, type I errors may interrupt ongoing cooperation when investigated. In this case, the firms falsely report collusion and apply for leniency, fearing being erroneously fined (the disrupted cooperation effect. Finally, over-enforcement may prevent beneficial cooperation from starting given the threat of being mistakenly fined (the prevented cooperation effect. The results help us understand the negative impact that a hostility tradition in antitrust — which is more likely for inexperienced regimes and regimes with low standards of evidence — and the resulting type I enforcement errors can have on social welfare when applied to the regulation of horizontal agreements. Additional interpretations are discussed in light of leniency programs for corruption and compliance policies for antitrust violations.

  9. Republished error management: Descriptions of verbal communication errors between staff. An analysis of 84 root cause analysis-reports from Danish hospitals

    DEFF Research Database (Denmark)

    Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris

    2011-01-01

    Introduction Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety...... (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between...... incidents. The RCARs rich descriptions of the incidents revealed the organisational factors and needs related to these errors....

  10. Modeling error distributions of growth curve models through Bayesian methods.

    Science.gov (United States)

    Zhang, Zhiyong

    2016-06-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.

  11. H.264/AVC error resilience tools suitable for 3G mobile video services

    Institute of Scientific and Technical Information of China (English)

    LIU Lin; YE Xiu-zi; ZHANG San-yuan; ZHANG Yin

    2005-01-01

    The emergence of third generation mobile system (3G) makes video transmission in wireless environment possible,and the latest 3GPP/3GPP2 standards require 3G terminals support H.264/AVC. Due to high packet loss rate in wireless environment, error resilience for 3G terminals is necessary. Moreover, because of the hardware restrictions, 3G mobile terminals support only part of H.264/AVC error resilience tool. This paper analyzes various error resilience tools and their functions, and presents 2 error resilience strategies for 3G mobile streaming video services and mobile conversational services. Performances of the proposed error resilience strategies were tested using off-line common test conditions. Experiments showed that the proposed error resilience strategies can yield reasonably satisfactory results.

  12. Error analysis of dimensionless scaling experiments with multiple points using linear regression

    International Nuclear Information System (INIS)

    Guercan, Oe.D.; Vermare, L.; Hennequin, P.; Bourdelle, C.

    2010-01-01

    A general method of error estimation in the case of multiple point dimensionless scaling experiments, using linear regression and standard error propagation, is proposed. The method reduces to the previous result of Cordey (2009 Nucl. Fusion 49 052001) in the case of a two-point scan. On the other hand, if the points follow a linear trend, it explains how the estimated error decreases as more points are added to the scan. Based on the analytical expression that is derived, it is argued that for a low number of points, adding points to the ends of the scanned range, rather than the middle, results in a smaller error estimate. (letter)

  13. Errors and mistakes in breast ultrasound diagnostics

    Directory of Open Access Journals (Sweden)

    Wiesław Jakubowski

    2012-09-01

    Full Text Available Sonomammography is often the first additional examination performed in the diagnostics of breast diseases. The development of ultrasound imaging techniques, particularly the introduction of high frequency transducers, matrix transducers, harmonic imaging and finally, elastography, influenced the improvement of breast disease diagnostics. Neverthe‑ less, as in each imaging method, there are errors and mistakes resulting from the techni‑ cal limitations of the method, breast anatomy (fibrous remodeling, insufficient sensitivity and, in particular, specificity. Errors in breast ultrasound diagnostics can be divided into impossible to be avoided and potentially possible to be reduced. In this article the most frequently made errors in ultrasound have been presented, including the ones caused by the presence of artifacts resulting from volumetric averaging in the near and far field, artifacts in cysts or in dilated lactiferous ducts (reverberations, comet tail artifacts, lateral beam artifacts, improper setting of general enhancement or time gain curve or range. Errors dependent on the examiner, resulting in the wrong BIRADS‑usg classification, are divided into negative and positive errors. The sources of these errors have been listed. The methods of minimization of the number of errors made have been discussed, includ‑ ing the ones related to the appropriate examination technique, taking into account data from case history and the use of the greatest possible number of additional options such as: harmonic imaging, color and power Doppler and elastography. In the article examples of errors resulting from the technical conditions of the method have been presented, and those dependent on the examiner which are related to the great diversity and variation of ultrasound images of pathological breast lesions.

  14. The estimation of differential counting measurements of possitive quantities with relatively large statistical errors

    International Nuclear Information System (INIS)

    Vincent, C.H.

    1982-01-01

    Bayes' principle is applied to the differential counting measurement of a positive quantity in which the statistical errors are not necessarily small in relation to the true value of the quantity. The methods of estimation derived are found to give consistent results and to avoid the anomalous negative estimates sometimes obtained by conventional methods. One of the methods given provides a simple means of deriving the required estimates from conventionally presented results and appears to have wide potential applications. Both methods provide the actual posterior probability distribution of the quantity to be measured. A particularly important potential application is the correction of counts on low radioacitvity samples for background. (orig.)

  15. An Estimation of Human Error Probability of Filtered Containment Venting System Using Dynamic HRA Method

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.

  16. Comparison of computer workstation with light box for detecting setup errors from portal images

    International Nuclear Information System (INIS)

    Boxwala, Aziz A.; Chaney, Edward L.; Fritsch, Daniel S.; Raghavan, Suraj; Coffey, Christopher S.; Major, Stacey A.; Muller, Keith E.

    1999-01-01

    Purpose: Observer studies were conducted to test the hypothesis that radiation oncologists using a computer workstation for portal image analysis can detect setup errors at least as accurately as when following standard clinical practice of inspecting portal films on a light box. Methods and Materials: In a controlled observer study, nine radiation oncologists used a computer workstation, called PortFolio, to detect setup errors in 40 realistic digitally reconstructed portal radiograph (DRPR) images. PortFolio is a prototype workstation for radiation oncologists to display and inspect digital portal images for setup errors. PortFolio includes tools for image enhancement; alignment of crosshairs, field edges, and anatomic structures on reference and acquired images; measurement of distances and angles; and viewing registered images superimposed on one another. The test DRPRs contained known in-plane translation or rotation errors in the placement of the fields over target regions in the pelvis and head. Test images used in the study were also printed on film for observers to view on a light box and interpret using standard clinical practice. The mean accuracy for error detection for each approach was measured and the results were compared using repeated measures analysis of variance (ANOVA) with the Geisser-Greenhouse test statistic. Results: The results indicate that radiation oncologists participating in this study could detect and quantify in-plane rotation and translation errors more accurately with PortFolio compared to standard clinical practice. Conclusions: Based on the results of this limited study, it is reasonable to conclude that workstations similar to PortFolio can be used efficaciously in clinical practice

  17. Spent fuel bundle counter sequence error manual - RAPPS (200 MW) NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  18. Spent fuel bundle counter sequence error manual - KANUPP (125 MW) NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message may contain adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  19. Analyzing temozolomide medication errors: potentially fatal.

    Science.gov (United States)

    Letarte, Nathalie; Gabay, Michael P; Bressler, Linda R; Long, Katie E; Stachnik, Joan M; Villano, J Lee

    2014-10-01

    The EORTC-NCIC regimen for glioblastoma requires different dosing of temozolomide (TMZ) during radiation and maintenance therapy. This complexity is exacerbated by the availability of multiple TMZ capsule strengths. TMZ is an alkylating agent and the major toxicity of this class is dose-related myelosuppression. Inadvertent overdose can be fatal. The websites of the Institute for Safe Medication Practices (ISMP), and the Food and Drug Administration (FDA) MedWatch database were reviewed. We searched the MedWatch database for adverse events associated with TMZ and obtained all reports including hematologic toxicity submitted from 1st November 1997 to 30th May 2012. The ISMP describes errors with TMZ resulting from the positioning of information on the label of the commercial product. The strength and quantity of capsules on the label were in close proximity to each other, and this has been changed by the manufacturer. MedWatch identified 45 medication errors. Patient errors were the most common, accounting for 21 or 47% of errors, followed by dispensing errors, which accounted for 13 or 29%. Seven reports or 16% were errors in the prescribing of TMZ. Reported outcomes ranged from reversible hematological adverse events (13%), to hospitalization for other adverse events (13%) or death (18%). Four error reports lacked detail and could not be categorized. Although the FDA issued a warning in 2003 regarding fatal medication errors and the product label warns of overdosing, errors in TMZ dosing occur for various reasons and involve both healthcare professionals and patients. Overdosing errors can be fatal.

