WorldWideScience

Sample records for relative root length

  1. Changes in root lengths of maxillary incisors during orthodontic retention period

    Directory of Open Access Journals (Sweden)

    Ravanmehr H

    2006-01-01

    Full Text Available Background and Aim: External apical root resorption is a common iatrogenic consequence of orthodontic treatment. Much controversy exists in the literature about changes in root lengths at post treatment periods. Although many practitioners believe that resorption becomes stable after active treatment, quantitative data are scarce. The purpose of this study was to determine quantitative changes in root lengths of maxillary incisors during fixed orthodontic post treatment period, and to assess if it is influenced by gender and factors related to active treatment. Materials and Methods: This was a case cross over study, performed on 80 patients (52 females and 28 males aged between 13 and 22 years. At debonding stage and beginning of retention phase of fixed orthodontic treatment, Hawley type retainer was fabricated for maxillary arch. Periapical radiographs of maxillary incisors using standard parallel technique were obtained immediately after debonding, and 3 and 7 months later. Crown and root lengths of maxillary incisors were measured using computer program. Changes in root lengths were calculated considering correction factors. Also associations between some factors and the change in root lengths during post treatment periods were assessed. These included gender, type of treatment plan (non extraction/extraction, technique (standard edgewise/straight-wire edgewise and duration of active treatment (less than 2 years/2 years and more. T-test and 4-way ANOVA were used for statistical analysis with P0.05 as the limit of significance. Results: No significant relation was found between apical root resorption of maxillary central incisors and time elapsed after treatment. Significant relation was observed between apical root resorption of maxillary lateral incisors and the length of post treatment period. No significant relation was found between root length changes of maxillary incisors during post treatment period and gender, type of treatment

  2. Radiographic versus electronic root canal working length determination

    Directory of Open Access Journals (Sweden)

    Lumnije Kqiku

    2011-01-01

    Conclusions: The present ex vivo study showed that electronic root canal working length determination is not superior to radiographic methods. Both methods provided a good performance in determining the root canal working length.

  3. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  4. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    Science.gov (United States)

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  5. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice

    Directory of Open Access Journals (Sweden)

    Yuka Kitomi

    2018-02-01

    Full Text Available The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs for maximal root length, QUICK ROOTING 1 (QRO1 on chromosome 2 and QRO2 on chromosome 6, in cultivated rice (Oryza sativa L.. We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC4F2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC4F3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice.

  6. Sample preparation and scanning protocol for computerised analysis of root length and diameter

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Koutstaal, B.P.

    2000-01-01

    Root length and diameter distribution are important characteristics to be considered when describing and comparing root systems. Root length and root-diameter distribution may be obtained in two ways: by microscopical measurements, which are laborious, or by computerised analysis, which is fast but

  7. Working Length Determination of Root Canal of Young Permanent ...

    African Journals Online (AJOL)

    Working Length Determination of Root Canal of Young Permanent Tooth: An In Vitro Study. A Diwanji, AS Rathore, R Arora, V Dhar, A Madhusudan, J Doshi. Abstract. Background: Determination of correct working length is one of the keys to success in endodontic therapy. Aim: The aim of this study was to evaluate the ...

  8. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis.

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of 'Yangdao 6' was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments.

  9. Root Length and Anatomy of Impacted Maxillary Canines in Patients with Unilateral Maxillary Canine Impaction

    Directory of Open Access Journals (Sweden)

    Mostfa Shahabi

    2017-09-01

    Full Text Available Introduction: Canine impaction is a common occurrence. In this study, we sought to investigate the root anatomy and length of impacted canines and lateral incisor adjacent to impacted maxillary canine. Materials and Methods: In this retrospective study, three-dimensional tomographic imaging was performed on 26 patients with unilateral maxillary canine impaction. In this study, we evaluated root length and anatomy of impacted canines, in terms of resorption intensity and curvature, with Planmeca Romexis Viewer 4.0. Furthermore, crown shape as well as root length and anatomy of the lateral incisors adjacent to impacted canines were investigated and compared with the other side on the dental arch, where canine eruption was normal. Results: Root length of impacted canines was significantly lower than that of normal canines (P=0.011. There were no significant differences between root length of lateral incisors adjacent to impacted canines and root length of lateral incisors adjacent to normal canines (P=0.221. Moreover, the resorption intensity of the adjacent lateral incisors was higher than that of the impacted canines. No significant differences were noted in root resorption intensity between the lateral incisors adjacent to the imacted canines and the lateral incisors adjacent to normal canines (P=0.36. In addition, resorption intensity was significantly higher in impacted canines than in normal canines (P=0.024. Root anatomy of impacted canines was not significantly different from that of normal canines (P=0.055. The crown shape of the lateral incisors adjacent to impacted canines was not significantly different from that of the lateral incisors adjacent to normal canines (P=0.052. Conclusion: Impaction can probably affect root length and canine resorption severity. However, root and crown shape of lateral incisors cannot always be associated with canine impaction.

  10. Quantitative Classification of Rice (Oryza sativa L.) Root Length and Diameter Using Image Analysis

    Science.gov (United States)

    Gu, Dongxiang; Zhen, Fengxian; Hannaway, David B.; Zhu, Yan; Liu, Leilei; Cao, Weixing; Tang, Liang

    2017-01-01

    Quantitative study of root morphological characteristics of plants is helpful for understanding the relationships between their morphology and function. However, few studies and little detailed and accurate information of root characteristics were reported in fine-rooted plants like rice (Oryza sativa L.). The aims of this study were to quantitatively classify fine lateral roots (FLRs), thick lateral roots (TLRs), and nodal roots (NRs) and analyze their dynamics of mean diameter (MD), lengths and surface area percentage with growth stages in rice plant. Pot experiments were carried out during three years with three rice cultivars, three nitrogen (N) rates and three water regimes. In cultivar experiment, among the three cultivars, root length of ‘Yangdao 6’ was longest, while the MD of its FLR was the smallest, and the mean diameters for TLR and NR were the largest, the surface area percentage (SAP) of TLRs (SAPT) was the highest, indicating that Yangdao 6 has better nitrogen and water uptake ability. High N rate increased the length of different types of roots and increased the MD of lateral roots, decreased the SAP of FLRs (SAPF) and TLRs, but increased the SAP of NRs (SAPN). Moderate decrease of water supply increased root length and diameter, water stress increased the SAPF and SAPT, but decreased SAPN. The quantitative results indicate that rice plant tends to increase lateral roots to get more surface area for nitrogen and water uptake when available assimilates are limiting under nitrogen and water stress environments. PMID:28103264

  11. The accuracy of the radiographic method in root canal length measurement

    International Nuclear Information System (INIS)

    Jo, Eun Young; Park, Chang Seo

    1998-01-01

    For the successful endodontic treatment, root canal should be cleaned thoroughly by accurate mechanical and chemical canal preparation and sealed completely with canal filling material without damaging the periapical tissues. The accuracy of the root canal length measurement is a prerequisite for the success of the endodontic treatment, and the root canal length is often determined by the standard periapical radiographs and digital tactile sense. In this study, the accuracy and the clinical usefulness of Digora, an intraoral digital imaging processor and the conventional standard radiographs were compared by measuring the length from the top of the file to the root apex. 30 single rooted premolars were invested in a uniformly sized blocks and No.25 K-file was inserted into and fixed in each canal. Each block was placed in equal distance and position to satisfy the principle of the bisecting angle and paralleling techniques and Digora system's image and standard periapical radiographs were taken. Each radiograph was examined by 3 different observers by measuring the length from top of the file to the root apex and each data was compared and analyzed. The results were as follows; 1. In the bisecting angle technique, the average difference between the Digora system and standard periapical radiograph was 0.002 mm and the standard deviation was 0.341 mm which showed no statistically significant difference between the two systems (p>0.05). Also, in the paralleling technique, the average difference between these two system was 0.007 mm and the standard deviation was 0.323 mm which showed no statistically significant difference between the two systems (p>0.05). 2. In Digora system, the average difference between the bisecting angle and paralleling technique was -0.336 mm and the standard deviation was 0.472 mm which showed a statistically significant difference between the two techniques (p 0.05). In conclusion, the determination of the root canal length by using the

  12. Accuracy of working length determination with root ZX apex locator ...

    African Journals Online (AJOL)

    The purpose of this study was to clinically compare working length (WL) determination with root ZX apex locator and radiography, and then compare them with direct visualization method ex vivo. A total of 75 maxillary central and lateral incisors were selected. Working length determination was carried out using radiographic ...

  13. Analysis of aneuploid lines of bread wheat to map chromosomal locations of genes controlling root hair length.

    Science.gov (United States)

    Liu, Miao; Rathjen, Tina; Weligama, Kumara; Forrest, Kerrie; Hayden, Matthew; Delhaize, Emmanuel

    2017-06-01

    Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  15. Resorption of lateral incisors during canine eruption: two clinical cases with focus on root length and heredity

    DEFF Research Database (Denmark)

    Zargham, Mostafa; Kjær, Inger

    2016-01-01

    Introduction: It is well-known that pressure from orthodontic appliance can provoke root resorption in dentitions with short roots. The purpose of this case report is to demonstrate two clinical cases with focus on root length in dentitions exposed due to pressure from erupting teeth...... resorption on her lateral incisor roots, extremely short roots in the central incisors, and short roots. The intraoral photos demonstrated light crowding in the maxilla. The orthopantomogram of the girl’s mother demonstrated extremely short roots in general. Conclusion: This pilot study indicates that short...... root length in general and abnormal incisor morphology are phenotypic traits that were characteristic for both girls who presented with severe lateral incisor resorption due to erupting canines. Furthermore, short roots were also demonstrated in the mothers. Accordingly, short root length in general...

  16. The effect of cutting length on the rooting and growth of subtropical ...

    African Journals Online (AJOL)

    The length of a cutting can affect both the rooting and plug colonisation of container-grown stock. Using hedges from conventional clonebanks established in the ground, four cutting length treatments (13, 10, 8 and 5 cm) were tested using five Eucalyptus grandis × E. urophylla clones. The smallest cutting length had the ...

  17. Root length in the permanent teeth of women with an additional X chromosome (47,XXX females).

    Science.gov (United States)

    Lähdesmäki, Raija E; Alvesalo, Lassi J

    2010-07-01

    Previous studies have demonstrated differential effects of the X and Y chromosomes on dental development. The expression of sexual dimorphism in terms of tooth size, shape, number and developmental timing has been explained especially by Y chromosome influence. The Y chromosome promotes enamel, crown and root dentin development. The X chromosome has an effect on enamel deposition. The aim of this research is to study the influence of the extra X chromosome on the development of permanent tooth root length. The study subjects (all of whom were from the Kvantti Dental Research Project) were seven 47,XXX females, five female relatives and 51 and 52 population control men and women, respectively. Measurements were made from panoramic radiographs on available permanent teeth by a digital calliper according to established procedures. The results showed that the maxillary root lengths of the 47,XXX females were of the same magnitude as those in normal women, but the mandibular root lengths were longer in 47,XXX females than in normal men or women. Increased enamel thickness in the teeth of 47,XXX females is apparently caused by the active enamel gene in all X chromosomes having no increased influence on crown dentin formation. These results in 47,XXX females indicate an increase in root dentin development, at least in the mandible, which together with the data on crown formation reflects a continuous long-lasting effect of the X chromosome on dental development.

  18. The Effects of Two Different Deficit Irrigation Managements on the Root Length of Maize

    Directory of Open Access Journals (Sweden)

    M. Gheysari

    2015-06-01

    Full Text Available The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1 and variable irrigation interval-fixed irrigation depth (M2. Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P

  19. Accuracy of two root canal length measurement devices integrated into rotary endodontic motors when removing gutta-percha from root-filled teeth.

    Science.gov (United States)

    Uzun, O; Topuz, O; Tinaz, C; Nekoofar, M H; Dummer, P M H

    2008-09-01

    To evaluate ex vivo the accuracy of the integrated electronic root canal length measurement devices within TCM Endo V and Tri Auto ZX motors whilst removing gutta-percha and sealer from filled root canals. Forty freshly extracted maxillary and mandibular incisor teeth with mature apices were selected. Following access cavity preparation, the length of the root canals were measured visually 0.5 mm short of the major foramen (TL). The canals were prepared using the HERO 642 system and then filled with gutta-percha and AH26 sealer using a lateral compaction technique. After 7 days the coronal temporary filling was removed and the roots mounted in an alginate experimental model. The roots were then randomly divided in two groups. The access cavities were filled with chloroform to soften the gutta-percha and allow its penetration using the Tri Auto ZX and the TCM Endo V devices in groups 1 and 2, respectively. The 'automatic apical reverse function' (ARL) of both devices was set to start at the 0.5 setting and the rotary instrument inserted inside the root canal until a beeping sound was heard and the rotation of the file stopped automatically. Once the auto reverse function had been initiated, the foot pedal of the motor was inactivated and the rubber stop placed against the reference point. The distance between the file tip and rubber stop was measured using a digital calliper to 0.01 mm accuracy (ARL). Then, a size 20, 0.02 taper instrument was attached to each device and inserted into the root canals without rotary motion until the integrated ERCLMDs positioned the instrument tips at the 0.5 setting as suggested by the devices. This length was again measured using a digital calliper (EL). The Mann-Whitney U-test was used to investigate statistical differences between the true canal length and those indicated by the two devices when used in 'automatic ARL and when inserted passively (EL). In the presence of gutta-percha, sealer and chloroform, the auto

  20. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  1. Root Length and Anatomy of Impacted Maxillary Canines in Patients with Unilateral Maxillary Canine Impaction

    OpenAIRE

    Mostfa Shahabi; Maryam Omidkhoda; Seyedeh Haniyeh Omidi; Seyed Hosein Hoseini Zarch

    2017-01-01

    Introduction: Canine impaction is a common occurrence. In this study, we sought to investigate the root anatomy and length of impacted canines and lateral incisor adjacent to impacted maxillary canine. Materials and Methods: In this retrospective study, three-dimensional tomographic imaging was performed on 26 patients with unilateral maxillary canine impaction. In this study, we evaluated root length and anatomy of impacted canines, in terms of resorption intensity and curvature, with Planme...

  2. Resorption of Lateral Incisors during Canine Eruption: Two Clinical Cases with Focus on Root Lengths and Heredity

    Directory of Open Access Journals (Sweden)

    Mostafa Zargham

    2016-01-01

    Full Text Available Introduction: It is well-known that pressure from orthodontic appliance can provoke root resorption in dentitions with short roots. The purpose of this case report is to demonstrate two clinical cases with focus on root length in dentitions exposed due to pressure from erupting teeth. This is a pilot study aimed to improve diagnostics for avoiding the resorption of lateral maxillary incisors by pressure from erupting canines. Case Report: The first reported case is of a girl who was 11 years and 7 months old when radiographs showed severe resorption of the lateral incisors, along with malformed central incisors and short roots. The intraoral photos demonstrated light crowding in the maxilla. The orthopantomogram of the girl’s mother demonstrated several short roots. The second reported case is of a girl who was 9 years and 5 months old when radiographs demonstrated nearly complete resorption on her lateral incisor roots, extremely short roots in the central incisors, and short roots. The intraoral photos demonstrated light crowding in the maxilla. The orthopantomogram of the girl’s mother demonstrated extremely short roots in general. Conclusion: This pilot study indicates that short root length in general and abnormal incisor morphology are phenotypic traits that were characteristic for both girls who presented with severe lateral incisor resorption due to erupting canines. Furthermore, short roots were also demonstrated in the mothers. Accordingly, short root length in general could be a phenotypic trait, which should be diagnosed early for preventing severe resorption of lateral incisors during canine eruption.

  3. The Accuracy of the Digital imaging system and the frequency dependent type apex locator in root canal length measurement

    International Nuclear Information System (INIS)

    Lee, Byoung Rib; Park, Chang Seo

    1998-01-01

    In order to achieve a successful endodontic treatment, root canals must be obturated three-dimensionally without causing any damage to apical tissues. Accurate length determination of the root canal is critical in this case. For this reason, I've used the conventional periapical radiography, Digora (digital imaging system) and Root ZX (the frequency dependent type apex locator) to measure the length of the canal and compare it with the true length obtained by cutting the tooth in half and measuring the length between the occlusal surface and the apical foramen. From the information obtained by these measurements, I was able to evaluate the accuracy and clinical usefulness of each systems, whether the thickness of files used in endodontic therapy has any effect on the measuring systems was also evaluated in an effort to simplify the treatment planning phase of endodontic treatment. 29 canals of 29 sound premolars were measured with no 15, no 20, no 25 files by 3 different dentists each using the periapical radiography, Digora and Root ZX. The measurements were then compared with the true length. The results were as follows ; 1. In comparing mean discrepancies between measurements obtained by using periapical radiography (mean error : -0.449 ± 0.444 mm), Digora (mean error : -0.417 ± 0.415 mm) and Root ZX (mean error : 0.123 ± 0.458 mm) with true length, periapical radiography and Digora system had statistically significant differences (p 0.05). 2. By subtracting values obtained by using periapical radiography, Digora and Root ZX from the true length and making a distribution table of their absolute values, the following analysis was possible. In the case of periapical film, 140 out of 261 (53.6%) were clinically acceptable satisfying the margin of error of less than 0.5 mm, 151 out of 261 (53,6%) were acceptable in the Digora system while Root ZX had 197 out of 261 (75.5%) within the limits of 0.5 mm margin of error. 3. In determining whether the thickness of

  4. Morphological changes in cotton roots in relation to soil mechanical impedance and matric potential

    International Nuclear Information System (INIS)

    Nabi, G.; Mullins, C.E.

    2006-01-01

    Soil mechanical impedance (M1) and matric potential can both root growth rate, modify rooting pattern and root diameter. Cotton seedlings are sensitive to the soil physical environment, particularly during early stages of growth. Soil matric potential and M1 effect on root biomass, axial root length and diameter, and the number and length of lateral roots in soil packed to penetration resistances (PR) of 0.1, 1.0, 1.1 and 1.2 Mpa (mega Pascal 10/sup 6/ Pascal), each at three matric potentials of-10,-100 and -500 kpa (kilopascal ) = 10/sup 3/ Pascal), were determined. Total root length were reduced by 29, 50 and 53% at impedance of 1.0, 1.1 and 1.2 Mpa, respectively, as compared to the control, whereas M1 of 1.2 Mpa resulted in 60% reduction in axial root length. A similar increase in diameter was caused by increasing mechanical impedance, while decreasing matric potential had little effect. Roots that were water stressed did not change their diameter but had a shorter axis and longer lateral length. In contrast, the impeded roots (PR=1.0, 1.1 and 1.2 MPa) had both a shorter axis and a smaller total length, but had increased diameter. These results not only illustrate the plasticity of root response to stress but also demonstrate how the response differs between different types of stresses. (author)

  5. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system.

    Science.gov (United States)

    Li, Xiangwei; Ma, Chi; Xie, Xiaohua; Sun, Hongchen; Liu, Xiaohua

    2016-04-15

    While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific

  6. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass.

    Directory of Open Access Journals (Sweden)

    Jessica A Finch

    Full Text Available The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds. on wheat (Triticum aestivum L. roots was tested, since a low density of this species (25 plants m-2 can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass. A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture.

  7. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass

    Science.gov (United States)

    Finch, Jessica A.; Guillaume, Gaëtan; French, Stephanie A.; Colaço, Renato D. D. R.; Davies, Julia M.

    2017-01-01

    The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.) roots was tested, since a low density of this species (25 plants m-2) can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass). A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture. PMID:28542446

  8. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  9. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation

    Science.gov (United States)

    da SILVA, Aldir Cordeiro; CAPISTRANO, Anderson; de ALMEIDA-PEDRIN, Renata Rodrigues; CARDOSO, Maurício de Almeida; CONTI, Ana Cláudia de Castro Ferreira; CAPELOZZA, Leopoldino

    2017-01-01

    Abstract Objective The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Material and Methods Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (p<0.05). Results There were no statistically significant differences in root length and buccal and palatal bone levels of canines and adjacent teeth among groups. Conclusions Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis. PMID:28198979

  10. The validity of cone-beam computed tomography in measuring root canal length using a gold standard

    NARCIS (Netherlands)

    Liang, Y.H.; Jiang, L.; Chen, C.; Gao, X.J.; Wesselink, P.R.; Wu, M.K.; Shemesh, H.

    2013-01-01

    Introduction The distance between a coronal reference point and the major apical foramen is important for working length determination. The aim of this in vitro study was to determine the accuracy of root canal length measurements performed with cone-beam computed tomographic (CBCT) scans using a

  11. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  12. Soil sheaths, photosynthate distribution to roots, and rhizosphere water relations for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.; North, G.B.; Nobel, P.S. (Univ. of California, Los Angeles, CA (United States))

    1993-09-01

    Soil sheaths incorporating aggregated soil particles surround young roots of many species, but the effects of such sheaths on water movement between roots and the soil are largely unknown. The quantity and location of root exudates associated with soil sheath along the entire length of its young roots, except within 1.4 cm of the tip. The soil sheaths, which average 0.7 mm in thickness, were composed of soil particles and root hairs, both of which were covered with exuded mucilaginous material. As determined with a [sup 14]C pulse-labeling technique, 2% of newly fixed [sup 14]C-photosynthate was translocated into the roots at 3d, 6% at 9 d, and 8% at 15 d after labeling. The fraction of insoluble [sup 14]C in the roots increased twofold from 3 d to 15 d. Over the same time period, 6%-9% of the [sup 14]C translocated to the roots was exuded into the soil. The soluble [sup 14]C compounds exuded into the soil were greater in the 3-cm segment at the root tip than elsewhere along the root, whereas mucilage was exuded relatively uniformly along roots 15 cm in length. The volumetric efflux of water increase for both sheathed and unsheathed roots as the soil water potential decreased form -0.1 MPa to -1.0 MPa. The efflux rate was greater for unsheathed roots than for sheathed roots, which were more turgid and had a higher water potential, especially at lower soil water potentials. During drying, soil particles in the sheaths aggregate more tightly, making the sheaths less permeable to water and possibly creating air gaps. The soil sheaths of O. ficus-indica thus reduce water loss from the roots to a drying soil. 34 refs., 6 figs., 1 tab.

  13. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature.

    Science.gov (United States)

    Aidoo, Moses Kwame; Sherman, Tal; Lazarovitch, Naftali; Fait, Aaron; Rachmilevitch, Shimon

    2017-10-01

    Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism. © 2017 Scandinavian Plant Physiology Society.

  14. Construction Process of the Length of [cube root of 2] by Paper Folding

    Science.gov (United States)

    Guler, Hatice Kubra; Gurbuz, Mustafa Cagri

    2018-01-01

    The main purpose of this study is to investigate mathematics teachers' mathematical thinking process while they are constructing the length of [cube root of 2] by paper folding. To carry out this aim, two teachers--who are PhD. students--were interviewed one by one. During the construction, it was possible to observe the consolidation process of…

  15. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  16. Adult root structure of Mediterranean shrubs: relationship with post-fire regenerative syndrome.

    Science.gov (United States)

    Saura-Mas, S; Lloret, F

    2014-01-01

    Life-history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post-fire regenerative strategies (resprouters, seeders and seeder-resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root-to-shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root-to-shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  18. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    Science.gov (United States)

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.

  19. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  20. Changes of Root Length and Root-to-Crown Ratio after Apical Surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Jensen, Simon S; Bornstein, Michael M

    2015-01-01

    INTRODUCTION: Apical surgery is an important treatment option for teeth with post-treatment periodontitis. Although apical surgery involves root-end resection, no morphometric data are yet available about root-end resection and its impact on the root-to-crown ratio (RCR). The present study assess...

  1. Genetic variation in pea (Pisum sativum L.) demonstrates the importance of root but not shoot C/N ratios in the control of plant morphology and reveals a unique relationship between shoot length and nodulation intensity.

    Science.gov (United States)

    Ludidi, Ndiko N; Pellny, Till K; Kiddle, Guy; Dutilleul, Christelle; Groten, Karin; VAN Heerden, Philippus D R; Dutt, Som; Powers, Stephen J; Römer, Peter; Foyer, Christine H

    2007-10-01

    Nodule numbers are regulated through systemic auto-regulatory signals produced by shoots and roots. The relative effects of shoot and root genotype on nodule numbers together with relationships to organ biomass, carbon (C) and nitrogen (N) status, and related parameters were measured in pea (Pisum sativum) exploiting natural genetic variation in maturity and apparent nodulation intensity. Reciprocal grafting experiments between the early (Athos), intermediate (Phönix) and late (S00182) maturity phenotypes were performed and Pearson's correlation coefficients for the parameters were calculated. No significant correlations were found between shoot C/N ratios and plant morphology parameters, but the root C/N ratio showed a strong correlation with root fresh and dry weights as well as with shoot fresh weight with less significant interactions with leaf number. Hence, the root C/N ratio rather than shoot C/N had a predominant influence on plant morphology when pea plants are grown under conditions of symbiotic nitrogen supply. The only phenotypic characteristic that showed a statistically significant correlation with nodulation intensity was shoot length, which accounted for 68.5% of the variation. A strong linear relationship was demonstrated between shoot length and nodule numbers. Hence, pea nodule numbers are controlled by factors related to shoot extension, but not by shoot or root biomass accumulation, total C or total N. The relationship between shoot length and nodule numbers persisted under field conditions. These results suggest that stem height could be used as a breeding marker for the selection of pea cultivars with high nodule numbers and high seed N contents.

  2. De novo transcriptome analysis of pneumatophores (modified roots in the true mangrove species Avicennia marina and identification of the genes related to root gas exchange

    Directory of Open Access Journals (Sweden)

    Purushothaman Natarajan

    2017-10-01

    Full Text Available Mangroves plants which grow in estuaries naturally tolerate extreme conditions of high salinity (90 ppt and high light intensity. Avicennia marina is a true mangrove tree species with physiological adaptations like modified root system (pneumatophores and salt excretion glands in leaves as its one of the unique features to consider. The pneumatophores are a special type of roots with negative geotropism that project above the water surface or the level of flooded soils [1]. In contact with air these roots develop lenticels, which improve gas exchange between roots and environment [2]. In swamps and wetlands the presence of pneumatophores facilitates oxygen diffusion through the tissues, maintaining levels adequate for cellular respiration [3]. Objective of this study was to perform the whole transcriptome analysis of pneumatophore tissue of A. marina by Illumina sequencing and to identify putative genes involved in process of root gas exchange. We generated 19.73 million of paired-end reads and assembled into 86,856 unigenes with an average length of 772 bp. Further, annotation, tissue specific gene expression and genes related to root gas exchange will be presented.

  3. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  4. Apical root resorption during orthodontic treatment with aligners? A retrospective radiometric study.

    Science.gov (United States)

    Krieger, Elena; Drechsler, Thomas; Schmidtmann, Irene; Jacobs, Collin; Haag, Simeon; Wehrbein, Heinrich

    2013-08-14

    Objective of this study was to investigate the incidence and severity of apical root resorptions (ARR) during orthodontic treatment with aligners. The sample comprised 100 patients (17-75 years of age) with a class I occlusion and anterior crowding before treatment, treated exclusively with aligners (Invisalign®, Align Technologies, Santa Clara, CA, USA). The following teeth were assessed: upper and lower anterior teeth and first molars. Root and crown lengths of a total of 1600 teeth were measured twice in pre- and post-treatment panoramic radiographs. Afterwards, relative changes of the root length during treatment were calculated by a root-crown-ratio taking pre- and post-treatment root and crown lengths into consideration. A reduction of this ratio was considered as a shortening of the initial root length. Additionally, tooth movements of the front teeth were assessed by lateral cephalograms and the 3-dimensonal set up of each patient. All patients had a reduction of the pre-treatment root length with a minimum of two teeth. On average 7.36 teeth per patient were affected. 54% of 1600 measured teeth showed no measurable root reduction. A reduction of >0%-10% of the pre-treatment root length was found in 27.75%, a distinct reduction of >10%-20% in 11.94%. 6.31% of all teeth were affected with a considerable reduction of >20%. We found no statistically significant correlation between relative root length changes and the individual tooth, gender, age or sagittal and vertical orthodontic tooth movement; except for extrusion of upper front teeth, which was considered as not clinical relevant due to the small amount of mean 4% ARR. The present study is the first analyzing ARR in patients with a fully implemented orthodontic treatment with aligners (i.e. resolving anterior crowding). The variety was high and no clinical relevant influence factor could be detected. A minimum of two teeth with a root length reduction was found in every patient. On average, 7.36 teeth

  5. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.

    Science.gov (United States)

    Taylor, Benton N; Strand, Allan E; Cooper, Emily R; Beidler, Katilyn V; Schönholz, Marcos; Pritchard, Seth G

    2014-09-01

    Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest exposed to 14 years of free-air-CO2-enrichment and 6 years of nitrogen (N) fertilization to determine changes in root length, biomass, tissue C : N and mycorrhizal colonization. CO2 fumigation led to greater root length (98%) in unfertilized plots, but root biomass increases under elevated CO2 were only found for roots biomass in N-fertilized plots (19%), but fine root [N] and [C] both increased under N fertilization (29 and 2%, respectively). Mycorrhizal root tip biomass responded positively to CO2 fumigation in unfertilized plots, but was unaffected by CO2 under N fertilization. Changes in fine root [N] and [C] call for further study of the effects of N fertilization on fine root function. Here, we show that the stimulation of pine roots by elevated CO2 persisted after 14 years of fumigation, and that trees did not rely exclusively on increased mycorrhizal associations to acquire greater amounts of required N in CO2-enriched plots. Stimulation of root systems by CO2 enrichment was seen primarily for fine root length rather than biomass. This observation indicates that studies measuring only biomass might overlook shifts in root systems that better reflect treatment effects on the potential for soil resource uptake. These results suggest an increase in fine root exploration as a primary means for acquiring additional soil resources under elevated CO2. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Phylogenetic rooting using minimal ancestor deviation.

    Science.gov (United States)

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  7. Root growth during molar eruption in extant great apes.

    Science.gov (United States)

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes. Copyright (c) 2009 S. Karger AG, Basel.

  8. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  9. Initial root length in wheat is highly correlated with acid soil tolerance in the field

    Directory of Open Access Journals (Sweden)

    Jorge Fernando Pereira

    Full Text Available ABSTRACT: In acid soils, toxic aluminum ions inhibit plant root growth. In order to discriminate aluminum (Al tolerance, trustful screening techniques are required. In this study, 20 wheat cultivars, showing different levels of Al tolerance, were evaluated in a short-term soil experiment to access their relative root length (RRL. Moreover, the alleles of two important genes (TaALMT1 and TaMATE1B for Al tolerance in wheat were discriminated. Both of these genes encode membrane transporters responsible for the efflux of organic acids by the root apices that are thought to confer tolerance by chelating Al. Genotypes showing TaALMT1 alleles V and VI and an insertion at the TaMATE1B promoter were among the ones showing greater RRL. Mechanisms of Al tolerance, which are not associated with organic acid efflux, can be potentially present in two cultivars showing greater RRL among the ones carrying inferior TaALMT1 and TaMATE1B alleles. The RRL data were highly correlated with wheat performance in acid soil at three developmental stages, tillering (r = −0.93, p < 0.001, silking (r = −0.91, p < 0.001 and maturation (r = −0.90, p < 0.001, as well as with the classification index of aluminum toxicity in the field (r = −0.92, p < 0.001. Since the RRL was obtained after only six days of growth and it is highly correlated with plant performance in acid soil under field conditions, the short-term experiment detailed here is an efficient and rapid method for reliable screening of wheat Al tolerance.

  10. Micro-computed Tomographic Analysis of Apical Microcracks before and after Root Canal Preparation by Hand, Rotary, and Reciprocating Instruments at Different Working Lengths.

    Science.gov (United States)

    de Oliveira, Bruna Paloma; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Heck, Richard John; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes

    2017-07-01

    This study aimed to compare apical microcrack formation after root canal shaping by hand, rotary, and reciprocating files at different working lengths using micro-computed tomographic analysis. Sixty mandibular incisors were randomly divided into 6 experimental groups (n = 10) according to the systems and working lengths used for the root canal preparation: ProTaper Universal for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), HyFlex CM (Coltene-Whaledent, Allstetten, Switzerland), and Reciproc (VDW, Munich, Germany) files working at the apical foramen (AF) and 1 mm short of the AF (AF - 1 mm). The teeth were imaged with micro-computed tomographic scanning at an isotropic resolution of 14 μm before and after root canal preparation, and the cross-sectional images generated were assessed to detect microcracks in the apical portion of the roots. Overall, 17 (28.3%) specimens presented microcracks before instrumentation. Apical microcracks were present in 1 (ProTaper Universal for Hand Use), 3 (Hyflex CM), and 2 (Reciproc) specimens when the instrumentation terminated at the AF. When instrumentation was terminated at AF - 1 mm, apical microcracks were detected in 3 (ProTaper Universal for Hand Use) and 4 (Hyflex CM and Reciproc) specimens. All these microcracks detected after root canal preparation were already present before instrumentation, and no new apical microcrack was visualized. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal shaping with ProTaper Universal for Hand Use, HyFlex CM, and Reciproc systems, regardless of the working length, did not produce apical microcracks. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant

  12. effects of different concentrations of auxins on rooting and root

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effect of auxins and their different concentrations on rooting and root ... primary root length and the longest primary root was recorded with the ... ceuticals, lubricants, foods, electrical insulators, .... stem cuttings of jojoba treated with IBA and NAA, .... increasing cell division and enlargement at each.

  13. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size

    Directory of Open Access Journals (Sweden)

    Victoria Figueroa-Bustos

    2018-07-01

    Full Text Available Root system size is a key trait for improving water and nitrogen uptake efficiency in wheat (Triticum aestivum L.. This study aimed (i to characterize the root system and shoot traits of five wheat cultivars with apparent differences in root system size; (ii to evaluate whether the apparent differences in root system size observed at early vegetative stages in a previous semi-hydroponic phenotyping experiment are reflected at later phenological stages in plants grown in soil using large rhizoboxes. The five wheat cultivars were grown in a glasshouse in rhizoboxes filled to 1.0 m with field soil. Phenology and shoot traits were measured and root growth and proliferation were mapped to quantify root length density (RLD, root length per plant, root biomass and specific root length (SRL. Wheat cultivars with large root systems had greater root length, more root biomass and thicker roots, particularly in the top 40 cm, than those with small root systems. Cultivars that reached anthesis later had larger root system sizes than those that reached anthesis earlier. Later anthesis allowed more time for root growth and proliferation. Cultivars with large root systems had 25% more leaf area and biomass than those with small root systems, which presumably reflects high canopy photosynthesis to supply the demand for carbon assimilates to roots. Wheat cultivars with contrasting root system sizes at the onset of tillering (Z2.1 in a semi-hydroponic phenotyping system maintained their size ranking at booting (Z4.5 when grown in soil. Phenology, particularly time to anthesis, was associated with root system size.

  14. Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Zhichao eXu

    2016-02-01

    Full Text Available Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and 4 alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that 6 candidate cytochrome P450s and 5 candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

  15. Shortened of the crown and root lengths of the mandibular permanent molar in beta major thalassemia children

    Directory of Open Access Journals (Sweden)

    Indra Primathena

    2011-07-01

    Full Text Available Beta major thalassemia is a genetically inherited blood disorder due to a genetic mutation on the polypeptide chains of hemoglobin which is manifested in the growth and development of the tooth. The objectives of the investigation were to obtain differences of the crown and root lengths of the mandibular first right side permanent molar between beta major thalassemia children and normal children group at the matching ages of 11 to 13 years old. The descriptive comparative method was used in the study and samples were selected using the purposive sampling technique. Sample numbers, which were obtained using the consecutive sampling technique, consists of 12 children of beta major thalassemia and 12 of normal children at the matching ages of 11 to 13 years. Periapical radiographs of both thalassemia and normal children were administered using the method of Seow and Lai. Data were analyzed using t-test method. The study revealed that the crown and root lengths of the mandibular first right side permanent molar of beta major thalassemia children were shorter than normal children at the ages of 11 to 13 years.

  16. Root distribution pattern and their contribution in photosynthesis and biomass in Jerusalem artichoke under drought

    International Nuclear Information System (INIS)

    Puangbut, D.; Vorasoot, N.

    2018-01-01

    Root length density and rooting depth have been established as drought resistant traits and these could be used as selection criteria for drought resistant genotype in many plant species. However, information on deep rooting and the root distribution pattern of Jerusalem artichoke under drought conditions is not well documented in the literature. The objective of this study was to investigate the root distribution pattern in Jerusalem artichoke genotypes under irrigated and drought conditions. This experiment was conducted within a greenhouse using rhizoboxes. Three Jerusalem artichoke genotypes were tested under two water regimes (irrigated and drought). A 2 × 3 factorial experiment was arranged in a randomized complete block design with three replications over two years. Data were recorded for root traits, photosynthesis and biomass at 30 days after imposing drought. The drought decreased root length, root surface area and root dry weight, while increased the root: shoot ratio, root distribution in the deeper soil and the percentage of root length at deeper in the soil, when compared to the irrigated conditions JA-5 and JA-60 showed high root length in the lower soil profile under drought conditions, indicating these genotypes could be identified as drought resistant genotype. The highest positive correlation was found between root length at deeper soil layer with relative water content (RWC), net photosynthetic rate (Pn) and biomass. It is expected that selection of Jerusalem artichoke with high root length coupled with maintaining high RWC and their promotion to Pn could improve the biomass and tuber yield under drought conditions. (author)

  17. Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.