  20. Common Errors in Ecological Data Sharing

    Directory of Open Access Journals (Sweden)

    Robert B. Cook

    2013-04-01

    Full Text Available Objectives: (1 to identify common errors in data organization and metadata completeness that would preclude a “reader” from being able to interpret and re-use the data for a new purpose; and (2 to develop a set of best practices derived from these common errors that would guide researchers in creating more usable data products that could be readily shared, interpreted, and used.Methods: We used directed qualitative content analysis to assess and categorize data and metadata errors identified by peer reviewers of data papers published in the Ecological Society of America’s (ESA Ecological Archives. Descriptive statistics provided the relative frequency of the errors identified during the peer review process.Results: There were seven overarching error categories: Collection & Organization, Assure, Description, Preserve, Discover, Integrate, and Analyze/Visualize. These categories represent errors researchers regularly make at each stage of the Data Life Cycle. Collection & Organization and Description errors were some of the most common errors, both of which occurred in over 90% of the papers.Conclusions: Publishing data for sharing and reuse is error prone, and each stage of the Data Life Cycle presents opportunities for mistakes. The most common errors occurred when the researcher did not provide adequate metadata to enable others to interpret and potentially re-use the data. Fortunately, there are ways to minimize these mistakes through carefully recording all details about study context, data collection, QA/ QC, and analytical procedures from the beginning of a research project and then including this descriptive information in the metadata.

  1. Unit of measurement used and parent medication dosing errors.

    Science.gov (United States)

    Yin, H Shonna; Dreyer, Benard P; Ugboaja, Donna C; Sanchez, Dayana C; Paul, Ian M; Moreira, Hannah A; Rodriguez, Luis; Mendelsohn, Alan L

    2014-08-01

    Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2-4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03-3.5) dose; associations greater for parents with low health literacy and non-English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon-associated measurement errors. Findings support a milliliter-only standard to reduce medication errors. Copyright © 2014 by the American Academy of Pediatrics.

  2. Collection of offshore human error probability data

    International Nuclear Information System (INIS)

    Basra, Gurpreet; Kirwan, Barry

    1998-01-01

    Accidents such as Piper Alpha have increased concern about the effects of human errors in complex systems. Such accidents can in theory be predicted and prevented by risk assessment, and in particular human reliability assessment (HRA), but HRA ideally requires qualitative and quantitative human error data. A research initiative at the University of Birmingham led to the development of CORE-DATA, a Computerised Human Error Data Base. This system currently contains a reasonably large number of human error data points, collected from a variety of mainly nuclear-power related sources. This article outlines a recent offshore data collection study, concerned with collecting lifeboat evacuation data. Data collection methods are outlined and a selection of human error probabilities generated as a result of the study are provided. These data give insights into the type of errors and human failure rates that could be utilised to support offshore risk analyses

  3. Human error mechanisms in complex work environments

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1988-01-01

    Human error taxonomies have been developed from analysis of industrial incident reports as well as from psychological experiments. In this paper the results of the two approaches are reviewed and compared. It is found, in both cases, that a fairly small number of basic psychological mechanisms will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations. The implications for system safety and briefly mentioned, together with the implications for system design. (author)

  4. Human error mechanisms in complex work environments

    International Nuclear Information System (INIS)

    Rasmussen, Jens; Danmarks Tekniske Hoejskole, Copenhagen)

    1988-01-01

    Human error taxonomies have been developed from analysis of industrial incident reports as well as from psychological experiments. In this paper the results of the two approaches are reviewed and compared. It is found, in both cases, that a fairly small number of basic psychological mechanisms will account for most of the action errors observed. In addition, error mechanisms appear to be intimately related to the development of high skill and know-how in a complex work context. This relationship between errors and human adaptation is discussed in detail for individuals and organisations. The implications for system safety are briefly mentioned, together with the implications for system design. (author)

  5. Crystalline lens power and refractive error.

    Science.gov (United States)

    Iribarren, Rafael; Morgan, Ian G; Nangia, Vinay; Jonas, Jost B

    2012-02-01

    To study the relationships between the refractive power of the crystalline lens, overall refractive error of the eye, and degree of nuclear cataract. All phakic participants of the population-based Central India Eye and Medical Study with an age of 50+ years were included. Calculation of the refractive lens power was based on distance noncycloplegic refractive error, corneal refractive power, anterior chamber depth, lens thickness, and axial length according to Bennett's formula. The study included 1885 subjects. Mean refractive lens power was 25.5 ± 3.0 D (range, 13.9-36.6). After adjustment for age and sex, the standardized correlation coefficients (β) of the association with the ocular refractive error were highest for crystalline lens power (β = -0.41; P lens opacity grade (β = -0.42; P lens power (β = -0.95), lower corneal refractive power (β = -0.76), higher lens thickness (β = 0.30), deeper anterior chamber (β = 0.28), and less marked nuclear lens opacity (β = -0.05). Lens thickness was significantly lower in eyes with greater nuclear opacity. Variations in refractive error in adults aged 50+ years were mostly influenced by variations in axial length and in crystalline lens refractive power, followed by variations in corneal refractive power, and, to a minor degree, by variations in lens thickness and anterior chamber depth.

  6. Fixturing error measurement and analysis using CMMs

    International Nuclear Information System (INIS)

    Wang, Y; Chen, X; Gindy, N

    2005-01-01

    Influence of fixture on the errors of a machined surface can be very significant. The machined surface errors generated during machining can be measured by using a coordinate measurement machine (CMM) through the displacements of three coordinate systems on a fixture-workpiece pair in relation to the deviation of the machined surface. The surface errors consist of the component movement, component twist, deviation between actual machined surface and defined tool path. A turbine blade fixture for grinding operation is used for case study

  7. The next organizational challenge: finding and addressing diagnostic error.

    Science.gov (United States)

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  8. Grammatical Errors Produced by English Majors: The Translation Task

    Science.gov (United States)

    Mohaghegh, Hamid; Zarandi, Fatemeh Mahmoudi; Shariati, Mohammad

    2011-01-01

    This study investigated the frequency of the grammatical errors related to the four categories of preposition, relative pronoun, article, and tense using the translation task. In addition, the frequencies of these grammatical errors in different categories and in each category were examined. The quantitative component of the study further looked…

  9. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    International Nuclear Information System (INIS)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; Hove, Sybille van den

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  10. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    Science.gov (United States)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  11. Determination of trace elements in standard reference materials by the ko-standardization method

    International Nuclear Information System (INIS)

    Smodis, B.; Jacimovic, R.; Stegnar, P.; Jovanovic, S.

    1990-01-01

    The k o -standardization method is suitable for routine multielement determinations by reactor neutron activation analysis (NAA). Investigation of NIST standard reference materials SRM 1571 Orchard Leaves, SRM 1572 Citrus leaves, and SRM 1573 Tomato Leaves showed the systematic error of 12 certified elements determined to be less than 8%. Thirty-four elements were determined in NIST proposed SRM 1515 Apple Leaves

  12. Non-intercepted dose errors in prescribing anti-neoplastic treatment

    DEFF Research Database (Denmark)

    Mattsson, T O; Holm, B; Michelsen, H

    2015-01-01

    BACKGROUND: The incidence of non-intercepted prescription errors and the risk factors involved, including the impact of computerised order entry (CPOE) systems on such errors, are unknown. Our objective was to determine the incidence, type, severity, and related risk factors of non-intercepted pr....... Strategies to prevent future prescription errors could usefully focus on integrated computerised systems that can aid dose calculations and reduce transcription errors between databases....

  13. A phantom-based study for assessing the error and uncertainty of a neuronavigation system

    Directory of Open Access Journals (Sweden)

    Natalia Izquierdo-Cifuentes

    2017-01-01

    Full Text Available This document describes a calibration protocol with the intention to introduce a guide to standardize the metrological vocabulary among manufacturers of image-guided surgery systems. Two stages were developed to measure the errors and estimate the uncertainty of a neuronavigator in different situations, on the first one it was determined a mechanical error on a virtual model of an acrylic phantom, on the second it was determined a coordinate error on the computerized axial tomography scan of the same phantom. Ten standard coordinates of the phantom were compared with the coordinates generated by the NeuroCPS. After measurement model was established, there were identified the sources of uncertainty and the data was processed according the guide to the expression of uncertainty in measurement.

  14. Assessing human error during collecting a hydrocarbon sample of ...

    African Journals Online (AJOL)

    This paper reports the assessment method of the hydrocarbon sample collection standard operation procedure (SOP) using THERP. The Performance Shaping Factors (PSF) from THERP analyzed and assessed the human errors during collecting a hydrocarbon sample of a petrochemical refinery plant. Twenty-two ...

  15. Study of Errors among Nursing Students

    Directory of Open Access Journals (Sweden)

    Ella Koren

    2007-09-01

    Full Text Available The study of errors in the health system today is a topic of considerable interest aimed at reducing errors through analysis of the phenomenon and the conclusions reached. Errors that occur frequently among health professionals have also been observed among nursing students. True, in most cases they are actually “near errors,” but these could be a future indicator of therapeutic reality and the effect of nurses' work environment on their personal performance. There are two different approaches to such errors: (a The EPP (error prone person approach lays full responsibility at the door of the individual involved in the error, whether a student, nurse, doctor, or pharmacist. According to this approach, handling consists purely in identifying and penalizing the guilty party. (b The EPE (error prone environment approach emphasizes the environment as a primary contributory factor to errors. The environment as an abstract concept includes components and processes of interpersonal communications, work relations, human engineering, workload, pressures, technical apparatus, and new technologies. The objective of the present study was to examine the role played by factors in and components of personal performance as compared to elements and features of the environment. The study was based on both of the aforementioned approaches, which, when combined, enable a comprehensive understanding of the phenomenon of errors among the student population as well as a comparison of factors contributing to human error and to error deriving from the environment. The theoretical basis of the study was a model that combined both approaches: one focusing on the individual and his or her personal performance and the other focusing on the work environment. The findings emphasize the work environment of health professionals as an EPE. However, errors could have been avoided by means of strict adherence to practical procedures. The authors examined error events in the

  16. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  17. Archive of Census Related Products (ACRP): 1990 Standard Extract Files

    Data.gov (United States)

    National Aeronautics and Space Administration — The 1990 Standard Extract Files portion of the Archive of Census Related Products (ACRP) contains population and housing data derived from the U.S. Census Bureau's...

  18. Optimized universal color palette design for error diffusion

    Science.gov (United States)

    Kolpatzik, Bernd W.; Bouman, Charles A.

    1995-04-01

    Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.

  19. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    Science.gov (United States)

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of

  20. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates

    Directory of Open Access Journals (Sweden)

    Berhane Yemane

    2008-03-01

    Full Text Available Abstract Background As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs. Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. Methods This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. Results The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. Conclusion The low sensitivity of parameter

  1. Outcomes of a Failure Mode and Effects Analysis for medication errors in pediatric anesthesia.

    Science.gov (United States)

    Martin, Lizabeth D; Grigg, Eliot B; Verma, Shilpa; Latham, Gregory J; Rampersad, Sally E; Martin, Lynn D

    2017-06-01

    The Institute of Medicine has called for development of strategies to prevent medication errors, which are one important cause of preventable harm. Although the field of anesthesiology is considered a leader in patient safety, recent data suggest high medication error rates in anesthesia practice. Unfortunately, few error prevention strategies for anesthesia providers have been implemented. Using Toyota Production System quality improvement methodology, a multidisciplinary team observed 133 h of medication practice in the operating room at a tertiary care freestanding children's hospital. A failure mode and effects analysis was conducted to systematically deconstruct and evaluate each medication handling process step and score possible failure modes to quantify areas of risk. A bundle of five targeted countermeasures were identified and implemented over 12 months. Improvements in syringe labeling (73 to 96%), standardization of medication organization in the anesthesia workspace (0 to 100%), and two-provider infusion checks (23 to 59%) were observed. Medication error reporting improved during the project and was subsequently maintained. After intervention, the median medication error rate decreased from 1.56 to 0.95 per 1000 anesthetics. The frequency of medication error harm events reaching the patient also decreased. Systematic evaluation and standardization of medication handling processes by anesthesia providers in the operating room can decrease medication errors and improve patient safety. © 2017 John Wiley & Sons Ltd.

  2. Random measurement error: Why worry? An example of cardiovascular risk factors.

    Science.gov (United States)

    Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H

    2018-01-01

    With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  3. Generalizing human error rates: A taxonomic approach

    International Nuclear Information System (INIS)

    Buffardi, L.; Fleishman, E.; Allen, J.

    1989-01-01

    It is well established that human error plays a major role in malfunctioning of complex, technological systems and in accidents associated with their operation. Estimates of the rate of human error in the nuclear industry range from 20-65% of all system failures. In response to this, the Nuclear Regulatory Commission has developed a variety of techniques for estimating human error probabilities for nuclear power plant personnel. Most of these techniques require the specification of the range of human error probabilities for various tasks. Unfortunately, very little objective performance data on error probabilities exist for nuclear environments. Thus, when human reliability estimates are required, for example in computer simulation modeling of system reliability, only subjective estimates (usually based on experts' best guesses) can be provided. The objective of the current research is to provide guidelines for the selection of human error probabilities based on actual performance data taken in other complex environments and applying them to nuclear settings. A key feature of this research is the application of a comprehensive taxonomic approach to nuclear and non-nuclear tasks to evaluate their similarities and differences, thus providing a basis for generalizing human error estimates across tasks. In recent years significant developments have occurred in classifying and describing tasks. Initial goals of the current research are to: (1) identify alternative taxonomic schemes that can be applied to tasks, and (2) describe nuclear tasks in terms of these schemes. Three standardized taxonomic schemes (Ability Requirements Approach, Generalized Information-Processing Approach, Task Characteristics Approach) are identified, modified, and evaluated for their suitability in comparing nuclear and non-nuclear power plant tasks. An agenda for future research and its relevance to nuclear power plant safety is also discussed

  4. Advancing the research agenda for diagnostic error reduction

    NARCIS (Netherlands)

    Zwaan, L.; Schiff, G.D.; Singh, H.

    2013-01-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research.

  5. Forecast Combination under Heavy-Tailed Errors

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2015-11-01

    Full Text Available Forecast combination has been proven to be a very important technique to obtain accurate predictions for various applications in economics, finance, marketing and many other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast combinations for such situations. The familiar forecast combination methods, such as simple average, least squares regression or those based on the variance-covariance of the forecasts, may perform very poorly due to the fact that outliers tend to occur, and they make these methods have unstable weights, leading to un-robust forecasts. To address this problem, in this paper, we propose two nonparametric forecast combination methods. One is specially proposed for the situations in which the forecast errors are strongly believed to have heavy tails that can be modeled by a scaled Student’s t-distribution; the other is designed for relatively more general situations when there is a lack of strong or consistent evidence on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving data-generating process. Adaptive risk bounds of both methods are developed. They show that the resulting combined forecasts yield near optimal mean forecast errors relative to the candidate forecasts. Simulations and a real example demonstrate their superior performance in that they indeed tend to have significantly smaller prediction errors than the previous combination methods in the presence of forecast outliers.

  6. The Standard Model

    International Nuclear Information System (INIS)

    Sutton, Christine

    1994-01-01

    The initial evidence from Fermilab for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. In this specially commissioned overview, physics writer Christine Sutton explains the Standard Model

  7. The reinterpretation of standard deviation concept

    OpenAIRE

    Ye, Xiaoming

    2017-01-01

    Existing mathematical theory interprets the concept of standard deviation as the dispersion degree. Therefore, in measurement theory, both uncertainty concept and precision concept, which are expressed with standard deviation or times standard deviation, are also defined as the dispersion of measurement result, so that the concept logic is tangled. Through comparative analysis of the standard deviation concept and re-interpreting the measurement error evaluation principle, this paper points o...

  8. Error estimation in plant growth analysis

    Directory of Open Access Journals (Sweden)

    Andrzej Gregorczyk

    2014-01-01

    Full Text Available The scheme is presented for calculation of errors of dry matter values which occur during approximation of data with growth curves, determined by the analytical method (logistic function and by the numerical method (Richards function. Further formulae are shown, which describe absolute errors of growth characteristics: Growth rate (GR, Relative growth rate (RGR, Unit leaf rate (ULR and Leaf area ratio (LAR. Calculation examples concerning the growth course of oats and maize plants are given. The critical analysis of the estimation of obtained results has been done. The purposefulness of joint application of statistical methods and error calculus in plant growth analysis has been ascertained.

  9. Medication errors of nurses and factors in refusal to report medication errors among nurses in a teaching medical center of iran in 2012.

    Science.gov (United States)

    Mostafaei, Davoud; Barati Marnani, Ahmad; Mosavi Esfahani, Haleh; Estebsari, Fatemeh; Shahzaidi, Shiva; Jamshidi, Ensiyeh; Aghamiri, Seyed Samad

    2014-10-01

    About one third of unwanted reported medication consequences are due to medication errors, resulting in one-fifth of hospital injuries. The aim of this study was determined formal and informal medication errors of nurses and the level of importance of factors in refusal to report medication errors among nurses. The cross-sectional study was done on the nursing staff of Shohada Tajrish Hospital, Tehran, Iran in 2012. The data was gathered through a questionnaire, made by the researchers. The questionnaires' face and content validity was confirmed by experts and for measuring its reliability test-retest was used. The data was analyzed by descriptive statistics. We used SPSS for related statistical analyses. The most important factors in refusal to report medication errors respectively were: lack of medication error recording and reporting system in the hospital (3.3%), non-significant error reporting to hospital authorities and lack of appropriate feedback (3.1%), and lack of a clear definition for a medication error (3%). There were both formal and informal reporting of medication errors in this study. Factors pertaining to management in hospitals as well as the fear of the consequences of reporting are two broad fields among the factors that make nurses not report their medication errors. In this regard, providing enough education to nurses, boosting the job security for nurses, management support and revising related processes and definitions are some factors that can help decreasing medication errors and increasing their report in case of occurrence.