    Science.gov (United States)

    Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C

    2016-05-20

    Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    Science.gov (United States)

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  19. Three-dimensional anatomy of equine incisors: tooth length, enamel cover and age related changes

    Science.gov (United States)

    2013-01-01

    Background Equine incisors are subjected to continuous occlusal wear causing multiple, age related changes of the extragingival crown. It is assumed that the occlusal wear is compensated by continued tooth elongation at the apical ends of the teeth. In this study, μCT-datasets offered the opportunity to analyze the three-dimensional appearance of the extra- and intraalveolar parts of the enamel containing dental crown as well as of the enamel-free dental root. Multiple morphometric measurements elucidated age related, morphological changes within the intraalveolar part of the incisors. Results Equine incisors possess a unique enamel cover displaying large indentations on the mesial and distal sides. After eruption tooth elongation at the apical end outbalances occlusal wear for two to four years resulting in increasing incisor length in this period of time. Remarkably, this maximum length is maintained for about ten years, up to a tooth age of 13 to 15 years post eruption. Variances in the total length of individual teeth are related to different Triadan positions (central-, middle- and corner incisors) as well as to the upper and lower arcades. Conclusion Equine incisors are able to fully compensate occlusal wear for a limited period of time. However, after this ability ceases, it is expected that a diminished intraalveolar tooth length will cause massive changes in periodontal biomechanics. The time point of these morphodynamic and biomechanical changes (13 to 15 years post eruption) occurs in coincidence with the onset of a recently described destructive disease of equine incisor (equine odontoclastic tooth resorption and hypercementosis) in aged horses. However, further biomechanical, cell biological and microbiological investigations are needed to elucidate a correlation between age related changes of incisor morphology and this disease. PMID:24321365

  20. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Science.gov (United States)

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  1. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    Science.gov (United States)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  3. Factors affecting root curvature of mandibular first molar

    International Nuclear Information System (INIS)

    Choi, Hang Moon; Yi, Won Jin; Heo, Min Suk; Kim, Jung Hwa; Choi, Soon Chul; Park, Tae Won

    2006-01-01

    To find the cause of root curvature by use of panoramic and lateral cephalometric radiograph. Twenty six 1st graders whose mandibular 1st molars just emerged into the mouth were selected. Panoramic and lateral cephalometric radiograph were taken at grade 1 and 6, longitudinally. In cephalometric radio graph, mandibular plane angle, ramus-occlusal place angle, gonial angle, and gonion-gnathion distance(Go-Gn distance) were measured. In panoramic radiograph, elongated root length and root angle were measured by means of digital subtraction radiography. Occlusal plane-tooth axis angle was measured, too. Pearson correlations were used to evaluate the relationships between root curvature and elongated length and longitudinal variations of all variables. Multiple regression equation using related variables was computed. The pearson correlation coefficient between curved angle and longitudinal variations of occlusal plane-tooth axis angle and ramus-occlusal plane angle was 0.350 and 0.401, respectively (p 1 +0.745X 2 (Y: root angle, X 1 : variation of occlusal plane-tooth axis angle, X 2 : variation of ramus-occlusal plane angle). It was suspected that the reasons of root curvature were change of tooth axis caused by contact with 2nd deciduous tooth and amount of mesial and superior movement related to change of occlusal plane

  4. LINK BETWEEN SKELETAL RELATIONS AND ROOT RESORPTION IN ORTHODONTIC PATIENTS

    Directory of Open Access Journals (Sweden)

    Cristina Teodora Preoteasa

    2011-09-01

    Full Text Available External root resorption is one of the possible complications of the orthodontic treatment, severe cases presenting a higher frequency. The aim of the present study was to test the existence of a relation between the severity of root resorption and the sagittal or vertical skeletal relations. A cross-sectional study was conducted on a group of 55 patients with fixed orthodontic devices, applied bimaxillarily for at least 6 months. The sample presented mostly mild or moderate apical root resorption, with an average value of 1.31 mm (standard deviation 0.60. Patients with abnormal sagittal skeletal relations presented a more severe root resorption compared to those with a normal pattern. The tendency towards more severe external root resorption was also noticed in cases with mandibular clockwise rotation and hiperdivergent facial pattern. A good knowledge on the variables associated to severe root resorption is essential for the identification of the high risk patients, as well as for the selection of the best suited treatment alternative in terms of low probability of root resorption occurrence.

  5. Public-domain software for root image analysis

    Directory of Open Access Journals (Sweden)

    Mirian Cristina Gomes Costa

    2014-10-01

    Full Text Available In the search for high efficiency in root studies, computational systems have been developed to analyze digital images. ImageJ and Safira are public-domain systems that may be used for image analysis of washed roots. However, differences in root properties measured using ImageJ and Safira are supposed. This study compared values of root length and surface area obtained with public-domain systems with values obtained by a reference method. Root samples were collected in a banana plantation in an area of a shallower Typic Carbonatic Haplic Cambisol (CXk, and an area of a deeper Typic Haplic Ta Eutrophic Cambisol (CXve, at six depths in five replications. Root images were digitized and the systems ImageJ and Safira used to determine root length and surface area. The line-intersect method modified by Tennant was used as reference; values of root length and surface area measured with the different systems were analyzed by Pearson's correlation coefficient and compared by the confidence interval and t-test. Both systems ImageJ and Safira had positive correlation coefficients with the reference method for root length and surface area data in CXk and CXve. The correlation coefficient ranged from 0.54 to 0.80, with lowest value observed for ImageJ in the measurement of surface area of roots sampled in CXve. The IC (95 % revealed that root length measurements with Safira did not differ from that with the reference method in CXk (-77.3 to 244.0 mm. Regarding surface area measurements, Safira did not differ from the reference method for samples collected in CXk (-530.6 to 565.8 mm² as well as in CXve (-4231 to 612.1 mm². However, measurements with ImageJ were different from those obtained by the reference method, underestimating length and surface area in samples collected in CXk and CXve. Both ImageJ and Safira allow an identification of increases or decreases in root length and surface area. However, Safira results for root length and surface area are

  6. Incidence and severity of root resorption in orthodontically moved premolars in dogs.

    Science.gov (United States)

    Maltha, J C; van Leeuwen, E J; Dijkman, G E H M; Kuijpers-Jagtman, A M

    2004-05-01

    To study treatment-related factors for external root resorption during orthodontic tooth movement. An experimental animal study. Department of Orthodontics and Oral Biology, University Medical Centre Nijmegen, The Netherlands. Twenty-four young adult beagle dogs. Mandibular premolars were bodily moved with continuous or intermittent controlled orthodontic forces of 10, 25, 50, 100, or 200 cN according to standardized protocols. At different points in time histomorphometry was performed to determine the severity of root resorption. Prevalence of root resorptions, defined as microscopically visible resorption lacunae in the dentin. Severity of resorption was defined by the length, relative length, depth, and surface area of each resorption area. The incidence of root resorption increased with the duration of force application. After 14-17 weeks of force application root resorption was found at 94% of the root surfaces at pressure sides. The effect of force magnitude on the severity of root resorption was not statistically significant. The severity of root resorption was highly related to the force regimen. Continuous forces caused significantly more severe root resorption than intermittent forces. A strong correlation (0.60 < r < 0.68) was found between the amount of tooth movement and the severity of root resorption. Root resorption increases with the duration of force application. The more teeth are displaced, the more root resorption will occur. Intermittent forces cause less severe root resorption than continuous forces, and force magnitude is probably not decisive for root resorption.

  7. [Alveolar bone thickness and root length changes in the treatment of skeletal Class III patients facilitated by improved corticotomy: a cone-beam CT analysis].

    Science.gov (United States)

    Wu, Jiaqi; Jiang, Jiuhui; Xu, Li; Liang, Cheng; Li, Cuiying; Xu, Xiao

    2015-04-01

    To evaluate the alveolar bone thickness and root length changes of anterior teeth with cone-beam computed tomography (CBCT). CBCT scans were taken for 12 skeletal Class III patients who accepted the improved corticotomy (IC) procedures during pre-surgical orthodontics. The CBCT data in T1 (the maxillary dental arch was aligned and leveled) and T2 (extraction space closure) were superimposed and the alveolar bone thickness at root apex level and root length measurements were done. From T1 to T2, the buccal alveolar bone thickness for the upper lateral incisors increased from (1.89±0.83) to (2.47±1.02) mm (P<0.05), and for central incisors and for canines from (2.32±0.71) to (2.68±1.48) mm and from (2.28±1.08) to (2.41±1.40) mm, respectively. According to Sharpe Grading System, the root resorption grade for 69 teeth of 72 was located in Grade 1, two teeth in Grade 2, one tooth in Grade 3. The improved corticotomy had the potential to increase the buccal alveolar bone thickness and the root resorption in most teeth was in Grade 1 according to Sharpe grading system.

  8. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths

    NARCIS (Netherlands)

    Liu, R.; Kaiwar, A.; Shemesh, H.; Wesselink, P.R.; Hou, B.; Wu, M.K.

    2013-01-01

    Introduction The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Methods Two hundred forty mandibular incisors were mounted in resin blocks with simulated

  9. Root length of aquatic plant, Lemna minor L., as an optimal toxicity endpoint for biomonitoring of mining effluents.

    Science.gov (United States)

    Gopalapillai, Yamini; Vigneault, Bernard; Hale, Beverley A

    2014-10-01

    Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint. © 2014 SETAC.

  10. Root resorption during orthodontic treatment with Invisalign®: a radiometric study

    Directory of Open Access Journals (Sweden)

    Giulia Gay

    2017-05-01

    Full Text Available Abstract Background Root resorption (RR is described as a permanent loss of tooth structure from the root apex. Many reports in the literature indicate that orthodontically treated patients are more likely to have severe apical root shortening, interesting mostly maxillary, followed by mandibular incisors. The aim of the study was to investigate the incidence and severity of RR in adult patients treated with aligners. The study group consisted of 71 class I adult healthy patients (mean age 32.8 ± 12.7 treated with aligners (Invisalign®, Align Technologies, Santa Clara, CA, USA. All incisors, canines, upper first premolars, and first molars were assessed. Root and crown lengths of 1083 teeth were measured in panoramic radiographs at the beginning (T0 and at the end (T1 of clear aligner therapy. Individual root-crown ratio (RCR of each tooth and therefore the relative changes of RCR (rRCR were determined. A decrease of rRCR was assessed as a reduction of the root length during treatment. Results All patients had a minimum of one teeth affected with a reduction of root length, on average 6.38 ± 2.28 teeth per patient. Forty one, 81% of the 1083, measured teeth presented a reduction of the pre-treatment root length. A reduction in percentage of >0% up to 10% was found in 25.94% (n = 281, a distinct reduction of >10% up to 20% in 12.18% (n = 132 of the sample. 3.69% (n = 40 of the teeth were affected with a considerable reduction (>20%. Conclusions Orthodontic treatment with Invisalign® aligners could lead to RR. However, its incidence resulted to be very similar to that described for orthodontic light forces, with an average percentage of RR < 10% of the original root length.

  11. Root resorption during orthodontic treatment with Invisalign®: a radiometric study.

    Science.gov (United States)

    Gay, Giulia; Ravera, Serena; Castroflorio, Tommaso; Garino, Francesco; Rossini, Gabriele; Parrini, Simone; Cugliari, Giovanni; Deregibus, Andrea

    2017-12-01

    Root resorption (RR) is described as a permanent loss of tooth structure from the root apex. Many reports in the literature indicate that orthodontically treated patients are more likely to have severe apical root shortening, interesting mostly maxillary, followed by mandibular incisors. The aim of the study was to investigate the incidence and severity of RR in adult patients treated with aligners. The study group consisted of 71 class I adult healthy patients (mean age 32.8 ± 12.7) treated with aligners (Invisalign®, Align Technologies, Santa Clara, CA, USA). All incisors, canines, upper first premolars, and first molars were assessed. Root and crown lengths of 1083 teeth were measured in panoramic radiographs at the beginning (T0) and at the end (T1) of clear aligner therapy. Individual root-crown ratio (RCR) of each tooth and therefore the relative changes of RCR (rRCR) were determined. A decrease of rRCR was assessed as a reduction of the root length during treatment. All patients had a minimum of one teeth affected with a reduction of root length, on average 6.38 ± 2.28 teeth per patient. Forty one, 81% of the 1083, measured teeth presented a reduction of the pre-treatment root length. A reduction in percentage of >0% up to 10% was found in 25.94% (n = 281), a distinct reduction of >10% up to 20% in 12.18% (n = 132) of the sample. 3.69% (n = 40) of the teeth were affected with a considerable reduction (>20%). Orthodontic treatment with Invisalign® aligners could lead to RR. However, its incidence resulted to be very similar to that described for orthodontic light forces, with an average percentage of RR root length.

  12. Rooting characteristics of Solanum chacoense and Solanum tuberosum in vitro

    Science.gov (United States)

    Increases in root biomass and length have been linked to increased plant nitrogen (N) accumulation; however it is difficult to measure these parameters in soil environments. In vitro methods may aid in elucidating potato-rooting characteristics in relation to N use efficiency (NUE) due to a high lev...

  13. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    Science.gov (United States)

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  14. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    Science.gov (United States)

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  15. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  16. Influences of image resolution on herbaceous root morphological parameters

    Directory of Open Access Journals (Sweden)

    ZHANG Zeyou

    2014-06-01

    Full Text Available Root images of four herbaceous species (including Plantago virginica,Solidago canadensis,Conyza canadensis and Erigeron philadelphicus were obtained by using EPSON V7000 scanner with different resolutions.Root morphological parameters including root length,diameter,volume and area were determined by using a WinRhizo root analyzing software.The results show a distinct influence of image resolution on root morphological parameter.For different herbaceous species,the optimal resolutions of root images,which would produce an acceptable precision with relative short time,vary with different species.For example,a resolution of 200 dpi was recommended for the root images of Plantago virginica and S.Canadensis, while 400 dpi for Conyza canadensis and Erigeron philadelphicus.

  17. Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Markus G Stetter

    Full Text Available Plant root hairs increase the root surface to enhance the uptake of sparingly soluble and immobile nutrients, such as the essential nutrient phosphorus, from the soil. Here, root hair traits and the response to scarce local phosphorus concentration were studied in 166 accessions of Arabidopsis thaliana using split plates. Root hair density and length were correlated, but highly variable among accessions. Surprisingly, the well-known increase in root hair density under low phosphorus was mostly restricted to genotypes that had less and shorter root hairs under P sufficient conditions. By contrast, several accessions with dense and long root hairs even had lower hair density or shorter hairs in local scarce phosphorus. Furthermore, accessions with whole-genome duplications developed more dense but phosphorus-insensitive root hairs. The impact of genome duplication on root hair density was confirmed by comparing tetraploid accessions with their diploid ancestors. Genome-wide association mapping identified candidate genes potentially involved in root hair responses tp scarce local phosphate. Knock-out mutants in identified candidate genes (CYR1, At1g32360 and RLP48 were isolated and differences in root hair traits in the mutants were confirmed. The large diversity in root hair traits among accessions and the diverse response when local phosphorus is scarce is a rich resource for further functional analyses.

  18. Evaluation of allelopathic impact of aqueous extract of root and aerial root of Tinospora cordifolia (Willd. miers on some weed plants

    Directory of Open Access Journals (Sweden)

    K. M. Abdul RAOOF

    2012-05-01

    Full Text Available The present laboratory experimental study was conducted to evaluate the allelopathic potential of Tinospora cordifolia (Willd. Miers on seed germination and seedling growth of weed plants (Chenopodium album L. Chenopodium murale L., Cassia tora L. and Cassia sophera L.. Root and aerial root aqueous extracts of Tinospora at 0.5, 1.0, 2.0 and 4.0% concentrations were applied to determine their effect on seed germination and seedling growth of test plants under laboratory conditions. Germination was observed for 15 days after that the root length and shoot length was measured. Dry weight was measured after oven drying the seedlings. The aqueous extracts from root and aerial root had inhibitory effect on seed germination of test plants. Aqueous extracts from root and aerial root significantly inhibited not only germination and seedling growth but also reduced dry weight of the seedlings. Root length, shoot length of weed species decreased progressively when plants were exposed to increasing concentration (0.5, 1, 2 and 4%. Aqueous extract of aerial root shows the least inhibition. The pH of aqueous extracts of different parts of T. cordifolia does not show any major change when the concentration increases.

  19. Effect of canal length and curvature on working length alteration with WaveOne reciprocating files.

    Science.gov (United States)

    Berutti, Elio; Chiandussi, Giorgio; Paolino, Davide Salvatore; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano

    2011-12-01

    This study evaluated the working length (WL) modification after instrumentation with WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) reciprocating files and the incidence of overinstrumentation in relation to the initial WL. Thirty-two root canals of permanent teeth were used. The angles of curvature of the canals were calculated on digital radiographs. The initial WL with K-files was transferred to the matched WaveOne Primary reciprocating files. After glide paths were established with PathFile (Dentsply Maillefer, Ballaigues, Switzerland), canals were shaped with WaveOne Primary referring to the initial WL. The difference between the postinstrumentation canal length and the initial canal length was analyzed by using a fiberoptic inspection microscope. Data were analyzed with a balanced 2-way factorial analysis of variance (P < .05). Referring to the initial WL, 24 of 32 WaveOne Primary files projected beyond the experimental apical foramen (minimum-maximum, 0.14-0.76 mm). A significant decrease in the canal length after instrumentation (95% confidence interval ranging from -0.34 mm to -0.26 mm) was detected. The canal curvature significantly influenced the WL variation (F(1) = 30.65, P < .001). The interaction between the initial canal length and the canal curvature was statistically significant (F(2) = 4.38, P = .014). Checking the WL before preparation of the apical third of the root canal is recommended when using the new WaveOne NiTi single-file system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  1. Radiographic evaluation of apical root resorption following fixed orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Sina Haghanifar

    2012-01-01

    Full Text Available Background and Aims: Apical root resorption is an adverse side effect of fixed orthodontic treatment which cannot be repaired. The aim of this study was to use panoramic radiographs to compare the root resorption before and after the orthodontic treatment with standard edgewise .018 appliance.Materials and Methods: The before and after treatment panoramic views of sixty-three patients needed fixed orthodontic treatment included 1520 teeth were categorized into 3 Grades (G0: without resorption, G1: mild resorption with blunt roots or ≤ 1/4 of root length, G2: moderate to severe resorption or > 1/4 to 1/2 of root length. Relationship between root resorption and sex and treatment duration was analyzed with Mann-whitney and Spearman's correlation coefficient, respectively.Results: The findings showed that 345 teeth were categorized as Grade 1. Grade 2 of root resorption was not found in this study. The highest amount of root resorption was recorded for the mandibular lateral incisor. In both gender, the root resorption of the mandible was more than that of the maxilla. The males showed significantly higher rate of resorption than the females (P0.05.Conclusion: The mandible and male patients showed higher amount of root resorption. In addition, root resorption was not related to the treatment duration and the side of the jaws.

  2. Chrysanthemum cutting productivity and rooting ability are improved by grafting.

    Science.gov (United States)

    Zhang, Jing; Chen, Sumei; Liu, Ruixia; Jiang, Jiafu; Chen, Fadi; Fang, Weimin

    2013-01-01

    Chrysanthemum has been commercially propagated by rooting of cuttings, whereas the quality will decline over multiple collections from a single plant. Therefore, we compared the vigour, rooting ability, and some physiological parameters between cuttings harvested from nongrafted "Jinba" (non-grafted cuttings) with those collected from grafted "Jinba" plants onto Artemisia scoparia as a rootstock (grafted cuttings). The yield, length, node number, stem diameter, fresh weight, and dry weight of the grafted cuttings were superior to the non-grafted cuttings. Also grafted cuttings "Jinba" rooted 1 day earlier, but showing enhanced rooting quality including number, length, diameter, and dry weight of roots, where compared to the non-grafted. The physiological parameters that indicated contents of soluble protein, peroxidase activity, soluble sugar, and starch, ratios of soluble sugar/nitrogen ratio, and carbohydrate/nitrogen (C/N), as well as contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and IAA/ABA ratio were significantly increased in the grafted cuttings. This suggested their important parts in mediating rooting ability. Results from this study showed that grafting improved productivity and rooting ability related to an altered physiology, which provide a means to meet the increasing demand.

  3. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification

    International Nuclear Information System (INIS)

    Braun, Sabine; Cantaluppi, Leonardo; Flueckiger, Walter

    2005-01-01

    Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with ≤20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees. - Fine root length of Fagus sylvatica and fine root depth in stands of Fagus sylvatica and/or Picea abies were impaired in soils with low base saturation

  4. Comparison of digital radiography and apex locator with the conventional method in root length determination of primary teeth

    Directory of Open Access Journals (Sweden)

    I E Neena

    2011-01-01

    Full Text Available Aim: The purpose of this study was to compare the Working length in primary teeth endodontics using intra oral digital radiovisiography and apex locator with conventional method for accuracy. Materials and Methods: This in vivo study was conducted on 30 primary teeth which were indicated for pulpectomy in the patients of the age group of 5-11 years All experimental teeth had adequate remaining tooth structure for rubber dam isolation and radiographicaly visible canals. Endodontic treatment was required due to irreversible pulpitis or pulp necrosis. A standardized intraoral periapical radiograph of the tooth was taken using conventional method by paralleling technique. The distance between the source and the tooth, tooth and the films were standardized using X-ray positioning device. During the pulpectomy procedure, the working length was determined by digital radiograph and apex locator. The measurements were then compared with the conventional method of root canal measurement technique for accuracy Result: From the results obtained we can conclude that Working length determined in primary molars using digital radiography and Apex locator did not show any significant difference in the mean working length measurements when compared with the conventional radiographic method. Conclusions: Apex locator is comparable to conventional radiograph in determining the working length without radiation in the primary teeth. Intraoral digital radiography is the safest method in determining the working length with significant reduction in radiation exposure.Hence, both the techniques can be safely used as alternatives to conventional radiographic methods in determining working length in primary teeth.

  5. Study of root para-nodules formation in wheat (Triticum durum ...

    African Journals Online (AJOL)

    djemel

    2013-08-28

    Aug 28, 2013 ... African Journal of Biotechnology. Full Length Research ... formed when wheat roots were inoculated with Frankia and the root length was enhanced. When the .... are modified lateral roots with structure enhanced by rhizobial.

  6. Tolerance to high soil temperature in foxtail millet (Setaria italica L.) is related to shoot and root growth and metabolism.

    Science.gov (United States)

    Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon

    2016-09-01

    Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.; Pratchett, Morgan S.; Goodman, Brett Alexander

    2011-01-01

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  8. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    KAUST Repository

    Berumen, Michael L.

    2011-06-17

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors. © 2011 Springer-Verlag.

  9. Nodal distances for rooted phylogenetic trees.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2010-08-01

    Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).

  10. [Effects of sowing depth on seedling traits and root characteristics of summer maize].

    Science.gov (United States)

    Cao, Hui-ying; Wang, Ding-bo; Shi, Jian-guo; Zhu, Kun-lun; Dong, Shu-ting; Liu, Peng; Zhao, Bin; Zhang, Ji-wang

    2015-08-01

    Two summer maize hybrids, Zhengdan 958 (ZD958) and Xianyu 335 (XY335), were used as experimental materials. 4 sowing depths (3, 5, 7 and 9 cm) and uneven sowing depth (CK) were designed under sand culture and field experiments to investigate the effects of sowing depth on seedling traits and root characteristics of summer maize. The results showed that the seedling emergence rate gradually decreased and seedling emergence time gradually lengthened as the sowing depth increased. Compared with the sowing depth of 3 cm, the seedling emergence rates of ZD958 and XY335 sown at the depth of 9 cm were reduced by 9.4% and 11.8%, respectively, and the seedling emergence duration was prolonged 1.5 d. With the increasing sowing depth, the seedling length and uniformity decreased significantly, the mesocotyl length increased significantly, while the coleoptile length had no significant difference; the primary radicle length gradually decreased, the total length of secondary radicle gradually increased, and the total root length had no significant difference; the total dry mass of seedling and mesocotyl increased significantly, and the total root dry mass had no significant difference. With the increasing sowing depth, the soluble sugar content in each part of seedling increased and the amount of nutritional consumption of germinating seeds increased, the seedling root growth rate increased, but the root activity decreased, and the number of total nodal root and nodal layers increased. With the increasing sowing depth, harvested ears per unit area were reduced by decreased seedling emergence rate and seedling vigor, thus influenced the yield. In addition, uniform sowing depth could improve the canopy uniformity and relative characteristics, then increase the yield.

  11. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  12. A Vegetal Biopolymer-Based Biostimulant Promoted Root Growth in Melon While Triggering Brassinosteroids and Stress-Related Compounds

    Directory of Open Access Journals (Sweden)

    Luigi Lucini

    2018-04-01

    Full Text Available Plant biostimulants are receiving great interest for boosting root growth during the first phenological stages of vegetable crops. The present study aimed at elucidating the morphological, physiological, and metabolomic changes occurring in greenhouse melon treated with the biopolymer-based biostimulant Quik-link, containing lateral root promoting peptides, and lignosulphonates. The vegetal-based biopolymer was applied at five rates (0, 0.06, 0.12, 0.24, or 0.48 mL plant-1 as substrate drench. The application of biopolymer-based biostimulant at 0.12 and 0.24 mL plant-1 enhanced dry weight of melon leaves and total biomass by 30.5 and 27.7%, respectively, compared to biopolymer applications at 0.06 mL plant-1 and untreated plants. The root dry biomass, total root length, and surface in biostimulant-treated plants were significantly higher at 0.24 mL plant-1 and to a lesser extent at 0.12 and 0.48 mL plant-1, in comparison to 0.06 mL plant-1 and untreated melon plants. A convoluted biochemical response to the biostimulant treatment was highlighted through UHPLC/QTOF-MS metabolomics, in which brassinosteroids and their interaction with other hormones appeared to play a pivotal role. Root metabolic profile was more markedly altered than leaves, following application of the biopolymer-based biostimulant. Brassinosteroids triggered in roots could have been involved in changes of root development observed after biostimulant application. These hormones, once transported to shoots, could have caused an hormonal imbalance. Indeed, the involvement of abscisic acid, cytokinins, and gibberellin related compounds was observed in leaves following root application of the biopolymer-based biostimulant. Nonetheless, the treatment triggered an accumulation of several metabolites involved in defense mechanisms against biotic and abiotic stresses, such as flavonoids, carotenoids, and glucosinolates, thus potentially improving resistance toward plant stresses.

  13. Aconitum Alkaloid Poisoning Related to the Culinary Uses of Aconite Roots

    Science.gov (United States)

    Chan, Thomas Y. K.

    2014-01-01

    Aconite roots (roots or root tubers of the Aconitum species) are eaten as root vegetables and used to prepare herbal soups and meals, mainly for their purported health benefits. Aconite roots contain aconitine and other Aconitum alkaloids, which are well known cardiotoxins and neurotoxins. To better understand why Aconitum alkaloid poisoning related to the culinary uses of aconite roots can occur and characterize the risks posed by these “food supplements”, relevant published reports were reviewed. From 1995 to 2013, there were eight reports of aconite poisoning after consumption of these herbal soups and meals, including two reports of large clusters of cases (n = 19–45) and two reports of cases (n = 15–156) managed by two hospitals over a period of 4.5 to 5 years. The herbal formulae used did not adhere to the suggested guidelines, with regarding to the doses (50–500 g instead of 3–30 g per person) and types (raw instead of processed) of aconite roots used. The quantities of Aconitum alkaloids involved were huge, taking into consideration the doses of aconite roots used to prepare herbal soups/meals and the amounts of aconite roots and herbal soups/meals consumed. In a large cluster of cases, despite simmering raw “caowu” (the root tuber of A. kusnezoffii) in pork broth for 24 h, all 19 family members who consumed this soup and boiled “caowu” developed poisoning. Severe or even fatal aconite poisoning can occur after consumption of herbal soups and foods prepared from aconite roots. Even prolonged boiling may not be protective if raw preparations and large quantities of aconite roots are used. The public should be warned of the risk of severe poisoning related to the culinary and traditional medicinal uses of aconite roots. PMID:25184557

  14. Aconitum alkaloid poisoning related to the culinary uses of aconite roots.

    Science.gov (United States)

    Chan, Thomas Y K

    2014-09-02

    Aconite roots (roots or root tubers of the Aconitum species) are eaten as root vegetables and used to prepare herbal soups and meals, mainly for their purported health benefits. Aconite roots contain aconitine and other Aconitum alkaloids, which are well known cardiotoxins and neurotoxins. To better understand why Aconitum alkaloid poisoning related to the culinary uses of aconite roots can occur and characterize the risks posed by these "food supplements", relevant published reports were reviewed. From 1995 to 2013, there were eight reports of aconite poisoning after consumption of these herbal soups and meals, including two reports of large clusters of cases (n = 19-45) and two reports of cases (n = 15-156) managed by two hospitals over a period of 4.5 to 5 years. The herbal formulae used did not adhere to the suggested guidelines, with regarding to the doses (50-500 g instead of 3-30 g per person) and types (raw instead of processed) of aconite roots used. The quantities of Aconitum alkaloids involved were huge, taking into consideration the doses of aconite roots used to prepare herbal soups/meals and the amounts of aconite roots and herbal soups/meals consumed. In a large cluster of cases, despite simmering raw "caowu" (the root tuber of A. kusnezoffii) in pork broth for 24 h, all 19 family members who consumed this soup and boiled "caowu" developed poisoning. Severe or even fatal aconite poisoning can occur after consumption of herbal soups and foods prepared from aconite roots. Even prolonged boiling may not be protective if raw preparations and large quantities of aconite roots are used. The public should be warned of the risk of severe poisoning related to the culinary and traditional medicinal uses of aconite roots.

  15. Aconitum Alkaloid Poisoning Related to the Culinary Uses of Aconite Roots

    Directory of Open Access Journals (Sweden)

    Thomas Y. K. Chan

    2014-09-01

    Full Text Available Aconite roots (roots or root tubers of the Aconitum species are eaten as root vegetables and used to prepare herbal soups and meals, mainly for their purported health benefits. Aconite roots contain aconitine and other Aconitum alkaloids, which are well known cardiotoxins and neurotoxins. To better understand why Aconitum alkaloid poisoning related to the culinary uses of aconite roots can occur and characterize the risks posed by these “food supplements”, relevant published reports were reviewed. From 1995 to 2013, there were eight reports of aconite poisoning after consumption of these herbal soups and meals, including two reports of large clusters of cases (n = 19–45 and two reports of cases (n = 15–156 managed by two hospitals over a period of 4.5 to 5 years. The herbal formulae used did not adhere to the suggested guidelines, with regarding to the doses (50–500 g instead of 3–30 g per person and types (raw instead of processed of aconite roots used. The quantities of Aconitum alkaloids involved were huge, taking into consideration the doses of aconite roots used to prepare herbal soups/meals and the amounts of aconite roots and herbal soups/meals consumed. In a large cluster of cases, despite simmering raw “caowu” (the root tuber of A. kusnezoffii in pork broth for 24 h, all 19 family members who consumed this soup and boiled “caowu” developed poisoning. Severe or even fatal aconite poisoning can occur after consumption of herbal soups and foods prepared from aconite roots. Even prolonged boiling may not be protective if raw preparations and large quantities of aconite roots are used. The public should be warned of the risk of severe poisoning related to the culinary and traditional medicinal uses of aconite roots.

  16. External apical root resorption in maxillary incisors in orthodontic patients: associated factors and radiographic evaluation.

    Science.gov (United States)

    Nanekrungsan, Kamonporn; Patanaporn, Virush; Janhom, Apirum; Korwanich, Narumanus

    2012-09-01

    This study was performed to evaluate the incidence and degree of external apical root resorption of maxillary incisors after orthodontic treatment and to evaluate particular associated factors related to external apical root resorption. The records and maxillary incisor periapical radiographs of 181 patients were investigated. Crown and root lengths were measured and compared on the pre- and post-treatment periapical radiographs. Crown length was measured from the center of the incisal edge to the midpoint of the cemento-enamel junction (CEJ). Root length was measured from the CEJ midpoint to the root apex. A correction factor for the enlargement difference was used to calculate root resorption. The periapical radiographs of 564 teeth showed that the average root resorption was 1.39±1.27 (8.24±7.22%) and 1.69±1.14 mm (10.16±6.78%) for the maxillary central and lateral incisors, respectively. The results showed that the dilacerated or pointed roots, maxillary premolar extraction cases, and treatment duration were highly significant factors for root resorption (proot resorption (proot resorption among the factors of gender, overbite, tongue-thrusting habit, types of malocclusion, and types of bracket. These results suggested that orthodontic treatment should be carefully performed in pre-treatment extraction patients who have pointed or dilacerated roots and need long treatment duration.

  17. Information-theoretic lengths of Jacobi polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)

    2010-07-30

    The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.

  18. Fine Root Growth and Vertical Distribution in Response to Elevated CO2, Warming and Drought in a Mixed Heathland–Grassland

    DEFF Research Database (Denmark)

    Arndal, Marie Frost; Tolver, Anders; Larsen, Klaus Steenberg

    2018-01-01

    in single-factor experiments. In a Danish heathland ecosystem, we investigated both individual and combined effects of elevated CO2, warming and drought on fine root length, net production and standing biomass by the use of minirhizotrons, ingrowth cores and soil coring. Warming increased the net root...... production from ingrowth cores, but decreased fine root number and length in minirhizotrons, whereas there were no significant main effects of drought. Across all treatments and soil depths, CO2 stimulated both the total fine root length (+44%) and the number of roots observed (+39%), with highest relative......Belowground plant responses have received much less attention in climate change experiments than aboveground plant responses, thus hampering a holistic understanding of climate change effects on plants and ecosystems. In addition, responses of plant roots to climate change have mostly been studied...

  19. Diversity effects on root length production and loss in an experimental grassland community

    NARCIS (Netherlands)

    Mommer, L.; Padilla, F.M.; Ruijven, van J.; Caluwe, de H.; Smit-Tiekstra, A.E.; Berendse, F.; Kroon, de H.

    2015-01-01

    Advances in root ecology have revealed that root standing biomass is higher in species-rich plant communities than in species-poor communities. Currently, we do not know whether this below-ground diversity effect is the result of enhanced root production or reduced root mortality or both, which is

  20. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    Science.gov (United States)

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  1. Plant root and shoot dynamics during subsurface obstacle interaction

    Science.gov (United States)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  2. Variation of root system characters in collection of semi-dwarf spring barley mutants

    International Nuclear Information System (INIS)

    Nawrot, M.; Zbieszczyk, J.; Maluszynski, M.

    2000-01-01

    The collection of 371 semi-dwarf mutants, derived from 12 spring barley varieties has been used as material for analysis of root system. The mutants have been obtained after mutagenic treatment with N-methyl-N-nitroso urea (MNH), sodium azide (NaN3), gamma-rays and fast neutrons. The following analysis of root system were performed: seminal root growth of 8-day old seedlings, seminal and adventitious root growth of 6-week old plants and dynamics of root growth during first 6 weeks of plant growth. Seminal root length, root number and the length of the first leaf in barley mutants were investigated with the use of paper rollers. Root system analysis of 6-week old plants was performed on genotypes grown in PVC tubes filled with sand, supplemented with 1 mineral salts of MS medium. The following measurements were made: the length of the longest seminal root and the longest adventitious root, the number of adventitious roots and the number of tillers. Analysis of dynamics of root growth during the first six weeks of vegetation was performed at the end of each 7-day growth period in the PVC tubes filled with sand. Great variability in the seminal root length was found in analysed 8-day old seedling population. Almost half of the analysed mutants showed significant root length reduction, but about ten percent of semi-dwarf mutants developed roots with an increased length in comparison to parents. No significant differences were found between analysed mutants and corresponding parent varieties regarding the number of seminal roots. After six weeks of growth, the selected mutants showed differences in the reduction of root length in comparison to the 8-day old seedlings. The results of root growth dynamics indicated that analysed mutants had different patterns in comparison to the parent variety. Differences in the growth dynamics were also observed among the parent varieties. The observed differences in pattern of root growth between mutants and corresponding parents

  3. An evaluation of inexpensive methods for root image acquisition when using rhizotrons.

    Science.gov (United States)

    Mohamed, Awaz; Monnier, Yogan; Mao, Zhun; Lobet, Guillaume; Maeght, Jean-Luc; Ramel, Merlin; Stokes, Alexia

    2017-01-01

    Belowground processes play an essential role in ecosystem nutrient cycling and the global carbon budget cycle. Quantifying fine root growth is crucial to the understanding of ecosystem structure and function and in predicting how ecosystems respond to climate variability. A better understanding of root system growth is necessary, but choosing the best method of observation is complex, especially in the natural soil environment. Here, we compare five methods of root image acquisition using inexpensive technology that is currently available on the market: flatbed scanner, handheld scanner, manual tracing, a smartphone application scanner and a time-lapse camera. Using the five methods, root elongation rate (RER) was measured for three months, on roots of hybrid walnut ( Juglans nigra  ×  Juglans regia L.) in rhizotrons installed in agroforests. When all methods were compared together, there were no significant differences in relative cumulative root length. However, the time-lapse camera and the manual tracing method significantly overestimated the relative mean diameter of roots compared to the three scanning methods. The smartphone scanning application was found to perform best overall when considering image quality and ease of use in the field. The automatic time-lapse camera was useful for measuring RER over several months without any human intervention. Our results show that inexpensive scanning and automated methods provide correct measurements of root elongation and length (but not diameter when using the time-lapse camera). These methods are capable of detecting fine roots to a diameter of 0.1 mm and can therefore be selected by the user depending on the data required.

  4. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  5. Roentgenologic investigations for the anterior tooth length

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Pyo; Ahn, Hyung Kyu [College of Dentistry, Seoul National University , Seoul (Korea, Republic of)

    1972-11-15

    The author measured the length of crown, root and tooth on the films which was taken by intraoral bisecting technic with mesh plate on the films. The films were taken from the dry skulls, dentiform, same patients who had to be removed their upper incisors, and the other patients who admitted for dental care. From this serial experiment the results were made as follows: 1. By using the film and mesh plate in the oral cavity, the real tooth length can be measured easily on the film surfaces. 2. The film distortion in the oral cavity can be avoided when taking the film using the mesh plate and film together. 3. When measuring the film, length of crown was elongated and length of root was shortened. 4. When using the well-trained bisecting technic, the real tooth length can be measured directly on the intraoral film.

  6. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  7. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  8. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann

    2016-01-01

    . Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient......A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth...... vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration...

  9. External apical root resorption in maxillary incisors in orthodontic patients: associated factors and radiographic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nanekrungsan, Kamonporn [Dept. of Dentistry, Overbrook Hospital, Chiang Rai (Thailand); Patanaporn, Virush; Janhom, Apirum; Korwanich, Narumanus [Dept. of Chiang Mai University, Chiang Mai (Thailand)

    2012-09-15

    This study was performed to evaluate the incidence and degree of external apical root resorption of maxillary incisors after orthodontic treatment and to evaluate particular associated factors related to external apical root resorption. The records and maxillary incisor periapical radiographs of 181 patients were investigated. Crown and root lengths were measured and compared on the pre- and post-treatment periapical radiographs. Crown length was measured from the center of the incisal edge to the midpoint of the cemento-enamel junction (CEJ). Root length was measured from the CEJ midpoint to the root apex. A correction factor for the enlargement difference was used to calculate root resorption. The periapical radiographs of 564 teeth showed that the average root resorption was 1.39{+-}1.27 (8.24{+-}7.22%) and 1.69{+-}1.14 mm (10.16{+-}6.78%) for the maxillary central and lateral incisors, respectively. The results showed that the dilacerated or pointed roots, maxillary premolar extraction cases, and treatment duration were highly significant factors for root resorption (p<0.001). Allergic condition was a significant factor at p<0.01. Age at the start of treatment, large overjet, and history of facial trauma were also factors significantly associated with root resorption (p<0.05). There was no statistically significant difference in root resorption among the factors of gender, overbite, tongue-thrusting habit, types of malocclusion, and types of bracket. These results suggested that orthodontic treatment should be carefully performed in pre-treatment extraction patients who have pointed or dilacerated roots and need long treatment duration.