  10. Benefits and risks of using smart pumps to reduce medication error rates: a systematic review.

    Science.gov (United States)

    Ohashi, Kumiko; Dalleur, Olivia; Dykes, Patricia C; Bates, David W

    2014-12-01

    Smart infusion pumps have been introduced to prevent medication errors and have been widely adopted nationally in the USA, though they are not always used in Europe or other regions. Despite widespread usage of smart pumps, intravenous medication errors have not been fully eliminated. Through a systematic review of recent studies and reports regarding smart pump implementation and use, we aimed to identify the impact of smart pumps on error reduction and on the complex process of medication administration, and strategies to maximize the benefits of smart pumps. The medical literature related to the effects of smart pumps for improving patient safety was searched in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) (2000-2014) and relevant papers were selected by two researchers. After the literature search, 231 papers were identified and the full texts of 138 articles were assessed for eligibility. Of these, 22 were included after removal of papers that did not meet the inclusion criteria. We assessed both the benefits and negative effects of smart pumps from these studies. One of the benefits of using smart pumps was intercepting errors such as the wrong rate, wrong dose, and pump setting errors. Other benefits include reduction of adverse drug event rates, practice improvements, and cost effectiveness. Meanwhile, the current issues or negative effects related to using smart pumps were lower compliance rates of using smart pumps, the overriding of soft alerts, non-intercepted errors, or the possibility of using the wrong drug library. The literature suggests that smart pumps reduce but do not eliminate programming errors. Although the hard limits of a drug library play a main role in intercepting medication errors, soft limits were still not as effective as hard limits because of high override rates. Compliance in using smart pumps is key towards effectively preventing errors. Opportunities for improvement include upgrading drug

  11. Eliminating US hospital medical errors.

    Science.gov (United States)

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  12. High-speed parallel forward error correction for optical transport networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders; Ruepp, Sarah Renée; Berger, Michael Stübert

    2010-01-01

    This paper presents a highly parallelized hardware implementation of the standard OTN Reed-Solomon Forward Error Correction algorithm. The proposed circuit is designed to meet the immense throughput required by OTN4, using commercially available FPGA technology....

  13. FREIGHT CONTAINER LIFTING STANDARD

    Energy Technology Data Exchange (ETDEWEB)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  14. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    Science.gov (United States)

    Sun, Z. J.; Wells, D.; Segebade, C.; Green, J.

    2011-06-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  15. Standardizing Activation Analysis: New Software for Photon Activation Analysis

    International Nuclear Information System (INIS)

    Sun, Z. J.; Wells, D.; Green, J.; Segebade, C.

    2011-01-01

    Photon Activation Analysis (PAA) of environmental, archaeological and industrial samples requires extensive data analysis that is susceptible to error. For the purpose of saving time, manpower and minimizing error, a computer program was designed, built and implemented using SQL, Access 2007 and asp.net technology to automate this process. Based on the peak information of the spectrum and assisted by its PAA library, the program automatically identifies elements in the samples and calculates their concentrations and respective uncertainties. The software also could be operated in browser/server mode, which gives the possibility to use it anywhere the internet is accessible. By switching the nuclide library and the related formula behind, the new software can be easily expanded to neutron activation analysis (NAA), charged particle activation analysis (CPAA) or proton-induced X-ray emission (PIXE). Implementation of this would standardize the analysis of nuclear activation data. Results from this software were compared to standard PAA analysis with excellent agreement. With minimum input from the user, the software has proven to be fast, user-friendly and reliable.

  16. Data on simulated interpersonal touch, individual differences and the error-related negativity

    Directory of Open Access Journals (Sweden)

    Mandy Tjew-A-Sin

    2016-06-01

    Full Text Available The dataset includes data from the electroencephalogram study reported in our paper: ‘Effects of simulated interpersonal touch and trait intrinsic motivation on the error-related negativity’ (doi:10.1016/j.neulet.2016.01.044 (Tjew-A-Sin et al., 2016 [1]. The data was collected at the psychology laboratories at the Vrije Universiteit Amsterdam in 2012 among a Dutch-speaking student sample. The dataset consists of the measures described in the paper, as well as additional (exploratory measures including the Five-Factor Personality Inventory, the Connectedness to Nature Scale, the Rosenberg Self-esteem Scale and a scale measuring life stress. The data can be used for replication purposes, meta-analyses, and exploratory analyses, as well as cross-cultural comparisons of touch and/or ERN effects. The authors also welcome collaborative research based on re-analyses of the data. The data described is available at a data repository called the DANS archive: http://persistent-identifier.nl/?identifier=urn:nbn:nl:ui:13-tzbk-gg.

  17. Optimizer convergence and local minima errors and their clinical importance

    International Nuclear Information System (INIS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-01-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization

  18. Effect of a health system's medical error disclosure program on gastroenterology-related claims rates and costs.

    Science.gov (United States)

    Adams, Megan A; Elmunzer, B Joseph; Scheiman, James M

    2014-04-01

    In 2001, the University of Michigan Health System (UMHS) implemented a novel medical error disclosure program. This study analyzes the effect of this program on gastroenterology (GI)-related claims and costs. This was a review of claims in the UMHS Risk Management Database (1990-2010), naming a gastroenterologist. Claims were classified according to pre-determined categories. Claims data, including incident date, date of resolution, and total liability dollars, were reviewed. Mean total liability incurred per claim in the pre- and post-implementation eras was compared. Patient encounter data from the Division of Gastroenterology was also reviewed in order to benchmark claims data with changes in clinical volume. There were 238,911 GI encounters in the pre-implementation era and 411,944 in the post-implementation era. A total of 66 encounters resulted in claims: 38 in the pre-implementation era and 28 in the post-implementation era. Of the total number of claims, 15.2% alleged delay in diagnosis/misdiagnosis, 42.4% related to a procedure, and 42.4% involved improper management, treatment, or monitoring. The reduction in the proportion of encounters resulting in claims was statistically significant (P=0.001), as was the reduction in time to claim resolution (1,000 vs. 460 days) (P<0.0001). There was also a reduction in the mean total liability per claim ($167,309 pre vs. $81,107 post, 95% confidence interval: 33682.5-300936.2 pre vs. 1687.8-160526.7 post). Implementation of a novel medical error disclosure program, promoting transparency and quality improvement, not only decreased the number of GI-related claims per patient encounter, but also dramatically shortened the time to claim resolution.

  19. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Science.gov (United States)

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  20. Ontology-based information standards development

    OpenAIRE

    Heravi, Bahareh Rahmanzadeh

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Standards may be argued to be important enablers for achieving interoperability as they aim to provide unambiguous specifications for error-free exchange of documents and information. By implication, therefore, it is important to model and represent the concept of a standard in a clear, precise and unambiguous way. Although standards development organisations usually provide guidelines for th...

  1. Everyday memory errors in older adults.

    Science.gov (United States)

    Ossher, Lynn; Flegal, Kristin E; Lustig, Cindy

    2013-01-01

    Despite concern about cognitive decline in old age, few studies document the types and frequency of memory errors older adults make in everyday life. In the present study, 105 healthy older adults completed the Everyday Memory Questionnaire (EMQ; Sunderland, Harris, & Baddeley, 1983 , Journal of Verbal Learning and Verbal Behavior, 22, 341), indicating what memory errors they had experienced in the last 24 hours, the Memory Self-Efficacy Questionnaire (MSEQ; West, Thorn, & Bagwell, 2003 , Psychology and Aging, 18, 111), and other neuropsychological and cognitive tasks. EMQ and MSEQ scores were unrelated and made separate contributions to variance on the Mini Mental State Exam (MMSE; Folstein, Folstein, & McHugh, 1975 , Journal of Psychiatric Research, 12, 189), suggesting separate constructs. Tip-of-the-tongue errors were the most commonly reported, and the EMQ Faces/Places and New Things subscales were most strongly related to MMSE. These findings may help training programs target memory errors commonly experienced by older adults, and suggest which types of memory errors could indicate cognitive declines of clinical concern.

  2. High energy hadron-induced errors in memory chips

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R.J. [University of Colorado, Boulder, CO (United States)

    2001-09-01

    We have measured probabilities for proton, neutron and pion beams from accelerators to induce temporary or soft errors in a wide range of modern 16 Mb and 64 Mb dRAM memory chips, typical of those used in aircraft electronics. Relations among the cross sections for these particles are deduced, and failure rates for aircraft avionics due to cosmic rays are evaluated. Measurement of alpha pha particle yields from pions on aluminum, as a surrogate for silicon, indicate that these reaction products are the proximate cause of the charge deposition resulting in errors. Heavy ions can cause damage to solar panels and other components in satellites above the atmosphere, by the heavy ionization trails they leave. However, at the earth's surface or at aircraft altitude it is known that cosmic rays, other than heavy ions, can cause soft errors in memory circuit components. Soft errors are those confusions between ones and zeroes that cause wrong contents to be stored in the memory, but without causing permanent damage to the circuit. As modern aircraft rely increasingly upon computerized and automated systems, these soft errors are important threats to safety. Protons, neutrons and pions resulting from high energy cosmic ray bombardment of the atmosphere pervade our environment. These particles do not induce damage directly by their ionization loss, but rather by reactions in the materials of the microcircuits. We have measured many cross sections for soft error upsets (SEU) in a broad range of commercial 16 Mb and 64 Mb dRAMs with accelerator beams. Here we define {sigma} SEU = induced errors/number of sample bits x particles/cm{sup 2}. We compare {sigma} SEU to find relations among results for these beams, and relations to reaction cross sections in order to systematize effects. We have modelled cosmic ray effects upon the components we have studied. (Author)

  3. High energy hadron-induced errors in memory chips

    International Nuclear Information System (INIS)

    Peterson, R.J.

    2001-01-01

    We have measured probabilities for proton, neutron and pion beams from accelerators to induce temporary or soft errors in a wide range of modern 16 Mb and 64 Mb dRAM memory chips, typical of those used in aircraft electronics. Relations among the cross sections for these particles are deduced, and failure rates for aircraft avionics due to cosmic rays are evaluated. Measurement of alpha pha particle yields from pions on aluminum, as a surrogate for silicon, indicate that these reaction products are the proximate cause of the charge deposition resulting in errors. Heavy ions can cause damage to solar panels and other components in satellites above the atmosphere, by the heavy ionization trails they leave. However, at the earth's surface or at aircraft altitude it is known that cosmic rays, other than heavy ions, can cause soft errors in memory circuit components. Soft errors are those confusions between ones and zeroes that cause wrong contents to be stored in the memory, but without causing permanent damage to the circuit. As modern aircraft rely increasingly upon computerized and automated systems, these soft errors are important threats to safety. Protons, neutrons and pions resulting from high energy cosmic ray bombardment of the atmosphere pervade our environment. These particles do not induce damage directly by their ionization loss, but rather by reactions in the materials of the microcircuits. We have measured many cross sections for soft error upsets (SEU) in a broad range of commercial 16 Mb and 64 Mb dRAMs with accelerator beams. Here we define σ SEU = induced errors/number of sample bits x particles/cm 2 . We compare σ SEU to find relations among results for these beams, and relations to reaction cross sections in order to systematize effects. We have modelled cosmic ray effects upon the components we have studied. (Author)

  4. Error related negativity and multi-source interference task in children with attention deficit hyperactivity disorder-combined type

    Directory of Open Access Journals (Sweden)

    Rosana Huerta-Albarrán

    2015-03-01

    Full Text Available Objective To compare performance of children with attention deficit hyperactivity disorders-combined (ADHD-C type with control children in multi-source interference task (MSIT evaluated by means of error related negativity (ERN. Method We studied 12 children with ADHD-C type with a median age of 7 years, control children were age- and gender-matched. Children performed MSIT and simultaneous recording of ERN. Results We found no differences in MSIT parameters among groups. We found no differences in ERN variables between groups. We found a significant association of ERN amplitude with MSIT in children with ADHD-C type. Some correlation went in positive direction (frequency of hits and MSIT amplitude, and others in negative direction (frequency of errors and RT in MSIT. Conclusion Children with ADHD-C type exhibited a significant association between ERN amplitude with MSIT. These results underline participation of a cingulo-fronto-parietal network and could help in the comprehension of pathophysiological mechanisms of ADHD.

  5. Characterization of positional errors and their influence on micro four-point probe measurements on a 100 nm Ru film

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Østerberg, Frederik Westergaard

    2015-01-01

    Thin-film sheet resistance measurements at high spatial resolution and on small pads are important and can be realized with micrometer-scale four-point probes. As a result of the small scale the measurements are affected by electrode position errors. We have characterized the electrode position...... errors in measurements on Ru thin film using an Au-coated 12-point probe. We show that the standard deviation of the static electrode position error is on the order of 5 nm, which significantly affects the results of single configuration measurements. Position-error-corrected dual......-configuration measurements, however, are shown to eliminate the effect of position errors to a level limited either by electrical measurement noise or dynamic position errors. We show that the probe contact points remain almost static on the surface during the measurements (measured on an atomic scale) with a standard...

  6. On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.

    2014-02-01

    The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.

  7. The Effect of Random Error on Diagnostic Accuracy Illustrated with the Anthropometric Diagnosis of Malnutrition

    Science.gov (United States)

    2016-01-01

    Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627

  8. Medication errors with the use of allopurinol and colchicine: a retrospective study of a national, anonymous Internet-accessible error reporting system.

    Science.gov (United States)

    Mikuls, Ted R; Curtis, Jeffrey R; Allison, Jeroan J; Hicks, Rodney W; Saag, Kenneth G

    2006-03-01

    To more closely assess medication errors in gout care, we examined data from a national, Internet-accessible error reporting program over a 5-year reporting period. We examined data from the MEDMARX database, covering the period from January 1, 1999 through December 31, 2003. For allopurinol and colchicine, we examined error severity, source, type, contributing factors, and healthcare personnel involved in errors, and we detailed errors resulting in patient harm. Causes of error and the frequency of other error characteristics were compared for gout medications versus other musculoskeletal treatments using the chi-square statistic. Gout medication errors occurred in 39% (n = 273) of facilities participating in the MEDMARX program. Reported errors were predominantly from the inpatient hospital setting and related to the use of allopurinol (n = 524), followed by colchicine (n = 315), probenecid (n = 50), and sulfinpyrazone (n = 2). Compared to errors involving other musculoskeletal treatments, allopurinol and colchicine errors were more often ascribed to problems with physician prescribing (7% for other therapies versus 23-39% for allopurinol and colchicine, p < 0.0001) and less often due to problems with drug administration or nursing error (50% vs 23-27%, p < 0.0001). Our results suggest that inappropriate prescribing practices are characteristic of errors occurring with the use of allopurinol and colchicine. Physician prescribing practices are a potential target for quality improvement interventions in gout care.

  9. [Errors in medicine. Causes, impact and improvement measures to improve patient safety].

    Science.gov (United States)

    Waeschle, R M; Bauer, M; Schmidt, C E

    2015-09-01

    The guarantee of quality of care and patient safety is of major importance in hospitals even though increased economic pressure and work intensification are ubiquitously present. Nevertheless, adverse events still occur in 3-4 % of hospital stays and of these 25-50 % are estimated to be avoidable. The identification of possible causes of error and the development of measures for the prevention of medical errors are essential for patient safety. The implementation and continuous development of a constructive culture of error tolerance are fundamental.The origins of errors can be differentiated into systemic latent and individual active causes and components of both categories are typically involved when an error occurs. Systemic causes are, for example out of date structural environments, lack of clinical standards and low personnel density. These causes arise far away from the patient, e.g. management decisions and can remain unrecognized for a long time. Individual causes involve, e.g. confirmation bias, error of fixation and prospective memory failure. These causes have a direct impact on patient care and can result in immediate injury to patients. Stress, unclear information, complex systems and a lack of professional experience can promote individual causes. Awareness of possible causes of error is a fundamental precondition to establishing appropriate countermeasures.Error prevention should include actions directly affecting the causes of error and includes checklists and standard operating procedures (SOP) to avoid fixation and prospective memory failure and team resource management to improve communication and the generation of collective mental models. Critical incident reporting systems (CIRS) provide the opportunity to learn from previous incidents without resulting in injury to patients. Information technology (IT) support systems, such as the computerized physician order entry system, assist in the prevention of medication errors by providing

  10. Auto-calibration of Systematic Odometry Errors in Mobile Robots

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Andersen, Nils Axel

    1999-01-01

    This paper describes the phenomenon of systematic errors in odometry models in mobile robots and looks at various ways of avoiding it by means of auto-calibration. The systematic errors considered are incorrect knowledge of the wheel base and the gains from encoder readings to wheel displacement....... By auto-calibration we mean a standardized procedure which estimates the uncertainties using only on-board equipment such as encoders, an absolute measurement system and filters; no intervention by operator or off-line data processing is necessary. Results are illustrated by a number of simulations...... and experiments on a mobile robot....