  10. External apical root resorption in maxillary incisors in orthodontic patients: associated factors and radiographic evaluation

    International Nuclear Information System (INIS)

    Nanekrungsan, Kamonporn; Patanaporn, Virush; Janhom, Apirum; Korwanich, Narumanus

    2012-01-01

    This study was performed to evaluate the incidence and degree of external apical root resorption of maxillary incisors after orthodontic treatment and to evaluate particular associated factors related to external apical root resorption. The records and maxillary incisor periapical radiographs of 181 patients were investigated. Crown and root lengths were measured and compared on the pre- and post-treatment periapical radiographs. Crown length was measured from the center of the incisal edge to the midpoint of the cemento-enamel junction (CEJ). Root length was measured from the CEJ midpoint to the root apex. A correction factor for the enlargement difference was used to calculate root resorption. The periapical radiographs of 564 teeth showed that the average root resorption was 1.39±1.27 (8.24±7.22%) and 1.69±1.14 mm (10.16±6.78%) for the maxillary central and lateral incisors, respectively. The results showed that the dilacerated or pointed roots, maxillary premolar extraction cases, and treatment duration were highly significant factors for root resorption (p<0.001). Allergic condition was a significant factor at p<0.01. Age at the start of treatment, large overjet, and history of facial trauma were also factors significantly associated with root resorption (p<0.05). There was no statistically significant difference in root resorption among the factors of gender, overbite, tongue-thrusting habit, types of malocclusion, and types of bracket. These results suggested that orthodontic treatment should be carefully performed in pre-treatment extraction patients who have pointed or dilacerated roots and need long treatment duration.

  11. [Differences in root developmenly of winter wheat cultivars in Huang-Huai Plain, China].

    Science.gov (United States)

    Qiu, Xin-Qiang; Gao, Yang; Li, Xin-Qiang; Huang, Ling; Duan, Ai-Wang

    2012-07-01

    Selecting one presently popularized winter wheat cultivar (Zhengmai 9023) and two cultivars (Abo and Fengchan 3) introduced in the 1950s and 1960s in Huang-Huai Plain as test materials, and by using minirhizotron technique, this paper studied the live root length, root diameter distribution, and net root growth rate of the cultivars. Fine roots with a diameter from 0.05 mm to 0.25 mm occupied the majority of the whole root system, and the fine roots with a diameter less than 0.5 mm accounted for 98% of the live root length. The average root diameter varied with plant growth, the variation range being 0.15 - 0.22 mm, and no significant difference was observe among the cultivars. The live root length was significantly positively correlated root number, suggesting that root number was the main factor for the increase of live root length. The most vigorous growth period of the roots was from reviving to jointing stage, and Abo and Fengchan 3 had a longer period increased root vitality, as compared with Zhengmai 9023. For Zhengmai 9023, its fine roots with a diameter more than 0.1 mm had an increasing proportion after jointing stage, which was helpful for improving plant resistance, root activity, and grain-filling at late growth stages.

  12. On the relative roles of hydrology, salinity, temperature, and root productivity in controlling soil respiration from coastal swamps (freshwater)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.; Howard, Rebecca J.

    2012-01-01

    Background and aims Soil CO2 emissions can dominate gaseous carbon losses from forested wetlands (swamps), especially those positioned in coastal environments. Understanding the varied roles of hydroperiod, salinity, temperature, and root productivity on soil respiration is important in discerning how carbon balances may shift as freshwater swamps retreat inland with sea-level rise and salinity incursion, and convert to mixed communities with marsh plants. Methods We exposed soil mesocosms to combinations of permanent flooding, tide, and salinity, and tracked soil respiration over 2 1/2 growing seasons. We also related these measurements to rates from field sites along the lower Savannah River, Georgia, USA. Soil temperature and root productivity were assessed simultaneously for both experiments. Results Soil respiration from mesocosms (22.7-1678.2 mg CO2 m-2 h-1) differed significantly among treatments during four of the seven sampling intervals, where permanently flooded treatments contributed to low rates of soil respiration and tidally flooded treatments sometimes contributed to higher rates. Permanent flooding reduced the overall capacity for soil respiration as soils warmed. Salinity did reduce soil respiration at times in tidal treatments, indicating that salinity may affect the amount of CO2 respired with tide more strongly than under permanent flooding. However, soil respiration related greatest to root biomass (mesocosm) and standing root length (field); any stress reducing root productivity (incl. salinity and permanent flooding) therefore reduces soil respiration. Conclusions Overall, we hypothesized a stronger, direct role for salinity on soil respiration, and found that salinity effects were being masked by varied capacities for increases in respiration with soil warming as dictated by hydrology, and the indirect influence that salinity can have on plant productivity.

  13. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length.

    Directory of Open Access Journals (Sweden)

    Hannah S Bender

    Full Text Available Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii are of particular interest in light of the emergence of devil facial tumour disease (DFTD, a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.

  14. Single-cell telomere-length quantification couples telomere length to meristem activity and stem cell development in Arabidopsis.

    Science.gov (United States)

    González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I

    2015-05-12

    Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    Science.gov (United States)

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Does Relative Age Affect Career Length in North American Professional Sports?

    Science.gov (United States)

    Steingröver, C; Wattie, N; Baker, J; Schorer, J

    Relative age effects (RAEs) typically favour older members within a cohort; however, research suggests that younger players may experience some long-term advantages, such as longer career length. The purposes of this study were to replicate previous findings on RAEs among National Hockey League (NHL) ice hockey players, National Basketball Association (NBA) basketball players and National Football League (NFL) football players and to investigate the influence of relative age on career length in all three sports. Using official archives, birthdates and number of games played were collected for players drafted into the NBA ( N  = 407), NFL ( N  = 2380) and NHL ( N  = 1028) from 1980 to 1989. We investigated the possibility that younger players might be able to maximize their career length by operationalizing career length as players' number of games played throughout their careers. There was a clear RAE for the NHL, but effects were not significant for the NBA or NFL. Moreover, there was a significant difference in matches played between birth quartiles in the NHL favouring relatively younger players. There were no significant quartiles by career length effects in the NBA or NFL. The significant relationship between relative age and career length provides further support for relative age as an important constraint on expertise development in ice hockey but not basketball or football. Currently, the reason why relatively younger players have longer careers is not known. However, it may be worth exploring the influence of injury risk or the development of better playing skills.

  17. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    identification number, the distance between branching point to the parent root base, the root length, the root radius and the nodes that belong to each individual root path. This information is relevant for the analysis of dynamic root system development as well as the parameterisation of root architecture models. Here, we show results of Root System Analyzer applied to analyse the root systems of wheat plants grown in rhizotrons. Different treatments with respect to soil moisture and apatite concentrations were used to test the effects of those conditions on root system development. Photographs of the root systems were taken at high spatial and temporal resolution and root systems are automatically tracked.

  18. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae).

    Science.gov (United States)

    Valenzuela-Estrada, Luis R; Vera-Caraballo, Vivianette; Ruth, Leah E; Eissenstat, David M

    2008-12-01

    Understanding root processes at the whole-plant or ecosystem scales requires an accounting of the range of functions within a root system. Studying root traits based on their branching order can be a powerful approach to understanding this complex system. The current study examined the highly branched root system of the ericoid plant, Vaccinium corymbosum L. (highbush blueberry) by classifying its root orders with a modified version of the morphometric approach similar to that used in hydrology for stream classification. Root anatomy provided valuable insight into variation in root function across orders. The more permanent portion of the root system occurred in 4th- and higher-order roots. Roots in these orders had radial growth; the lowest specific root length, N:C ratios, and mycorrhizal colonization; the highest tissue density and vessel number; and the coarsest root diameter. The ephemeral portion of the root system was mainly in the first three root orders. First- and 2nd-order roots were nearly anatomically identical, with similar mycorrhizal colonization and diameter, and also, despite being extremely fine, median lifespans were not very short (115-120 d; estimated with minirhizotrons). Our research underscores the value of examining root traits by root order and its implications to understanding belowground processes.

  19. Length scales in glass-forming liquids and related systems: a review

    International Nuclear Information System (INIS)

    Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth

    2016-01-01

    The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed. (review article)

  20. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  1. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    Directory of Open Access Journals (Sweden)

    Min Huang

    Full Text Available This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087 and an elite rice cultivar (Teyou 838. Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  2. Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    Science.gov (United States)

    Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin

    2015-01-01

    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.

  3. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    Science.gov (United States)

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  4. Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H; Callahan, Hilary S

    2014-02-01

    Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent

  5. Root resorption of permanent incisors during three months of active orthodontic treatment.

    Science.gov (United States)

    Batool, Iffat; Abbas, Hasnain; Abbas, Assad; Abbas, Iram

    2010-01-01

    Root resorption is one of the most common and undesirable sequelea of orthodontic treatment. The aim of this study was to evaluate the amount of root resorption in permanent incisors during 3 month active period of fixed orthodontic appliance therapy using periapical radiographs. Periapical radiographs of a total of 138 permanent teeth (n = 138, mandibular n1 = 52, maxillary n2 = 86) were evaluated for root resorption. All patients were treated with 3M MBT multi-bonded, pre-adjusted appliances with 0.022 inch slots. Initial levelling and alignment was achieved with 0.0175 inch co-axial wires. All four incisors (maxillary and mandibular) were measured for any change in root length. The change in root length between T0 (pre-treatment) and T1 (post-treatment) was measured in millimetres and expressed in terms of percentage of original root length. The mean pre treatment (T0) root length for the maxillary teeth (n1 = 62) was 19.27 +/- 2.86 mm and 20.01 +/- 2.57 mm for the mandibular teeth (n2 = 31). The post-treatment (T1) root length for the maxillary teeth was 18.96 +/- 2.85 mm and 19.49 +/- 2.4 mm for the mandibular teeth showing a mean resorption of 0.31 mm and 0.52 mm for the maxillary and mandibular teeth respectively. Root resorption was strongly correlated with active orthodontic appliance therapy with maxillary and mandibular incisors being most susceptible. It was found that root resorption can be detected even in the early levelling and alignment stages of orthodontic treatment.

  6. COMPRIMENTO DA ESTACA DE RAMO NO ENRAIZAMENTO DE GINSENG BRASILEIRO (Pfaffia glomerata SHOOT CUTTING LENGTH ON ROOTING OF BRAZILIAN GINSENG (Pfaffia glomerata

    Directory of Open Access Journals (Sweden)

    Fernando Teixeira Nicoloso

    2001-02-01

    Full Text Available A Pfaffia glomerata (Spreng. Pedersen é uma dentre várias espécies conhecidas como ginseng brasileiro e é usada como planta medicinal. O objetivo desse trabalho foi determinar se o comprimento da estaca de ramo influencia o enraizamento da P. glomerata. Os tratamentos usados consistiram de três comprimentos de estacas (10, 15 e 20cm; ± 1cm de variação. As estacas foram obtidas dos 70cm basais de ramos, com 80 a 140cm de comprimento, de plantas possuindo dois anos de idade, cultivadas no Jardim Botânico da UFSM. Utilizou-se o delineamento experimental de blocos ao acaso com três repetições e 30 estacas por unidade experimental. O bloco experimental consistiu de uma bandeja plástica com capacidade para 36 litros de solução nutritiva. O experimento foi instalado no dia 15 de julho de 1998 e conduzido por 44 dias sob condições controladas de temperatura, luminosidade e umidade do ar. Os resultados indicaram que (i o tamanho da estaca não afeta a percentagem de enraizamento, a produção de massa seca de folhas e raízes. Por outro lado, as mudas obtidas de estacas de 10cm apresentam maior número de brotações, comprimento das brotações, massa seca de talos e massa seca total produzida por estaca que as de 20cm; e (ii o uso de estacas com 10cm de comprimento é viável e, conseqüentemente, possibilita a obtenção de um maior número de estacas por ramo.Pfaffia glomerata (Spreng. Pedersen is among several species known as Brazilian ginsengs and it is used as medicinal plant. The aim of this work was to evaluate the length of the shoot cuttings on rooting of P. glomerata. Treatments consisted of three length of cuttings (10, 15, and 20cm; ± 1cm of variation. Cuttings were obtained from the 70cm of the basal portion from shoots of 80 to 140cm of length, from two-year-old plants grown in the Botanical Garden at State University of Santa Maria, RS, Brazil. Treatments were distributed in a completely randomized block design with

  7. Water transport through tomato roots infected with Meloidogyne incognita.

    NARCIS (Netherlands)

    Dorhout, R.; Gommers, F.J.; Kollöffel, C.

    1991-01-01


    The effect of Meloidogyne incognita on water flow in tomato roots was investigated in rooted split-stem cuttings. Total water flow through infected root parts was significantly lower than through comparable uninfected parts. Total water uptake was correlated with total length of the root

  8. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange.

    Science.gov (United States)

    Wu, Qiang-Sheng; Cao, Ming-Qin; Zou, Ying-Ning; He, Xin-hua

    2014-07-25

    To test direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability, perspex pots separated by 37-μm nylon mesh in the middle were used to form root-free hyphae and root/hyphae chambers, where trifoliate orange (Poncirus trifoliata) seedlings were colonized by Funneliformis mosseae or Paraglomus occultum in the root/hyphae chamber. Both fungal species induced significantly higher plant growth, root total length, easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP), and mean weight diameter (an aggregate stability indicator). The Pearson correlation showed that root colonization or soil hyphal length significantly positively correlated with EE-GRSP, difficultly-extractable GRSP (DE-GRSP), T-GRSP, and water-stable aggregates in 2.00-4.00, 0.50-1.00, and 0.25-0.50 mm size fractions. The path analysis indicated that in the root/hyphae chamber, aggregate stability derived from a direct effect of root colonization, EE-GRSP or DE-GRSP. Meanwhile, the direct effect was stronger by EE-GRSP or DE-GRSP than by mycorrhizal colonization. In the root-free hyphae chamber, mycorrhizal-mediated aggregate stability was due to total effect but not direct effect of soil hyphal length, EE-GRSP and T-GRSP. Our results suggest that GRSP among these tested factors may be the primary contributor to aggregate stability in the citrus rhizosphere.

  9. Comparison of the Accuracy of Root ZX and Novapex with Radiography: an in Vivo Study

    Directory of Open Access Journals (Sweden)

    Amir Mohamad Mahabadi

    2012-02-01

    Full Text Available Background and Aims: Working length determination and remaining this length is of great importance in root canal therapy. Recently, electronic apex locators are being used to determine working length and decrease the number of radiographs. The purpose of this study was to compare the sensitivity of Root ZX and Novapex electronic apex locators with radiography in a clinical study. Materials and Methods: In this study, 73 single-canalled teeth of the patients referred to the endodontic department of the Yazd Dental School were evaluated. The access cavity was prepared and working length of the root canals were measured by using the apex locators: Root ZX and Novapex. The file was placed in the root canal and a periapical radiograph was taken using parallel technique. The working lengths obtained by apex locators were recorded and compared with those of radiographs. The data were analyzed by Pearsons correlation coefficient, Wilcoxon test and paired t-test. Results: The exact measurement without any fault was 46.6% for Root ZX and 20.5% for Novapex compared to radiography. In the range of 0.5 mm fault, the results were 91.8% for Root ZX and 64.4% for Novapex compared to radiographic measurements. The difference between the average of the measured lengths by Root ZX and radiography was not significant (P=0.17. On the other hand, the results showed significant difference between the average of the measured lengths by Novapex and radiography (P=0.017. The difference between two apex locators was not significant (P=0.061. Conclusion: Root ZX and Novapex with high accuracy are useful for determining working length of the root canals in pregnant patients with special anatomic conditions and patients with muscle disharmony. Therefore, the use of these apex locators combined with radiography is recommended in root canal treatment.

  10. Comparison of root canal lathing measurement by conventional and digital radiology

    International Nuclear Information System (INIS)

    Mitrova, N.; Slavik, J.; Cecetkova, A.; Jenca, A.; Hanusinova, V.; Ondrasovicova, J.

    2006-01-01

    A correct working length is a critical factor within the endodontic treatment. The length of the root canal can be measured by different methods. The aim of this study was to compare methods used for measuring the length of root canals using conventional and digital radiology. The measurement was provided in both - in vitro and in vivo conditions. (authors)

  11. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    Science.gov (United States)

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Work-related exhaustion and telomere length: a population-based study.

    Directory of Open Access Journals (Sweden)

    Kirsi Ahola

    Full Text Available Psychological stress is suggested to accelerate the rate of biological aging. We investigated whether work-related exhaustion, an indicator of prolonged work stress, is associated with accelerated biological aging, as indicated by shorter leukocyte telomeres, that is, the DNA-protein complexes that cap chromosomal ends in cells.We used data from a representative sample of the Finnish working-age population, the Health 2000 Study. Our sample consisted of 2911 men and women aged 30-64. Work-related exhaustion was assessed using the Maslach Burnout Inventory--General Survey. We determined relative leukocyte telomere length using a quantitative real-time polymerase chain reaction (PCR -based method.After adjustment for age and sex, individuals with severe exhaustion had leukocyte telomeres on average 0.043 relative units shorter (standard error of the mean 0.016 than those with no exhaustion (p = 0.009. The association between exhaustion and relative telomere length remained significant after additional adjustment for marital and socioeconomic status, smoking, body mass index, and morbidities (adjusted difference 0.044 relative units, standard error of the mean 0.017, p = 0.008.These data suggest that work-related exhaustion is related to the acceleration of the rate of biological aging. This hypothesis awaits confirmation in a prospective study measuring changes in relative telomere length over time.

  13. Root canal morphology of primary molars: a micro-computed tomography study.

    Science.gov (United States)

    Fumes, A C; Sousa-Neto, M D; Leoni, G B; Versiani, M A; da Silva, L A B; da Silva, R A B; Consolaro, A

    2014-10-01

    This was to investigate the root canal morphology of primary molar teeth using micro-computed tomography. Primary maxillary (n = 20) and mandibular (n = 20) molars were scanned at a resolution of 16.7 μm and analysed regarding the number, location, volume, area, structured model index (SMI), area, roundness, diameters, and length of canals, as well as the thickness of dentine in the apical third. Data were statistically compared by using paired-sample t test, independent sample t test, and one-way analysis of variance with significance level set as 5%. Overall, no statistical differences were found between the canals with respect to length, SMI, dentine thickness, area, roundness, and diameter (p > 0.05). A double canal system was observed in the mesial and mesio-buccal roots of the mandibular and maxillary molars, respectively. The thickness in the internal aspect of the roots was lower than in the external aspect. Cross-sectional evaluation of the roots in the apical third showed flat-shaped canals in the mandibular molars and ribbon- and oval-shaped canals in the maxillary molars. External and internal anatomy of the primary first molars closely resemble the primary second molars. The reported data may help clinicians to obtain a thorough understanding of the morphological variations of root canals in primary molars to overcome problems related to shaping and cleaning procedures, allowing appropriate management strategies for root canal treatment.

  14. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    Science.gov (United States)

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  15. Root-shoot relationships in four strains of field-grown Erianthus arundinaceus at seedling stage

    Directory of Open Access Journals (Sweden)

    Fumitaka Shiotsu

    2016-01-01

    Full Text Available The production of cellulosic bioethanol from non-edible plants is a potential countermeasure against global warming. Erianthus species provide cellulosic raw material for bioethanol because they have high biomass productivity and high tolerance to environmental stress, associated with their large, deep root systems. However, it is difficult to select Erianthus species for breeding by direct observation of their root systems because the roots are widely dispersed in the soil. Instead, we examined shoot morphological traits that could be closely related to root morphology to find effective reference indices for selection. The potential to evaluate root structure and function in Erianthus according to bleeding rate was also examined. An analysis of root–shoot relationships in seedlings indicated that root number and mean length were closely related to stem number and diameter, respectively. These results suggest that root–shoot relationships may provide useful criteria for selective breeding of root systems in Erianthus.

  16. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    Al-Bachir, Mahfouz

    1993-12-01

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  17. Role and significance of total phenols during rooting of Protea ...

    African Journals Online (AJOL)

    Reviewer

    2011-10-03

    Oct 3, 2011 ... fluctuations in total phenol concentration of different parts ... Rooting percentage, mean root dry mass and mean number of roots according to root length ... differences at P ≤ 0.05 based on chi-square; 2different letters in.

  18. Aluminium localization and toxicity symptoms related to root growth ...

    Indian Academy of Sciences (India)

    2012-10-26

    Oct 26, 2012 ... Aluminium localization and toxicity symptoms related to root growth inhibition in rice (Oryza sativa ... growth of this cultivar when submitted to Al3+ stress. Moreover ..... Caiapó. Previous work has shown the IAC cultivar to be.

  19. Anatomic investigation of the lumbosacral nerve roots and dorsal root ganglia by MRI

    International Nuclear Information System (INIS)

    Hasegawa, Toru; Fuse, Kenzo; Mikawa, Yoshihiro; Watanabe, Ryo

    1995-01-01

    The morphology of the lumbosacral nerve roots and dorsal root ganglia (DRG) was examined by using magnetic resonance imaging (MRI) in 11 healthy male volunteers aged 20-40 years. One hundred and twenty-three nerve roots (15 at the L1 level, 22 each at the L2-L5 levels, and 20 at the S1 level) were examined in terms of the position and angle of the bifurcation of the nerve roots, length of the nerve root, and the position and width of DRG. The nerve roots at the lower levels showed more cephalad position and smaller angle of bifurcation on MRI. The distance from the bifurcation of nerve roots to the cephalad edge of DRG was significantly longer in the upper root levels and was significantly shorter in the L5 roots than the S1 roots. The positions of DRG at the S1 level tended to become cephalad. DRG that was positioned toward more caudal direction was larger and more elliptic. MRI provided useful information concerning morphology and anatomical position of nerve roots and DRG, thereby allowing accurate diagnosis and the determination of surgical indications. (N.K.)

  20. Accuracy of working length determination with root ZX apex locator ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... generation of electronic apex locators (EALs), called root. ZX (J. Morita Co., Tustin, .... dentinocemento junction. Dent Items Interest, 50: 855-857. ... apex locator with an automatic compensation circuit. J. Endod. 28: 706-709.

  1. Sorghum root-system classification in contrasting P environments reveals three main rooting types and root-architecture-related marker-trait associations.

    Science.gov (United States)

    Parra-Londono, Sebastian; Kavka, Mareike; Samans, Birgit; Snowdon, Rod; Wieckhorst, Silke; Uptmoor, Ralf

    2018-02-12

    Roots facilitate acquisition of macro- and micronutrients, which are crucial for plant productivity and anchorage in the soil. Phosphorus (P) is rapidly immobilized in the soil and hardly available for plants. Adaptation to P scarcity relies on changes in root morphology towards rooting systems well suited for topsoil foraging. Root-system architecture (RSA) defines the spatial organization of the network comprising primary, lateral and stem-derived roots and is important for adaptation to stress conditions. RSA phenotyping is a challenging task and essential for understanding root development. In this study, 19 traits describing RSA were analysed in a diversity panel comprising 194 sorghum genotypes, fingerprinted with a 90-k single-nucleotide polymorphism (SNP) array and grown under low and high P availability. Multivariate analysis was conducted and revealed three different RSA types: (1) a small root system; (2) a compact and bushy rooting type; and (3) an exploratory root system, which might benefit plant growth and development if water, nitrogen (N) or P availability is limited. While several genotypes displayed similar rooting types in different environments, others responded to P scarcity positively by developing more exploratory root systems, or negatively with root growth suppression. Genome-wide association studies revealed significant quantitative trait loci (P root-system development on chromosomes SBI-02 and SBI-03. Sorghum genotypes with a compact, bushy and shallow root system provide potential adaptation to P scarcity in the field by allowing thorough topsoil foraging, while genotypes with an exploratory root system may be advantageous if N or water is the limiting factor, although such genotypes showed highest P uptake levels under the artificial conditions of the present study. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Phenotyping Root System Architecture of Cotton (Gossypium barbadense L. Grown Under Salinity

    Directory of Open Access Journals (Sweden)

    Mottaleb Shady A.

    2017-12-01

    Full Text Available Soil salinity causes an annual deep negative impact to the global agricultural economy. In this study, the effects of salinity on early seedling physiology of two Egyptian cotton (Gossypium barbadense L. cultivars differing in their salinity tolerance were examined. Also the potential use of a low cost mini-rhizotron system to measure variation in root system architecture (RSA traits existing in both cultivars was assessed. Salt tolerant cotton cultivar ‘Giza 90’ produced significantly higher root and shoot biomass, accumulated lower Na+/K+ ratio through a higher Na+ exclusion from both roots and leaves as well as synthesized higher proline contents compared to salt sensitive ‘Giza 45’ cultivar. Measuring RSA in mini-rhizotrons containing solid MS nutrient medium as substrate proved to be more precise and efficient than peat moss/sand mixture. We report superior values of main root growth rate, total root system size, main root length, higher number of lateral roots and average lateral root length in ‘Giza 90’ under salinity. Higher lateral root density and length together with higher root tissue tolerance of Na+ ions in ‘Giza 90’ give it an advantage to be used as donor genotype for desirable root traits to other elite cultivars.

  3. Optimization of inhibitory decision rules relative to length and coverage

    KAUST Repository

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2012-01-01

    The paper is devoted to the study of algorithms for optimization of inhibitory rules relative to the length and coverage. In contrast with usual rules that have on the right-hand side a relation "attribute ≠ value", inhibitory rules have a relation

  4. Assessment of periapical health, quality of root canal filling, and ...

    African Journals Online (AJOL)

    Sixty three teeth were found to have short root canal fillings, whereas 74 teeth had adequate root canal fillings, and the remaining 10 teeth had over extended root canal filling. A significant correlation was observed between the length of root filling and apical periodontitis (P = 0,023). Inadequately dense root canal filling was ...

  5. Relationship between dental anomalies and orthodontic root resorption of upper incisors.

    Science.gov (United States)

    Van Parys, Katrien; Aartman, Irene H A; Kuitert, Reinder; Zentner, Andrej

    2012-10-01

    The aim of this study was to examine the potential relationship between the occurrence of orthodontic root resorption and presence of dental anomalies such as tooth agenesis and pipette-shaped roots. Dental anomalies and root resorption were assessed on dental panoramic tomographs (DPT) of 88 subjects, 27 males and 61 females, mean age 28.4 (SD = 11.3 years), selected from orthodontic patients on the basis of the following exclusion criteria: previous fixed appliance treatment, bad quality of the DPTs and no visibility of the periodontal ligament of every tooth, and younger than 15 years of age at the onset of treatment with fixed edgewise appliance lasting at least 18 months. A pipette-shaped root was identified as defined by a drawing. Tooth agenesis was assessed on DPTs and from subjects' dental history. Root resorption was calculated as the difference between the root length before and after treatment, with and without a correction factor (crown length post-treatment/crown length pre-treatment). If one of the four upper incisors showed root resorption of ≥2.3 mm with both formulas, the patient was scored as having root resorption. Chi-square tests indicated that there was no relationship between orthodontic root resorption and agenesis (P = 0.885) nor between orthodontic root resorption and pipette-shaped roots (P = 0.800). There was no relationship between having one of the anomalies and root resorption either (P = 0.750). In the present study, it was not possible to confirm on DPTs a relationship between orthodontic root resorption and dental anomalies, such as agenesis and pipette-shaped roots.

  6. Root resistance to cavitation is accurately measured using a centrifuge technique.

    Science.gov (United States)

    Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L

    2015-02-01

    Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants

    International Nuclear Information System (INIS)

    Wang Xiuping; Han Heyou; Liu Xueqin; Gu Xiaoxu; Chen Kun; Lu Donglian

    2012-01-01

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 μg/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 μg/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  8. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiuping; Han Heyou, E-mail: hyhan@mail.hzau.edu.cn; Liu Xueqin; Gu Xiaoxu; Chen Kun; Lu Donglian [Huazhong Agricultural University, College of Science, State Key Laboratory of Agricultural Microbiology, Institute of Chemical Biology (China)

    2012-06-15

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 {mu}g/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 {mu}g/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  9. Genotypic diversity of root and shoot characteristics of

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available Root and shoot characteristics of chickpea (Cicer arietinum L. genotypes are believed to be important in drought tolerance. There is a little information about the response of genotypes root growth in hydroponics and greenhouse culture, also the relationships between root size and drought tolerance. This study was conducted to observe whether genotypes differ in root size, and to see that root size is associated with drought tolerance during early vegetative growth. We found significant differences (p0.01 in root dry weight, total root length, tap root length, root area, leaf dry weight, leaf area and shoot biomass per plant among 30 genotypes of chickpea grown in hydroponics culture for three weeks. Each of these parameters correlated with all others, positively. Among 30 genotypes, 10 genotypes with different root sizes were selected and were grown in a greenhouse in sand culture experiment under drought stress (FC %30 for three weeks. There were not linear or non-linear significant correlations between root characters in hydroponics and greenhouse environments. It seems that environmental factors are dominant on genetic factors in seedling stage and so, the expression of genotypics potential for root growth characteristics of genotypes are different in hydroponic and greenhouse conditions. In this study, the selection of genotypes with vigorous roots system in hydroponic condition did not lead to genotypes with the same root characters in greenhouse environment. The genotype×drought interactions for root characters of chickpea seedlings in 30 days were not significant (p

  10. Radiographic technical quality of root canal treatment performed by a new rotary single-file system.

    Science.gov (United States)

    Colombo, Marco; Bassi, Cristina; Beltrami, Riccardo; Vigorelli, Paolo; Spinelli, Antonio; Cavada, Andrea; Dagna, Alberto; Chiesa, Marco; Poggio, Claudio

    2017-01-01

    The aim of the present study was to evaluate radiographically the technical quality of root canal filling performed by postgraduate students with a new single-file Nickel-Titanium System (F6 Skytaper Komet) in clinical practice. Records of 74 patients who had received endodontic treatment by postgraduate students at the School of Dentistry, Faculty of Medicine, University of Pavia in the period between September 2015 and April 2016 were collected and examined: the final sample consisted 114 teeth and 204 root canals. The quality of endodontic treatment was evaluated by examining the length of the filling in relation to the radiographic apex, the density of the obturation according to the presence of voids and the taper of root canal filling. Chi-squared analysis was used to determine statistically significant differences between the technical quality of root fillings according to tooth's type, position and curvature. The results showed that 75,49%, 82,84% and 90,69% of root filled canals had adequate length, density and taper respectively. Overall, the technical quality of root canal fillings performed by postgraduates students was acceptable in 60,78% of the cases.

  11. The interactive effect of phosphorus and nitrogen on "in vitro" spore germination of Glomus etunicatum Becker & Gerdemann, root growth and mycorrhizal colonization

    Directory of Open Access Journals (Sweden)

    Bressan Wellington

    2001-01-01

    Full Text Available The effects of P and N amendment and its interactions on spore germination, root growth and colonized root length by Glomus etunicatum Becker & Gerdemann (INVAM S329 was studied "in vitro" in RiT - DNA transformed roots of Anthylis vulneraria sub sp. Sampaiana (Kidney vetch. Three N media concentrations (5, 10 and 50 mg/l at P constant level (2 mg/l and three P media concentrations (2, 10 and 20 mg/l at N constant level (5 mg/l were utilized as a treatment. Bécard & Fortin medium was used as a basal medium for root growth and colonized root length, and water/agar (0.8% media was the control for spore germination. Spore germination of G. etunicatum at low P level was reduced by N addition in relation to the control media, and at low N level addition of P stimulated spore germination. Total root length was stimulated by N addtion at low P level, but no significant difference (p£0.05 was observed between 10 and 50 mg/l of N. P addition at low N level media also stimulated total root growth, and a significant difference (p£0.05 was observed among P concentrations. Colonized root length by G. etunicatum increased significantly (p£0.05 with P additions at low N levels. Under low P level no significant differences was found between 10 and 50 mg/l of N. These results demonstrate that the interaction between P and N affect differently spore germination, root growth and colonized root lenght.

  12. Ethylene: a regulator of root architectural responses to soil phosphorus availability

    NARCIS (Netherlands)

    Borch, K.; Bouma, T.J.; Lynch, J.P.; Brown, K.M.

    1999-01-01

    The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean (Phaseolus vulgaris L,) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was

  13. Contribution of cone beam computed tomography to the detection of apical root resorption after orthodontic treatment in root-filled and vital teeth.

    Science.gov (United States)

    Castro, Iury; Valladares-Neto, José; Estrela, Carlos

    2015-09-01

    To investigate whether root-filled teeth are similar to vital pulp teeth in terms of apical root resorption (ARR) after orthodontic treatment. An original sample of cone beam computed tomography (CBCT) images of 1256 roots from 30 orthodontic patients were analyzed. The inclusion criteria demanded root-filled teeth and their contralateral vital teeth, while teeth with history of trauma had to be excluded to comply with exclusion criteria. CBCT images of root-filled teeth were compared before and after orthodontic treatment in a split-mouth design study. Tooth measurements were made with multiplanar reconstruction using axial-guided navigation. The statistical difference between the treatment effects was compared using the paired t-test. Twenty posterior root-filled teeth and their contralaterals with vital pulp were selected before orthodontic treatment from six adolescents (two boys and four girls; mean [SD] age 12.8 [1.8] years). No differences were detected between filled and vital root lengths before treatment (P  =  .4364). The mean differences in root length between preorthodontic and postorthodontic treatment in filled- and vital roots were -0.30 mm and -0.16 mm, respectively, without any statistical difference (P  =  .4197) between them. There appears to be no increase in ARR after orthodontic treatment in root-filled teeth with no earlier ARR.

  14. In Vitro Comparative Study of the Working Length Determination with Radiovisiography and Conventional Radiography in Dilacerated Canals

    Directory of Open Access Journals (Sweden)

    Ali Bagherpour

    2015-06-01

    Full Text Available Introduction: The aim of this study was to compare digital and conventional radiography in determining the working length of dilacerated canals.Methods: Thirty nine human extracted single-rooted teeth with root curvature more than 35 degrees were included in this study. After access preparation, a file was inserted into the canal and advanced until the file tip was visualized at the foramen. With measurement of the file length using a millimeter ruler, true canal length was determined for each canal. Then, teeth were mounted in acrylic blocks and canal length was estimated by using on-screen digital radiography with both 3- and 6-clicks measurement and from conventional radiography by conforming a preserved file on the image of the root canal.Results: There were no significant differences in measurement accuracy between the true canal length and conventional radiographic length, but there were significant difference between both digital radiographic techniques with true canal length. There was no significant correlation between root curvature and canal length estimation error of studied methods.Conclusion: In dilacerated canals, the accuracy of determination of working length by using conventional radiography is higher than digital radiography

  15. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

    Science.gov (United States)

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-02-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. In vitro radiographic determination of distances from working length files to root ends comparing Kodak RVG 6000, Schick CDR, and Kodak insight film.

    Science.gov (United States)

    Radel, Robert T; Goodell, Gary G; McClanahan, Scott B; Cohen, Mark E

    2006-06-01

    Previous studies suggest that digital and film-based radiography are similar for endodontic measurements. This study compared the accuracy and acceptability of measured distances from the tips of size #10 and #15 files to molar root apices in cadaver jaw sections using the newly developed Kodak RVG 6000, and the Schick CDR digital systems to digitized Kodak film. Standardized images were taken of files placed 0.5 to 1.5 mm short of true radiographic lengths. Images were imported into Adobe PhotoShop 7.0, thereby blinding observers who measured distances from files to root apices and assessed images for clarity (acceptability). Repeated measures ANOVA and Tukey-Kramer post hoc tests demonstrated that Kodak RVG 6000 images with enhanced contrast produced significantly less measurement error than unenhanced contrast Schick CDR images (p Kodak RVG 6000 system provided the best overall images.

  17. Estimation of runoff mitigation by morphologically different cover crop root systems

    Science.gov (United States)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  18. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  19. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  20. Some problems of special theory of relativity. (Concept of relativistic length)

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1977-01-01

    Two available definitions of the concept of length (distance) related (a) to moving the length standard and (b) to sending a light signal (similar to the radar method for measuring distances) are analyzed. Considerations in favour of the preferable use of the (b) definition are discussed. The extension of the (b) definition for fast moving bodies results in the introduction of the definition of relativistic length and volume. The increase of the longitudinal dimensions of fast moving objects is a consequence of the above definition. It should be noted that, e.g., for a rod, the definition corresponds to measurements on the lines orthogonal to the world strip of the given rod. It is shown that the known Michelson-Morley and Throuton-Noble experiments are naturally explained in the framework of the proposed concept of relativistic length. It is also shown that the definition introduced, unlike the conventional one, satisfies the principle of relativity

  1. Relationships between Nutrient Heterogeneity, Root Growth, and Hormones: Evidence for Interspecific Variation.

    Science.gov (United States)

    Dong, Jia; Jones, Robert H; Mou, Pu

    2018-02-28

    (1) Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2) Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species- Callistephus chinensis , Solidago canadensis , Ailanthus altissima , Oryza sativa- to two nitrogen types (NO₃ - or NH₄⁺), three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively) and two ways of nitrogen application (stable vs. variable). The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa , density of the 1st order laterals, seminal root number for O. sativa , the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside). (3) Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4) Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species.

  2. Relationships between Nutrient Heterogeneity, Root Growth, and Hormones: Evidence for Interspecific Variation

    Directory of Open Access Journals (Sweden)

    Jia Dong

    2018-02-01

    Full Text Available (1 Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2 Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species—Callistephus chinensis, Solidago canadensis, Ailanthus altissima, Oryza sativa—to two nitrogen types (NO3− or NH4+, three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively and two ways of nitrogen application (stable vs. variable. The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa, density of the 1st order laterals, seminal root number for O. sativa, the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside. (3 Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4 Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species.

  3. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  4. Rooting of stem cuttings of ixora

    Directory of Open Access Journals (Sweden)

    Aline De Souza Silva

    2015-08-01

    Full Text Available The ixora is ornamental plant widely used in landscaping. In order to maximize the propagation of cuts, we evaluated the concentrations of auxin (indolbutiric acid and the presence of leaves on the rooting in cuts of Ixora coccinea L. The experiment was conducted in randomized block design, in factorial design 3x4, with three types of cuts (without leaf, with two or four leaves, four concentrations of indolbutiric acid (0, 1000, 2000 and 4000 mg L-1, with four replications and 10 cuts in each experimental unit. After 53 days of implantation the experiment, evaluated the survival(%, rooting(%, sprouting(%, formation of callus(%, number, length and biomass of roots formed. The interaction of the type of cuts with concentrations of auxin was not significant for any of the variables analyzed. The survival of cuttings was not influenced by the treatments. Cuts with two or four leaves presented rooting and length of roots above the cuttings without leaves. The application of auxin does not substitute the presence of leaf in cuts of ixora in vegetative propagation. The vegetative propagation by cut of ixora can be made without application of auxin, and the leaves must be maintained in the cuttings.

  5. Effects of synthetic hormone substitutes and genotypes on rooting ...

    African Journals Online (AJOL)

    The vine cuttings were sampled for rooting percentage, number of roots, root length and mini tuber initiation 21 days after treatment (DAT). The number and weight of tubers obtained from IBA and wood ash treated vines were not significantly different. The rice straw ash, IBA and neem leaves powder treated vines produced ...

  6. Comparative Analysis of Crack Propagation in Roots with Hand and Rotary Instrumentation of the Root Canal -An Ex-vivo Study.