  11. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks

    Directory of Open Access Journals (Sweden)

    Hesham Mostafa

    2017-09-01

    Full Text Available Artificial neural networks (ANNs trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  12. Hardware-Efficient On-line Learning through Pipelined Truncated-Error Backpropagation in Binary-State Networks.

    Science.gov (United States)

    Mostafa, Hesham; Pedroni, Bruno; Sheik, Sadique; Cauwenberghs, Gert

    2017-01-01

    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.

  13. Electrophysiological correlates of error processing in borderline personality disorder.

    Science.gov (United States)

    Ruchsow, Martin; Walter, Henrik; Buchheim, Anna; Martius, Philipp; Spitzer, Manfred; Kächele, Horst; Grön, Georg; Kiefer, Markus

    2006-05-01

    The electrophysiological correlates of error processing were investigated in patients with borderline personality disorder (BPD) using event-related potentials (ERP). Twelve patients with BPD and 12 healthy controls were additionally rated with the Barratt impulsiveness scale (BIS-10). Participants performed a Go/Nogo task while a 64 channel EEG was recorded. Three ERP components were of special interest: error-related negativity (ERN)/error negativity (Ne), early error positivity (early Pe) reflecting automatic error processing, and the late Pe component which is thought to mirror the awareness of erroneous responses. We found smaller amplitudes of the ERN/Ne in patients with BPD compared to controls. Moreover, significant correlations with the BIS-10 non-planning sub-score could be demonstrated for both the entire group and the patient group. No between-group differences were observed for the early and late Pe components. ERP measures appear to be a suitable tool to study clinical time courses in BPD.

  14. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.

    Science.gov (United States)

    Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.

  15. Prescribing errors in a Brazilian neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Ana Paula Cezar Machado

    2015-12-01

    Full Text Available Abstract Pediatric patients, especially those admitted to the neonatal intensive care unit (ICU, are highly vulnerable to medication errors. This study aimed to measure the prescription error rate in a university hospital neonatal ICU and to identify susceptible patients, types of errors, and the medicines involved. The variables related to medicines prescribed were compared to the Neofax prescription protocol. The study enrolled 150 newborns and analyzed 489 prescription order forms, with 1,491 medication items, corresponding to 46 drugs. Prescription error rate was 43.5%. Errors were found in dosage, intervals, diluents, and infusion time, distributed across 7 therapeutic classes. Errors were more frequent in preterm newborns. Diluent and dosing were the most frequent sources of errors. The therapeutic classes most involved in errors were antimicrobial agents and drugs that act on the nervous and cardiovascular systems.

  16. Error analysis for determination of accuracy of an ultrasound navigation system for head and neck surgery.

    Science.gov (United States)

    Kozak, J; Krysztoforski, K; Kroll, T; Helbig, S; Helbig, M

    2009-01-01

    The use of conventional CT- or MRI-based navigation systems for head and neck surgery is unsatisfactory due to tissue shift. Moreover, changes occurring during surgical procedures cannot be visualized. To overcome these drawbacks, we developed a novel ultrasound-guided navigation system for head and neck surgery. A comprehensive error analysis was undertaken to determine the accuracy of this new system. The evaluation of the system accuracy was essentially based on the method of error definition for well-established fiducial marker registration methods (point-pair matching) as used in, for example, CT- or MRI-based navigation. This method was modified in accordance with the specific requirements of ultrasound-guided navigation. The Fiducial Localization Error (FLE), Fiducial Registration Error (FRE) and Target Registration Error (TRE) were determined. In our navigation system, the real error (the TRE actually measured) did not exceed a volume of 1.58 mm(3) with a probability of 0.9. A mean value of 0.8 mm (standard deviation: 0.25 mm) was found for the FRE. The quality of the coordinate tracking system (Polaris localizer) could be defined with an FLE of 0.4 +/- 0.11 mm (mean +/- standard deviation). The quality of the coordinates of the crosshairs of the phantom was determined with a deviation of 0.5 mm (standard deviation: 0.07 mm). The results demonstrate that our newly developed ultrasound-guided navigation system shows only very small system deviations and therefore provides very accurate data for practical applications.

  17. Present status of standards relating to radiation control and protection

    International Nuclear Information System (INIS)

    Minami, Kentaro

    1996-01-01

    Japanese and international standards related to radiation control and radiation protective management are presented focusing on the forming condition, significance, current situation, and their relationship. Japanese Industrial Standards (JIS) is quite useful in the field of atomic energy as well as other fields in terms of optimization and rationalization of the management. JIS includes JIS Z 4001 Atomic Energy Terminology which corresponds to internationl standards ISO 921 Nuclear Glossary, and JIS Z 4005 Medical Radiation Terminology, covering about 500 articles, which corresponds to IEC 788 Medical Radiology-Terminology. The first standards regarding radiation protection was established in X-ray Film Badge, which is included in the field of personal dosimeter, in 1956. Currently, 36 JIS has been established in the field of radiation management dosimeter and 3 are under arrangement. As for radiation protective supplies, 9 JIS has been established so far. Before proposal of JIS, investigation had been conducted to improve, simplify, and standardize the standards of radiation dosimetric technique, dosimeters, dosimetric procedures, and improvement. In this article, the results of material surface contamination monitoring and body surface monitoring conducted in Atomic Energy Safety Association and Radiation Dosimetry Associationare reported, and ISO and IEC are also treated. (S.Y.)

  18. The Argos-CLS Kalman Filter: Error Structures and State-Space Modelling Relative to Fastloc GPS Data.

    Directory of Open Access Journals (Sweden)

    Andrew D Lowther

    Full Text Available Understanding how an animal utilises its surroundings requires its movements through space to be described accurately. Satellite telemetry is the only means of acquiring movement data for many species however data are prone to varying amounts of spatial error; the recent application of state-space models (SSMs to the location estimation problem have provided a means to incorporate spatial errors when characterising animal movements. The predominant platform for collecting satellite telemetry data on free-ranging animals, Service Argos, recently provided an alternative Doppler location estimation algorithm that is purported to be more accurate and generate a greater number of locations that its predecessor. We provide a comprehensive assessment of this new estimation process performance on data from free-ranging animals relative to concurrently collected Fastloc GPS data. Additionally, we test the efficacy of three readily-available SSM in predicting the movement of two focal animals. Raw Argos location estimates generated by the new algorithm were greatly improved compared to the old system. Approximately twice as many Argos locations were derived compared to GPS on the devices used. Root Mean Square Errors (RMSE for each optimal SSM were less than 4.25 km with some producing RMSE of less than 2.50 km. Differences in the biological plausibility of the tracks between the two focal animals used to investigate the utility of SSM highlights the importance of considering animal behaviour in movement studies. The ability to reprocess Argos data collected since 2008 with the new algorithm should permit questions of animal movement to be revisited at a finer resolution.

  19. WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutions were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly

  20. WE-G-BRA-04: Common Errors and Deficiencies in Radiation Oncology Practice

    International Nuclear Information System (INIS)

    Kry, S; Dromgoole, L; Alvarez, P; Lowenstein, J; Molineu, A; Taylor, P; Followill, D

    2015-01-01

    Purpose: Dosimetric errors in radiotherapy dose delivery lead to suboptimal treatments and outcomes. This work reviews the frequency and severity of dosimetric and programmatic errors identified by on-site audits performed by the IROC Houston QA center. Methods: IROC Houston on-site audits evaluate absolute beam calibration, relative dosimetry data compared to the treatment planning system data, and processes such as machine QA. Audits conducted from 2000-present were abstracted for recommendations, including type of recommendation and magnitude of error when applicable. Dosimetric recommendations corresponded to absolute dose errors >3% and relative dosimetry errors >2%. On-site audits of 1020 accelerators at 409 institutions were reviewed. Results: A total of 1280 recommendations were made (average 3.1/institution). The most common recommendation was for inadequate QA procedures per TG-40 and/or TG-142 (82% of institutions) with the most commonly noted deficiency being x-ray and electron off-axis constancy versus gantry angle. Dosimetrically, the most common errors in relative dosimetry were in small-field output factors (59% of institutions), wedge factors (33% of institutions), off-axis factors (21% of institutions), and photon PDD (18% of institutions). Errors in calibration were also problematic: 20% of institutions had an error in electron beam calibration, 8% had an error in photon beam calibration, and 7% had an error in brachytherapy source calibration. Almost all types of data reviewed included errors up to 7% although 20 institutions had errors in excess of 10%, and 5 had errors in excess of 20%. The frequency of electron calibration errors decreased significantly with time, but all other errors show non-significant changes. Conclusion: There are many common and often serious errors made during the establishment and maintenance of a radiotherapy program that can be identified through independent peer review. Physicists should be cautious, particularly

  1. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  2. Human error theory: relevance to nurse management.