    Science.gov (United States)

    Kumari, Manju Raj; Krishnaswamy, Manjunath Mysore

    2016-07-01

    Success of any endodontic treatment depends on strict adherence to 'endodontic triad'. Preparation of root canal system is recognized as being one of the most important stages in root canal treatment. At times, we inevitably end up damaging root dentin which becomes a Gateway for infections like perforation, zipping, dentinal cracks and minute intricate fractures or even vertical root fractures, thereby resulting in failure of treatment. Several factors may be responsible for the formation of dentinal cracks like high concentration of sodium hypochlorite, compaction methods and various canal shaping methods. To compare and evaluate the effects of root canal preparation techniques and instrumentation length on the development of apical root cracks. Seventy extracted premolars with straight roots were mounted on resin blocks with simulated periodontal ligaments, exposing 1-2 mm of the apex followed by sectioning of 1mm of root tip for better visualization under stereomicroscope. The teeth were divided into seven groups of 10 teeth each - a control group and six experimental groups. Subgroup A & B were instrumented with: Stainless Steel hand files (SS) up to Root Canal Length (RCL) & (RCL -1 mm) respectively; sub group C & D were instrumented using ProTaper Universal (PTU) up to RCL and (RCL -1mm) respectively; subgroup E & F were instrumented using ProTaper Next (PTN) up to RCL & (RCL -1 mm) respectively. Stereomicroscopic images of the instrumentation sequence were compared for each tooth. The data was analyzed statistically using descriptive analysis by 'Phi' and 'Cramers' test to find out statistical significance between the groups. The level of significance was set at phand file group showed most cracks followed by ProTaper Universal & ProTaper Next though statistically not significant. Samples instrumented up to 1mm short of working length (RCL-1mm) showed lesser number of cracks. All groups showed cracks formation, the stainless steel group being the highest

  7. Morphology and biomass variations in root system of young tomato plants (Solanum sp.)

    International Nuclear Information System (INIS)

    Álvarez Gil, Marta A.; Fernández, Ana Fita; Ruiz Sánchez, María del C.; Bolarín Jiménez, María del C.

    2016-01-01

    The scarce exploitation of genotypic variability present in plant roots is an attractive breeding choice with regard to abiotic stresses and supports the objective of this work, which is to identify genotypic variation in root system traits of tomato genotypes (Solanum sp.). Thus, five tomato genotypes were studied: the commercial hybrid cultivar Jaguar (S. lycopersicum), Pera, Volgogradiskij and PE-47 entry (S. pennellii), which were collected in Peru, and the interspecific hybrid PeraxPE-47. Plants were grown in hydroponics for 26 days since germination; their roots were extracted and images were digitalized on scanner to evaluate total length, average diameter, the projected area and root length, following the categories per diameter of the whole root system through software Win Rhizo Pro 2003. The dry mass of roots and aerial parts was also recorded. Results indicated that genotypes differed in morphology, length according to diameter, root system spatial configuration and biomass, mainly with respect to the wild salinity resistant species PE-47. The interspecific hybrid PxPE-47 could be used as a rootstock to increase salt tolerance of susceptible cultivars. (author)

  8. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought

    Directory of Open Access Journals (Sweden)

    Ranjan Alok

    2012-11-01

    Full Text Available Abstract Background Root length and its architecture govern the adaptability of plants to various stress conditions, including drought stress. Genetic variations in root growth, length, and architecture are genotypes dependent. In this study, we compared the drought-induced transcriptome of four genotypes of Gossypium herbaceum that differed in their drought tolerance adaptability. Three different methodologies, namely, microarray, pyrosequencing, and qRT–PCR, were used for transcriptome analysis and validation. Results The variations in root length and growth were found among four genotypes of G.herbaceum when exposed to mannitol-induced osmotic stress. Under osmotic stress, the drought tolerant genotypes Vagad and GujCot-21 showed a longer root length than did by drought sensitive RAHS-14 and RAHS-IPS-187. Further, the gene expression patterns in the root tissue of all genotypes were analyzed. We obtained a total of 794 differentially expressed genes by microarray and 104928 high-quality reads representing 53195 unigenes from the root transcriptome. The Vagad and GujCot-21 respond to water stress by inducing various genes and pathways such as response to stresses, response to water deprivation, and flavonoid pathways. Some key regulatory genes involved in abiotic stress such as AP2 EREBP, MYB, WRKY, ERF, ERD9, and LEA were highly expressed in Vagad and GujCot-21. The genes RHD3, NAP1, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in Vagad and GujCot-21. The genes related to peroxidases, transporters, cell wall-modifying enzymes, and compatible solutes (amino acids, amino sugars, betaine, sugars, or sugar alcohols were also highly expressed in Vagad and Gujcot-21. Conclusion Our analysis highlights changes in the expression pattern of genes and depicts a small but highly specific set of drought responsive genes induced in response to drought stress. Some of these

  9. Co-ordinated growth between aerial and root systems in young apple plants issued from in vitro culture.

    Science.gov (United States)

    Costes, E; García-Villanueva, E; Jourdan, C; Regnard, J L; Guédon, Y

    2006-01-01

    In several species exhibiting a rhythmic aerial growth, the existence of an alternation between root and shoot growth has been demonstrated. The present study aims to investigate the respective involvement of the emergence of new organs and their elongation in relation to this phenomenon and its possible genotypic variation in young apple plants. Two apple varieties, X6407 (recently named 'Ariane') and X3305 ('Chantecler' x 'Baujade'), were compared. Five plants per variety, issued from in vitro culture, were observed in minirhizotrons over 4 months. For each plant, root emergence and growth were observed twice per week. Growth rates were calculated for all roots with more than two segments and the branching density was calculated on primary roots. On the aerial part, the number of leaves, leaf area and total shoot length were observed weekly. No significant difference was observed between varieties in any of the final characteristics of aerial growth. Increase in leaf area and shoot length exhibited a 3-week rhythm in X3305 while a weaker signal was observed in Ariane. The primary root growth rate was homogeneous between the plants and likewise between the varieties, while their branching density differed significantly. Secondary roots emerged rhythmically, with a 3-week and a 2-week rhythm, respectively, in X3305 and 'Ariane'. Despite a high intra-variety variability, significant differences were observed between varieties in the secondary root life span and mean length. A synchronism between leaf emergence and primary root growth was highlighted in both varieties, while an opposition phase was observed between leaf area increments and secondary root emergence in X3305 only. A biological model of dynamics that summarizes the interactions between processes and includes the assumption of a feedback effect of lateral root emergence on leaf emergence is proposed.

  10. Heuristic Aspect of the Lateral Root Initiation Index: A Case Study of the Role of Nitric Oxide in Root Branching

    Directory of Open Access Journals (Sweden)

    Veronica Lira-Ruan

    2013-10-01

    Full Text Available Premise of the study: Lateral root (LR initiation (LRI is a central process in root branching. Based on LR and/or LR primordium densities, it has been shown that nitric oxide (NO promotes LRI. However, because NO inhibits primary root growth, we hypothesized that NO may have an opposite effect if the analysis is performed on a cellular basis. Using a previously proposed parameter, the LRI index (which measures how many LRI events take place along a root portion equivalent to the length of a single file of 100 cortical cells of average length, we addressed this hypothesis and illustrate here that the LRI index provides a researcher with a tool to uncover hidden but important information about root initiation. Methods and Results: Arabidopsis thaliana roots were treated with an NO donor (sodium nitroprusside [SNP] and/or an NO scavenger (2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide [cPTIO]. LRI was analyzed separately in the root portions formed before and during the treatment. In the latter, SNP caused root growth inhibition and an increase in the LR density accompanied by a decrease in LRI index, indicating overall inhibitory outcome of the NO donor on branching. The inhibitory effect of SNP was reversed by cPTIO, showing the NO-specific action of SNP on LRI. Conclusions: Analysis of the LRI index permits the discovery of otherwise unknown modes of action of a substance on the root system formation. NO has a dual action on root branching, slightly promoting it in the root portion formed before the treatment and strongly inhibiting it in the root portion formed during the treatment.

  11. An evaluation of root resorption after orthodontic treatment.

    Science.gov (United States)

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  12. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    Science.gov (United States)

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  13. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    Science.gov (United States)

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  14. Optimization of inhibitory decision rules relative to length and coverage

    KAUST Repository

    Alsolami, Fawaz

    2012-01-01

    The paper is devoted to the study of algorithms for optimization of inhibitory rules relative to the length and coverage. In contrast with usual rules that have on the right-hand side a relation "attribute ≠ value", inhibitory rules have a relation "attribute = value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. © 2012 Springer-Verlag.

  15. Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-12-15

    In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potential composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.

  16. Aluminium localization and toxicity symptoms related to root growth ...

    Indian Academy of Sciences (India)

    We correlated root growth inhibition with aluminium (Al3+) localization and toxicity symptoms in rice roots using seedlings of two genotypes (tolerant and sensitive) that were exposed to different AlCl3 concentrations. Al3+ localization was evaluated by hematoxylin in primary roots and by morin in cross-sections of the root ...

  17. Rooting and acclimatization of micropropagated marubakaido apple rootstock using Adesmia latifolia rhizobia.

    Science.gov (United States)

    Muniz, Aleksander Westphal; de Sá, Enilson Luiz; Dalagnol, Gilberto Luíz; Filho, João Américo

    2013-01-01

    In vitro rooting and the acclimatization of micropropagated rootstocks of apple trees is essential for plant development in the field. The aim of this work was to assess the use of rhizobia of Adesmia latifolia to promote rooting and acclimatization in micropropagated Marubakaido apple rootstock. An experiment involving in vitro rooting and acclimatization was performed with four strains of rhizobium and two controls, one with and the other without the addition of synthetic indoleacetic acid. The inoculated treatments involved the use of sterile inoculum and inoculum containing live rhizobia. The most significant effects on the rooting rate, primary-root length, number of roots, root length, fresh-shoot biomass, and fresh-root biomass were obtained by inoculation with strain EEL16010B and with synthetic indole acetic acid. However, there was no difference in the growth of apple explants in the acclimatization experiments. Strain EEL16010B can be used to induce in vitro rooting of the Marubakaido rootstock and can replace the use of synthetic indoleacetic acid in the rooting of this cultivar.

  18. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.; Kirk, G. J. D.; Jones, D. L.; Wissuwa, M.; Roose, T.

    2011-01-01

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  19. A dual porosity model of nutrient uptake by root hairs

    KAUST Repository

    Zygalakis, K. C.

    2011-08-09

    Summary: • The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. • Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. • Compared with conventional \\'single porosity\\' models, this \\'dual porosity\\' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. • Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  20. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    Science.gov (United States)

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Romantic Relationship Length and its Perceived Quality: Mediating Role of Facebook-Related Conflict

    Directory of Open Access Journals (Sweden)

    H. M. Saidur Rahaman

    2015-08-01

    Full Text Available The purpose of this study was to investigate how Facebook use is leading to negative relationship outcomes such as cheating and breakup by assessing users’ perceived relationship qualities. It was hypothesized that Facebook-related conflict will be negatively related with users’ relationship length and will also be negatively related with their perceived relationship satisfaction, commitment, and love. Facebook-related conflict further mediates the relationship between relationship length and perceived relationship satisfaction, commitment, and love. Self-report data were gathered from participants (N = 101 in an online survey by employing standard questionnaires. A set of regression and mediation analyses confirmed all the hypotheses of the study. That is, Facebook-related conflict mediates the relationship between relationship length and perceived relationship satisfaction, commitment, and love. Moreover, the magnitude of mediation was highest for relationship satisfaction. Implications for future research and contributions are discussed.

  2. Mycorrhizal Glomus spp. vary in their effects on the dynamics and turnover of fine alfalfa (Medicago sativa L.) roots

    International Nuclear Information System (INIS)

    Ren, A.; Waly, N.; Chunhui, M.; Zhang, Q.; Liu, H.; Yang, J.

    2016-01-01

    The distribution of fine roots in the soil profile has important implications related to water and nutrient uptake. The Objective of this study was to compare the effects of different arbuscular mycorrhizal fungi (AMF) on the fine root dynamics of Medicago sativa L. cv. Sanditi. We used minirhizotrons to observe changes in fine root length density (FRLD, mm/cm2) and fine root surface area density (FRSAD, mm2/cm2) during the growing season. Fine root P concentrations and turnover rate were also measured. The colonization rate of fine roots varied depending on the AMF species. Colonization rates were highest when roots were inoculated with Glomus mosseae and lowest when roots were inoculated G. intraradices. Inoculation with AMF significantly increased both FRLD and FRSAD. G. versiforme increased FRLD and FRSAD most, whereas G. mosseae had the least effect. Inoculation with AMF also decreased fine root turnover rates. Inoculation with a mixture of AMF species increased fine root turnover and P concentrations more than inoculation with a single AMF species. Fine root length density increased to a maximum on Aug. 6 and then decreased. In comparison, FRSAD exhibited two peaks during the growing season. Overall, the Results indicated that inoculation with AMF can significantly promote fine root growth and P uptake by alfalfa growing on soil with low P availability. The AMF may preserve fine root function late in the growing season. (author)

  3. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  4. Phytoremediation in the tropics--influence of heavy crude oil on root morphological characteristics of graminoids.

    Science.gov (United States)

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-11-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies.

  5. Effect of reciprocating systems and working lengths on apical microcrack development: a micro-CT Study

    International Nuclear Information System (INIS)

    Oliveira, Bruna Paloma de; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes; Heck, Richard John

    2017-01-01

    The objective of this study was to evaluate the effect of root canal preparation with single-file reciprocating systems at different working lengths on the development of apical microcracks using micro-computed tomographic (micro-CT) imaging. Forty extracted human mandibular incisors were randomly assigned to 4 groups (n=10) according to the systems and working length used to prepare the root canals: Group A - WaveOne Gold at apical foramen (AF), Group B - WaveOne Gold 1 mm short of the AF (AF-1 mm), Group C - Unicone (AF) and Group D - Unicone (AF-1 mm). Micro-CT scanning was performed before and after root canal preparation at an isotropic resolution of 14 μm. Then, three examiners assessed the cross-sectional images generated to detect microcracks in the apical portion of the roots. Apical microcracks were visualized in 3, 1, 1, and 3 specimens in groups A, B, C, and D, respectively. All these microcracks observed after root canal preparation already existed prior to instrumentation, and no new apical microcrack was detected. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal preparation with WaveOne Gold and Unicone, regardless of the working length, was not associated with apical microcrack formation. (author)

  6. Effect of reciprocating systems and working lengths on apical microcrack development: a micro-CT Study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruna Paloma de; Câmara, Andréa Cruz; Duarte, Daniel Amancio; Antonino, Antonio Celso Dantas; Aguiar, Carlos Menezes, E-mail: bruna_paloma@msn.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Heck, Richard John [Department of Land Resource Science, University of Guelph (Canada)

    2017-11-15

    The objective of this study was to evaluate the effect of root canal preparation with single-file reciprocating systems at different working lengths on the development of apical microcracks using micro-computed tomographic (micro-CT) imaging. Forty extracted human mandibular incisors were randomly assigned to 4 groups (n=10) according to the systems and working length used to prepare the root canals: Group A - WaveOne Gold at apical foramen (AF), Group B - WaveOne Gold 1 mm short of the AF (AF-1 mm), Group C - Unicone (AF) and Group D - Unicone (AF-1 mm). Micro-CT scanning was performed before and after root canal preparation at an isotropic resolution of 14 μm. Then, three examiners assessed the cross-sectional images generated to detect microcracks in the apical portion of the roots. Apical microcracks were visualized in 3, 1, 1, and 3 specimens in groups A, B, C, and D, respectively. All these microcracks observed after root canal preparation already existed prior to instrumentation, and no new apical microcrack was detected. For all groups, the number of slices presenting microcracks after root canal preparation was the same as before canal preparation. Root canal preparation with WaveOne Gold and Unicone, regardless of the working length, was not associated with apical microcrack formation. (author)

  7. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    Science.gov (United States)

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.

  8. Fourier transforms related to a root system of rank 1.

    NARCIS (Netherlands)

    Groenevelt, W.G.M.

    2007-01-01

    Abstract : We introduce an algebra $\\mathcal H$ consisting of difference-reflection operators and multiplication operators that can be considered as a q = 1 analogue of Sahi's double affine Hecke algebra related to the affine root system of type $(C^\\vee_1, C_1)$ . We study eigenfunctions of a

  9. Relationships between soluble sugar concentrations in roots and ecosystem stress for first-year sugar maple seedlings

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, J.W.; Reed, D.D.; Jurgensen, M.F.; Mroz, G.D.; Bagley, S.T. [Michigan Technological University, Houghton, MI (United States). School of Forestry and Wood Products

    1996-03-01

    Accumulation of reducing sugars (i.e. glucose and fructose) in plant roots has been consistently correlated with forest dieback and decline and, therefore, has potential as a biological indicator of ecosystem stress. In this study, the relationships between acidic deposition and `natural` (temperature, mycorrhizae, and nutrition) factors with first-year sugar maple seedling root sugar concentrations and growth were assessed in two sugar maple dominated forests in Michigan. Seedlings at the southern site (Wellston) had greater root growth, phosphorus, total sugar, and sucrose concentrations in roots, but lower reducing sugar concentration in roots. In addition, percent root length colonized by vesicular-arbuscular mycorrhizal fungi was less than that found for seedlings growing at the northern site (Alberta). Throughfall deposition of nitrate, sulfate, and hydrogen ions was not significantly correlated with seedling total or reducing sugar concentration. Total sugar concentration in seedling roots was positively correlated with air and soil temperatures at the southern site, but not at the northern site. Seedling tissue phosphorus concentration was correlated with total sugars at both sites, with sucrose at the southern site, and reducing sugars at the northern site. Mycorrhizal colonization rates at the Alberta site were positively correlated with reducing sugar concentration in seedling roots and negatively correlated with sucrose concentration. The results suggest that differences in seedling root sugar concentrations in these two forests are related to seedling root growth and are most likely due to ecological variables, such as available soil phosphorus, temperature, and growing season length through some complex interaction with mycorrhizae rather than acidic deposition stress. 56 refs., 3 figs.

  10. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  11. In vitro ROOTING OF TENERA HYBRID OIL PALM (Elaeis guineensis Jacq. PLANTS1

    Directory of Open Access Journals (Sweden)

    Marlúcia Souza Souza Pádua

    2018-04-01

    Full Text Available ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA and indole butyric acid (IBA on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87% and better results for the parameters of number of roots (1.33 and shoot length (9.83.

  12. Linking root traits and competitive success in grassland species

    NARCIS (Netherlands)

    Ravenek, Janneke M.; Mommer, Liesje; Visser, Eric J.W.; Ruijven, van Jasper; Paauw, van der Jan Willem; Smit-Tiekstra, Annemiek; Caluwe, de Hannie; Kroon, de Hans

    2016-01-01

    Background and aims: Competition is an important force shaping plant communities. Here we test the hypothesis that high overall root length density and selective root placement in nutrient patches, as two alternative strategies, confer competitive advantage in species mixtures. Methods: We

  13. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  14. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  15. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    Science.gov (United States)

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-07-03

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study.

  16. Water Erosion in Different Slope Lengths on Bare Soil

    Directory of Open Access Journals (Sweden)

    Bárbara Bagio

    Full Text Available ABSTRACT Water erosion degrades the soil and contaminates the environment, and one influential factor on erosion is slope length. The aim of this study was to quantify losses of soil (SL and water (WL in a Humic Cambisol in a field experiment under natural rainfall conditions from July 4, 2014 to June 18, 2015 in individual events of 41 erosive rains in the Southern Plateau of Santa Catarina and to estimate soil losses through the USLE and RUSLE models. The treatments consisted of slope lengths of 11, 22, 33, and 44 m, with an average degree of slope of 8 %, on bare and uncropped soil that had been cultivated with corn prior to the study. At the end of the corn cycle, the stalk residue was removed from the surface, leaving the roots of the crop in the soil. Soil loss by water erosion is related linearly and positively to the increase in slope length in the span between 11 and 44 m. Soil losses were related to water losses and the Erosivity Index (EI30, while water losses were related to rain depth. Soil losses estimated by the USLE and RUSLE model showed lower values than the values observed experimentally in the field, especially the values estimated by the USLE. The values of factor L calculated for slope length of 11, 22, 33, and 44 m for the two versions (USLE and RUSLE of the soil loss prediction model showed satisfactory results in relation to the values of soil losses observed.

  17. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  18. Identification of quantitative trait loci controlling root and shoot traits associated with drought tolerance in a lentil (Lens culinaris Medik. recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Omar Idrissi

    2016-08-01

    Full Text Available Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 % and 28.9 % for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labour-intensive conventional breeding methods.

  19. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  20. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    International Nuclear Information System (INIS)

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-01-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils

  1. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    Energy Technology Data Exchange (ETDEWEB)

    Merkl, Nicole [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany) and PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela)]. E-mail: nmerkl@uni-hohenheim.de; Schultze-Kraft, Rainer [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany)]. E-mail: rsk@uni-hohenheim.de; Infante, Carmen [PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela) and Universidad Simon Bolivar (USB), FUNINDES, Unidad de Gestion Ambiental, Caracas (Venezuela)]. E-mail: luchoben@cantv.net

    2005-11-15

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils.

  2. Variations in the Root Form and Root Canal Morphology of Permanent Mandibular First Molars in a Sri Lankan Population

    Directory of Open Access Journals (Sweden)

    Roshan Peiris

    2015-01-01

    Full Text Available The present study was conducted to determine the number of roots and morphology of the root canal system of permanent mandibular first molars (M1 in a Sri Lankan population. Sample of 529 M1 teeth was used. The number of roots was examined and the lengths of the mesial and distal roots were measured to the nearest 0.01 mm. Vacuum injection protocol was used to inject China ink into the root canal system, making it transparent. Root canal morphology was recorded using Vertucci’s classification. Presence of furcation canals, position of lateral canals, intercanal communications, level of bifurcation, and convergence of the root canal system were recorded. M1 showed three roots in 4.1% of the sample. Commonest root canal morphology of the mesial root was type IV and the distal root was type I. The level of bifurcation of the root canals was commonly observed in the cervical one-third of the root while convergence was observed in the apical one-third in both roots. Prevalence of three rooted mandibular first molars is less than 5%. Mesial root showed the most variable canal morphology. Prevalence of furcation canals was 1.5% while that of middle mesial canals was 0.2%.

  3. Quantum systems related to root systems and radial parts of Laplace operators

    OpenAIRE

    Olshanetsky, M. A.; Perelomov, A. M.

    2002-01-01

    The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.

  4. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots.

    Science.gov (United States)

    Cajero Sánchez, Wendy; García-Ponce, Berenice; Sánchez, María de la Paz; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana

    2018-01-01

    The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10

  5. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  6. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    Science.gov (United States)

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  7. A Standardized Method to Assess Infection Rates of Root-Knot and Cyst Nematodes in Arabidopsis thaliana Mutants with Alterations in Root Development Related to Auxin and Cytokinin Signaling.

    Science.gov (United States)

    Olmo, Rocío; Silva, Ana Cláudia; Díaz-Manzano, Fernando E; Cabrera, Javier; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Plant parasitic nematodes cause a great impact in agricultural systems. The search for effective control methods is partly based on the understanding of underlying molecular mechanisms leading to the formation of nematode feeding sites. In this respect, crosstalk of hormones such as auxins and cytokinins (IAA, CK) between the plant and the nematode seems to be crucial. Thence, the study of loss of function or overexpressing lines with altered IAA and CK functioning is entailed. Those lines frequently show developmental defects in the number, position and/or length of the lateral roots what could generate a bias in the interpretation of the nematode infection parameters. Here we present a protocol to assess differences in nematode infectivity with the lowest interference of root architecture phenotypes in the results. Thus, tailored growth conditions and normalization parameters facilitate the standardized phenotyping of nematode infection.

  8. Clonal Propagation of Khaya senegalensis: The Effects of Stem Length, Leaf Area, Auxins, Smoke Solution, and Stockplant Age

    Directory of Open Access Journals (Sweden)

    Catherine Ky-Dembele

    2011-01-01

    Full Text Available Khaya senegalensis is a multipurpose African timber species. The development of clonal propagation could improve plantation establishment, which is currently impeded by mahogany shoot borer. To examine its potential for clonal propagation, the effects of cutting length, leaf area, stockplant maturation, auxin, and smoke solution treatments were investigated. Leafy cuttings rooted well (up to 80% compared to leafless cuttings (0%. Cuttings taken from seedlings rooted well (at least 95%, but cuttings obtained from older trees rooted poorly (5% maximum. The rooting ability of cuttings collected from older trees was improved (16% maximum by pollarding. Auxin application enhanced root length and the number of roots while smoke solution did not improve cuttings' rooting ability. These results indicate that juvenile K. senegalensis is amenable to clonal propagation, but further work is required to improve the rooting of cuttings from mature trees.

  9. Growth and Anatomical Parameters of Adventitious Roots Formed on Mung Bean Hypocotyls Are Correlated with Galactoglucomannan Oligosaccharides Structure

    Directory of Open Access Journals (Sweden)

    K. Kollárová

    2012-01-01

    Full Text Available The effect of galactoglucomannan oligosaccharides (GGMOs compared with chemically modified oligosaccharides, GGMOs-g (with reduced number of D-galactose side chains and GGMOs-r (with reduced reducing ends on mung bean (Vigna radiata (L. Wilczek adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings. However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or NAA, while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure. The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not in their formation.

  10. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis.

    Science.gov (United States)

    Nagarajan, Vinay K; Satheesh, Viswanathan; Poling, Michael D; Raghothama, Kashchandra G; Jain, Ajay

    2016-06-01

    Phosphate (Pi), an essential macronutrient required for growth and development of plants, is often limiting in soils. Pi deficiency modulates the expression of Pi starvation-responsive (PSR) genes including transcription factors (TFs). Here, we elucidated the role of the MYB-related TF HYPERSENSITIVITY TO LOW PHOSPHATE-ELICITED PRIMARY ROOT SHORTENING1 HOMOLOG2 (HHO2, At1g68670) in regulating Pi acquisition and signaling in Arabidopsis thaliana HHO2 was specifically and significantly induced in different tissues in response to Pi deprivation. Transgenic seedlings expressing 35S::GFP::HHO2 confirmed the localization of HHO2 to the nucleus. Knockout mutants of HHO2 showed significant reduction in number and length of first- and higher-order lateral roots and Pi content of different tissues compared with the wild-type irrespective of the Pi regime. In contrast, HHO2-overexpressing lines exhibited augmented lateral root development, enhanced Pi uptake rate and higher Pi content in leaf compared with the wild-type. Expression levels of PSR genes involved in Pi sensing and signaling in mutants and overexpressors were differentially regulated as compared with the wild-type. Attenuation in the expression of HHO2 in the phr1 mutant suggested a likely influence of PHR1 in HHO2-mediated regulation of a subset of traits governing Pi homeostasis. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Glycolysis Is Dynamic and Relates Closely to Respiration Rate in Stored Sugarbeet Roots

    Directory of Open Access Journals (Sweden)

    Clarice A. Megguer

    2017-05-01

    storage and that changes in glycolysis are closely related to changes in sugarbeet root respiration.

  12. The interaction between glucose and cytokinin signaling in controlling Arabidopsis thaliana seedling root growth and development.

    Science.gov (United States)

    Kushwah, Sunita; Laxmi, Ashverya

    2017-05-04

    Cytokinin (CK) and glucose (GLC) control several common responses in plants. There is an extensive overlap between CK and GLC signal transduction pathways in Arabidopsis. Physiologically, both GLC and CK could regulate root length in light. CK interacts with GLC via HXK1 dependent pathway for root length control. Wild-type (WT) roots cannot elongate in the GLC free medium while CK-receptor mutant ARABIDOPSIS HISTIDINE KINASE4 (ahk4) and type B ARR triple mutant ARABIDOPSIS RESPONSE REGULATOR1, 10,11 (arr1, 10,11) roots could elongate even in the absence of GLC as compared with the WT. The root hair initiation was also found defective in CK signaling mutants ahk4, arr1,10,11 and arr3,4,5,6,8,9 on increasing GLC concentration (up to 3%); and lesser number of root hairs were visible even at 5% GLC as compared with the WT. Out of 941 BAP regulated genes, 103 (11%) genes were involved in root growth and development. Out of these 103 genes, 60 (58%) genes were also regulated by GLC. GLC could regulate 5736 genes, which include 327 (6%) genes involved in root growth and development. Out of these 327 genes, 60 (18%) genes were also regulated by BAP. Both GLC and CK signaling cannot alter root length in light in auxin signaling mutant AUXIN RESPONSE3/INDOLE-3-ACETIC ACID17 (axr3/iaa17) suggesting that they may involve auxin signaling component as a nodal point. Therefore CK- and GLC- signaling are involved in controlling different aspects of root growth and development such as root length, with auxin signaling components working as downstream target.

  13. Root-Crown Relations of Young Sugar Maple and Yellow Birch

    Science.gov (United States)

    Carl H. Tubbs

    1977-01-01

    Young forest-grown sugar maple and yellow birch (1 to 6 inches d.b.h.) crowns were mapped and roots excavated. Crown dimensions were compared. Sugar maple roots usually terminated within a few feet of the crown perimeter. Yellow birch roots frequently terminated well outside crown perimeters and roots of birch were more irregularly distributed than those of maple....

  14. Predisposing factors to severe external root resorption associated to orthodontic treatment.

    Science.gov (United States)

    Picanço, Gracemia Vasconcelos; de Freitas, Karina Maria Salvatore; Cançado, Rodrigo Hermont; Valarelli, Fabricio Pinelli; Picanço, Paulo Roberto Barroso; Feijão, Camila Pontes

    2013-01-01

    The aim of this study was to evaluate predisposing factors among patients who developed moderate or severe external root resorption (Malmgren's grades 3 and 4), on the maxillary incisors, during fixed orthodontic treatment in the permanent dentition. Ninety-nine patients who underwent orthodontic treatment with fixed edgewise appliances were selected. Patients were divided into two groups: G1 - 50 patients with no root resorption or presenting only apical irregularities (Malmgren's grades 0 and 1) at the end of the treatment, with mean initial age of 16.79 years and mean treatment time of 3.21 years; G2 - 49 patients presenting moderate or severe root resorption (Malmgren's grades 3 and 4) at the end of treatment on the maxillary incisors, with mean initial age of 19.92 years and mean treatment time of 3.98 years. Periapical radiographs and lateral cephalograms were evaluated. Factors that could influence the occurrence of severe root resorption were also recorded. Statistical analysis included chi-square tests, Fisher's exact test and independent t tests. The results demonstrated significant difference between the groups for the variables: Extractions, initial degree of root resorption, root length and crown/root ratio at the beginning, and cortical thickness of the alveolar bone. It can be concluded that: Presence of root resorption before the beginning of treatment, extractions, reduced root length, decreased crown/root ratio and thin alveolar bone represent risk factors for severe root resorption in maxillary incisors during orthodontic treatment.

  15. Root systems and soil microbial biomass under no-tillage system

    Directory of Open Access Journals (Sweden)

    Venzke Filho Solismar de Paiva

    2004-01-01

    Full Text Available Some root parameters such as distribution, length, diameter and dry matter are inherent to plant species. Roots can influence microbial population during vegetative cycle through the rhizodeposits and, after senescence, integrating the soil organic matter pool. Since they represent labile substrates, especially regarding nitrogen, they can determine the rate of nutrient availability to the next crop cultivated under no-tillage (NT. The root systems of two crop species: maize (Zea mays L. cultivar Cargill 909 and soybean [Glycine max (L. Merr.] cultivar Embrapa 59, were compared in the field, and their influence on spatial distribution of the microbial C and N in a clayey-textured Typic Hapludox cultivated for 22 years under NT, at Tibagi, State of Paraná (PR, Brazil, was determined. Digital image processing and nail-plate techniques were used to evaluate 40 plots of a 80 ´ 50 ´ 3 cm soil profile. It was observed that 36% and 30% of the maize and soybeans roots, respectively, are concentrated in the 0 to 10 cm soil layer. The percent distribution of root dry matter was similar for both crops. The maize roots presented a total of 1,324 kg C ha-1 and 58 kg N ha-1, with higher root dry matter density and more roots in decomposition in the upper soil layer, decreasing with depth. The soybean roots (392 kg C ha-1 and 21 kg N ha-1 showed higher number of thinner roots and higher density per length unity compared to the maize. The maize roots enhanced microbial-C down to deeper soil layers than did the soybean roots. The microbial N presented a better correlation with the concentration of thin active roots and with roots in decomposition or in indefinite shape, possibly because of higher concentration of C and N easily assimilated by soil microorganisms.

  16. Rooting traits of peanut genotypes with different yield response to terminal drought

    Science.gov (United States)

    Drought at pod filling and maturity stages can severely reduce yield of peanut. Better root systems can reduce yield loss from drought. The goal of this study was to investigate the responses to terminal drought of peanut genotypes for root dry weight and root length density. A field experiment was ...

  17. Different Phylogenetic and Environmental Controls of First-order Root Morphological and Chemical Traits

    Science.gov (United States)

    Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N.

    2017-12-01

    Fine roots are the most distal roots that act as the primary belowground organs in acquiring limiting nutrients and water from the soil. However, limited by the inconsistency in definitions of fine roots and the different protocols among studies, knowledge of root system traits has, to date, still lagged far behind our understanding of above-ground traits. In particular, whether variation in fine root traits among the plant species along a single root economics spectrum and this underlying mechanism are still hotly debated. In this study, we sampled the first-order root using the standardized protocols, and measured six important root traits related to resource use strategies, from 181 plant species from subtropical to boreal forests. Base on this large dataset, we concluded that different phylogenetic and environmental factors affected on root thickness and nutrient, resulting in the decoupled pattern between them. Specifically, variation in species-level traits related to root thickness (including root diameter, RD and specific root length, SRL) was restricted by common ancestry and little plastic to the changing environments, whereas the large-scale variation in woody root nutrient was mainly controlled by environmental differences, especially soil variables. For community-level traits, mean annual temperature (MAT) mainly influenced the community-level root thickness through the direct effect of changes in plant species composition, while soil P had a positive influence effect on community-level root nitrogen concentration (CWM_RN), reflecting the strong influence of soil fertility on belowground root nutrient. The different environmental constraints and selective pressures acting between root thickness and nutrient traits allows for multiple ecological strategies to adapt to complex environmental conditions. In addition, strong relationships between community-level root traits and environmental variables, due to environmental filters, indicate that in contrast

  18. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage

    Directory of Open Access Journals (Sweden)

    Nuria Escudero

    2017-09-01

    Full Text Available The use of biological control agents could be a non-chemical alternative for management of Meloidogyne spp. [root-knot nematodes (RKN], the most damaging plant-parasitic nematodes for horticultural crops worldwide. Pochonia chlamydosporia is a fungal parasite of RKN eggs that can colonize endophytically roots of several cultivated plant species, but in field applications the fungus shows a low persistence and efficiency in RKN management. The combined use of P. chlamydosporia with an enhancer could help its ability to develop in soil and colonize roots, thereby increasing its efficiency against nematodes. Previous work has shown that chitosan enhances P. chlamydosporia sporulation and production of extracellular enzymes, as well as nematode egg parasitism in laboratory bioassays. This work shows that chitosan at low concentrations (up to 0.1 mg ml-1 do not affect the viability and germination of P. chlamydosporia chlamydospores and improves mycelial growth respect to treatments without chitosan. Tomato plants irrigated with chitosan (same dose limit increased root weight and length after 30 days. Chitosan irrigation increased dry shoot and fresh root weight of tomato plants inoculated with Meloidogyne javanica, root length when they were inoculated with P. chlamydosporia, and dry shoot weight of plants inoculated with both P. chlamydosporia and M. javanica. Chitosan irrigation significantly enhanced root colonization by P. chlamydosporia, but neither nematode infection per plant nor fungal egg parasitism was affected. Tomato plants cultivated in a mid-suppressive (29.3 ± 4.7% RKN egg infection non-sterilized clay loam soil and irrigated with chitosan had enhanced shoot growth, reduced RKN multiplication, and disease severity. Chitosan irrigation in a highly suppressive (73.7 ± 2.6% RKN egg infection sterilized-sandy loam soil reduced RKN multiplication in tomato. However, chitosan did not affect disease severity or plant growth irrespective of

  19. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice

    Directory of Open Access Journals (Sweden)

    Huwei Sun

    2017-12-01

    Full Text Available Fe deficiency (-Fe is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT, ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe, and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.

  20. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: an in vitro study.

    Science.gov (United States)

    Gaurav, Vivek; Srivastava, Nikhil; Rana, Vivek; Adlakha, Vivek Kumar

    2013-01-01

    Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.

  1. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  2. Improvement of date palm plant lets during rooting stage by silver ion

    International Nuclear Information System (INIS)

    Sharaf, M.M.; Khamis, M.A.; El Bana, A.; Abd El Galeil, L.M.; Zaid, Z.E.

    2012-01-01

    This study aim to promote growth plant lets of date palm cv. Zaghlool by decreasing ethylene production inside the containers during rooting stage. Data obtained declared that three silver thiosulphate (STS) levels added to one half strength MS rooting medium improved significantly three rooting measurements (rooting percentage; number and length of developed root lets). However, the lightest STS level (0.25 ml/L of 4 mM STS solution) was the superior, while highest one (1.0 ml/L) was the inferior from statistical point of view. Data obtained displayed that providing MS rooting medium with silver nitrate improved 3 rooting measurements (rooting %; number of root lets and their length) for Zaghloul date palm shoot lets proliferated from somatic embryos. However, the 0.50 mg/L AgNO 3 provided MS medium was the most preferable in this concern. Plant lets were transferred to capped tubes contained 1/4 liquid MS medium through 3 weeks in the growth chamber (under aseptic condition). Ventilation was allowed gradually by punching holes in aluminum foil caps during first five days of 2 nd week. After then, the plant lets were transplanted in acclimatization green house on mixture from (peat moss + perlite + vermiculite at 1:1:1) and survival percentage was 75% after three months.

  3. Root canal shaping using rotary nickel-titanium files in preclinical dental education in Turkey.

    Science.gov (United States)

    Ünal, Gül Çelik; Maden, Murat; Orhan, Ekim Onur; Sarıtekin, Erdal; Teke, Anıl

    2012-04-01

    The purposes of this study were to evaluate the ability of a group of third-year dental students without any endodontic clinical experience to use the ProTaper Instruments (Dentsply Maillefer) to decrease the amount of straightening of curved canals on human molar teeth and to determine the incidence of instrument fractures and instrumentation time. Thirty-one undergraduate dental students in Turkey received a training session. The students prepared a total of 144 root canals in human mandibular or maxillary molar teeth with ProTaper. Fifty-six teeth were excluded due to unreadable image, misinformation, or straight or severe curve. Using pre- and post-preparation digital radiographs, the straightening of curved root canals was investigated. Loss of working length and incidence of fracture were also noted. A total of eighty-eight curved root canals were selected. Mesiobuccal or mesiolingual roots with curvatures of between 20° and 43° as assessed by Schneider's method and working length of between 15 mm and 22.5 mm were included in the study. The means of the curved root canals before and after the instrumentation were 29.5° ± 6° and 27° ± 6.3°, respectively. The means of the working length before and after the instrumentation were 19 mm ± 2.1 mm and 18.3 mm ± 1.9 mm, respectively. A statistically significant difference between straightening of curved root canals and loss of working length was found between before and after instrumentation (psession.

  4. High-Resolution Amplified Fragment Length Polymorphism Typing of Lactococcus lactis Strains Enables Identification of Genetic Markers for Subspecies-Related Phenotypes▿

    Science.gov (United States)

    Kütahya, Oylum Erkus; Starrenburg, Marjo J. C.; Rademaker, Jan L. W.; Klaassen, Corné H. W.; van Hylckama Vlieg, Johan E. T.; Smid, Eddy J.; Kleerebezem, Michiel

    2011-01-01

    A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers. PMID:21666014

  5. The Long-Term Effect on Children of Increasing the Length of Parents' Birth-Related Leave

    DEFF Research Database (Denmark)

    Wurtz, Astrid

    The length of parents. birth-related leave varies across countries and has been subject of some debate. I investigate the long-term e¤ects on children of increasing the length of parents.birth-related leave using a natural experiment from 1984 in Denmark when the leave length was increased from 14...... to 20 weeks. Regression discontinuity design is used to identify the causal e¤ect of the reform. A population sample of children born in 1984 and a dataset with PISA-2000 scores are used for the analysis. Results indicate that increasing parents. access to birth-related leave has no measurable e...

  6. Genetic Variation in Deep Root Growth of North-European Winter Wheat

    DEFF Research Database (Denmark)

    Ytting, Nanna Karkov

    no correlation between root length density in the subsoil and shoot N content was found at higher subsoil N levels (> 12.5 mg N kg-1 soil). Shoot size and especially average tiller size was highly correlated to subsoil root density (R2 = 0.26 – 0.37, p ≤ 0.001). Low N levels (... and environments, as the interaction between genotypes and environment is substantial for most root traits. Root quantification with the line intersect method can be optimized by choosing the right strategy when scoring the root traits. For example, by adapting counting grids to match specific root densities, data...

  7. Inconsistency in the Crown-to-Root Ratios of Single-Rooted Premolars Measured by 2D and 3D Examinations.

    Science.gov (United States)

    Hong, Hsiang-Hsi; Liu, Heng-Liang; Hong, Adrienne; Chao, Pu

    2017-11-28

    Micro-computed tomography (micro-CT) was applied to elucidate the relationship between the three-dimensional (3D) root surface area (RSA) and two-dimensional (2D) crown-to-root ratio (CRR) of extracted teeth to classify the periodontitis and assign a periodontal/prosthetic prognosis. A total of 31 maxillary and 35 mandibular single-rooted human premolars were examined. The amount of periodontal support on the basis of 3D RSA and 2D root length (RL) at CRRs of 1:1, 5:4, 3:2, and 2:1 were analyzed. Both maxillary and mandibular premolars demonstrated a nonsignificant RSA percentage at the evaluated CRRs. The coronal 21%-22% 2D RL and the 26%-28% 3D RSA bone loss apical to the cemento-enamel junction corresponded to a CRR of 1:1, relating to mild-moderate periodontitis. The coronal 30%-31% 2D RL and the 41%-42% 3D RSA bone loss corresponded to a CRR of 5:4, correlating to severe periodontitis. More severe clinical attachment loss (CAL) was observed in the 3D RSA measurement than in the 2D RL measurement at the evaluated CRRs. The amount of CAL at the CRR of 1:1 was inadequate to assess the severity of periodontitis on the basis of the 2D RL and 3D RSA measurements.

  8. Using Upland Rice Root Traits to Identify N Use Efficient Genotypes for Limited Soil Nutrient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Traore, K.; Traore, O. [INERA / Station de Farakoba, Bobo-Dioulasso (Burkina Faso); Bado, V. B. [Africa Rice Center (AfricaRice), Saint Louis (Senegal)

    2013-11-15

    Crop production in the Sahelian countries of Africa is limited by many factors. The most important are low potential yields of local varieties, low inherent soil fertility and low applications of external inputs (organic and mineral fertilizers). A field experiment was conducted from 2007 to 2008 with the objective to develop and validate screening protocols for plant traits that enhance N acquisition and utilization in upland rice grown in low N soils of two hundred (200) upland rice (Oryza sativa L.) genotypes from WAB, NERICA, CNA, CNAX, IRAT and IR lines. An experiment in small pots was carried out in a greenhouse of Farakoba research center. The pots were filled with a sandy soil and upland rice genotypes were grown during three weeks, harvested and studied for their root characteristics (seminal root length, adventitious root number, lateral root length and number and roots hair density). The small pot method was reliable for root trait characterisation at the seedling stage. A large variability among genotypes was exhibited for the root characteristics. The variability was larger within the NERICA and WAB lines compared to the other lines. The length of the seminal roots varied from 10 to 40 cm, the lateral root number ranged between 3 and 15 and the number of adventitious roots varied between 2 and 7. The selected root traits can be used to identify high nutrients and water use efficient genotypes. (author)

  9. Root dynamics in an artificially constructed regenerating longleaf pine ecosystem are affected by atmospheric CO(2) enrichment.

    Science.gov (United States)

    Pritchard, S G.; Davis, M A.; Mitchell, R J.; Prior, S A.; Boykin, D L.; Rogers, H H.; Runion, G B.

    2001-08-01

    Differential responses to elevated atmospheric CO(2) concentration exhibited by different plant functional types may alter competition for above- and belowground resources in a higher CO(2) world. Because C allocation to roots is often favored over C allocation to shoots in plants grown with CO(2) enrichment, belowground function of forest ecosystems may change significantly. We established an outdoor facility to examine the effects of elevated CO(2) on root dynamics in artificially constructed communities of five early successional forest species: (1) a C(3) evergreen conifer (longleaf pine, Pinus palustris Mill.); (2) a C(4) monocotyledonous bunch grass (wiregrass, Aristida stricta Michx.); (3) a C(3) broadleaf tree (sand post oak, Quercus margaretta); (4) a C(3) perennial herbaceous legume (rattlebox, Crotalaria rotundifolia Walt. ex Gemel); and (5) an herbaceous C(3) dicotyledonous perennial (butterfly weed, Asclepias tuberosa L.). These species are common associates in early successional longleaf pine savannahs throughout the southeastern USA and represent species that differ in life-form, growth habit, physiology, and symbiotic relationships. A combination of minirhizotrons and soil coring was used to examine temporal and spatial rooting dynamics from October 1998 to October 1999. CO(2)-enriched plots exhibited 35% higher standing root crop length, 37% greater root length production per day, and 47% greater root length mortality per day. These variables, however, were enhanced by CO(2) enrichment only at the 10-30 cm depth. Relative root turnover (flux/standing crop) was unchanged by elevated CO(2). Sixteen months after planting, root biomass of pine was 62% higher in elevated compared to ambient CO(2) plots. Conversely, the combined biomass of rattlebox, wiregrass, and butterfly weed was 28% greater in ambient compared to high CO(2) plots. There was no difference in root biomass of oaks after 16 months of exposure to elevated CO(2). Using root and shoot

  10. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  11. Uptake of 3HHO and 32P by roots of wheat and rape

    International Nuclear Information System (INIS)

    Bole, J.B.

    1977-01-01

    Direct measurements were made of 3 HHO and 32 P taken up from labelled soil by roots of wheat (Triticum aestivum L.) and rape (Brassica campestris L.). Single roots were encased in labelled soil for 3 days, and the amount of 3 HHO and 32 P retained in the shoots was determined. Plants were grown to five stages of maturity in growth boxes under controlled conditions. Roots were labelled at up to four depths (to 90 cm) depending on the rooting depth at each stage of maturity. Uptake of 3 HHP per unit length of root increased as the plant age increased, while uptake of 32 P decreased to below detection levels by 45 days after germination. Larger amounts of both nutrients were translocated to and retained in the shoots from surface roots than from roots located deeper in the soil although the soil was uniform in temperature, bulk density, and composition through the growth boxes. Wheat roots were more efficient than rape roots in absorbing 3 HHO; however, rape roots took up larger amounts of 32 P per unit length of root. Neither native nor added P located more than 30 cm deep is of much importance to these annual crops, since uptake is minimal and the main demand for this nutrient occurs at early growth stages when the root system is restricted to the surface layers

  12. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    Science.gov (United States)

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  13. Effect of medium and post-irradiation storage on rooting of irradiated onions

    International Nuclear Information System (INIS)

    Singh, Rita

    2000-01-01

    Rooting test for detection of irradiation in onion bulbs was studied. Onions were exposed to different dose levels of 30, 60, 90, 120 and 150 Gy. The effects of irradiation dose, cultivar difference, rooting medium and post-irradiation storage on the rooting were investigated. The number and the length of the roots formed in onions were found to decrease on irradiation. The effect was more at higher doses. The effect of irradiation on rooting was also evident after 120 days of storage. (author)

  14. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Science.gov (United States)

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  15. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    Science.gov (United States)

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  16. Root exudation and root development of lettuce (Lactuca sativa L.cv. Tizian as affected by different soils

    Directory of Open Access Journals (Sweden)

    Günter eNeumann

    2014-01-01

    Full Text Available Development and activity of plant roots exhibits high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for ten years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian was used as a model plant, grown under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes. Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils, root growth characteristics (root length, fine root development as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue. The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  17. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  18. Towards A New Approach For Arabic Root Extraction:Exploit Relations Between The Word Letters And Their Placement In The Word For Arabic Root Extraction

    Directory of Open Access Journals (Sweden)

    Fatma Abu Hawas

    2013-01-01

    Full Text Available In this paper we present a new root-extraction approach for Arabic words. The approach tries to assign for Arabic word a unique root without having a database of word roots, a list of words patterns or even a list of all the prefixes and the suffixes of the Arabic words. Unlike most of Arabic rule-based stemmers, it tries to predict the letters positions that may form the word root one by one using some rules based on the relations among the Arabic word letters and their placement in the word. This paper will focus on two parts of the approach. The first one deals with the rules that distinguish between the Arabic definite article “ال -AL” and the permanent component “ال -AL” that may found in any Arabic word. The second part of the approach adopts the segmentation of the word into three parts and classifies Arabic letters in to groups according to their positions in each segment. The proposed approach is a system composed of several modules that corporate together to extract the word root. The approach has been tested and evaluated using the Holy Quran words. The results of the evaluation show a promising root extraction algorithm.

  19. The relationships between the arrangement of teeth, root resorption, and dental maturity in bovine mandibular incisors

    Science.gov (United States)

    An, Jin-kyu; Ono, Takashi

    2017-01-01

    Objective The objective of this study is to investigate the eruption pattern and root resorption of the bovine anterior dentition in relation to growth-related parameters based on dental maturity. Methods A cross-sectional study was conducted on 110 bovine anterior mandibles by using standard radiography, cone-beam computed tomography (CBCT), and actual measurements. We determined the relationships between the stages of dental maturity by using a modification of Demirjian's method and various growth-related parameters, such as the activity of the root-resorbing tissue and mobility of the deciduous teeth. The correlation of growth-related parameters with interdental spacing and distal unusual root resorption (DRR) of the deciduous fourth incisor was assessed. The cause of mesial unusual root resorption (MRR) of the deciduous fourth incisor was determined on the basis of the arrangement of the permanent third incisor. Results An independent t-test and chi-square test indicated significant differences in growth-related parameters associated with dental arch length discrepancy and factors related to the shedding of deciduous teeth between the low and high dental maturity groups. The samples with interdental spacing and DRR showed a larger sum of mesiodistal permanent crown widths and higher dental maturity than did the respective controls. Samples with MRR tended to show a lingually rotated distal tip of the adjacent tooth crown. Conclusions Dental maturity has relevance to the interdental spaces and unusual root resorption of mixed dentition. The position of the adjacent tooth crown on CBCT may be correlated with the occurrence of unusual root resorption of the incisor. PMID:29090124

  20. Length of unemployment and health-related outcomes: a life-course analysis.

    Science.gov (United States)

    Janlert, Urban; Winefield, Anthony H; Hammarström, Anne

    2015-08-01

    Most previous studies on the effects of length of unemployment on health have focused on the duration of continuous spells of unemployment rather than on the cumulative length of intermittent spells. This study analysed the relationship between the cumulative length of intermittent spells of unemployment and different health-related outcomes using data from a longitudinal study of school leavers. All pupils who completed compulsory schooling in 1981 in a medium-sized town in northern Sweden (N = 1083) were followed for 14 years with repeated questionnaires including questions about unemployment, health and health behaviour. Men tended to react with a steady state or a levelling off of health symptoms with increased unemployment, whereas women showed deteriorating health symptoms. For health behaviour the reverse occurred. Women's health behaviour was less connected with increased unemployment while men's health behaviour tended to deteriorate. Cumulative length of unemployment is correlated with deteriorated health and health behaviour. Long-term unemployment, even as a result of cumulated shorter employment spells over a number of years should be an urgent target for policy makers. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  1. Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal.

    Directory of Open Access Journals (Sweden)

    Christopher Beirne

    Full Text Available Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes ('immune cells', stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles. Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.

  2. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vivek Gaurav

    2013-01-01

    Full Text Available Background: Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. Aim: The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT in assessing the same. Settings and Design: A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. Statistical analysis used: The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. Results and Conclusion: The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.

  3. Fine root dynamics in lodgepole pine and white spruce stands along productivity gradients in reclaimed oil sands sites.

    Science.gov (United States)

    Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason

    2015-10-01

    Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.

  4. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  5. Socio-ecological implications of modifying rotation lengths in forestry.

    Science.gov (United States)

    Roberge, Jean-Michel; Laudon, Hjalmar; Björkman, Christer; Ranius, Thomas; Sandström, Camilla; Felton, Adam; Sténs, Anna; Nordin, Annika; Granström, Anders; Widemo, Fredrik; Bergh, Johan; Sonesson, Johan; Stenlid, Jan; Lundmark, Tomas

    2016-02-01

    The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.

  6. Comparison of working length control consistency between hand K-files and Mtwo NiTi rotary system.

    Science.gov (United States)

    Krajczár, Károly; Varga, Enikő; Marada, Gyula; Jeges, Sára; Tóth, Vilmos

    2016-04-01

    The purpose of this study was to investigate the consistency of working length control between hand instrumentation in comparison to engine driven Mtwo nickel-titanium rotary files. Forty extracted maxillary molars were selected and divided onto two parallel groups. The working lengths of the mesiobuccal root canals were estimated. The teeth were fixed in a phantom head. The root canal preparation was carried out group 1 (n=20) with hand K-files, (VDW, Munich, Germany) and group 2 (n=20) with Mtwo instruments (VDW, Munich, Germany). Vestibulo-oral and mesio-distal directional x-ray images were taken before the preparation with #10 K-file, inserted into the mesiobuccal root canal to the working length, and after preparation with #25, #30 and #40 files. Working lenght changes were detected with measurements between the radiological apex and the instrument tips. In the Mtwo group a difference in the working competency (protary files. Mtwo NiTi rotary file did therefore proved to be more accurate in comparison to the conventional hand instrumentation. Working length, Mtwo, nickel-titanium, hand preparation, engine driven preparation.

  7. Body mass, wing length, and condition of wintering ducks relative to hematozoa infection

    Science.gov (United States)

    Fleskes, Joseph; Ramey, Andrew M.; Reeves, Andrew; Yee, Julie L.

    2017-01-01

    Waterfowl managers lack information regarding factors that may be reducing the positive response of waterfowl body condition to habitat improvements. Protozoan blood parasites (i.e., hematozoa) are commonly found in birds and have been related to reduced body mass, wing length, and body condition. We studied relationships between 12 measures of hematozoa infection and body mass, wing length, and body mass divided by wing length (i.e., body condition index [BCI]) of the five most common duck species (northern pintail [Anas acuta], mallard [A. platyrhynchos], green-winged teal [A. crecca], American wigeon [A. Americana], northern shoveler [A. clypeata]) wintering in the Central Valley of California during October 2006-January 2007. After accounting for variation due to species, age-sex cohort, Central Valley region, and month; wing length, body mass, and BCI were found to be negatively related to infection by Leucocytozoon and by "any hematozoa" but not related to infection by only Plasmodium or Haemoproteus, or coinfections of greater than one genera or parasite haplotype (albeit, few ducks had Plasmodium or Haemoproteus infection or coinfections). Evidence of a negative relationship with infection was stronger for body mass and BCI than for wing length and indicated that the relationships varied among species, age-sex cohorts, regions, and months. Compared to uninfected ducks, hematozoa-infected duck body mass, wing length, and BCI was -1.63% (85% CI = -2.79%- -0.47%), -0.12% (-0.41%- +0.17%), and -1.38% (-2.49%- -0.26%), respectively. Although, seemingly small, the -1.63% difference in body mass represents a large percentage (e.g., 38% for northern pintail) of the observed increase in wintering duck body mass associated with Central Valley habitat improvements. Because infection prevalence and relationship to body condition might change over time due to climate or other factors, tracking hematozoa infection prevalence might be important to inform and accurately

  8. Root activity pattern of banana under irrigated and rain conditions

    International Nuclear Information System (INIS)

    Sobhana, A.; Aravindakshan, M.; Wahid, P.A.

    1989-01-01

    Root morphology by excavation method and root activity pattern by 32 P soil-injection technique have been studied in banana var., Nendran under rainfed/irrigated conditions. The number of roots, length and diameter of roots and dry weight of roots were found to be more for the rainfed banana crop compared to the irrigated. The results of the radiotracer studies indicated that about 60 per cent of the active roots of irrigated banana lie within 20 cm distance and about 90 per cent of the total root activity is found within 40 cm distance from the plant. In the case of rainfed crop about 85 per cent of the active roots were found within a radius of 40 cm around the plant. Active roots were found to be more concentrated at 15 to 30 cm depth under rainfed conditions while the density of active roots was more or less uniform along the profile upto a dpeth of 60 cm in irrigated banana. (author). 4 refs., 3 figs

  9. Influence of leaf number and nodes on the rooting of semiwoody cuttings of flame vine

    Directory of Open Access Journals (Sweden)

    Marília Milani

    2015-12-01

    Full Text Available The flame vine (Pyrostegia venusta (Ker-Gawl. Miers is a semihardwood vine, vigorous, native, native, occurring in all Brazilian biomes and ornamental potential. Technical information about the propagation of this species will contribute to the production of seedlings and with that, their greatest use in landscaping. This study aimed to evaluate the influence of the number of leaves and nodes in rooting intermediate flame vine. The experiment was conducted under conditions of intermittent mist. The experimental design was a randomized block in factorial 2 x 3, being respectively cuttings with one or two nodes, and zero, one or two leaflets. We used four replicates with plots consisting of 12 cuttings placed in substrate of rice hulls in polystyrene trays with 72 cells. We evaluated at 84 days the porcentage of rooted cuttings, length of shoots, dry weight of shoots and, per cutting, average: number of roots - first order; maximum length of each root of the first order, volume and dry weight of roots. It was observed that cuttings with two leaflets enabled 66% of rooting, greater length and dry mass of shoots. The higher quality of the root system occurs with stakes with two leaflets and two nodes. The spread of flame vine is efficient with semi-hardwood cuttings with two nodes and two leaflets, kept in a greenhouse under intermittent mist.

  10. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution.

    Science.gov (United States)

    Giehl, Ricardo F H; Lima, Joni E; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation.

  11. Technical Quality of Root Fillings Performed by Undergraduate Students: A Radiographic Study

    Directory of Open Access Journals (Sweden)

    Tatjana Vukadinov

    2014-01-01

    Full Text Available Aim. The aim of this study was to evaluate the radiographic technical quality of endodontic treatment performed by undergraduate students at the School of Dentistry, Faculty of Medicine, University of Novi Sad, Serbia. Materials and Methods. Electronic records of 220 patients treated by final-year undergraduate students during the school year 2011/2012 were examined, and the final sample consisted of 212 patients, 322 teeth, and 565 root canals. The criteria for overall radiographic adequacy of root canal fillings were defined as the presence of adequate length and density and absence of iatrogenic errors (ledge, fractured instrument, untreated canal, and apical transportation. Chi-square test was used to determine statistical significance between different parameters. Results. Adequate root canal fillings were found in 74.22% of the teeth. The percentage of root fillings with adequate length and density was 89.73% and 92.6%, respectively. Fractured instruments and ledges were present in 16 root canals (2.8%, while the presence of missed canal and apical transportation was observed in 2 cases, each (0.3%. Conclusions. Overall, the technical quality of root canal fillings performed by undergraduate students was satisfactory.

  12. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  13. A novel rat model of brachial plexus injury with nerve root stumps.

    Science.gov (United States)

    Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang

    2018-02-01

    The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.

  14. Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation.

    Science.gov (United States)

    Huang, Baifei; Xin, Junliang; Dai, Hongwen; Liu, Aiqun; Zhou, Wenjing; Yi, Yumei; Liao, Kebing

    2015-01-01

    Cultivars of hot pepper (Capsicum annuum L.) differ widely in their fruit cadmium (Cd) concentrations. Previously, we suggested that low-Cd cultivars are better able to prevent the translocation of Cd from roots to aboveground parts, but the corresponding mechanisms are still unknown. In this study, we aimed to improve understanding of the root morphological characteristics of the mechanisms involved in two low-Cd and a high-Cd cultivar. Seedlings were grown in nutrient solutions containing 0 (control), 2, and 10 μM Cd for 20 days, and Cd contents for the three cultivars were compared with changes in root morphology. The total root length (RL), root surface area (SA), number of root tips (RT), and specific root length (SRL) of all cultivars were decreased significantly by the 10 μM Cd treatment with the exception of the SA in JFZ, which showed no obvious change. For each cultivar, the 10 μM Cd treatment decreased significantly RL and SA specifically in roots with diameters (RD) of RD ≤ 0.2 mm or 0.2 mm roots with diameters of 0.6 mm root morphology. In the 10 μM Cd treatment, root volume (RV), SA, and RT of all cultivars were negatively correlated with Cd concentration and amount in roots. However, RL, SA, RV, and RT of all cultivars were positively correlated with Cd concentration and amount in shoots, and translocation rate of Cd. The two low-Cd cultivars of hot pepper had less root tips, shorter root length, and smaller root surface area than the high-Cd cultivar in 10 μM Cd treatment, which may play a vital role in reducing root-to-shoot Cd translocation.

  15. Plasma membrane NADH oxidase of maize roots responds to gravity and imposed centrifugal forces

    Science.gov (United States)

    Bacon, E.; Morre, D. J.

    2001-01-01

    NADH oxidase activities measured with excised roots of dark-grown maize (Zea mays) seedlings and with isolated plasma membrane vesicles from roots of dark-grown maize oscillated with a regular period length of 24 min and were inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic [correction of dichorophenoxyacetic] acid. The activities also responded to orientation with respect to gravity and to imposed centrifugal forces. Turning the roots upside down resulted in stimulation of the activity with a lag of about 10 min. Returning the sections to the normal upright position resulted in a return to initial rates. The activity was stimulated reversibly to a maximum of about 2-fold with isolated plasma membrane vesicles, when subjected to centrifugal forces of 25 to 250 x g for 1 to 4 min duration. These findings are the first report of a gravity-responsive enzymatic activity of plant roots inhibited by auxin and potentially related to the gravity-induced growth response. c2001 Editions scientifiques et medicales Elsevier SAS.

  16. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG)-Induced Water Deficit Stress.

    Science.gov (United States)

    Nelson, Sven K; Oliver, Melvin J

    2017-01-01

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs), and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG). Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise water deficits.

  17. Seasonal influences on the rooting response of Chir pine (Pinus roxburghii Sarg.

    Directory of Open Access Journals (Sweden)

    S.K. Sharma

    2013-12-01

    Full Text Available Rooting ability of the vegetative cutting depends upon the various factors: age, size, and diameter of cutting, season, rooting substrate and concentration of the applied growth hormone. For assessing the seasonal variation in rooting ability of shoot, cuttings were taken from 4 year old hedges. Shoot cuttings were collected after every two months of hedging spring (March, summer (June, autumn (September and winter (December and treated with 4000 ppm Indole Butyric Acid (IBA, mixed with talc powder and planted in vermiculite filled beds. Suitable control was also maintained, wherein only talc powder was applied to the basal portion of cuttings. Periodical observations were taken on cuttings, with regard to root initiation. The cuttings were uprooted after 12 weeks of planting and observations were recorded. Highly significant differences were observed between root length, shoot length, number of roots per cutting and rooting percentage. This has led to the evaluation of a standard technique for application of mass clonal propagation of Chir pine during summer season (June, which would result into a good success in rooting percentage. This technique could also be helpful in the establishment of germplasm banks of desired genotypes and Clonal Seed Orchards (CSOs. Further, this will also help in overcoming the problem of stock and scion incompatibility, which is commonly faced, when Clonal Seed Orchards are established through grafted material. 

  18. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  19. Effects of gamma irradiation on the shoot length of Cicer seeds

    International Nuclear Information System (INIS)

    Toker, Cengiz; Uzun, Bulent; Canci, Huseyin; Oncu Ceylan, F.

    2005-01-01

    The effects of radiation on the shoot and root lengths of germinated seedling of irradiated seeds of Cicer species, i.e. three kabuli types and four desi types of cultivated chickpea (Cicer arietinum Ladiz.) and 2 annual wild types (C. reticulatum Ladiz. and C. bijugum K.H. Rech.) were investigated. The seeds were irradiated with a 60 Co gamma source using 0, 200, 300 and 400 Gy doses at 1.66 kGy h -1 . At 200 Gy minor effects could be observed, but at 400 Gy an obvious depression of shoot length was observed. The kabuli types were more affected than the desi ones. The critical dose that prevented the shoot and root elongation varied among species and also ranged from genotypes to genotype within species

  20. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    Science.gov (United States)

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  1. Effect of piezocision on root resorption associated with orthodontic force: A microcomputed tomography study.

    Science.gov (United States)

    Patterson, Braydon M; Dalci, Oyku; Papadopoulou, Alexandra K; Madukuri, Suman; Mahon, Jonathan; Petocz, Peter; Spahr, Axel; Darendeliler, M Ali

    2017-01-01

    The purpose of this study was to investigate the effect of piezocision on orthodontically induced inflammatory root resorption. Fourteen patients were included in this split-mouth study; 1 side was assigned to piezocision, and the other side served as the control. Vertical corticotomy cuts of 4 to 5 mm in length were performed on either side of each piezocision premolar, and 150-g buccal tipping forces were applied to the premolars. After 4 weeks, the maxillary first premolars were extracted and scanned with microcomputed tomography. There was a significantly greater total amount of root resorption seen on the piezocision sides when compared with the control sides (P = 0.029). The piezocision procedure resulted in a 44% average increase in root resorption. In 5 patients, there was noticeable piezocision-related iatrogenic root damage. When that was combined with the orthodontic root resorption found on the piezocision-treated teeth, there was a statistically significant 110% average increase in volumetric root loss when compared with the control side (P = 0.005). The piezocision procedure that initiates the regional acceleratory phenomenon may increase the iatrogenic root resorption when used in conjunction with orthodontic forces. Piezocision applied close to the roots may cause iatrogenic damage to the neighboring roots and should be used carefully. Copyright © 2017.

  2. Length of Recovery From Sports-Related Concussions in Pediatric Patients Treated at Concussion Clinics.

    Science.gov (United States)

    Thomas, Donald J; Coxe, Kathryn; Li, Hongmei; Pommering, Thomas L; Young, Julie A; Smith, Gary A; Yang, Jingzhen

    2018-01-01

    We quantified the length of recovery time by week in a cohort of pediatric sports-related concussion patients treated at concussion clinics, and examined patient and injury characteristics associated with prolonged recovery. A retrospective, cohort design. Seven concussion clinics at a Midwest children's hospital. Patients aged 10 to 17 years with a diagnosed sports-related concussion presenting to the clinic within 30 days of injury. Length of recovery by week. Unadjusted and adjusted multinomial logistic regression analyses were used to model the effect of patient and injury characteristics on length of recovery by week. Median length of recovery was 17 days. Only 16.3% (299/1840) of patients recovered within one week, whereas 26.4% took longer than four weeks to recover. By 2 months postinjury, 6.7% of patients were still experiencing symptoms. Higher symptom scores at injury and initial visit were significantly associated with prolonged symptoms by week. Patients who presented to the clinic more than 2 weeks postinjury or who had 2 or more previous concussions showed increased risk for prolonged recovery. Females were at greater risk for prolonged recovery than males (odds ratio = 2.08, 95% confidence interval = 1.49-2.89). Age was not significantly associated with recovery length. High symptom scores at injury and initial visit, time to initial clinical presentation, presence of 2 or more previous concussions, and female sex are associated with prolonged concussion recovery. Further research should aim to establish objective measures of recovery, accounting for treatment received during the recovery. The median length of recovery is 17 days among pediatric sports-related concussion patients treated at concussion clinics. Only 16.3% of patients recovered within one week, whereas 26.4% took longer than 4 weeks to recover.

  3. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  4. Root resorption following periodontally accelerated osteogenic orthodontics

    Directory of Open Access Journals (Sweden)

    Donald J Ferguson

    2016-01-01

    Full Text Available Background: Literature evidence suggests that root resorption, an adverse side effect of orthodontic therapy, may be decreased under conditions of alveolar osteopenia, a condition characterized by diminished bone density and created secondary to alveolar corticotomy (Cort surgery. Purpose: To compare root resorption of the maxillary central incisors following nonextraction orthodontic therapy with and without Cort surgery. Materials and Methods: The sample comprised two groups, with and without Cort and was matched by age and gender: Cort-facilitated nonextraction orthodontics with 27 subjects, 53 central incisors of mean age 24.8 ± 10.2 years, and conventional (Conv nonextraction orthodontics with 27 subjects, 54 incisors with mean age of 19.6 ± 8.8 years. All periapical radiographs were taken with the paralleling technique; total tooth lengths of the right and left central incisors were measured by projecting and enlarging the periapical radiographs exactly 8 times. Results: t-tests revealed a significant decrease in treatment time in the Cort group (6.3 ± 8.0 vs. 17.4 ± 20.2 months, P = 0.000. Pretreatment root lengths were not significantly different (P = 0.11, but Conv had significantly shorter roots at posttreatment when compared with Cort (P = 0.03. Significant root resorption (P < 0.01 occurred in both Cort (0.3 mm and Conv (0.7 mm, but the increment of change was significantly greater in Conv (P < 0.03. The variable SNA increased significantly in the Cort (P = 0.001 group and decreased significantly in the Conv group (P < 0.001. Conclusions: Based on the conditions of this study, it may be concluded that Cort-facilitated nonextraction orthodontic therapy results in less root resorption and enhanced alveolar support within a significantly reduced clinical service delivery time frame. Rapid orthodontic treatment and reduced apical root resorption are probably due to the transient osteopenia induced by the Cort surgery and inspired by

  5. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal

    Directory of Open Access Journals (Sweden)

    Joo-Hee Shin

    2018-03-01

    Full Text Available Background/purpose: Bacterial infection is closely associated with the failure of endodontic treatment, and use of endodontic sealer with antimicrobial activity and biological compatibility is necessary for the success of root canal treatment. The purpose of this study was to investigate and to compare the antibacterial effect of two calcium silicate-based root canal sealers (Endoseal and EndoSequence BC sealer as recent development sealers and with three conventional root canal sealers (AH Plus, Sealapex, and Tubli-Seal, before or after setting, on Porphyromonas endodontalis, Porphyromonas gingivalis, and Enterococcus faecalis. Materials and methods: The sealers were soaked in phosphate buffered saline to elute its compositions after and before setting, and the elutes were performed the antimicrobial assay. Also, X-ray fluorescence analysis was carried out to compare compositions of two calcium silicate-based sealers. Results: The conventional root canal sealers have strong antibacterial activity against the Gram-negative bacteria, P. endodontalis and P. gingivalis. Endoseal sealer showed antibacterial activity against not only the Gram-negative bacteria, but also against the Gram-positive bacteria, E. faecalis. However, Endosequence BC sealer exhibited a weak antibacterial effect on all bacteria in this study. X-ray fluorescence analysis exhibited that Endoseal contained more types and more amount of the oxide compound known to have strong antimicrobial activity such as Al2O3, Fe2O3, MgO, Na2O, NiO, and SO2 than Endoseqeunce BC. Conclusion: Endoseal, which contains various types of oxide compounds, seems to be a suitable sealer for preventing bacterial infection in both treated and untreated root canals. Keywords: Root canal sealer, Antimicrobial activity, Oxide compound, E. faecalis

  6. Zero-point length from string fluctuations

    International Nuclear Information System (INIS)

    Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.

    2006-01-01

    One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory

  7. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  8. Comparing simple root phenotyping methods on a core set of rice genotypes.

    Science.gov (United States)

    Shrestha, R; Al-Shugeairy, Z; Al-Ogaidi, F; Munasinghe, M; Radermacher, M; Vandenhirtz, J; Price, A H

    2014-05-01

    Interest in belowground plant growth is increasing, especially in relation to arguments that shallow-rooted cultivars are efficient at exploiting soil phosphorus while deep-rooted ones will access water at depth. However, methods for assessing roots in large numbers of plants are diverse and direct comparisons of methods are rare. Three methods for measuring root growth traits were evaluated for utility in discriminating rice cultivars: soil-filled rhizotrons, hydroponics and soil-filled pots whose bottom was sealed with a non-woven fabric (a potential method for assessing root penetration ability). A set of 38 rice genotypes including the OryzaSNP set of 20 cultivars, additional parents of mapping populations and products of marker-assisted selection for root QTLs were assessed. A novel method of image analysis for assessing rooting angles from rhizotron photographs was employed. The non-woven fabric was the easiest yet least discriminatory method, while the rhizotron was highly discriminatory and allowed the most traits to be measured but required more than three times the labour of the other methods. The hydroponics was both easy and discriminatory, allowed temporal measurements, but is most likely to suffer from artefacts. Image analysis of rhizotrons compared favourably to manual methods for discriminating between cultivars. Previous observations that cultivars from the indica subpopulation have shallower rooting angles than aus or japonica cultivars were confirmed in the rhizotrons, and indica and temperate japonicas had lower maximum root lengths in rhizotrons and hydroponics. It is concluded that rhizotrons are the preferred method for root screening, particularly since root angles can be assessed. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  10. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths.

    Science.gov (United States)

    Liu, Rui; Kaiwar, Anjali; Shemesh, Hagay; Wesselink, Paul R; Hou, Benxiang; Wu, Min-Kai

    2013-01-01

    The aim of this study was to compare the incidence of apical root cracks and dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. Two hundred forty mandibular incisors were mounted in resin blocks with simulated periodontal ligaments, and the apex was exposed. The root canals were instrumented with rotary and hand files, namely K3, ProTaper, and nickel-titanium Flex K files to the major apical foramen (AF), short AF, or beyond AF. Digital images of the apical surface of every tooth were taken during the apical enlargement at each file change. Development of dentinal defects was determined by comparing these images with the baseline image. Multinomial logistic regression test was performed to identify influencing factors. Apical crack developed in 1 of 80 teeth (1.3%) with hand files and 31 of 160 teeth (19.4%) with rotary files. Apical dentinal detachment developed in 2 of 80 teeth (2.5%) with hand files and 35 of 160 teeth (21.9%) with rotary files. Instrumentation with rotary files terminated 2 mm short of AF and did not cause any cracks. Significantly less cracks and detachments occurred when instrumentation with rotary files was terminated short of AF, as compared with that terminated at or beyond AF (P hand instruments; instrumentation short of AF reduced the risk of dentinal defects. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Accumulation and distribution of dry matter in relation to root yield of ...

    African Journals Online (AJOL)

    Cassava an important staple food is grown both in upland and inland valley in the tropics. A trial to assess dry matter production and partitioning in relation to root yield was conducted in 3 positions along inland valley toposequence using 4 x 4 Latin square design. Dry matter partitioning differed among cultivars, ...

  12. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Science.gov (United States)

    Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  13. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Directory of Open Access Journals (Sweden)

    Filippo Biscarini

    Full Text Available In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions.In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25. In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7 and for plant height on chromosome 6 (FDR = 0.011.We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  14. The root anchorage ability of Salix alba var. tristis using a pull-out test

    African Journals Online (AJOL)

    user

    2011-11-21

    Nov 21, 2011 ... Full Length Research Paper. The root ... and the University of Natural Resources and applied Life. Sciences ... The design of the apparatus is ..... In The Supporting. Roots of ... Measurements in Geomechanics. Swets and ...

  15. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  16. Effects of different tillage and transplanting methods on rice rooting ability

    International Nuclear Information System (INIS)

    Ren Wanjun; Yang Wenyu; Fan Gaoqiong; Wu Jinxiu; Wang Lihong

    2007-01-01

    Effects of different tillage and transplanting methods on rice rooting ability were studied with the methods of water culture and 3 H labeling. The results showed that the dynamic curve of rooting ability had single peak during growth period, and the peak of root length per plant, root number and root dry weight appeared at booting. With conventional tillage and transplanting method, the rice plant had the strongest rooting ability, under non-tillage treatment (BCSNT), the rooting ability was the lowest during elongating to heading. After 10d of heading, the dry weight and 3 H specific activity of BCSNT was higher than other treatments, at the same time, the percentage of 3 H assimilate at new root was the highest. Dry weight was positively correlated with percentage of 3 H assimilate of new root, while negatively with percentage of 3 H assimilate of panicle. (authors)

  17. Study of flow profile distortions and efficiency in counter pressure moderated partial filling micellar electrokinetic chromatography in relation to the relative buffer zone lengths.

    Science.gov (United States)

    Michalke, Daniela; Welsch, Thomas

    2002-06-25

    The influence of the relative buffer zone lengths on the efficiency was investigated in partial filling micellar electrokinetic chromatography using sodium dodecyl sulfate as separation additive. Varying relative zone lengths were obtained by applying identical initial separation zone lengths but different total lengths of the capillaries. Plate numbers of a homologous series of omega-phenylalcohols were measured to indicate the effect of both a changing relative zone length during the run and a counter pressure applied on the cathodic buffer reservoir. The magnitude and the course of these plate numbers are discussed on the basis of models for flow profile superposition and flow profile deformation which are caused by an intersegmental pressure arising at the boundary between the two buffer zones with different electroosmotic flow velocities. Calculation of the intersegmental pressure and of the resulting laminar flow components in the buffer zones on the basis of some equations for electroosmotic and hydrodynamic flow supported the interpretation that a long background buffer zone should be avoided

  18. Effect of digital noise reduction on the accuracy of endodontic file length determination

    International Nuclear Information System (INIS)

    Mehdizadeh, Mojdeh; Khademi, Abbas Ali; Shokraneh, Ali; Farhadi, Nastaran

    2013-01-01

    The aim of the present study was to evaluate the measurement accuracy of endodontic file length on periapical digital radiography after application of noise reduction digital enhancement. Thirty-five human single-rooted permanent teeth with canals measuring 20-24 mm in length were selected. ISO no.08 endodontic files were placed in the root canals of the teeth. The file lengths were measured with a digital caliper as the standard value. Standard periapical digital images were obtained using the Digora digital radiographic system and a dental X-ray unit. In order to produce the enhanced images, the noise reduction option was applied. Two blinded radiologists measured the file lengths on the original and enhanced images. The measurements were compared by repeated measures ANOVA and the Bonferroni test (a=0.05). Both the original and enhanced digital images provided significantly longer measurements compared with the standard value (P 0.05). Noise reduction digital enhancement did not influence the measurement accuracy of the length of the thin endodontic files on the digital periapical radiographs despite the fact that noise reduction could result in the elimination of fine details of the images.