    Science.gov (United States)

    Armitage, Gerry

    2009-03-01

    Describe, discuss and critically appraise human error theory and consider its relevance for nurse managers. Healthcare errors are a persistent threat to patient safety. Effective risk management and clinical governance depends on understanding the nature of error. This paper draws upon a wide literature from published works, largely from the field of cognitive psychology and human factors. Although the content of this paper is pertinent to any healthcare professional; it is written primarily for nurse managers. Error is inevitable. Causation is often attributed to individuals, yet causation in complex environments such as healthcare is predominantly multi-factorial. Individual performance is affected by the tendency to develop prepacked solutions and attention deficits, which can in turn be related to local conditions and systems or latent failures. Blame is often inappropriate. Defences should be constructed in the light of these considerations and to promote error wisdom and organizational resilience. Managing and learning from error is seen as a priority in the British National Health Service (NHS), this can be better achieved with an understanding of the roots, nature and consequences of error. Such an understanding can provide a helpful framework for a range of risk management activities.

  3. Increased error-related brain activity distinguishes generalized anxiety disorder with and without comorbid major depressive disorder.

    Science.gov (United States)

    Weinberg, Anna; Klein, Daniel N; Hajcak, Greg

    2012-11-01

    Generalized anxiety disorder (GAD) and major depressive disorder (MDD) are so frequently comorbid that some have suggested that the 2 should be collapsed into a single overarching "distress" disorder. Yet there is also increasing evidence that the 2 categories are not redundant. Neurobehavioral markers that differentiate GAD and MDD would be helpful in ongoing efforts to refine classification schemes based on neurobiological measures. The error-related negativity (ERN) may be one such marker. The ERN is an event-related potential component presenting as a negative deflection approximately 50 ms following an erroneous response and reflects activity of the anterior cingulate cortex. There is evidence for an enhanced ERN in individuals with GAD, but the literature in MDD is mixed. The present study measured the ERN in 26 GAD, 23 comorbid GAD and MDD, and 36 control participants, all of whom were female and medication-free. Consistent with previous research, the GAD group was characterized by a larger ERN and an increased difference between error and correct trials than controls. No such enhancement was evident in the comorbid group, suggesting comorbid depression may moderate the relationship between the ERN and anxiety. The present study further suggests that the ERN is a potentially useful neurobiological marker for future studies that consider the pathophysiology of multiple disorders in order to construct or refine neurobiologically based diagnostic phenotypes. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  4. Random measurement error: Why worry? An example of cardiovascular risk factors.

    Directory of Open Access Journals (Sweden)

    Timo B Brakenhoff

    Full Text Available With the increased use of data not originally recorded for research, such as routine care data (or 'big data', measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate. For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  5. Medication errors as malpractice-a qualitative content analysis of 585 medication errors by nurses in Sweden.

    Science.gov (United States)

    Björkstén, Karin Sparring; Bergqvist, Monica; Andersén-Karlsson, Eva; Benson, Lina; Ulfvarson, Johanna

    2016-08-24

    Many studies address the prevalence of medication errors but few address medication errors serious enough to be regarded as malpractice. Other studies have analyzed the individual and system contributory factor leading to a medication error. Nurses have a key role in medication administration, and there are contradictory reports on the nurses' work experience in relation to the risk and type for medication errors. All medication errors where a nurse was held responsible for malpractice (n = 585) during 11 years in Sweden were included. A qualitative content analysis and classification according to the type and the individual and system contributory factors was made. In order to test for possible differences between nurses' work experience and associations within and between the errors and contributory factors, Fisher's exact test was used, and Cohen's kappa (k) was performed to estimate the magnitude and direction of the associations. There were a total of 613 medication errors in the 585 cases, the most common being "Wrong dose" (41 %), "Wrong patient" (13 %) and "Omission of drug" (12 %). In 95 % of the cases, an average of 1.4 individual contributory factors was found; the most common being "Negligence, forgetfulness or lack of attentiveness" (68 %), "Proper protocol not followed" (25 %), "Lack of knowledge" (13 %) and "Practice beyond scope" (12 %). In 78 % of the cases, an average of 1.7 system contributory factors was found; the most common being "Role overload" (36 %), "Unclear communication or orders" (30 %) and "Lack of adequate access to guidelines or unclear organisational routines" (30 %). The errors "Wrong patient due to mix-up of patients" and "Wrong route" and the contributory factors "Lack of knowledge" and "Negligence, forgetfulness or lack of attentiveness" were more common in less experienced nurses. The experienced nurses were more prone to "Practice beyond scope of practice" and to make errors in spite of "Lack of adequate

  6. A phantom-based study for assessing the error and uncertainty of a neuronavigation system

    OpenAIRE

    Natalia Izquierdo-Cifuentes; Genaro Daza-Santacoloma; Walter Serna-Serna

    2017-01-01

    This document describes a calibration protocol with the intention to introduce a guide to standardize the metrological vocabulary among manufacturers of image-guided surgery systems. Two stages were developed to measure the errors and estimate the uncertainty of a neuronavigator in different situations, on the first one it was determined a mechanical error on a virtual model of an acrylic phantom, on the second it was determined a coordinate error on the computerized axial tomography scan of ...

  7. Large errors and severe conditions

    CERN Document Server

    Smith, D L; Van Wormer, L A

    2002-01-01

    Physical parameters that can assume real-number values over a continuous range are generally represented by inherently positive random variables. However, if the uncertainties in these parameters are significant (large errors), conventional means of representing and manipulating the associated variables can lead to erroneous results. Instead, all analyses involving them must be conducted in a probabilistic framework. Several issues must be considered: First, non-linear functional relations between primary and derived variables may lead to significant 'error amplification' (severe conditions). Second, the commonly used normal (Gaussian) probability distribution must be replaced by a more appropriate function that avoids the occurrence of negative sampling results. Third, both primary random variables and those derived through well-defined functions must be dealt with entirely in terms of their probability distributions. Parameter 'values' and 'errors' should be interpreted as specific moments of these probabil...

  8. ERRORS AND FRAUD IN ACCOUNTING. THE ROLE OF EXTERNAL AUDIT IN FIGHTING CORRUPTION

    Directory of Open Access Journals (Sweden)

    Luminita Ionescu

    2017-12-01

    Full Text Available Accounting errors and fraud are common in most businesses, but there is a difference between fraud and misinterpretation of communication or accounting regulations. The role of management in preventing fraud becomes important in the last decades and the importance of auditing in curbing corruption is increasingly revealed. There is a strong connection between fraud and corruption, accelerated by electronic systems and modern platforms. The most recent developments tend to confirm that external auditing is curbing corruption, due to international accounting and auditing standards at national and regional levels. Thus, a better implementation of accounting standards and high quality of external control could prevent errors and fraud in accounting, and reduce corruption, as well. The aim of this paper is to present some particular aspects of errors and fraud in accounting, and how external audit could ensure accuracy and accountability in financial reporting.

  9. Human errors evaluation for muster in emergency situations applying human error probability index (HEPI, in the oil company warehouse in Hamadan City

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Introduction: Emergency situation is one of the influencing factors on human error. The aim of this research was purpose to evaluate human error in emergency situation of fire and explosion at the oil company warehouse in Hamadan city applying human error probability index (HEPI. . Material and Method: First, the scenario of emergency situation of those situation of fire and explosion at the oil company warehouse was designed and then maneuver against, was performed. The scaled questionnaire of muster for the maneuver was completed in the next stage. Collected data were analyzed to calculate the probability success for the 18 actions required in an emergency situation from starting point of the muster until the latest action to temporary sheltersafe. .Result: The result showed that the highest probability of error occurrence was related to make safe workplace (evaluation phase with 32.4 % and lowest probability of occurrence error in detection alarm (awareness phase with 1.8 %, probability. The highest severity of error was in the evaluation phase and the lowest severity of error was in the awareness and recovery phase. Maximum risk level was related to the evaluating exit routes and selecting one route and choosy another exit route and minimum risk level was related to the four evaluation phases. . Conclusion: To reduce the risk of reaction in the exit phases of an emergency situation, the following actions are recommended, based on the finding in this study: A periodic evaluation of the exit phase and modifying them if necessary, conducting more maneuvers and analyzing this results along with a sufficient feedback to the employees.