  19. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    Science.gov (United States)

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a

  20. A micro-computed tomographic evaluation of dentinal microcrack alterations during root canal preparation using single-file Ni-Ti systems.

    Science.gov (United States)

    Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong

    2018-01-01

    The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (Pfiles. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.

  1. Modeling Root Growth, Crop Growth and N Uptake of Winter Wheat Based on SWMS_2D: Model and Validation

    Directory of Open Access Journals (Sweden)

    Dejun Yang

    Full Text Available ABSTRACT Simulations for root growth, crop growth, and N uptake in agro-hydrological models are of significant concern to researchers. SWMS_2D is one of the most widely used physical hydrologically related models. This model solves equations that govern soil-water movement by the finite element method, and has a public access source code. Incorporating key agricultural components into the SWMS_2D model is of practical importance, especially for modeling some critical cereal crops such as winter wheat. We added root growth, crop growth, and N uptake modules into SWMS_2D. The root growth model had two sub-models, one for root penetration and the other for root length distribution. The crop growth model used was adapted from EU-ROTATE_N, linked to the N uptake model. Soil-water limitation, nitrogen limitation, and temperature effects were all considered in dry-weight modeling. Field experiments for winter wheat in Bouwing, the Netherlands, in 1983-1984 were selected for validation. Good agreements were achieved between simulations and measurements, including soil water content at different depths, normalized root length distribution, dry weight and nitrogen uptake. This indicated that the proposed new modules used in the SWMS_2D model are robust and reliable. In the future, more rigorous validation should be carried out, ideally under 2D situations, and attention should be paid to improve some modules, including the module simulating soil N mineralization.

  2. Rooting gene trees without outgroups: EP rooting.

    Science.gov (United States)

    Sinsheimer, Janet S; Little, Roderick J A; Lake, James A

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).

  3. Load dependency in force-length relations in isolated single cardiomyocytes.

    Science.gov (United States)

    Iribe, Gentaro; Kaneko, Toshiyuki; Yamaguchi, Yohei; Naruse, Keiji

    2014-08-01

    The previously reported pressure-volume (PV) relationship in frog hearts shows that end-systolic PV relation (ESPVR) is load dependent, whereas ESPVR in canine hearts is load independent. To study intrinsic cardiac mechanics in detail, it is desirable to study mechanics in a single isolated cardiomyocyte that is free from interstitial connective tissue. Previous single cell mechanics studies used a pair of carbon fibers (CF) attached to the upper surface of opposite cell ends to stretch cells. These studies showed that end-systolic force-length (FL) relation (ESFLR) is load independent. However, the range of applicable mechanical load using the conventional technique is limited because of weak cell-CF attachment. Therefore, the behavior of ESFLR in single cells under physiologically possible conditions of greater load is not yet well known. To cover wider loading range, we contrived a new method to hold cell-ends more firmly using two pairs of CF attached to both upper and bottom surfaces of cells. The new method allowed stretching cells to 2.2 μm or more in end-diastolic sarcomere length. ESFLR virtually behaves in a load independent manner only with end-diastolic sarcomere length less than 1.95 μm. It exhibited clear load dependency with higher preload, especially with low afterload conditions. Instantaneous cellular elastance curves showed that decreasing afterload enhanced relaxation and slowed time to peak elastance, as previously reported. A simulation study of a mathematical model with detailed description of thin filament activation suggested that velocity dependent thin filament inactivation is crucial for the observed load dependent behaviors and previously reported afterload dependent change in Ca(2+) transient shape. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    OpenAIRE

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequen...

  5. Development of fine and coarse roots of Thuja occidentalis 'Brabant' in non-irrigated and drip irrigated field plots

    NARCIS (Netherlands)

    Pronk, A.A.; Willigen, de P.; Heuvelink, E.; Challa, H.

    2002-01-01

    Aboveground dry mass, total root dry mass and root length density of the fine roots of Thuja occidentalis `Brabant' were determined under non- and drip-irrigated field conditions. Two-dimensional diffusion parameters for dynamic root growth were estimated based on dry mass production of the fine

  6. The Long-Term Effect on Children of Increasing the Length of Parents' Birth-Related Leave

    DEFF Research Database (Denmark)

    Wurtz, Astrid

    The length of parents' birth-related leave varies across countries and has been subject of some debate. In this paper, I will focus on some potential benefits of leave. I investigate the long-term effects on children of increasing the length of parents' birth-related leave using a natural...... experiment from 1984 in Denmark when the leave length was increased quite suddenly by almost 50% from 14 to 20 weeks. Regression discontinuity design is used to identify the causal effect of the leave reform and to estimate whether there is a measurable, persistent effect on children's cognitive...... and educational outcomes at ages 15 and 21. A population sample of Danish children born in the months around implementation of the reform and a dataset with Danish PISA-2000 scores are used for the analysis. Results indicate that increasing parents' access to birth-related leave has no measurable effect...

  7. Quark ensembles with infinite correlation length

    OpenAIRE

    Molodtsov, S. V.; Zinovjev, G. M.

    2014-01-01

    By studying quark ensembles with infinite correlation length we formulate the quantum field theory model that, as we show, is exactly integrable and develops an instability of its standard vacuum ensemble (the Dirac sea). We argue such an instability is rooted in high ground state degeneracy (for 'realistic' space-time dimensions) featuring a fairly specific form of energy distribution, and with the cutoff parameter going to infinity this inherent energy distribution becomes infinitely narrow...

  8. Light as stress factor to plant roots – case of root halotropism

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  9. External root resorption after orthodontic treatment: a study of contributing factors

    International Nuclear Information System (INIS)

    Jung, Yun Hoa; Cho, Bong Hae

    2011-01-01

    The purpose of this study was to examine the patient- and treatment-related etiologic factors of external root resorption. This study consisted of 163 patients who had completed orthodontic treatments and taken the pre- and post-treatment panoramic and lateral cephalometric radiographs. The length of tooth was measured from the tooth apex to the incisal edge or cusp tip on the panoramic radiograph. Overbite and overjet were measured from the pre- and post-treatment lateral cephalometric radiographs. The root resorption of each tooth and the factors of malocclusion were analyzed with an analysis of variance. A paired t test was performed to compare the mean amount of root resorption between male and female, between extraction and non-extraction cases, and between surgery and non-surgery groups. Correlation coefficients were measured to assess the relationship between the amount of root resorption and the age in which the orthodontic treatment started, the degree of changes in overbite and overjet, and the duration of treatment. Maxillary central incisor was the most resorbed tooth, followed by the maxillary lateral incisor, the mandibular central incisor, and the mandibular lateral incisor. The history of tooth extraction was significantly associated with the root resorption. The duration of orthodontic treatment was positively correlated with the amount of root resorption. These findings show that orthodontic treatment should be carefully performed in patients who need the treatment for a long period and with a pre-treatment extraction of teeth.

  10. External root resorption after orthodontic treatment: a study of contributing factors.

    Science.gov (United States)

    Jung, Yun-Hoa; Cho, Bong-Hae

    2011-03-01

    The purpose of this study was to examine the patient- and treatment-related etiologic factors of external root resorption. This study consisted of 163 patients who had completed orthodontic treatments and taken the pre- and post-treatment panoramic and lateral cephalometric radiographs. The length of tooth was measured from the tooth apex to the incisal edge or cusp tip on the panoramic radiograph. Overbite and overjet were measured from the pre- and post-treatment lateral cephalometric radiographs. The root resorption of each tooth and the factors of malocclusion were analyzed with an analysis of variance. A paired t test was performed to compare the mean amount of root resorption between male and female, between extraction and non-extraction cases, and between surgery and non-surgery groups. Correlation coefficients were measured to assess the relationship between the amount of root resorption and the age in which the orthodontic treatment started, the degree of changes in overbite and overjet, and the duration of treatment. Maxillary central incisor was the most resorbed tooth, followed by the maxillary lateral incisor, the mandibular central incisor, and the mandibular lateral incisor. The history of tooth extraction was significantly associated with the root resorption. The duration of orthodontic treatment was positively correlated with the amount of root resorption. These findings show that orthodontic treatment should be carefully performed in patients who need the treatment for a long period and with a pre-treatment extraction of teeth.

  11. External root resorption after orthodontic treatment: a study of contributing factors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yun Hoa; Cho, Bong Hae [School of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2011-03-15

    The purpose of this study was to examine the patient- and treatment-related etiologic factors of external root resorption. This study consisted of 163 patients who had completed orthodontic treatments and taken the pre- and post-treatment panoramic and lateral cephalometric radiographs. The length of tooth was measured from the tooth apex to the incisal edge or cusp tip on the panoramic radiograph. Overbite and overjet were measured from the pre- and post-treatment lateral cephalometric radiographs. The root resorption of each tooth and the factors of malocclusion were analyzed with an analysis of variance. A paired t test was performed to compare the mean amount of root resorption between male and female, between extraction and non-extraction cases, and between surgery and non-surgery groups. Correlation coefficients were measured to assess the relationship between the amount of root resorption and the age in which the orthodontic treatment started, the degree of changes in overbite and overjet, and the duration of treatment. Maxillary central incisor was the most resorbed tooth, followed by the maxillary lateral incisor, the mandibular central incisor, and the mandibular lateral incisor. The history of tooth extraction was significantly associated with the root resorption. The duration of orthodontic treatment was positively correlated with the amount of root resorption. These findings show that orthodontic treatment should be carefully performed in patients who need the treatment for a long period and with a pre-treatment extraction of teeth.

  12. Spiral computed tomography in the evaluation of relations of the impacted maxillary canines and the adjacent incisor roots

    International Nuclear Information System (INIS)

    Siegel, R.; Stos, W.; Dyras, M.; Urbanik, A.; Wojciechowski, W.; Sztuk, S.

    2009-01-01

    Background: The relations of the crowns of impacted maxillary canines and the roots of adjacent incisors are difficult to evaluate on conventional radiographs due to superimposition of shadows of these structures. The aim of this study was to analyse the relations between the crowns of impacted canines and the roots of adjacent incisors with the use of computed tomography. Material/Methods: The study involved a group of 65 patients suspicious for an impacted maxillary permanent canine. All the patients underwent pantomography. In 44 individuals in the age of 13-31 years (mean age 17.1 ± 4.5) the examination revealed shadows of the impacted crowns superimposed on the roots of incisors. These patients were subjected to CT. On the basis of those CT examinations (including multiplanar and three-dimensional reconstructions) we defined the location of the impacted canines as buccal, palatal and horizontal. Likewise, the relations between the crowns of impacted canines and the roots of lateral or/and central incisors were studied. Results: From among 54 impacted maxillary canines, 41 (75.9%) were located palatally, 10 (18.5%) buccally, and 3 (5.6%) horizontally. In 14 cases (29.5%), the impacted canine remained in various kind of contact with both adjacent incisors. In addition to those aforementioned 14 cases, the impacted maxillary canine remained in contact with adjacent root of the lateral incisor in 34 cases (in total: 48 cases of contact). We found 17 cases (35.4%) of adherence without features of root resorption and 31 cases (64.4%) of resorption. Among the cases of resorption, there were 18 instances of deep resorption (58.1%) and 13 instances of light resorption (41.9%). There were also 18 cases (33.3%) of contact between the impacted canine and the root of the central incisor, including 10 instances (55.6%) of adjacency without root resorption and 8 cases (44.4%) of resorption. Conclusions: Computed tomography allows for a precise localisation of the impacted

  13. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation

    Science.gov (United States)

    Rodrigues, Clarissa Teles; de Oliveira-Santos, Christiano; Bernardineli, Norberti; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Minotti-Bonfante, Paloma Gagliardi; Ordinola-Zapata, Ronald

    2016-01-01

    ABSTRACT The knowledge of the internal anatomy of three-rooted mandibular molars may help clinicians to diagnose and plan the root canal treatment in order to provide adequate therapy when this variation is present. Objectives: To determine the prevalence of three-rooted mandibular molars in a Brazilian population using cone beam computed tomography (CBCT) and to analyze the anatomy of mandibular first molars with three roots through micro-CT. Material and Methods: CBCT images of 116 patients were reviewed to determine the prevalence of three-rooted first mandibular molars in a Brazilian subpopulation. Furthermore, with the use of micro-CT, 55 extracted three-rooted mandibular first molars were scanned and reconstructed to assess root length, distance between canal orifices, apical diameter, Vertucci's classification, presence of apical delta, number of foramina and furcations, lateral and accessory canals. The distance between the orifice on the pulp chamber floor and the beginning of the curvature and the angle of canal curvature were analyzed in the distolingual root. Data were compared using the Kruskal-Wallis test (α=0.05). Results: The prevalence of three-rooted mandibular first molars was of 2.58%. Mesial roots showed complex distribution of the root canal system in comparison to the distal roots. The median of major diameters of mesiobuccal, mesiolingual and single mesial canals were: 0.34, 0.41 and 0.60 mm, respectively. The higher values of major diameters were found in the distobuccal canals (0.56 mm) and the lower diameters in the distolingual canals (0.29 mm). The lowest orifice distance was found between the mesial canals (MB-ML) and the highest distance between the distal root canals (DB-DL). Almost all distal roots had one root canal and one apical foramen with few accessory canals. Conclusions: Distolingual root generally has short length, severe curvature and a single root canal with low apical diameter. PMID:27812625

  14. Pea-root exudates and their effect upon root-nodule bacteria

    NARCIS (Netherlands)

    Egeraat, van A.W.S.M.

    1972-01-01

    The main purpose of this investigation was to study the exudation (mechanism, sites) of various compounds by roots of pea seedlings in relation to the growth of Rhizobium leguminosarum.

    Chapter 1 gives a survey of the literature pertaining to plant-root

  15. Micro-CT evaluation of root and canal morphology of mandibular first premolars with radicular grooves

    Energy Technology Data Exchange (ETDEWEB)

    Boschetti, Emanuele; Mazzi-Chaves, Jardel Francisco; Versiani, Marco Aurélio; Pécora, Jesus Djalma; Saquy, Paulo Cesar; Sousa Neto, Manoel Damião de, E-mail: sousanet@forp.usp.br [Universidade de São Paulo (USP), Ribeirao Preto, SP (Brazil). Departamento de Odontologia Restauradora; Silva-Sousa, Yara Terezinha Correa; Leoni, Graziela Bianchi [Universidade de Ribeirão Preto (UNAERP), Ribeirão Preto, SP (Brazil). Departmento de Endodontia

    2017-09-15

    The aim of this study was to evaluate morphological features of 70 single-rooted mandibular first premolars with radicular grooves (RG) using micro-CT technology. Teeth were scanned and evaluated regarding the morphology of the roots and root canals as well as length, depth and percentage frequency location of the RG. Volume, surface area and Structure Model Index (SMI) of the canals were measured for the full root length. Two-dimensional parameters and frequency of canal orifices were evaluated at 1, 2, and 3 mm levels from the apical foramen. The number of accessory canals, the dentin thickness, and cross-sectional appearance of the canal at different root levels were also recorded. Expression of deep grooves was observed in 21.42% of the sample. Mean lengths of root and RG were 13.43 mm and 8.5 mm, respectively, while depth of the RG ranged from 0.75 to 1.13 mm. Mean canal volume, surface area and SMI were 10.78 mm{sup 3}, 58.51 mm{sup 2}, and 2.84, respectively. Apical delta was present in 4.35% of the sample and accessory canals were observed mostly at the middle and apical thirds. Two-dimensional parameters indicated an oval-shaped cross-sectional appearance of the root canal with a high percentage frequency of canal divisions (87.15%). Canal configuration type V (58.57%) was the most prevalent. C-shaped configuration was observed in 13 premolars (18.57%), whereas dentin thickness ranged from 1.0 to 1.31 mm. Radicular grooves in mandibular first premolars was associated with the occurrence of several anatomical complexities, including C-shaped canals and divisions of the main root canal. (author)

  16. Micro-CT evaluation of root and canal morphology of mandibular first premolars with radicular grooves

    International Nuclear Information System (INIS)

    Boschetti, Emanuele; Mazzi-Chaves, Jardel Francisco; Versiani, Marco Aurélio; Pécora, Jesus Djalma; Saquy, Paulo Cesar; Sousa Neto, Manoel Damião de; Silva-Sousa, Yara Terezinha Correa; Leoni, Graziela Bianchi

    2017-01-01

    The aim of this study was to evaluate morphological features of 70 single-rooted mandibular first premolars with radicular grooves (RG) using micro-CT technology. Teeth were scanned and evaluated regarding the morphology of the roots and root canals as well as length, depth and percentage frequency location of the RG. Volume, surface area and Structure Model Index (SMI) of the canals were measured for the full root length. Two-dimensional parameters and frequency of canal orifices were evaluated at 1, 2, and 3 mm levels from the apical foramen. The number of accessory canals, the dentin thickness, and cross-sectional appearance of the canal at different root levels were also recorded. Expression of deep grooves was observed in 21.42% of the sample. Mean lengths of root and RG were 13.43 mm and 8.5 mm, respectively, while depth of the RG ranged from 0.75 to 1.13 mm. Mean canal volume, surface area and SMI were 10.78 mm 3 , 58.51 mm 2 , and 2.84, respectively. Apical delta was present in 4.35% of the sample and accessory canals were observed mostly at the middle and apical thirds. Two-dimensional parameters indicated an oval-shaped cross-sectional appearance of the root canal with a high percentage frequency of canal divisions (87.15%). Canal configuration type V (58.57%) was the most prevalent. C-shaped configuration was observed in 13 premolars (18.57%), whereas dentin thickness ranged from 1.0 to 1.31 mm. Radicular grooves in mandibular first premolars was associated with the occurrence of several anatomical complexities, including C-shaped canals and divisions of the main root canal. (author)

  17. Root canal treatment of mandibular second premolar tooth with taurodontism

    Directory of Open Access Journals (Sweden)

    Vujašković Mirjana

    2008-01-01

    Full Text Available INTRODUCTION Taurodontism is a morphoanatomical change in the shape of a tooth. An enlarged body of a tooth with smaller than usual roots is a characteristic feature. Internal tooth anatomy correlates with this appearance, which means that a taurodontal tooth has a large pulp chamber and apically positioned furcations. This dental anomaly may be associated with different syndromes and congenital discoders. CASE OUTLINE The case report presents the patient of a rare case of taurodontism in the mandibular second premolar with chronic periodontitis. Endodontic treatment was performed after dental history and clinical examination. Special care is required in all segments of endodontic treatment of a taurodontal tooth from the identification orifice, canal exploration, determining working length, cleaning and shaping and obturation of the root canal. Precurved K-file was used for canal exploration and location of the furcation. One mesial and one distal canal with the buccal position were identified in the apical third of the root canal. The working lengths of two canals were determined by radiographic interpretation with two K-files in each canal and verified with the apex locator. During canal instrumentation, the third canal was located in the disto-lingual position. The working length of the third canal was established using the apex locator. CONCLUSION Thorough knowledge of tooth anatomy and its variations can lead to lower percentage of endodontic failure. Each clinical case involving these teeth should be investigated carefully, clinically and radiographically to detect additional root canals. High quality radiographs from different angles and proper instrumentarium improve the quality of endodontic procedure.

  18. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Pengcheng Li

    2018-02-01

    Full Text Available Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL population under well-watered (WW and water stress (WS conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype–environment interaction (GEI in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME and multi-trait (MT QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI. QTLs associated with crown root angle (CRA2 and crown root length (CRL1 were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN, including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM was associated with the length of crown root (CR, primary root (PR, and seminal root (SR and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

  19. High phobic anxiety is related to lower leukocyte telomere length in women.

    Directory of Open Access Journals (Sweden)

    Olivia I Okereke

    Full Text Available Chronic psychological distress has been linked to shorter telomeres, an indication of accelerated aging. Yet, little is known about relations of anxiety to telomeres. We examined whether a typically chronic form of anxiety--phobic anxiety--is related to telomere length.Relative telomere lengths (RTLs in peripheral blood leukocytes were measured by quantitative real-time polymerase chain reaction among 5,243 women (aged 42-69 years who: were participants in the Nurses' Health Study; were controls in prior case-control studies of telomeres and disease, or randomly selected healthy participants in a cognitive function sub-study; had completed the Crown-Crisp phobic index proximal to blood collection. Adjusted least-squares mean RTLs (z-scores were calculated across phobic categories. Higher phobic anxiety was generally associated with lower RTLs (age-adjusted p-trend = 0.09; this association was similar after adjustment for confounders--paternal age-at-birth, smoking, body mass index (BMI and physical activity (p-trend = 0.15. Notably, a threshold was identified. Among women with Crown-Crisp<6 points, the multivariable-adjusted least-squares mean RTL z-score = 0.02 standard units; however, among the most phobic women (Crown-Crisp ≥ 6, the multivariable-adjusted least-squares mean RTL z-score = -0.09 standard units (mean difference = -0.10 standard units; p = 0.02. The magnitude of this difference was comparable to that for women 6 years apart in age. Finally, effect modification by BMI, smoking and paternal age was observed: associations were stronger among highly phobic women with BMI ≥ 25 kg/m(2, without smoking history, or born to fathers aged ≥ 40 years.In this large, cross-sectional study high phobic anxiety was associated with shorter telomeres. These results point toward prospective investigations relating anxiety to telomere length change.

  20. Tooth movement characteristics in relation to root resorption in young and adult rats.

    NARCIS (Netherlands)

    Ren, Y.; Maltha, J.C.; Kuijpers-Jagtman, A.M.

    2007-01-01

    The aim of this study was to investigate tooth movement characteristics in relation to root resorption in young and adult rats. Two groups of 30 rats each (aged 6 wk and 9-12 months, respectively) were used. Standardized orthodontic appliances were placed to move the maxillary molars mesially.

  1. Tooth movement characteristics in relation to root resorption in young and adult rats

    NARCIS (Netherlands)

    Ren, Yijin; Maltha, Jaap C.; Kuijpers-Jagtman, Anne Marie

    2007-01-01

    The aim of this study was to investigate tooth movement characteristics in relation to root resorption in young and adult rats. Two groups of 30 rats each (aged 6 wk and 9-12 months, respectively) were used. Standardized orthodontic appliances were placed to move the maxillary molars mesially.

  2. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  3. Germination, seedling growth and relative water content of shoot in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (mg), root : shoot length (R:S) ratio, and relative water content of shoot (RWC, %) were investigated in this study. The results ... seedlings may provide an advantage by allowing access ... Residual chlorine was eliminated by.

  4. Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2016-10-15

    The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-order differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.

  5. Influence of high latitude light conditions on sensory quality and contents of health and sensory-related compounds in swede roots (Brassica napus L. ssp. rapifera Metzg.).

    Science.gov (United States)

    Mølmann, Jørgen Ab; Hagen, Sidsel Fiskaa; Bengtsson, Gunnar B; Johansen, Tor J

    2018-02-01

    Vegetable growers in Arctic areas must increasingly rely on market strategies based on regional origin and product quality. Swede roots (rutabaga) were grown in a phytotron to investigate the effect of high latitude light conditions on sensory quality and some health and sensory-related compounds. Experimental treatments included modifications of 24 h natural day length (69° 39' N) by moving plants at daily intervals to dark chambers with either no light, fluorescent growth light and/or low intensity photoperiod extension. Shortening the photosynthetic light period to 12 h produced smaller roots than 15.7 h and 18 h, with highest scores for bitter and sulfur taste, and lowest scores for sweetness, acidic taste and fibrousness. The photoperiod in combination with the photosynthetic light period also had an influence on glucosinolate (GLS) contents, with lowest concentrations in 24 h natural light and highest in 12 h natural light. Concentrations of vitamin C, glucose, fructose and sucrose were not significantly influenced by any of the treatments. High latitude light conditions, with long photosynthetic light periods and 24 h photoperiod, can enhance sweet/less bitter taste and reduce GLS contents in swede roots, compared to growth under short day conditions. This influence of light conditions on eating quality may benefit marketing of regional products from high latitudes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Variability of root traits in common bean genotypes at different levels of phosphorus supply and ontogenetic stages

    Directory of Open Access Journals (Sweden)

    Roberto dos Santos Trindade

    2014-08-01

    Full Text Available Selection of common bean (Phaseolus vulgaris L. cultivars with enhanced root growth would be a strategy for increasing P uptake and grain yield in tropical soils, but the strong plasticity of root traits may compromise their inclusion in breeding programs. The aim of this study was to evaluate the magnitude of the genotypic variability of root traits in common bean plants at two ontogenetic stages and two soil P levels. Twenty-four common bean genotypes, comprising the four growth habits that exist in the species and two wild genotypes, were grown in 4 kg pots at two levels of applied P (20 and 80 mg kg-1 and harvested at the stages of pod setting and early pod filling. Root area and root length were measured by digital image analysis. Significant genotype × P level and genotype × harvest interactions in analysis of variance indicate that the genotypic variation of root traits depended on soil nutrient availability and the stage at which evaluation was made. Genotypes differed for taproot mass, basal and lateral root mass, root area and root length at both P levels and growth stages; differences in specific root area and length were small. Genotypes with growth habits II (upright indeterminate and III (prostrate indeterminate showed better adaptation to limited P supply than genotypes of groups I (determinate and IV (indeterminate climbing. Between the two harvests, genotypes of groups II and III increased the mass of basal and lateral roots by 40 and 50 %, respectively, whereas genotypes of groups I and IV by only 7 and 19 %. Values of the genotypic coefficient of determination, which estimates the proportion of phenotypic variance resulting from genetic effects, were higher at early pod filling than at pod setting. Correlations between shoot mass and root mass, which could indicate indirect selection of root systems via aboveground biomass, were higher at early pod filling than at pod setting. The results indicate that selection for root

  7. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens.

    Science.gov (United States)

    Kupczik, Kornelius; Hublin, Jean-Jacques

    2010-11-01

    Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n=127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M(1) and M(2) is small. In contrast, Aterian H. sapiens root surface areas peak at M(2). Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Localized Iron Supply Triggers Lateral Root Elongation in Arabidopsis by Altering the AUX1-Mediated Auxin Distribution[C][W][OA

    Science.gov (United States)

    Giehl, Ricardo F.H.; Lima, Joni E.; von Wirén, Nicolaus

    2012-01-01

    Root system architecture depends on nutrient availability, which shapes primary and lateral root development in a nutrient-specific manner. To better understand how nutrient signals are integrated into root developmental programs, we investigated the morphological response of Arabidopsis thaliana roots to iron (Fe). Relative to a homogeneous supply, localized Fe supply in horizontally separated agar plates doubled lateral root length without having a differential effect on lateral root number. In the Fe uptake-defective mutant iron-regulated transporter1 (irt1), lateral root development was severely repressed, but a requirement for IRT1 could be circumvented by Fe application to shoots, indicating that symplastic Fe triggered the local elongation of lateral roots. The Fe-stimulated emergence of lateral root primordia and root cell elongation depended on the rootward auxin stream and was accompanied by a higher activity of the auxin reporter DR5-β-glucuronidase in lateral root apices. A crucial role of the auxin transporter AUXIN RESISTANT1 (AUX1) in Fe-triggered lateral root elongation was indicated by Fe-responsive AUX1 promoter activities in lateral root apices and by the failure of the aux1-T mutant to elongate lateral roots into Fe-enriched agar patches. We conclude that a local symplastic Fe gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as a prerequisite for lateral root elongation. PMID:22234997

  9. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  10. Effects of liming and wood ash application on root biomass, root distribution and soil chemistry in a Norway spruce stand in southwest Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, C.G.

    2001-07-01

    Effects of liming (CaPK) and wood ash application (A) on soil chemistry, root (< 2 mm and 2-5 mm in diameter) biomass and distribution, root length density (RLD, cm/cm{sup 3} ) and specific root length (SRL, m/g) were investigated in a 60 year old Norway spruce stand in SW Sweden. Soil cores were taken from the litter fermented humus (LFH) and mineral soil layers to a depth of 30 cm, eight years after treatments. The pH values of the LM layer increased significantly (p< 0.05) in the lime and ash treatments compared to the control, while in the top 5 cm of the mineral soil, pH was increased only in the A treatment compared to CaPK. The P, K, Ca and Mg concentrations increased in the CaPK treatment in the LM layer, while K and Ca decreased significantly at 5-10 cm depth in CaPK treated plots compared to the control and A. The highest amounts of ammonium and nitrate were found in A treatment in all soil layers. The A treatment increased fine root (< 2 mm in diameter) biomass in the LFH layer compared to the control but decreased it in the top 10 cm of the mineral soil compared to CaPK. A shallower fine root system was found in the A treated plots compared to the control and CaPK. The coarser root (2-5 mm in diameter) biomass was higher in the mineral soil in the A treatment compared to the control and CaPK but the differences were not significant. RLD increased in both CaPK and A in the upper soil layers. SRL increased in almost all layers in the CaPK and A treatments compared to the control. The number of root tips were also higher in the treated plots compared to the control, except in the 10-20 cm layer. It was concluded that CaPK and A treatments resulted in improved root vitality with a higher capacity for nutrient uptake.

  11. A Simple Derivation of Time Dilation and Length Contraction in Special Relativity

    Science.gov (United States)

    Behroozi, Fred

    2014-01-01

    Undergraduate physics majors typically begin their study of modern physics with special relativity. It is here that physics students first encounter the counterintuitive concepts of time dilation and length contraction. Unfortunately, the derivations of these results are often cloaked in several layers of analysis that render them rather…

  12. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  13. Relation between Tolman length and isothermal compressibility for simple liquids

    International Nuclear Information System (INIS)

    Wang Xiao-Song; Zhu Ru-Zeng

    2013-01-01

    The Tolman length δ 0 of a liquid with a plane surface has attracted increasing theoretical attention in recent years, but the expression of Tolman length in terms of observable quantities is still not very clear. In 2001, Bartell gave a simple expression of Tolman length δ 0 in terms of isothermal compressibility. However, this expression predicts that Tolman length is always negative, which is contrary to the results of molecular dynamics simulations (MDS) for simple liquids. In this paper, this contradiction is analyzed and the reason for the discrepancy in the sign is found. In addition, we introduce a new expression of Tolman length in terms of isothermal compressibility for simple fluids not near the critical points under some weak restrictions. The Tolman length of simple liquids calculated by using this formula is consistent with that obtained using MDS regarding the sign

  14. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    Science.gov (United States)

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the

  15. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  16. Root Surface Caries Occurence in Relation to Social and Dental ...

    African Journals Online (AJOL)

    Objective: To investigate the association between root caries and social and dental behaviour amongst adults in a selected suburband adult population. Methods: The setting, study design and root caries diagnosis were as described in the first part of this three part series. Subjects\\' social and dental health behaviour were ...

  17. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    Science.gov (United States)

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Prevalence and morphometric analysis of three-rooted mandibular first molars in a Brazilian subpopulation

    Directory of Open Access Journals (Sweden)

    Clarissa Teles Rodrigues

    Full Text Available ABSTRACT The knowledge of the internal anatomy of three-rooted mandibular molars may help clinicians to diagnose and plan the root canal treatment in order to provide adequate therapy when this variation is present. Objectives: To determine the prevalence of three-rooted mandibular molars in a Brazilian population using cone beam computed tomography (CBCT and to analyze the anatomy of mandibular first molars with three roots through micro-CT. Material and Methods: CBCT images of 116 patients were reviewed to determine the prevalence of three-rooted first mandibular molars in a Brazilian subpopulation. Furthermore, with the use of micro-CT, 55 extracted three-rooted mandibular first molars were scanned and reconstructed to assess root length, distance between canal orifices, apical diameter, Vertucci's classification, presence of apical delta, number of foramina and furcations, lateral and accessory canals. The distance between the orifice on the pulp chamber floor and the beginning of the curvature and the angle of canal curvature were analyzed in the distolingual root. Data were compared using the Kruskal-Wallis test (α=0.05. Results: The prevalence of three-rooted mandibular first molars was of 2.58%. Mesial roots showed complex distribution of the root canal system in comparison to the distal roots. The median of major diameters of mesiobuccal, mesiolingual and single mesial canals were: 0.34, 0.41 and 0.60 mm, respectively. The higher values of major diameters were found in the distobuccal canals (0.56 mm and the lower diameters in the distolingual canals (0.29 mm. The lowest orifice distance was found between the mesial canals (MB-ML and the highest distance between the distal root canals (DB-DL. Almost all distal roots had one root canal and one apical foramen with few accessory canals. Conclusions: Distolingual root generally has short length, severe curvature and a single root canal with low apical diameter.

  19. Effects of free-air CO2 enrichment on adventitious root development of rice under low and normal soil nitrogen levels

    Directory of Open Access Journals (Sweden)

    Chengming Sun

    2014-08-01

    Full Text Available Free air CO2 enrichment (FACE and nitrogen (N have marked effects on rice root growth, and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou 63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol− 1 higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low (LN, 125 kg ha− 1 and normal (NN, 250 kg ha− 1. The results showed a significant increase in both adventitious root number (ARN and adventitious root length (ARL under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application. The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.

  20. On entropic uncertainty relations in the presence of a minimal length

    Science.gov (United States)

    Rastegin, Alexey E.

    2017-07-01

    Entropic uncertainty relations for the position and momentum within the generalized uncertainty principle are examined. Studies of this principle are motivated by the existence of a minimal observable length. Then the position and momentum operators satisfy the modified commutation relation, for which more than one algebraic representation is known. One of them is described by auxiliary momentum so that the momentum and coordinate wave functions are connected by the Fourier transform. However, the probability density functions of the physically true and auxiliary momenta are different. As the corresponding entropies differ, known entropic uncertainty relations are changed. Using differential Shannon entropies, we give a state-dependent formulation with correction term. State-independent uncertainty relations are obtained in terms of the Rényi entropies and the Tsallis entropies with binning. Such relations allow one to take into account a finiteness of measurement resolution.

  1. The Long Term Effect on Children of Increasing the Length of Parents' Birth Related Leave

    DEFF Research Database (Denmark)

    Wurtz, Astrid

    related leave from 14 to 20 weeks. We use differences-in-differences regression discontinuity design to identify the causal effect of the leave reform and it estimated whether such a large increase in the mandated leave period has a large measurable and persistent effect on children's cognitive...... and educational outcomes. A 100% sample Danish population born in May, June, July, and August 1983, 1984, and 1985 and a dataset with Danish PISA-2000 scores are used for the estimations. Preliminary results indicate there is no positive effect on children's cognitive outcomes from increasing parents' mandated......    The length of parents' total birth related leave was increased with almost 50% in 1984 in Denmark. The previous length of the Danish maternity leave was long, especially compared to e.g. the U.S. today. This paper investigates the long term effects on children of increasing length of birth...

  2. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  3. Clustering, haplotype diversity and locations of MIC-3: a unique root-specific defense-related gene family in upland cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    MIC-3-related genes of cotton (Gossypium spp.) were identified and shown to have root-specific expression, associated with pathogen defense-related function and specifically increased expression in root-knot nematode (RKN) resistant plants after nematode infection. Here we cloned and sequenced MIC-...

  4. Effect of customization of master gutta-percha cone on apical control of root filling using different techniques: an ex vivo study.

    Science.gov (United States)

    van Zyl, S P; Gulabivala, K; Ng, Y-L

    2005-09-01

    (i) To compare the prevalence of extrusion of root filling material when placed using different root filling techniques, with or without customization of the master gutta-percha (GP) cone; and (ii) to investigate the effects of some factors influencing root filling extrusion and presence of voids. A total of 180 roots were selected, prepared and randomly allocated to three groups. Five general dental practitioners performed the root fillings; each filled one group of roots (n = 60) using each of three techniques; 'cold lateral compaction' (n = 20), 'warm vertical compaction' (n = 20) and 'continuous-wave' (n = 20) techniques. For each obturation technique, the master GP cone was customized using chloroform in 10 samples. Two groups of the roots were recycled to allow all five operators to fulfill their remit. Two observers, blind to operator and obturation technique, examined the radiographs (master apical file, post-obturation) to determine the presence of root filling extrusion and voids within the apical 5 mm, independently. Root filling extrusion was also confirmed by direct inspection of the root apex after obturation. The data were analysed using logistic regression models. A total of 300 root fillings were performed; nine were excluded from the analysis. Most of the root fillings (80%, n = 233) were placed within 0.5 mm of the working length; only 20% (n = 58) were placed >0.5 mm beyond the working length. The odds of prevalence of extrusion (>0.5 mm) were significantly reduced by about 50% when cold lateral compaction or customization of GP were used. One operator produced 2.5 times more extruded root fillings than others. Curvature & length of root canal, apical size of prepared canal, as well as operator's preferred obturation technique had no significant influence on the prevalence of extrusion. Customization of GP was the sole factor to significantly reduce the prevalence of voids within the apical 5 mm of working length. Root filling extrusion was

  5. Root and Nodulation Phenotypes of the Ethylene-Insensitive Sickle Mutant of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    JOKO PRAYITNO

    2010-09-01

    Full Text Available The sickle (skl mutant of the model legume Medicago truncatula is an ethylene-sensitive mutant that have a ten-fold increase in nodule numbers. The nodulation and root phenotypes of the skl mutant were investigated and further characterised. The skl mutant had longer roots than the wild type, but when inoculated with Sinorhizobium, its root length was reduced to the level of wild type. Furthermore, lateral root numbers in uninoculated skl were similar to those in uninoculated wild type. However, when the root tips were decapitated, fewer lateral roots formed in skl than in wild type. Nodule numbers of the skl mutant were significantly reduced by low nitrate concentration (2.5 mM. These results suggest that skl mutant has alterations in both root and nodule development.

  6. Rooting and acclimatization of the Japanese plum tree, cv. América

    Directory of Open Access Journals (Sweden)

    Juliana de Magalhães Bandeira

    2012-06-01

    Full Text Available Rooting and acclimatization are limiting steps in plant micropropagation, especially in woody plant species. This study aimed to evaluate the IAA and IBA effect on the in vitro rooting and acclimatization of micropropagated shoots of Japanese plum (Prunus salicina Lindl. cv. América. Shoots from 3 to 4 cm long were inoculated in MS medium with half salt and vitamin concentrations (MS/2 added with IAA and IBA (0, 0.25, 0.5, 0.75 and 1 mg L-1. After a 20-day period in in vitro cultivation, the shoots were evaluated, and then transferred to a greenhouse, and evaluated after 30 days. At the end of the in vitro cultivation period, no significant interactions were observed for number of roots per shoot and rooting percentage, but a significant effect was recorded for auxin type only, for which shoots grown in media added with IBA showed high values - 0.87 and 41.95%, respectively. A linear increase response from 1.45 to 5.75 cm was verified for root length of shoots cultivated in IBA medium; however, no significant effect was observed, and a 0.86 cm average root length per shoot grown in medium added with IAA was found. After 30 days of acclimatization period, the largest survival percentage was obtained from shoots cultivated in medium with 1 mg L-1 of IBA and IAA (88% and 92%, respectively. Although, IBA provided the highest in vitro rooting, most of the surviving shoots were those originated in IAA-added medium, probably because IBA promoted longer fibrous roots, less appropriate for transplant and soil fixation, as they are easily damaged. It was concluded that in vitro rooting with the addition of the highest IAA concentration (1 mg L-1 provided the greatest plant survival during the acclimatization period of the Japanese plum cv. América.

  7. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    Science.gov (United States)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and ls. FSC showed high r2 (> 0.95) for the number of segments and the total length. RAR values of tree B are distributed rather upslope (76.8 % of RARtot), compared to 44.5 % of RARtot for tree A

  8. Iron and ferritin dependent ROS distribution impact Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Franois

    2014-11-09

    Iron (Fe) homeostasis is integrated with the production of Reactive Oxygen Species (ROS) whose distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana (Arabidopsis) root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin and RSA is in part mediated by the H 2 O 2 /O 2 .- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Further, meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  9. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...

  10. Does species richness affect fine root biomass and production in young forest plantations?

    Science.gov (United States)

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  11. A Rare Case of Apical Root Resorption during Orthodontic Treatment of Patient with Multiple Aplasia

    OpenAIRE

    Agrawal, Chintan M; Mahida, Khyati; Agrawal, Charu C; Bothra, Jitendrakumar; Mashru, Ketan

    2015-01-01

    External apical root resorption is an adverse effect of orthodontic treatment. It reduces the length of root and breaks the integrity of teeth and dental arch. Orthodontics is the only dental specialty that clinically uses the inflammatory process to correct the mal-aligned teeth. Hence, it is necessary to know the risk factors of root resorption and do everything to reduce the rate of root resorption. Hence, all predisposing factors which are systemic as well as local should be considered be...

  12. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  13. Effects of clodronate on early alveolar bone remodeling and root resorption related to orthodontic forces: a histomorphometric analysis.

    Science.gov (United States)

    Choi, Josefina; Baek, Seung-Hak; Lee, Jae-Il; Chang, Young-Il

    2010-11-01

    The objective of this study was to evaluate the short-term effects of clodronate, a first-generation bisphosphonate, on early alveolar bone remodeling and root resorption related to orthodontic tooth movement. The samples consisted of 54 sex-matched Wistar rats (weight, 180-230 g) allocated to the 2.5 mmol/L clodronate, 10 mmol/L clodronate, and control groups (n = 18 for each group). After application of a nickel-titanium closed-coil spring (force, 60 g) between the maxillary central incisor and first molar, 2.5 mmol/L of clodronate, 10 mmol/L of clodronate, or saline solution was injected into the subperiosteum adjacent to the maxillary first molar every third day. All animals received tetracycline, calcein, and alizarin red by intraperitoneal injection at 1, 6, and 14 days, respectively. The amounts of tooth movement were measured at 3, 6, 9, 12, and 15 days. The animals were killed at 4, 7, and 17 days. Histomorphometric analyses of bone mineral appositional rate, labeled surface, percentage of root resorption area, and number of root resorption lacunae of the mesiobuccal root of the maxillary first molar at 4, 7, and 17 days were done. One-way analysis of variance (ANOVA) with the post-hoc test were done for statistical analyses. Rats in the 10 mmol/L clodronate group had significant decreases of tooth movement (12 and 15 days, P root resorption area and numbers of root resorption lacunae (7 day, P root resorption related to orthodontic tooth movement, patients should be informed about a possible decrease in the amount of tooth movement and a prolonged period of orthodontic treatment. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    Science.gov (United States)

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  15. Foxtail Millet [Setaria italica (L. Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression

    Directory of Open Access Journals (Sweden)

    Faisal Nadeem

    2018-02-01

    Full Text Available Foxtail millet (FM [Setaria italica (L. Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such “excessive” protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.

  16. Foxtail Millet [Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression.

    Science.gov (United States)

    Nadeem, Faisal; Ahmad, Zeeshan; Wang, Ruifeng; Han, Jienan; Shen, Qi; Chang, Feiran; Diao, Xianmin; Zhang, Fusuo; Li, Xuexian

    2018-01-01

    Foxtail millet (FM) [ Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.

  17. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv `Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots. Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium. Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed. PMID:16664467

  18. Dark exposure of petunia cuttings strongly improves adventitious root formation and enhances carbohydrate availability during rooting in the light.

    Science.gov (United States)

    Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2010-05-01

    The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.

  19. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  20. Length-weight relationships, condition factors and relative weight of ...

    African Journals Online (AJOL)

    The aim of this study was to record the length-weight relationship parameters and condition factors for some commercially important fish of Bushehr coastal waters of Persian Gulf. The length-weight relationships were calculated for five species caught during fishing surveys using different types of fishing gears (trawls, pots ...

  1. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    Science.gov (United States)

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  2. On application potential of root analyzer in ecological and physiological studies of pleurocarpous mosses

    Directory of Open Access Journals (Sweden)

    LI Qian

    2012-10-01

    Full Text Available A software of root analyzer (WinRHIZO was used to analyze the gametophytic morphology of 32 specimens of Hypnum plumaeforme Wils., Thuidium cymbifolium (Dozy et Molk. Dozy et Molk.and Entodon compressus (Hedw. Müll.Hal..The length of stems and branches,projected area,surface area,average diameter,length/volume,volume,tips,forks,and the crossings number of links of gametophytes of these 32 specimens were obtained.Based on the above morphological parameters,the cluster dendrogram and ordination plots were produced by using cluster analysis and non-metric multi-dimensional scaling method.The results showed that the 32 specimens could be divided into three groups,which match well with Hypnum plumaeforme Wils., Thuidium cymbifolium (Dozy et Molk. Dozy et Molk.and Entodon compressus (Hedw. Müll.Hal.,respectively.One-way ANOVA of the 10 characters among the three species shows that most morphological parameters are statistically different among the above three species.Therefore,the above 10 characters are relative stable in the genus level,the root analyzer and its attached software have a potential in the physiological and ecological studies in pleurocarpous mosses.

  3. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  4. Jatropha curcas L. root structure and growth in diverse soils.

    Science.gov (United States)

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  5. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    Directory of Open Access Journals (Sweden)

    Ofelia Andrea Valdés-Rodríguez

    2013-01-01

    Full Text Available Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots. The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14±5% (mean ± standard deviation. Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil.

  6. The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees.

    Science.gov (United States)

    Soria-Carrasco, Víctor; Talavera, Gerard; Igea, Javier; Castresana, Jose

    2007-11-01

    We introduce a new phylogenetic comparison method that measures overall differences in the relative branch length and topology of two phylogenetic trees. To do this, the algorithm first scales one of the trees to have a global divergence as similar as possible to the other tree. Then, the branch length distance, which takes differences in topology and branch lengths into account, is applied to the two trees. We thus obtain the minimum branch length distance or K tree score. Two trees with very different relative branch lengths get a high K score whereas two trees that follow a similar among-lineage rate variation get a low score, regardless of the overall rates in both trees. There are several applications of the K tree score, two of which are explained here in more detail. First, this score allows the evaluation of the performance of phylogenetic algorithms, not only with respect to their topological accuracy, but also with respect to the reproduction of a given branch length variation. In a second example, we show how the K score allows the selection of orthologous genes by choosing those that better follow the overall shape of a given reference tree. http://molevol.ibmb.csic.es/Ktreedist.html

  7. In vitro comparison of working length determination using three different electronic apex locators

    Directory of Open Access Journals (Sweden)

    Alper Kuştarci

    2014-01-01

    Full Text Available Background: The aim of this study was to compare the accuracy of the apex-locating functions of DentaPort ZX, Raypex 5 and Endo Master electronic apex locators (EALs in vitro. Materials and Methods: Thirty extracted human single-rooted teeth with mature apices were used for the study. The real working length (RWL was established by subtracting 0.5 mm from the actual root canal length. All teeth were mounted in an alginate model that was especially developed to test the EALs and the teeth were then measured with each EAL. The results were compared with the corresponding RWL, which was subtracted from the electronically determined distance. Data were analyzed using a paired-samples t-test, a Chi-square test and a repeated measure analysis of variance evaluation at the 0.05 level of significance. Results: Statistical analysis showed that no significant difference was found among all EALs (P > 0.05. Conclusion: The accuracy of the EALs was evaluated and all of the devices showed an acceptable determination of electronic working length between the ranges of ±0.5 mm.

  8. Length standards and the Twin Paradox in the Special Theory of Relativity

    Science.gov (United States)

    Carrubba, James Gasper

    In this Thesis I work towards a discussion of several resolutions of the Twin Paradox by exploring the Lorentz transformations. I begin by asking what it means for a moving length to contract, a question which obviously cannot be divorced from the propagation of length standards from one reference frame to another. I emphasize the conventionality of definitions of length. I go on to argue that it is the imposition of clock synchronization-the conventionality of one-way speeds- and not the effects of acceleration which leads to the asymmetry of light speed observed in Sagnac effect; and further, that this asymmetry leads to apparent paradoxes which are easily resolved when we take into account general covariance. In subsequent discussion of light-speed conventionality, I prove that any transform which preserves synchronization consistent with Michelson-Morley must be a similarity transform; and use this to demonstrate that not all results which appear to depend on Special Relativity actually do. I conclude this Thesis with an argument that the Twin Paradox cannot be resolved consistently if we impose simultaneously all 'physical' conditions which various resolutions impose in part.

  9. Incisal Apical Root Resorption Evaluation after Low-Friction Orthodontic Treatment Using Two-Dimensional Radiographic Imaging and Trigonometric Correction.

    Science.gov (United States)

    Savoldi, Fabio; Bonetti, Stefano; Dalessandri, Domenico; Mandelli, Gualtiero; Paganelli, Corrado

    2015-11-01

    Root resorption shall be taken into consideration during every orthodontic treatment, and it can be effected by the use of different techniques, such as the application of low friction mechanics. However, its routinely assessment on orthopantomography has limitations related to distortions and changes in dental inclination. The aim of this investigation was to evaluate the severity of apical root resorption of maxillary and mandibular incisors after low-friction orthodontic treatment, using the combination of panoramic and lateral radiographs, and applying a trigonometric correction. A hospital based Retrospective study at the orthodontic Department (Dental School, University of Brescia, Spedali Civili di Brescia, Brescia, Italy). Ninety-three subjects (53 females and 40 males; mean age, 14 years) with mild teeth crowding were treated without extractions by the same operator using a low-friction fixed appliance following an integrated straight wire (ISW) protocol. The pre- and post-treatment tooth lengths of the maxillary and mandibular incisors were measured on panoramic radiographs. A trigonometric factor of correction for the pre-treatment length was calculated based on the difference between the pre and post-treatment incisal inclination on lateral cephalograms. The changes in lengths were investigated using the Student's t-test for paired values (proot development in younger patients, mandibular central and lateral incisors underwent slight resorption (-3.1%, -3.4%). A statistically significant difference was found for the mandibular incisors but not for the maxillary ones. In patients with mild crowding and consequent low amount of root movement, a low-friction orthodontic treatment can lead to slight apical root resorption, mainly involving lower incisors. The use of a trigonometric correction in the panoramic radiograph analysis may reduce the limitations of this 2D evaluation.

  10. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  11. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    OpenAIRE

    FRÖNER Izabel Cristina; IMPERADOR Cristina Aparecida; SOUZA Luiz Gustavo de

    1999-01-01

    The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  12. Evaluation of the anatomical alterations of lower molars mesial root?s apical third

    Directory of Open Access Journals (Sweden)

    FRÖNER Izabel Cristina

    1999-01-01

    Full Text Available The anatomical apex of the mesial root of the lower molars presents a morphological complexity related to the number and shape of the root canals as well as of the apical foramen and isthmus presence. The knowledge of the complexity of the endodontic system of the molar root area is essencial to select more carefully the best instrumentation and obturation technique, to obtain a more successful endodontic therapy.

  13. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs.

    Science.gov (United States)

    Athirasala, Avathamsa; Lins, Fernanda; Tahayeri, Anthony; Hinds, Monica; Smith, Anthony J; Sedgley, Christine; Ferracane, Jack; Bertassoni, Luiz E

    2017-06-12

    The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.

  14. Microbial transformation of ginsenosides extracted from Panax ginseng adventitious roots in an airlift bioreactor

    OpenAIRE

    Xiaolin Song; Hao Wu; Xuanchun Piao; Zhenhao Yin; Chengri Yin

    2017-01-01

    Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of β-glucosidase-producing microorganisms were isolated from soil. Of these, ...

  15. Effect of the application of AIA and sucrose in the in vitro rooting of Sonate and Lambada varieties of Anthurium andraeanum Lind.

    Directory of Open Access Journals (Sweden)

    Nydia del Rivero Bautista

    2005-04-01

    Full Text Available The effect of different concentrations of indole-3-acetic acid (AIA and sucrose Anthurium andraeanum in the varieties ‘Lambada’ and ‘Sonate’ in the enraizamiento phase during the micropropagation of this specieswas determined in this study. Nodal explants, coming from plantlets obtained in vitro, were cultivated in a liquid culture mediumMS modified, supplemented with 2.89 and 5.71 μM AIA and 30 and 40 g.l-1 (w/v of sucrose. The length of the buds (cm, the number of roots and the length of the roots (cmwere the evaluated variables . In the rooting phase the best sucrose concentration in the cultivation medium was of 40 g.l-1, being observed that the increment in its concentration improved the length of the plants, as well as the number and length of the roots for the two varieties. There were differences in the requirement of AIA in the evaluated variables in both varieties. Key words: Araceae, in vitro culture, micropropagation Abbreviations: IAA (Indole-3-acetic acid, NAA (naphthalenacetic acid, IBA (Indole-3-butyric acid, Kin (6-furfurylaminopurine

  16. Experimentally reduced root–microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus

    Science.gov (United States)

    Lee, Mei-Ho; Comas, Louise H.; Callahan, Hilary S.

    2014-01-01

    Background and Aims Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous. Methods To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations. Key Results Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10–20 %) and increased specific root length (approx. 10–30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples. Conclusions The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root

  17. A New Anatomically Based Nomenclature for the Roots and Root Canals—Part 1: Maxillary Molars

    Directory of Open Access Journals (Sweden)

    Jojo Kottoor

    2012-01-01

    Full Text Available Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  18. A new anatomically based nomenclature for the roots and root canals-part 1: maxillary molars.

    Science.gov (United States)

    Kottoor, Jojo; Albuquerque, Denzil Valerian; Velmurugan, Natanasabapathy

    2012-01-01

    Numerous terminologies have been employed in the dental literature to describe the roots and root canal systems of maxillary molars. This multiplicity in naming of roots and canals makes the reader susceptible to misinterpretation and confusion. No consensus thus far has been arrived at for defining the names of roots and root canals in maxillary molars, including their various morphological aberrations. The anatomical relation of roots and their root canals were identified and were subsequently named based on definite sets of criteria. A new method for identification and naming of roots and root canal anatomy in maxillary molars, based on their root and canal relationship, was formulated and is presented in this paper. The nomenclature makes certain essential modifications to the traditional approach to accommodate naming of the various aberrations presented in the maxillary molars. A simple, yet extensive, nomenclature system has been proposed that appropriately names the internal and external morphology of maxillary molars.

  19. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Soil-root Shear Strength Properties of Some Slope Plants

    International Nuclear Information System (INIS)

    Normaniza Osman; Mohamad Nordin Abdullah; Faisal Haji Ali

    2011-01-01

    Rapid development in hilly areas in Malaysia has become a trend that put a stress to the sloping area. It reduces the factor of safety by reducing the resistant force and therefore leads to slope failure. Vegetation plays a big role in reinforcement functions via anchoring the soils and forms a binding network within the soil layer that tied the soil masses together. In this research, three plant species namely Acacia mangium, Dillenia suffruticosa and Leucaena leucocaphala were assessed in term of their soil-root shear strength properties. Our results showed that Acacia mangium had the highest shear strength values, 30.4 kPa and 50.2 kPa at loads 13.3 kPa and 24.3 kPa, respectively. Leucaena leucocaphala showed the highest in cohesion factor, which was almost double the value in those of Dillenia suffruticosa and Acacia mangium. The root profile analysis indicated Dillenia suffruticosa exhibited the highest values in both root length density and root volume, whilst Leucaena leucocaphala had the highest average of root diameter. (author)

  1. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    Science.gov (United States)

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  2. METODE RESET PASSWORD LEVEL ROOT PADA RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS MySQL

    Directory of Open Access Journals (Sweden)

    Taqwa Hariguna

    2011-08-01

    Full Text Available Database merupakan sebuah hal yang penting untuk menyimpan data, dengan database organisasi akan mendapatkan keuntungan dalam beberapa hal, seperti kecepatan akases dan mengurangi penggunaan kertas, namun dengan implementasi database tidak jarang administrator database lupa akan password yang digunakan, hal ini akan mempersulit dalam proses penangganan database. Penelitian ini bertujuan untuk menggali cara mereset password level root pada relational database management system MySQL.

  3. Tolerance at arm's length: the Dutch experience.

    Science.gov (United States)

    Schuijer, J

    1990-01-01

    With respect to pedophilia and the age of consent, the Netherlands warrants special attention. Although pedophilia is not as widely accepted in the Netherlands as sometimes is supposed, developments in the judicial practice showed a growing reservedness. These developments are a spin-off of related developments in Dutch society. The tolerance in the Dutch society has roots that go far back in history and is also a consequence of the way this society is structured. The social changes of the sixties and seventies resulted in a "tolerance at arm's length" for pedophiles, which proved to be deceptive when the Dutch government proposed to lower the age of consent in 1985. It resulted in a vehement public outcry. The prevailing sex laws have been the prime target of protagonists of pedophile emancipation. Around 1960, organized as a group, they started to undertake several activities. In the course of their existence, they came to redefine the issue of pedophilia as one of youth emancipation.

  4. Relation between axial length and ocular parameters

    Directory of Open Access Journals (Sweden)

    Xue-Qiu Yang

    2013-09-01

    Full Text Available AIM: To investigatethe relation between axial length(AL, age and ocular parameters.METHODS: A total of 360 subjects(360 eyeswith emmetropia or myopia were recruited. Refraction, center corneal thickness(CCT, AL, intraocular pressure(IOPwere measured by automatic-refractor, Pachymeter, A-mode ultrasound and non-contact tonometer, respectively. Corneal curvature(CC, anterior chamber depth(ACDand white-to-white distance(WWDwere measured by Orbscan II. Three dimensional frequency domain coherent optical tomography(3D-OCTwas used to examine the retinal nerve fiber layer thickness(RNFLT. The Pearson correlation coefficient(rand multiple regression analysis were performed to evaluate the relationship between AL, age and ocular parameters.RESULTS: The average AL was 24.15±1.26mm. With elongation of the AL, spherical equivalent(SE(r=-0.742,Pr=-0.395, Pr=-0.374, Pr=0.411, Pr=0.099, P=0.060and WWD(r=0.061, P=0.252. There was also a significant correlation between AL and age(P=0.001, SE(PPPCONCLUSION: In longer eyes, there is a tendency toward myopia, a flatter cornea, a deeper ACD and a thinner RNFLT. Age is an influencing factor for the AL as well.

  5. Changes of Root Hydraulic Conductivity and Root/Shoot Ratio of Durum Wheat and Barley in Relation to Nitrogen Availability and Mercury Exposure

    Directory of Open Access Journals (Sweden)

    Celestino Ruggiero

    2007-09-01

    Full Text Available The aim of this research was to verify, on whole plant level and during all the plant cycle, the hypothesis that nitrogen deficiency reduces root hydraulic conductivity through the water channels (aquaporins activity, and that the plant reacts by changing root/shoot ratio. Root hydraulic conductivity, plant growth, root/shoot ratio and plant water status were assessed for durum wheat (Triticum durum Desf. and barley (Hordeum vulgare L., as influenced by nitrogen availability and HgCl2 treatment. On both species during the plant cycle, nitrogen deficiency induced lower root hydraulic conductivity (-49 and -66% respectively for barley and wheat and lower plant growth. On wheat was also observed cycle delay, lower plant nitrogen content, but not lower leaf turgor pressure and epidermic cell dimension. The lower plant growth was due to lower plant dimension and lower tillering. Root /shoot ratio was always higher for nitrogen stressed plants, whether on dry matter or on surface basis. This was due to lower effect of nitrogen stress on root growth than on shoot growth. On wheat HgCl2 treatment determined lower plant growth, and more than nitrogen stress, cycle delay and higher root/shoot ratio. The mercury, also, induced leaf rolling, lower turgor pressure, lower NAR, higher root cell wall lignification and lower epidermic cell number per surface unity. In nitrogen fertilized plants root hydraulic conductivity was always reduced by HgCl2 treatment (-61 and 38%, respectively for wheat and barley, but in nitrogen unfertilized plants this effect was observed only during the first plant stages. This effect was higher during shooting and caryopsis formation, lower during tillering. It is concluded that barley and durum wheat react to nitrogen deficiency and HgCl2 treatment by increasing the root/shoot ratio, to compensate water stress due to lower water root conductivity probably induced by lower aquaporin synthesis or inactivation. However, this

  6. Changes of Root Hydraulic Conductivity and Root/Shoot Ratio of Durum Wheat and Barley in Relation to Nitrogen Availability and Mercury Exposure

    Directory of Open Access Journals (Sweden)

    Giovanna Angelino

    2011-02-01

    Full Text Available The aim of this research was to verify, on whole plant level and during all the plant cycle, the hypothesis that nitrogen deficiency reduces root hydraulic conductivity through the water channels (aquaporins activity, and that the plant reacts by changing root/shoot ratio. Root hydraulic conductivity, plant growth, root/shoot ratio and plant water status were assessed for durum wheat (Triticum durum Desf. and barley (Hordeum vulgare L., as influenced by nitrogen availability and HgCl2 treatment. On both species during the plant cycle, nitrogen deficiency induced lower root hydraulic conductivity (-49 and -66% respectively for barley and wheat and lower plant growth. On wheat was also observed cycle delay, lower plant nitrogen content, but not lower leaf turgor pressure and epidermic cell dimension. The lower plant growth was due to lower plant dimension and lower tillering. Root /shoot ratio was always higher for nitrogen stressed plants, whether on dry matter or on surface basis. This was due to lower effect of nitrogen stress on root growth than on shoot growth. On wheat HgCl2 treatment determined lower plant growth, and more than nitrogen stress, cycle delay and higher root/shoot ratio. The mercury, also, induced leaf rolling, lower turgor pressure, lower NAR, higher root cell wall lignification and lower epidermic cell number per surface unity. In nitrogen fertilized plants root hydraulic conductivity was always reduced by HgCl2 treatment (-61 and 38%, respectively for wheat and barley, but in nitrogen unfertilized plants this effect was observed only during the first plant stages. This effect was higher during shooting and caryopsis formation, lower during tillering. It is concluded that barley and durum wheat react to nitrogen deficiency and HgCl2 treatment by increasing the root/shoot ratio, to compensate water stress due to lower water root conductivity probably induced by lower aquaporin synthesis or inactivation. However, this

  7. Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Fernandes Santos

    2005-01-01

    Full Text Available Two F2 carrot (Daucus carota L. populations (orange rooted Brasilia x very dark orange rooted High Carotene Mass - HCM cross and the dark orange rooted cultivated variety B493 x white rooted wild carrot Queen Anne's Lace - QAL cross with very unrelated genetic backgrounds were used to investigate intrinsic factors limiting carotenoid accumulation in carrots by applying phenotypic correlation and path analysis to study the relationships between major root carotenes, root color and several other morphological traits. Most of the correlations between traits were close and agreed in sign between the two populations. Root weight had a moderate to highly significant positive correlation with leaf length, root length and top and middle root diameter. Although phenotypic correlations failed to identify the order of the substrates and products in the carotenoid pathway the correct order of substrates and products (phytoene -> zeta-carotene -> lycopene was identified in the causal diagram of beta-carotene for the Brasilia x HCM population. Path analysis of beta-carotene synthesis in the B493 x QAL population suggested that selection for root carotenes had little effect on plant morphological traits. Causal model of beta-carotene and lycopene in the B493 x QAL population suggested that phytoene synthesis is the key step limiting the carotenoid pathway in white carrots. Path analysis, first presented by Sewall Wright to study quantitative traits, appears to be a powerful statistical approach for the identification of key compounds in complex pathways.

  8. Effect of localized nitrogen availability to soybean half-root systems on photosynthate partitioning to roots and nodules

    International Nuclear Information System (INIS)

    Singleton, P.W.; van Kessel, C.

    1987-01-01

    Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20%, O 2 (Ar:O 2 ) and air (Air) atmospheres affected N assimilation (NH 4 NO 3 and N 2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH 4 NO 3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O 2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O 2 to the other (Air/Ar:O 2 ), and (c) Ar:O 2 to both sides (Ar:O 2 /Ar:O 2 ). Results indicated that dry matter and current photosynthate ( 14 C) were selectively partitioned to nodules and roots where N 2 was available. Both root and nodule growth on the Air side of Air/Ar:O 2 plants was significantly greater than the Ar:O 2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N 2 availability. The Ar:O 2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N 2 -fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O 2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity in Ar:O 2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N 2 fixation or inorganic sources, had a localized effect on root development

  9. Length-weight relation and condition factor of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ in the Cochin Backwater

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, C.B.L.; Nair, K.K.C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Aravindakshan, P.N.; Kutty, M.K.

    Length-weight relation and condition factor of @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ were estimated using samples from Cochin backwater. Statistical tests support the view that the length-weight exponent of these species may be species...

  10. Fine-Root Production in an Amazon Rain Forest: Deep Roots are an Important Component of Net Primary Productivity

    Science.gov (United States)

    Norby, R.; Cordeiro, A. L.; Oblitas, E.; Valverde-Barrantes, O.; Quesada, C. A.

    2017-12-01

    Fine-root production is a significant component of net primary production (NPP), but it is the most difficult of the major components to measure. Data on fine-root production are especially sparse from tropical forests, and therefore the estimates of tropical forest NPP may not be accurate. Many estimates of fine-root production are based on observations in the top 15 or 30 cm of soil, with the implicit assumption that this approach will capture most of the root distribution. We measured fine-root production in a 30-m tall, old-growth, terra firme rain forest near Manaus, Brazil, which is the site for a free-air CO2 enrichment (FACE) experiment. Ten minirhizotrons were installed at a 45 degree angle to a depth of 1.1 meters; the tubes were installed 2 years before any measurements were made to allow the root systems to recover from disturbance. Images were collected biweekly, and measurements of root length per area of minirhizotron window were scaled up to grams of root per unit land area. Scaling up minirhizotron measurments is problematic, but our estimate of fine-root standing crop in the top 15 cm of soil (281 ± 37 g dry matter m-2) compares well with a direct measurement of fine roots in two nearby 15-cm soil cores (290 ± 37 g m-2). Although the largest fraction of the fine-root standing crop was in the upper soil horizons, 44% of the fine-root mass was deeper than 30 cm, and 17% was deeper than 60 cm. Annual fine-root production was 934 ± 234 g dry matter m-2 (453 ± 113 g C m-2), which was 35% of estimated NPP of the forest stand (1281 g C m-2). A previous estimate of NPP of the forest at this site was smaller (1010 g m-2), but that estimate relied on fine-root production measured elsewhere and only in the top 10 or 30 cm of soil; fine roots accounted for 21% of NPP in that analysis. Extending root observations deeper into the soil will improve estimates of the contribution of fine-root production to NPP, which will in turn improve estimates of ecosystem

  11. New electronic apex locator Romiapex A-15 presented accuracy for working length determination in permanent teeth

    Directory of Open Access Journals (Sweden)

    Etevaldo Matos Maia Filho

    2014-12-01

    Full Text Available Purpose: The present study aims to evaluate, ex vivo, the accuracy of electronic apex locators Root ZX II and Romiapex-15, for working length (WL determination in permanent teeth. Materials and Methods: Fourteen single-rooted teeth (incisors and canines, with their apices fully formed were used. The dental crowns were removed. The anatomic length of the tooth (real measurement was visually determined through the insertion of a size 10 K-file until the tip of the instrument could be observed in the apical foramen under a microscope (20X. Teeth were fixed in a model of resin and adapted into alginate soaked with saline solution, which was used as an  electrical conductor. Using a K-file, root canals were measured electronically using both devices. The results obtained for each apex locator were compared to the real measurements. The accuracy between the devices was statistically analyzed using the Bland-Altman graph, Intraclass Correlation Coefficient (ICC, and Student’s t-test. Results: The mean difference between the measurements using the Root ZX II was 0.277mm greater than the real measurement, while the measurements from the Romiapex-15 were 0.308mm higher on average. The comparison between Root ZX II and Romiapex-15 had no significant difference (p= 0.868. Conclusion: It was concluded that Root ZX II and Romiapex-15 had similar accuracy. Romiapex-15 could be an option for WL determination in permanent teeth.

  12. Gravitropic reaction of primary seminal roots of Zea mays L. influenced by temperature and soil water potential.

    Science.gov (United States)

    Nakamoto, T

    1995-03-01

    The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.

  13. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  14. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    Science.gov (United States)

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  15. A Rare Case of Apical Root Resorption during Orthodontic Treatment of Patient with Multiple Aplasia.

    Science.gov (United States)

    Agrawal, Chintan M; Mahida, Khyati; Agrawal, Charu C; Bothra, Jitendrakumar; Mashru, Ketan

    2015-07-01

    External apical root resorption is an adverse effect of orthodontic treatment. It reduces the length of root and breaks the integrity of teeth and dental arch. Orthodontics is the only dental specialty that clinically uses the inflammatory process to correct the mal-aligned teeth. Hence, it is necessary to know the risk factors of root resorption and do everything to reduce the rate of root resorption. Hence, all predisposing factors which are systemic as well as local should be considered before treatment begins. This case report describes the incidence of root resorption following orthodontic treatment and the teeth affected in the patient with multiple aplasia.

  16. A young root-specific gene (ArMY2) from horseradish encoding a MYR II myrosinase with kinetic preference for the root-specific glucosinolate gluconasturtiin.

    Science.gov (United States)

    Loebers, Andreas; Müller-Uri, Frieder; Kreis, Wolfgang

    2014-03-01

    The pungent taste of horseradish is caused by isothiocyanates which are released from glucosinolates by myrosinases. These enzymes are encoded by genes belonging to one of two subfamilies, termed MYR I and MYR II, respectively. A MYR II-type myrosinase gene was identified for the first time in horseradish. The gene termed ArMY2 was only expressed in young roots. A full-length cDNA encoding a myrosinase termed ArMy2 was isolated and heterologously expressed in Pichia pastoris. The recombinant His-tagged enzyme was characterized biochemically. Substrate affinity was 5 times higher towards gluconasturtiin than towards sinigrin. Gluconasturtiin was found to be the most abundant glucosinolate in young horseradish roots while sinigrin dominated in storage roots and leaves. This indicates that a specialized glucosinolate-myrosinase defense system might be active in young roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Six-Year Nitrogen–Water Interaction Shifts the Frequency Distribution and Size Inequality of the First-Order Roots of Fraxinus mandschurica in a Mixed Mature Pinus koraiensis Forest

    Science.gov (United States)

    Wang, Cunguo; Geng, Zhenzhen; Chen, Zhao; Li, Jiandong; Guo, Wei; Zhao, Tian-Hong; Cao, Ying; Shen, Si; Jin, Daming; Li, Mai-He

    2017-01-01

    The variation in fine root traits in terms of size inequality at the individual root level can be identified as a strategy for adapting to the drastic changes in soil water and nutrient availabilities. The Gini and Lorenz asymmetry coefficients have been applied to describe the overall degree of size inequality, which, however, are neglected when conventional statistical means are calculated. Here, we used the Gini coefficient, Lorenz asymmetry coefficient and statistical mean in an investigation of Fraxinus mandschurica roots in a mixed mature Pinus koraiensis forest on Changbai Mountain, China. We analyzed 967 individual roots to determine the responses of length, diameter and area of the first-order roots and of branching intensity to 6 years of nitrogen addition (N), rainfall reduction (W) and their combination (NW). We found that first-order roots had a significantly greater average length and area but had smaller Gini coefficients in NW plots compared to in control plots (CK). Furthermore, the relationship between first-order root length and branching intensity was negative in CK, N, and W plots but positive in NW plots. The Lorenz asymmetry coefficient was >1 for the first-order root diameter in NW and W plots as well as for branching intensity in N plots. The bimodal frequency distribution of the first-order root length in NW plots differed clearly from the unimodal one in CK, N, and W plots. These results demonstrate that not only the mean but also the variation and the distribution mode of the first-order roots of F. mandschurica respond to soil nitrogen and water availability. The changes in size inequality of the first-order root traits suggest that Gini and Lorenz asymmetry coefficients can serve as informative parameters in ecological investigations of roots to improve our ability to predict how trees will respond to a changing climate at the individual root level. PMID:29018474

  18. Six-Year Nitrogen-Water Interaction Shifts the Frequency Distribution and Size Inequality of the First-Order Roots of Fraxinus mandschurica in a Mixed Mature Pinus koraiensis Forest.

    Science.gov (United States)

    Wang, Cunguo; Geng, Zhenzhen; Chen, Zhao; Li, Jiandong; Guo, Wei; Zhao, Tian-Hong; Cao, Ying; Shen, Si; Jin, Daming; Li, Mai-He

    2017-01-01

    The variation in fine root traits in terms of size inequality at the individual root level can be identified as a strategy for adapting to the drastic changes in soil water and nutrient availabilities. The Gini and Lorenz asymmetry coefficients have been applied to describe the overall degree of size inequality, which, however, are neglected when conventional statistical means are calculated. Here, we used the Gini coefficient, Lorenz asymmetry coefficient and statistical mean in an investigation of Fraxinus mandschurica roots in a mixed mature Pinus koraiensis forest on Changbai Mountain, China. We analyzed 967 individual roots to determine the responses of length, diameter and area of the first-order roots and of branching intensity to 6 years of nitrogen addition (N), rainfall reduction (W) and their combination (NW). We found that first-order roots had a significantly greater average length and area but had smaller Gini coefficients in NW plots compared to in control plots (CK). Furthermore, the relationship between first-order root length and branching intensity was negative in CK, N, and W plots but positive in NW plots. The Lorenz asymmetry coefficient was >1 for the first-order root diameter in NW and W plots as well as for branching intensity in N plots. The bimodal frequency distribution of the first-order root length in NW plots differed clearly from the unimodal one in CK, N, and W plots. These results demonstrate that not only the mean but also the variation and the distribution mode of the first-order roots of F. mandschurica respond to soil nitrogen and water availability. The changes in size inequality of the first-order root traits suggest that Gini and Lorenz asymmetry coefficients can serve as informative parameters in ecological investigations of roots to improve our ability to predict how trees will respond to a changing climate at the individual root level.

  19. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  20. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  1. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  2. Living roots effect on 14C-labelled root litter decomposition

    International Nuclear Information System (INIS)

    Billes, G.; Bottner, P.

    1981-01-01

    Wheat was 14 C-labelled by cultivation on soil in pots, from seedling to maturity, in a chamber with constant CO 2 and 14 CO 2 levels. The 14 C-distribution was constant amongst the aerial parts, the roots and the soil in the whole pots. After cutting the plant tops, the pots were dried without disturbing the soil and root system. The pots were then incubated under controlled humidity and temperature conditions for 62 days. In the same time a second wheat cultivation was grown on one half of the pots in normal atmosphere without plant cultivation. The purpose of the work is to study the effect of living roots on decomposition of the former 14 C labelled roots litter. The CO 2 and the 14 CO 2 released from the soil were continuously measured. On incubation days 0, 18, 33 and 62, the remaining litter was separated from soil, and the organic matter was fractionated by repeated hydrolysis and NaOH extraction. Root litter disappeared faster when living roots were present than in bare soil. The accumulation and mineralization rates of humified components in soil followed two stages. While the roots of second wheat cultivation grew actively (until earing), the strong acid hydrolysable components accumulated in larger amount than in the case of bare soil. After earing, while roots activity was depressed, these components were partly mineralized and the 14 CO 2 release was then higher with plants than with bare soil. The humification and mineralization rate were related with living plant phenology stages. (orig.)

  3. Physical properties of root cementum: Part 26. Effects of micro-osteoperforations on orthodontic root resorption: A microcomputed tomography study.

    Science.gov (United States)

    Chan, Emmanuel; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali

    2018-02-01

    Studies have demonstrated the potential efficacy of micro-osteoperforations in accelerating tooth movement by amplifying the expression of inflammatory markers. The aim of this investigation was to examine the effects of micro-osteoperforations on orthodontic root resorption with microcomputed tomography. This prospective controlled clinical trial involved 20 subjects requiring extraction of the maxillary first premolars as part of their orthodontic treatment. A buccal tipping force of 150 g was applied to both premolars. Using the Propel appliance (Propel Orthodontics, San Jose, Calif), micro-osteoperforations were applied at a depth of 5 mm on the mesial and distal aspects in the midroot region of the experimental side of the first premolar root; the contralateral side served as the control. After 28 days, both premolars were extracted. The teeth were scanned under microcomputed tomography, and the volumes of root resorption craters were calculated and compared. Premolars treated with micro-osteoperforation exhibited significantly greater average total amounts of root resorption than did the control teeth (0.576 vs 0.406 mm 3 ). The total average volumetric root loss of premolars treated with micro-osteoperforation was 42% greater than that of the control teeth. This 28-day trial showed that micro-osteoperforations resulted in greater orthodontic root resorption. However, these results should be verified in patients who are undergoing full-length orthodontic treatment. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Sheared-root inocula of vesicular-arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Sylvia, D M; Jarstfer, A G

    1992-01-01

    For efficient handling, vesicular-arbuscular mycorrhizal fungi should be processed into small and uniform inocula; however, processing can reduce the inoculum density. In this article we describe the preparation and use of sheared-root inocula of Glomus spp. in which inoculum densities were increased during processing. Our objectives were to determine inoculum viability and density after shearing and to ascertain if the sheared inocula could be pelletized or used with a gel carrier. Root samples were harvested from aeroponic cultures, blotted dry, cut into 1-cm lengths, and sheared in a food processor for up to 80 s. After shearing, the inoculum was washed over sieves, and the propagule density in each fraction was determined. Sheared inocula were also encapsulated in carrageenan or used in a gel carrier. Shearing aeroponically produced root inocula reduced particle size. Propagule density increased with decreasing size fraction down to a size of 63 mum, after which propagule density decreased. The weighted-average propagule density of the inoculum was 135,380 propagules g (dry weight) of sheared root material. Sheared roots were encapsulated successfully in carrageenan, and the gel served as an effective carrier. Aeroponic root inoculum was stored dry at 4 degrees C for 23 months without significant reduction in propagule density; however, this material was not appropriate for shearing. Moist roots, useful for shearing, began to lose propagule density after 1 month of storage. Shearing proved to be an excellent method to prepare viable root inocula of small and uniform size, allowing for more efficient and effective use of limited inoculum supplies.

  5. Changes in root cap pH are required for the gravity response of the Arabidopsis root

    Science.gov (United States)

    Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.

    2001-01-01

    Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.