  10. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  11. Prescription Writing Errors of Midwifery Students in Common Gynecological problems

    Directory of Open Access Journals (Sweden)

    Serveh Parang

    2014-04-01

    Full Text Available Background and aim: Giving improper prescriptions is common among medical practitioners, mostly graduates, in most communities even developed countries. So far, to our knowledge, no study has been conducted on prescription writing of graduate midwifery students. Therefore, this study aimed to detect prescription writing errors of midwifery students in common gynecological problems. Methods: In this descriptive cross-sectional study, 56 bachelor midwifery students, who had passed the theoretical and clinical courses of gynecology, were evaluated by Objective Structured Clinical Examination (OSCE. A demographic questionnaire and a standard checklist for writing the prescriptions and medications were used for data collection. SPSS Version 16 was used to carry out descriptive statistics. Findings: Most of the students were single, with the mean age of 23.0±1.7 years. Most errors were related to not recording the patients’ age and sex, diagnosis, chief complaint, and the prescriber’s name (observed in less than 10% of the prescriptions. The complete dosage schedule and drug name were stated only in 1.8±4.8 and 14±18.6 of prescriptions, respectively. In more than 93% of the cases, route of use and treatment duration were not recorded. Conclusion: According to the results, the number of prescription errors of midwifery students was high. Therefore, it is recommended to run educational courses on prescription writing skills (e.g. writing prescriptions based on World Health Organization (WHO guidelines for the midwifery students.

  12. Stereochemical errors and their implications for molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Freddolino Peter L

    2011-05-01

    Full Text Available Abstract Background Biological molecules are often asymmetric with respect to stereochemistry, and correct stereochemistry is essential to their function. Molecular dynamics simulations of biomolecules have increasingly become an integral part of biophysical research. However, stereochemical errors in biomolecular structures can have a dramatic impact on the results of simulations. Results Here we illustrate the effects that chirality and peptide bond configuration flips may have on the secondary structure of proteins throughout a simulation. We also analyze the most common sources of stereochemical errors in biomolecular structures and present software tools to identify, correct, and prevent stereochemical errors in molecular dynamics simulations of biomolecules. Conclusions Use of the tools presented here should become a standard step in the preparation of biomolecular simulations and in the generation of predicted structural models for proteins and nucleic acids.

  13. Effects of errors on the dynamic aperture of the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Bizek, H.; Crosbie, E.; Lessner, E.; Teng, L.; Wirsbinski, J.

    1991-01-01

    The individual tolerance limits for alignment errors and magnet fabrication errors in the 7-GeV Advanced Photon Source storage ring are determined by computer-simulated tracking. Limits are established for dipole strength and roll errors, quadrupole strength and alignment errors, sextupole strength and alignment errors, as well as higher order multipole strengths in dipole and quadrupole magnets. The effects of girder misalignments on the dynamic aperture are also studied. Computer simulations are obtained with the tracking program RACETRACK, with errors introduced from a user-defined Gaussian distribution, truncated at ±5 standard deviation units. For each error, the average and rms spread of the stable amplitudes are determined for ten distinct machines, defined as ten different seeds to the random distribution, and for five distinct initial directions of the tracking particle. 4 refs., 4 figs., 1 tab

  14. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  15. Measurement of the magnetic field errors on TCV

    International Nuclear Information System (INIS)

    Piras, F.; Moret, J.-M.; Rossel, J.X.

    2010-01-01

    A set of 24 saddle loops is used on the Tokamak a Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge. Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.

  16. Larger error signals in major depression are associated with better avoidance learning

    Directory of Open Access Journals (Sweden)

    James F eCavanagh

    2011-11-01

    Full Text Available The medial prefrontal cortex (mPFC is particularly reactive to signals of error, punishment, and conflict in the service of behavioral adaptation and it is consistently implicated in the etiology of Major Depressive Disorder (MDD. This association makes conceptual sense, given that MDD has been associated with hyper-reactivity in neural systems associated with punishment processing. Yet in practice, depression-related variance in measures of mPFC functioning often fails to relate to performance. For example, neuroelectric reflections of mediofrontal error signals are often found to be larger in MDD, but a deficit in post-error performance suggests that these error signals are not being used to rapidly adapt behavior. Thus, it remains unknown if depression-related variance in error signals reflects a meaningful alteration in the use of error or punishment information. However, larger mediofrontal error signals have also been related to another behavioral tendency: increased accuracy in avoidance learning. The integrity of this error-avoidance system remains untested in MDD. In this study, EEG was recorded as 21 symptomatic, drug-free participants with current or past MDD and 24 control participants performed a probabilistic reinforcement learning task. Depressed participants had larger mPFC EEG responses to error feedback than controls. The direct relationship between error signal amplitudes and avoidance learning accuracy was replicated. Crucially, this relationship was stronger in depressed participants for high conflict lose-lose situations, demonstrating a selective alteration of avoidance learning. This investigation provided evidence that larger error signal amplitudes in depression are associated with increased avoidance learning, identifying a candidate mechanistic model for hypersensitivity to negative outcomes in depression.

  17. Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Hansen, Ase Marie; Kristiansen, Jesper

    2004-01-01

    When measuring biomarkers in urine, volume (and time) or concentration of creatinine are both accepted methods of standardization for diuresis. Both types of standardization contribute uncertainty to the final result. The aim of the present paper was to compare the uncertainty introduced when usi...... increase in convenience for the participants, when collecting small volumes rather than complete 24 h samples....... the two types of standardization on 24 h samples from healthy individuals. Estimates of uncertainties were based on results from the literature supplemented with data from our own studies. Only the difference in uncertainty related to the two standardization methods was evaluated. It was found...... that the uncertainty associated with creatinine standardization (19-35%) was higher than the uncertainty related to volume standardization (up to 10%, when not correcting for deviations from 24 h) for 24 h urine samples. However, volume standardization introduced an average bias of 4% due to missed volumes...

  18. Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target.

    Science.gov (United States)

    Muralikrishnan, Bala; Rachakonda, Prem; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel; Cheok, Geraldine; Cournoyer, Luc

    2017-12-01

    Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud by measuring the range and two angles to a point. The fundamental measurement of a TLS is range. Relative range error is one component of the overall range error of TLS and its estimation is therefore an important aspect in establishing metrological traceability of measurements performed using these systems. Target geometry is an important aspect to consider when realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a plate target for the relative range tests. While a plate target may reasonably be expected to produce distortion free data even at far distances, the target itself needs careful alignment at each of the relative range test positions. In this paper, we discuss relative range experiments performed using a plate target and then address the advantages and limitations of using a sphere target. We then present a novel dual-sphere-plate target that draws from the advantages of the sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate target are used simply as fiducials to identify a point on the surface of the plate that is common to both the scanner and the reference instrument, thus overcoming the need to carefully align the target.

  19. Error monitoring and empathy: Explorations within a neurophysiological context.

    Science.gov (United States)

    Amiruddin, Azhani; Fueggle, Simone N; Nguyen, An T; Gignac, Gilles E; Clunies-Ross, Karen L; Fox, Allison M

    2017-06-01

    Past literature has proposed that empathy consists of two components: cognitive and affective empathy. Error monitoring mechanisms indexed by the error-related negativity (ERN) have been associated with empathy. Studies have found that a larger ERN is associated with higher levels of empathy. We aimed to expand upon previous work by investigating how error monitoring relates to the independent theoretical domains of cognitive and affective empathy. Study 1 (N = 24) explored the relationship between error monitoring mechanisms and subcomponents of empathy using the Questionnaire of Cognitive and Affective Empathy and found no relationship. Study 2 (N = 38) explored the relationship between the error monitoring mechanisms and overall empathy. Contrary to past findings, there was no evidence to support a relationship between error monitoring mechanisms and scores on empathy measures. A subsequent meta-analysis (Study 3, N = 125) summarizing the relationship across previously published studies together with the two studies reported in the current paper indicated that overall there was no significant association between ERN and empathy and that there was significant heterogeneity across studies. Future investigations exploring the potential variables that may moderate these relationships are discussed. © 2017 Society for Psychophysiological Research.

  20. Lessons learned in streamlining the preparation of SNM standard solutions

    International Nuclear Information System (INIS)

    Clark, J.P.; Johnson, S.R.

    1986-01-01

    Improved safeguard measurements have produced a demand for greater quantities of reliable SNM solution standards. At the Savannah River Plant (SRP), the demand for these standards has been met by several innovations to improve the productivity and reliability of standards preparations. With the use of computer controlled balance, large batches of SNM stock solutions are prepared on a gravimetric basis. Accurately dispensed quantities of the stock solution are weighed and stored in bottles. When needed, they are quantitatively transferred to tared containers, matrix adjusted to target concentrations, weighed, and measured for density at 25 0 C. Concentrations of SNM are calculated both gravimetrically and volumetrically. Calculated values are confirmed analytically before the standards are used in measurement control program (MCP) activities. The lessons learned include: MCP goals include error identification and management. Strategy modifications are required to improve error management. Administrative controls can minimize certain types of errors. Automation can eliminate redundancy and streamline preparations. Prudence and simplicity enhance automation success. The effort expended to increase productivity has increased the reliability of standards and provided better documentation for quality assurance