  6. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. External apical root resorption in non-extraction cases after clear aligner therapy or fixed orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Jianru Yi

    2018-03-01

    Full Text Available Background/purpose: The application of removable aligner in orthodontic treatment has increased rapidly in recent years, while its effects on root resorption remains unclear. The aim of this study was to comparatively evaluate the amount of external apical root resorption (EARR in non-extraction patients receiving clear aligner therapy (CAT or fixed orthodontic treatment (FOT. Materials and methods: Eighty non-extraction patients treated with CAT or FOT exclusively were evaluated retrospectively. Panoramic radiographs were used to measure the length of crowns and roots of the incisors before and after treatment. The amount of EARR was determined by the relative change of root-crown ratio and compared between the two groups. The potential predictive factors of EARR were investigated using spearman correlation analysis. Results: The overall EARR in the CAT patients was significantly less than the FOT. Similar results were observed in maxillary central incisors, maxillary lateral incisors, mandibular central incisors and mandibular lateral incisors. The duration of treatment positively correlated with the amount of EARR in both modalities. Gender, age, skeletal pattern or degree of malocclusion did not affect the occurrence of EARR. Conclusion: Clear aligner therapy may have a superiority of reducing external apical root resorption compared to fixed orthodontic treatment in non-extraction patients. Keywords: Clear aligner, Fixed orthodontics, Root resorption

  8. Seedling vigor and genetic variability for rice seed, seedling emergence and seedling traits

    International Nuclear Information System (INIS)

    Ali, S.S.; Jafri, S.J.H.; Jamil, M.; Ijaz, M.

    1994-01-01

    Eleven local rice cultivars including Basmati 370 were evaluated for seedling vigor. Three groups of traits were evaluated viz; seed traits (Seed density, seed volume see weight, paddy length and grain length), seed emergence traits (emergence %, emergence index and emergence rate index), and seedling traits (fresh root length, dry root weight, emergence percentage, root length, dry root weight, seed weight and relative root weight were observed significant, respectively. Seed density, relative root weight, emergence rate index and root to shoot ratio were relatively more amenable to improvement. Relative expected genetic advance was the function of heritability and coefficient of phenotypic variability, latter being more important. (author)

  9. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    Science.gov (United States)

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  10. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  11. Fine-tuning by strigolactones of root response to low phosphate.

    Science.gov (United States)

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation. © 2015 Institute of Botany, Chinese Academy of Sciences.

  12. Bending and Shear Stresses Developed by the Instantaneous Arrest of the Root of a Moving Cantilever Beam

    Science.gov (United States)

    Stowell, Elbridge, Z; Schwartz, Edward B; Houbolt, John C

    1945-01-01

    A theoretical and experimental investigation has been made of the behavior of a cantilever beam in transverse motion when its root is suddenly brought to rest. Equations are given for determining the stresses, the deflections, and the accelerations that arise in the beam as a result of the impact. The theoretical equations, which have been confirmed experimentally, reveal that, at a given percentage of the distance from root to tip, the bending stresses for a particular mode are independent of the length of the beam, whereas the shear stresses vary inversely with the length.

  13. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    Science.gov (United States)

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  14. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange.

    Science.gov (United States)

    Huang, Yong-Ming; Zou, Ying-Ning; Wu, Qiang-Sheng

    2017-02-08

    The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H 2 O 2 ) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H 2 O 2 , superoxide radical (O 2 ·- ), malondialdehyde (MDA) concentrations, and H 2 O 2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H 2 O 2 , O 2 ·- , and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H 2 O 2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H 2 O 2 effluxes in the TR and LRs under WW and DS. Total root H 2 O 2 effluxes were significantly positively correlated with root colonization but negatively with root H 2 O 2 and MDA concentrations. It suggested that mycorrhizas induces more H 2 O 2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.

  15. Comparison of positive-pressure, passive ultrasonic, and laser-activated irrigations on smear-layer removal from the root canal surface.

    Science.gov (United States)

    Sahar-Helft, Sharonit; Sarp, Ayşe Sena Kabaş; Stabholtz, Adam; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron

    2015-03-01

    The purpose of this study was to compare the efficacy of three irrigation techniques for smear-layer removal with 17% EDTA. Cleaning and shaping the root canal system during endodontic treatment produces a smear layer and hard tissue debris. Three irrigation techniques were tested for solution infiltration of this layer: positive-pressure irrigation, passive ultrasonic irrigation, and laser-activated irrigation. Sixty extracted teeth were divided into six equal groups; 17% EDTA was used for 60 sec irrigation of five of the groups. The groups were as follows: Group 1, treated only with ProTaper™ F3 Ni-Ti files; Group 2, positive-pressure irrigation, with a syringe; Group 3, passive ultrasonic irrigation, inserted 1 mm short of the working length; Group 4, passive ultrasonic irrigation, inserted in the upper coronal third of the root; Group 5, Er:YAG laser-activated irrigation, inserted 1 mm short of the working length; and Group 6, Er:YAG laser-activated irrigation, inserted in the upper coronal third of the root. Scanning electron microscopy showed that the smear layer is removed most efficiently using laser-activated irrigation at low energy with 17% EDTA, inserted either at the working length or only in the coronal upper third of the root. Amounts of Ca, P, and O were not significantly different on all treated dentin surfaces. Smear-layer removal was most effective when the root canals were irrigated using Er:YAG laser at low energy with 17% EDTA solution. Interestingly, removal of the smear layer along the entire canal was similar when the laser was inserted in the upper coronal third and at 1 mm short of the working length of the root canal. This effect was not observed with the ultrasonic and positive-pressure techniques.

  16. The initiation of lateral roots in the primary roots of maize (Zea mays L.) implies a reactivation of cell proliferation in a group of founder pericycle cells.

    Science.gov (United States)

    Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio

    2016-03-15

    The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Variation in root wood anatomy

    NARCIS (Netherlands)

    Cutler, D.F.

    1976-01-01

    Variability in the anatomy of root wood of selected specimens particularly Fraxinus excelsior L. and Acer pseudoplatanus L. in the Kew reference microscope slide collection is discussed in relation to generalised statements in the literature on root wood anatomy.

  18. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  19. Root morphology of Ni-treated plants

    International Nuclear Information System (INIS)

    Leskova, A.; Fargasova, A.; Giehl, R. F. H.; Wiren, N. von

    2015-01-01

    Plant roots are very important organs in terms of nutrient and water acquisition but they also serve as anchorages for the aboveground parts of the plants. The roots display extraordinary plasticity towards stress conditions as a result of integration of environmental cues into the developmental processes of the roots. Our aim was to investigate the root morphology of Arabidopsis thaliana plants exposed to a particular stress condition, excess Ni supply. We aimed to find out which cellular processes - cell division, elongation and differentiation are affected by Ni, thereby explaining the seen root phenotype. Our results reveal that a distinct sensitivity exists between roots of different order and interference with various cellular processes is responsible for the effects of Ni on roots. We also show that Ni-treated roots have several auxin-related phenotypes. (authors)

  20. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    Science.gov (United States)

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. © 2015 Scandinavian Plant Physiology Society.

  1. Studies on the growth of penaeid prawns: 1. Length-weight relation and condition factor under different levels of feeding

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.R.S.; Iyer, H.K.; Devi, C.B.L.; Kutty, M.K.

    Length-weight relation and earthworm feeding conditions under different levels for @iPenaeus indicus@@ and @iMetapenaeus dobsoni@@ were estimated. Length-weight exponent in both species was unaffected by the feeding levels and the consequent...

  2. Apical root resorption during orthodontic treatment. A prospective study using cone beam CT.

    Science.gov (United States)

    Lund, Henrik; Gröndahl, Kerstin; Hansen, Ken; Gröndahl, Hans-Göran

    2012-05-01

    To investigate the incidence and severity of root resorption during orthodontic treatment by means of cone beam computed tomography (CBCT) and to explore factors affecting orthodontically induced inflammatory root resorption (OIIRR). CBCT examinations were performed on 152 patients with Class I malocclusion. All roots from incisors to first molars were assessed on two or three occasions. At treatment end, 94% of patients had ≥1 root with shortening >1 mm, and 6.6% had ≥1 tooth where it exceeded 4 mm. Among teeth, 56.3% of upper lateral incisors had root shortening >1 mm. Of upper incisors and the palatal root of upper premolars, 2.6% showed root shortenings >4 mm. Slanted surface resorptions of buccal and palatal surfaces were found in 15.1% of upper central and 11.5% of lateral incisors. Monthly root shortening was greater after 6-month control than before. Upper jaw teeth and anterior teeth were significantly associated with the degree of root shortening. Gender, root length at baseline, and treatment duration were not. Practically all patients and up to 91% of all teeth showed some degree of root shortening, but few patients and teeth had root shortenings >4 mm. Slanted root resorption was found on root surfaces that could be evaluated only by a tomographic technique. A CBCT technique can provide more valid and accurate information about root resorption.

  3. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  4. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  5. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  6. Relationship Between the Relative Age Effect and Lengths of Professional Careers in Male Japanese Baseball Players: a Retrospective Analysis.

    Science.gov (United States)

    Nakata, Hiroki

    2017-12-01

    The mechanisms underlying the relative age effect in sport events have been investigated for more than two decades. The present study focused on the relationship between the relative age effect and lengths of professional careers among professional male Japanese baseball players. The birth dates of players and lengths of professional careers were collected from an official publication, and data were divided into four quarters (Q1: April-June; Q2: July-September; Q3: October-December; Q4: January-March of the following year) grouped by 3 years. Based on the data for Q4, the expected numbers for the lengths of professional careers were calculated for Q1, Q2, and Q3. The number of players with professional careers of more than 19 years was significantly smaller in Q4 than in Q1, Q2, and Q3. The relative age effect among professional male Japanese baseball players was associated with the lengths of professional careers. Relative age appears to be a very important factor for the development of expertise among male Japanese baseball players and involves long-term disadvantages after becoming professional players.

  7. Sequential optimization of approximate inhibitory rules relative to the length, coverage and number of misclassifications

    KAUST Repository

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail

    2013-01-01

    This paper is devoted to the study of algorithms for sequential optimization of approximate inhibitory rules relative to the length, coverage and number of misclassifications. Theses algorithms are based on extensions of dynamic programming approach

  8. Relations between overturning length scales at the Spanish planetary boundary layer

    Science.gov (United States)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal

  9. Accumulation and distribution of dry matter in relation to root yield of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Cassava an important staple food is grown both in upland and inland valley in the tropics. A trial to ... high dry matter also produce high leaf area index and root yield ..... Proportion (%) of DM accumulated in root stock.

  10. RELATIONS AMONG WESTERN CORN ROOTWORM RESISTANCE TRAITS AND ELEMENTS CONCENTRATION IN MAIZE GERMPLASM ROOTS

    Directory of Open Access Journals (Sweden)

    Andrija Brkić

    2015-06-01

    Full Text Available Western corn rootworm – WCR (Diabrotica virgifera virgifera LeConte is an important maize pest in Croatia. Using native resistance of maize germplasm could reduce chemical treatments and other costs in maize production. Objectives of this study were: i to assess variability of WCR resistance traits (root injury, regrowth and size and concentrations of nine elements in roots of 128 maize genotypes, and ii to determine correlations among the traits and ion concentrations. Results revealed high variability of maize genotypes for both WCR resistance traits and ion concentrations. Significant moderate negative correlations (>-0.4 were detected between root injury and boron as well as between root regrowth and iron, manganese and zinc concentrations in root. Consequently, ion concentration in maize roots might have an impact on WCR resistance research.

  11. Ecology of root colonizing Massilia (Oxalobacteraceae.

    Directory of Open Access Journals (Sweden)

    Maya Ofek

    Full Text Available BACKGROUND: Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae, a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS: The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter and potential competitors. Massilia absolute abundance and relative abundance (dominance were positively related, and peaked (up to 85% at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS: In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  12. Ecology of root colonizing Massilia (Oxalobacteraceae).

    Science.gov (United States)

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  13. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  14. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.

    Science.gov (United States)

    Zolla, Gaston; Heimer, Yair M; Barak, Simon

    2010-01-01

    Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.

  15. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  16. Medicolegal aspects of iatrogenic root perforations

    DEFF Research Database (Denmark)

    Tsesis, I; Rosen, E; Bjørndal, L

    2014-01-01

    AIM: To retrospectively analyze the medico-legal aspects of iatrogenic root perforations (IRP) that occurred during endodontic treatments. METHODOLOGY: A comprehensive search in a professional liability insurance database was conducted to retrospectively identify cases of IRP following root canal...... treatment (p root perforation is a complication of root canal treatment and may result in tooth extraction...... and in legal actions against the treating practitioner. Mandibular molars are more prone to medico-legal claims related to root perforations. The patient should be informed of the risks during RCT and should get information on alternative treatments and their risks and prognosis...

  17. Wheat shovelomics I: A field phenotyping approach for characterising the structure and function of root systems in tillering species

    OpenAIRE

    Bennett, Malcolm; York, Larry; Foulkes, M; Slack, Shaunagh

    2018-01-01

    Wheat represents a major crop, yet the current rate of yield improvement is insufficient to meet its projected global food demand. Breeding root systems more efficient for water and nitrogen capture represents a promising avenue for accelerating yield gains. Root crown phenotyping, or shovelomics, relies on excavation of the upper portions of root systems in the field and measuring root properties such as numbers, angles, densities and lengths. We report a new shovelomics method that images t...

  18. Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV or Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Adriano Sofo

    2013-03-01

    Full Text Available Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  19. Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with Cucumber mosaic virus (CMV) or exposed to cadmium.

    Science.gov (United States)

    Vitti, Antonella; Nuzzaci, Maria; Scopa, Antonio; Tataranni, Giuseppe; Remans, Tony; Vangronsveld, Jaco; Sofo, Adriano

    2013-03-26

    Arabidopsis thaliana L. is a model plant but little information is available about morphological root changes as part of a phytohormonal common response against both biotic and abiotic stressors. For this purpose, two-week-old Arabidopsis seedlings were treated with 10 µM CdSO4 or infected with CMV. After 12 days the entire aerial parts and the root system were analyzed, and the presence of CMV or the accumulation of Cd were detected. Microscopic analysis revealed that both CMV and Cd influenced root morphology by a marked development in the length of root hairs and an intense root branching if compared to controls. Among the three treatments, Cd-treated seedlings showed a shorter root axis length and doubled their lateral root diameter, while the lateral roots of CMV-infected seedlings were the longest. The root growth patterns were accompanied by significant changes in the levels of indole-3-acetic acid, trans-zeatin riboside, dihydrozeatin riboside, as a probable consequence of the regulation of some genes involved in their biosynthesis/degradation. The opposite role on root development played by the phythormones studied is discussed in detail. The results obtained could provide insights into novel strategies for plant defense against pathogens and plant protection against pollutants.

  20. Antidiarrheal activity of methanolic extract of the root bark of Cordia africana.

    Science.gov (United States)

    Asrie, Assefa Belay; Abdelwuhab, Mohammedbrhan; Shewamene, Zewdneh; Gelayee, Desalegn Asmelashe; Adinew, Getnet Mequanint; Birru, Eshetie Melese

    2016-01-01

    An ethnobotanical study in Agew-Awi and Amhara peoples in northwest Ethiopia reported that Cordia africana is used traditionally in the treatment of liver disease, amebiasis, stomachache, and diarrhea. The root and root bark are reported to be used in the treatment of diarrhea. Therefore, this study was intended to evaluate the antidiarrheal effect of C. africana against castor oil-induced diarrhea in mice. The antidiarrheal effect of the plant was tested on castor oil-induced diarrhea in mice (23-25 g) of either sex. Number of diarrheic defecations, intestinal length traveled by the charcoal meal, and weight of intestinal fluid were taken as important parameters to evaluate the antidiarrheal activity of the plant extract. In preliminary phytochemical screening tests, the methanolic extract of C. africana was found to contain phenols, flavonoids, terpenoids, and saponins. Reduction in the number of diarrheic drops was observed in groups of mice that received 200 mg/kg ( P <0.05) and 400 mg/kg ( P <0.01) of the extract compared to the negative controls. The percent inhibition of intestinal fluid accumulation was 26.83%, 46.34%, and 53.66% at the doses of 100, 200, and 400 mg/kg of the extract, respectively. Relative to the negative control group, the mean percent of intestinal length moved by the charcoal meal was decreased by 24.41%, 39.89%, and 51.66% in groups of mice given 100, 200, and 400 mg/kg of the plant extract, respectively. To iterate the finding, the root bark extract of C. africana was found to be effective in preventing castor oil-induced diarrhea and intestinal motility in a dose-dependent manner. This reveals that the plant material has promising antidiarrheal activity as it is claimed in traditional medical practice.

  1. Root canal morphology of mandibular first premolar in a Gujarati population - An in vitro study

    Directory of Open Access Journals (Sweden)

    Atul Jain

    2011-01-01

    Full Text Available Background: Knowledge about root canal morphology and its frequent variations can exert considerable influence on the success of endodontic treatment. The aim of this study was to survey the root canal morphology of mandibular first premolar teeth in a Gujarati population by decalcification and clearing technique. Methods : One hundred thirty eight extracted mandibular first premolar teeth were collected from a Gujarati population. After decalcifying and clearing, the teeth were examined for tooth length, number of cusps and roots, number and shape of canal orifices and canal types. Results: The average length of mandibular first premolar teeth was 21.2 mm. All the teeth had 2 cusps. One hundred thirty four teeth (97.1% had one root, and just 4 teeth (2.89% had two roots. Mesial invagination of root was found in 21 teeth (15.21%. One canal orifice was found in 122 teeth (88.4% and two canal orifices in 16 teeth (11.59%. Shape of orifices was found to be round in 46 teeth (33.33%, oval in 72 teeth (52.17% and flattened ribbion in 20 teeth (14.49%. According to Vertucci′s classification, Type I canal system was found in 93 teeth (67.39%, Types II,III,IV,V,and VI in 11 teeth (7.97%, 5 teeth (3.62%, 4 teeth (2.89%, 24 teeth (17.39%, and 1 tooth (0.72% respectively. Conclusion: Mandibular first premolar teeth were mostly found to have one root and Type I canal system.

  2. M-theory and E10: Billiards, Branes, and Imaginary Roots

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jeffrey; Ganor, Ori J.; Helfgott, Craig

    2004-01-09

    Eleven dimensional supergravity compactified on $T^10$ admits classical solutions describing what is known as billiard cosmology - a dynamics expressible as an abstract (billiard) ball moving in the 10-dimensional root space of the infinite dimensional Lie algebra E10, occasionally bouncing off walls in that space. Unlike finite dimensional Lie algebras, E10 has negative and zero norm roots, in addition to the positive norm roots. The walls above are related to physical fluxes that, in turn, are related to positive norm roots (called real roots) of E10. We propose that zero and negative norm roots, called imaginary roots, are related to physical branes. Adding 'matter' to the billiard cosmology corresponds to adding potential terms associated to imaginary roots. The, as yet, mysterious relation between E10 and M-theory on $T^10$ can now be expanded as follows: real roots correspond to fluxes or instantons, and imaginary roots correspond to particles and branes (in the cases we checked). Interactions between fluxes and branes and between branes and branes are classified according to the inner product of the corresponding roots (again in the cases we checked). We conclude with a discussion of an effective Hamiltonian description that captures some features of M-theory on $T^10.$

  3. Relation of Stump Length with Various Gait Parameters in Trans-tibial Amputee

    Directory of Open Access Journals (Sweden)

    Koyel Majumdar

    2008-07-01

    Full Text Available The purpose of this paper is evaluating the impact of stump length of unilateral below knee amputees (BKA on different gait parameters. Nine unilateral BKA were chosen and divided into three groups comprising patients with short, medium, and long stump length. Each of them underwent gait analysis test by Computer Dynography (CDG system to measure the gait parameters. It was found that the ground reaction force is higher in the patients with medium stump length whereas the velocity, step length both for the prosthetic and sound limb and cadence were high in longer stump length. Statistical analysis shows a significant difference (p<0.05 between the gait parameters of BKA with medium and longer stump length. The patients with longer stump length were more efficient than medium and short stump patients as they consumed comparatively lesser energy while walking with self-selected velocity and conventional (Solid ankle cushioned heel SACH foot.

  4. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts.

    Science.gov (United States)

    Sumathi, Murugan; Bachpai, Vijaya Kumar Waman; Mayavel, A; Dasgupta, Modhumita Ghosh; Nagarajan, Binai; Rajasugunasekar, D; Sivakumar, Veerasamy; Yasodha, Ramasamy

    2018-05-01

    The eucalypt species, Eucalyptus tereticornis and Eucalyptus camaldulensis , show tolerance to drought and salinity conditions, respectively, and are widely cultivated in arid and semiarid regions of tropical countries. In this study, genetic linkage map was developed for interspecific cross E. tereticornis  ×  E. camaldulensis using pseudo-testcross strategy with simple sequence repeats (SSRs), intersimple sequence repeats (ISSRs), and sequence-related amplified polymorphism (SRAP) markers. The consensus genetic map comprised totally 283 markers with 84 SSRs, 94 ISSRs, and 105 SRAP markers on 11 linkage groups spanning 1163.4 cM genetic distance. Blasting the SSR sequences against E. grandis sequences allowed an alignment of 64% and the average ratio of genetic-to-physical distance was 1.7 Mbp/cM, which strengths the evidence that high amount of synteny and colinearity exists among eucalypts genome. Blast searches also revealed that 37% of SSRs had homologies with genes, which could potentially be used in the variety of downstream applications including candidate gene polymorphism. Quantitative trait loci (QTL) analysis for adventitious rooting traits revealed six QTL for rooting percent and root length on five chromosomes with interval and composite interval mapping. All the QTL explained 12.0-14.7% of the phenotypic variance, showing the involvement of major effect QTL on adventitious rooting traits. Increasing the density of markers would facilitate the detection of more number of small-effect QTL and also underpinning the genes involved in rooting process.

  5. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    Science.gov (United States)

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  6. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Thomas, C L; Graham, N S; Hayden, R; Meacham, M C; Neugebauer, K; Nightingale, M; Dupuy, L X; Hammond, J P; White, P J; Broadley, M R

    2016-04-06

    Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR;Brassica napus) varieties. Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49;P emergence in three out of five (r = 0·59, 0·22, 0·49;P emergence, general early vigour or yield in the field. Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  7. Vegetative propagation by root and stem cuttings of Leptadenia ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the possibilities of the propagation of Leptadenia hastata cuttings during the 3 seasons of the year in Sahel. The cuttings of 20 cm of length, collected from the basal, apical and root parts of the plants, were used. Study investigations consisted in observing the buds and leaves ...

  8. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    Science.gov (United States)

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  9. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system.

    Science.gov (United States)

    Aarrouf, J; Schoevaert, D; Maldiney, R; Perbal, G

    1999-04-01

    The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, during a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.

  10. Long-term effects of deep soil loosening on root distribution and soil physical parameters in compacted lignite mine soils

    Science.gov (United States)

    Badorreck, Annika; Krümmelbein, Julia; Raab, Thomas

    2015-04-01

    Soil compaction is a major problem of soils on dumped mining substrates in Lusatia, Germany. Deep ripping and cultivation of deep rooting plant species are considered to be effective ways of agricultural recultivation. Six years after experiment start, we studied the effect of initial deep soil loosening (i.e. down to 65 cm) on root systems of rye (Secale cereale) and alfalfa (Medicago sativa) and on soil physical parameters. We conducted a soil monolith sampling for each treatment (deep loosened and unloosened) and for each plant species (in three replicates, respectively) to determine root diameter, length density and dry mass as well as soil bulk density. Further soil physical analysis comprised water retention, hydraulic conductivity and texture in three depths. The results showed different reactions of the root systems of rye and alfalfa six years after deep ripping. In the loosened soil the root biomass of the rye was lower in depths of 20-40 cm and the root biomass of alfalfa was also decreased in depths of 20-50 cm together with a lower root diameter for both plant species. Moreover, total and fine root length density was higher for alfalfa and vice versa for rye. The soil physical parameters such as bulk density showed fewer differences, despite a higher bulk density in 30-40cm for the deep loosened rye plot which indicates a more pronounced plough pan.

  11. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  12. [Species-associated differences in foliage-root coupling soil-reinforcement and anti-erosion].

    Science.gov (United States)

    Liu, Fu-quan; Liu, Jing; Nao, Min; Yao, Xi-jun; Zheng, Yong-gang; Li, You-fang; Su, Yu; Wang, Chen-jia

    2015-02-01

    This paper took four kinds of common soil and water conservation plants of the study area, Caragana microphylla, Salix psammophila, Artemisia sphaerocephala and Hippophae rhamnides at ages of 4 as the research object. Thirteen indicators, i.e., single shrub to reduce wind velocity ration, shelterbelt reducing wind velocity ration, community reducing wind velocity ration, taproot tensile strength, representative root constitutive properties, representative root elasticity modulus, lateral root branch tensile strength, accumulative surface area, root-soil interface sheer strength, interface friction coefficient, accumulative root length, root-soil composite cohesive, root-soil composite equivalent friction angle, reflecting the characteristics of windbreak and roots, were chose to evaluate the differences of foliage-root coupling soil-reinforcement and anti-erosion among four kinds of plants by analytic hierarchy process (AHP) under the condition of spring gale and summer rainstorm, respectively. The results showed the anti-erosion index of foliage-root coupling was in the sequence of S. psammophila (0.841) > C. microphylla (0.454) > A. sphaerocephala (-0.466) > H. rhamnides (-0.829) in spring gale, and C. microphylla (0.841) > S. psammophila (0. 474) > A. sphaerocephala (-0.470) > H. rhamnides (-0.844) in summer rainstorm. S. psammophila could be regarded as one of the most important windbreak and anti-erosion species, while C. microphylla could be the most valuable soil and water conservation plant for the study area.

  13. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  14. Rooting of hardwood cuttings of Roxo de Valinhos fig (Ficus carica L. with different propagation strategies

    Directory of Open Access Journals (Sweden)

    Gilmar Antônio Nava

    2014-12-01

    Full Text Available The objective of this study was to evaluate the substrate, cuttings collection time, the position and the cutting depth, and the propagation environment on rooting of 'Purple Valinhos' fig tree cuttings in Southwestern Paraná, Brazil. Two experiments were carried out at UTFPR, Câmpus Dois Vizinhos, with hardwoods cuttings from Roxo de Valinhos fig tree. The first experiment used a randomized block design, in 3 x 3 x 2 factorial (substrate x environment x collection time, with four replications of 10 cuttings per plot. The cuttings were collected in the first fifteen days of July and August. The substrates were sand, soil and the mixture of these [1:1 (v / v]. The environments used were open sky, tunnel with plastic cover and tunnel with half-shade black net cover. The second experiment used a randomized block design, 2 x 2 x 3 factorial (shoot cutting position x soil cover x shoot cutting depth, with four replications of 12 cuttings per plot. In the factor position, the vertically (0 º inclination and inclined (45 º inclination shoot cuttings were evaluated. Soil cover was tested with mulching plastic cover or not. The tested depths were 1/3, 1/2 and 2/3 in relation to the total length of the shoot cutting. In both experiments, the following were analyzed: rooting and mortality indices, number of leaves and primary shoots, length of the three largest roots per cutting. It was conclude that, the protected environment with plastic cover on sand as substrate must recommended for the rooting of fig estaca, collecting them in the first half of July. The inclination position and cutting depth of the estaca and the substrate coverage with plastic mulching did not influence the results.

  15. Delayed Recognition of Deterioration of Patients in General Wards Is Mostly Caused by Human Related Monitoring Failures: A Root Cause Analysis of Unplanned ICU Admissions.

    Directory of Open Access Journals (Sweden)

    Louise S van Galen

    Full Text Available An unplanned ICU admission of an inpatient is a serious adverse event (SAE. So far, no in depth-study has been performed to systematically analyse the root causes of unplanned ICU-admissions. The primary aim of this study was to identify the healthcare worker-, organisational-, technical,- disease- and patient- related causes that contribute to acute unplanned ICU admissions from general wards using a Root-Cause Analysis Tool called PRISMA-medical. Although a Track and Trigger System (MEWS was introduced in our hospital a few years ago, it was implemented without a clear protocol. Therefore, the secondary aim was to assess the adherence to a Track and Trigger system to identify deterioration on general hospital wards in patients eventually transferred to the ICU.Retrospective observational study in 49 consecutive adult patients acutely admitted to the Intensive Care Unit from a general nursing ward. 1. PRISMA-analysis on root causes of unplanned ICU admissions 2. Assessment of protocol adherence to the early warning score system.Out of 49 cases, 156 root causes were identified. The most frequent root causes were healthcare worker related (46%, which were mainly failures in monitoring the patient. They were followed by disease-related (45%, patient-related causes (7, 5%, and organisational root causes (3%. In only 40% of the patients vital parameters were monitored as was instructed by the doctor. 477 vital parameter sets were found in the 48 hours before ICU admission, in only 1% a correct MEWS was explicitly documented in the record.This in-depth analysis demonstrates that almost half of the unplanned ICU admissions from the general ward had healthcare worker related root causes, mostly due to monitoring failures in clinically deteriorating patients. In order to reduce unplanned ICU admissions, improving the monitoring of patients is therefore warranted.

  16. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    International Nuclear Information System (INIS)

    Moss, K.J.

    1990-09-01

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs

  17. Length of stay and associated costs of obesity related hospital admissions in Ireland.

    LENUS (Irish Health Repository)

    Vellinga, Akke

    2008-01-01

    BACKGROUND: Obesity is the cause of other chronic diseases, psychological problems, obesity shortens the lifespan and puts strain on health systems. The risk associated with childhood obesity in particular, which will accelerate the development of adult morbidity and mortality, has been identified as an emerging public health problem. METHODS: To estimate the length of stay and associated hospital costs for obesity related illnesses a cost of illness study was set up. All discharges from all acute hospitals in the Republic of Ireland from 1997 to 2004 with a principal or secondary diagnostic code for obesity for all children from 6 to 18 years of age and for adults were collected.A discharge frequency was calculated by dividing obesity related discharges by the total number of diagnoses (principal and secondary) for each year. The hospital costs related to obesity was calculated based on the total number of days care. RESULTS: The discharge frequency of obesity related conditions increased from 1.14 in 1997 to 1.49 in 2004 for adults and from 0.81 to 1.37 for children. The relative length of stay (number of days in care for obesity related conditions per 1000 days of hospital care given) increased from 1.47 in 1997 to 4.16 in 2004 for children and from 3.68 in 1997 to 6.74 in 2004 for adults.Based on the 2001 figures for cost per inpatient bed day, the annual hospital cost was calculated to be 4.4 Euromillion in 1997, increasing to 13.3 Euromillion in 2004. At a 20% variable hospital cost the cost ranges from 0.9 Euromillion in 1997 to 2.7 Euromillion in 2004; a 200% increase. CONCLUSION: The annual increase in the proportion of hospital discharges related to obesity is alarming. This increase is related to a significant increase in economic costs. This paper emphasises the need for action at an early stage of life. Health promotion and primary prevention of obesity should be high on the political agenda.

  18. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.

    Science.gov (United States)

    Rytter, Rose-Marie

    2013-09-01

    The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots water availability. Fine root production (treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.

  19. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode

    International Nuclear Information System (INIS)

    Han, Chao; Ren, Jinghua; Tang, Hao; Xu, Di; Xie, Xianchuan

    2016-01-01

    Oxygen (O_2) availability within the sediment–root interface is critical to the survival of macrophytes in O_2-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O_2 is relatively limited. In this study, a non-invasive imaging technology was utilized to map O_2 micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36 day-period revealed an abundance of O_2 spatiotemporal patterns ranging from 0 to 250 μmol L"− "1. The root-induced O_2 leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O_2 images revealed V. spiralis exhibited radial O_2 loss (ROL) along the entire root, and the O_2 distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O_2 levels increased with root growth and irradiance intensities ranging from 0 to 216 μmol photons m"− "2 s"− "1. A weak ROL measuring < 20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O_2 supply from overlying water via plant aerenchyma. The estimated total O_2 release to the rhizosphere of V. spiralis was determined to range from 8.80 ± 7.32 to 30.34 ± 17.71 nmol m"− "2 s"− "1, which is much higher than many other macrophyte species. This O_2 release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. - Highlights: • Planar imaging method was used to map O2 micro-distribution. • Highly dynamic rhizospheric O2-spatiotemporal distribution was observed. • O_2 leakage along the entire root of Vallisneria spirals were defined. • The ROL rates of 8.80–30.34 nmol m"− "2 s"− "1 were measured over a 36-day growth. • ROL was closely

  20. The effect of photobiomodulation on root resorption during orthodontic treatment.

    Science.gov (United States)

    Nimeri, Ghada; Kau, Chung H; Corona, Rachel; Shelly, Jeffery

    2014-01-01

    Photobiomodulation is used to accelerate tooth movement during orthodontic treatments. The changes in root morphology in a group of orthodontic patients who received photobiomodulation were evaluated using the cone beam computed tomography technique. The device used is called OrthoPulse, which produces low levels of light with a near infrared wavelength of 850 nm and an intensity of 60 mW/cm(2) continuous wave. Twenty orthodontic patients were recruited for these experiments, all with class 1 malocclusion and with Little's Irregularity Index (>2 mm) in either of the arches. Root resorption was detected by measuring changes in tooth length using cone beam computed tomography. These changes were measured before the orthodontic treatment and use of low-level laser therapy and after finishing the alignment level. Little's Irregularity Index for all the patients was calculated in both the maxilla and mandible and patients were divided into three groups for further analysis, which were then compared to the root resorption measurements. Our results showed that photobiomodulation did not cause root resorption greater than the normal range that is commonly detected in orthodontic treatments. Furthermore, no correlation between Little's Irregularity Index and root resorption was detected.

  1. Nonlinear generalization of special relativity

    International Nuclear Information System (INIS)

    Winterberg, F.

    1985-01-01

    In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum

  2. Assessment of Root Morphological Traits of 16 Tropical and Four Temperate Maize Cultivars for Nitrogen Efficiency in Short-Term Nutrient Solution Experiments with the Cigar Roll and Growth Pouch Methods

    Energy Technology Data Exchange (ETDEWEB)

    Saifu, S.; Schulte auf' m Erley, G.; Horst, W. J. [Institute for Plant Nutrition, Leibniz University of Hannover (Germany)

    2013-11-15

    Genotypic differences in N efficiency of maize have been reported by many authors. One of the reasons responsible for genotypic differences in N efficiency is differences in N uptake efficiency after anthesis. Continuous root growth and N uptake activity are responsible for the high N uptake efficiency of N-efficient genotypes. This study was conducted mainly to identify root parameters which could be used as secondary selection traits for genotypic differences in N efficiency of maize established in field experiments. The specific objective of the first experiment was to establish a relationship between root parameters with genotypic differences in N efficiency in the field, and to identify root traits to be used as secondary selection criteria for N efficiency. Four temperate and 16 tropical genotypes were grown in low-N nutrient solution with a cigar roll and a growth pouch culture for 9 and 10 days, respectively. In the cigar roll experiment individual root fractions (adventitious, seminal and primary root fractions) and in growth pouch experiment root distribution and root branching angle were of primary interest. Genotypic differences were found in most of the root traits, but the differences were not clear cut between N-efficient and inefficient genotypes with few exceptions. The N-efficient genotypes had the highest percentage of root length in the deepest (>20 cm) interval in the growth pouch, which also positively correlated with N uptake after anthesis and grain yield. The N-efficient genotypes also had a high percentage of roots in the root branching angle interval of 60-90{sup o}. It was concluded that the high N uptake efficiency of N-efficient genotypes might be related to a higher percentage of roots growing downwards (high branching angle) and a high percentage of root length in deeper soil layers enabling them to exploit nitrate in the subsoil more efficiently. These two root parameters were found promising to use as selection criteria for N

  3. Do Telomeres Adapt to Physiological Stress? Exploring the Effect of Exercise on Telomere Length and Telomere-Related Proteins

    Directory of Open Access Journals (Sweden)

    Andrew T. Ludlow

    2013-01-01

    Full Text Available Aging is associated with a tissue degeneration phenotype marked by a loss of tissue regenerative capacity. Regenerative capacity is dictated by environmental and genetic factors that govern the balance between damage and repair. The age-associated changes in the ability of tissues to replace lost or damaged cells is partly the cause of many age-related diseases such as Alzheimer's disease, cardiovascular disease, type II diabetes, and sarcopenia. A well-established marker of the aging process is the length of the protective cap at the ends of chromosomes, called telomeres. Telomeres shorten with each cell division and with increasing chronological age and short telomeres have been associated with a range of age-related diseases. Several studies have shown that chronic exposure to exercise (i.e., exercise training is associated with telomere length maintenance; however, recent evidence points out several controversial issues concerning tissue-specific telomere length responses. The goals of the review are to familiarize the reader with the current telomere dogma, review the literature exploring the interactions of exercise with telomere phenotypes, discuss the mechanistic research relating telomere dynamics to exercise stimuli, and finally propose future directions for work related to telomeres and physiological stress.

  4. Sex differences in relative foot length and perceived attractiveness of female feet: relationships among anthropometry, physique, and preference ratings.

    Science.gov (United States)

    Voracek, Martin; Fisher, Maryanne L; Rupp, Barbara; Lucas, Deanna; Fessler, Daniel M T

    2007-06-01

    Foot size proportionate to stature is smaller in women than in men, and small feet apparently contribute to perceived physical attractiveness of females. This exploratory study investigated the sex difference in relative foot length and interrelations among foot length, physique, and foot preference ratings in samples from Austria and Canada, each comprised of 75 men and 75 women. The findings included the following lines of evidence: the sex difference in relative foot length replicated in both data sets; the magnitude of this sex effect was large. Relative foot length was smaller in young, nulliparous, and slim women. Pointed-toe and high-heel shoes were more likely worn by smaller, lighter, and slimmer women. Men reported liking women's feet in general more than vice versa. A vast majority of both men and women favored small feet in women, but large feet in men. One's own foot size appeared to correspond to evaluations of attractiveness; particularly, women with small feet preferred small feet in women in general. The preference for small feet in women was convergent across different methods of evaluating attractiveness. Directions for investigations in this emerging field of research on physical attractiveness are discussed.

  5. Synergistic and individual effect of glomus etunicatum root colonization and acetyl salicylic acid on root activity and architecture of tomato plants under moderate nacl stress

    International Nuclear Information System (INIS)

    Ghanzanfar, B.; Cheng, Z.; Ahmad, I.; Khan, A. R.; Hanqiang, L.; Haiyan, D.; Fang, C.

    2015-01-01

    A pot based experiment in plastic tunnel was conducted to investigate the changes in root morphology and root activity of the tomato plants grown under moderate NaCl stress (100 mM), pretreated with arbuscular mycorrhizal fungus AMF (Glomus etunicatum) root colonization and acetyl salicylic acid (ASA) as salinity ameliorative agents. The results revealed that both AMF and ASA treatments significantly enhanced the fresh root weight and root morphological parameters; net length, surface area, volume, mean diameter, nodal count and number of tips to different extents as compared to those of sole salinity treatment at 90 days after transplantation. Both treatments; AMF alone and in combination with ASA significantly enhanced the root activity level in terms of triphenyl tetrazolium chloride (TTC) reduction (2.37 and 2.40 mg g /sup -1/ h /sup -1/ respectively) as compared to the sole salinity treatment (0.40 mg g /sup -1/ h /sup -1/ ) as well as the salt free control (1.69 mg g /sup -1/ h /sup -1/) On the other hand, ASA treatment alone also uplifted root activity (1.53 mg g /sup -1/ h /sup -1/ ) which was significantly higher than that of sole salt treatment. It was inferred that under moderate saline conditions (100 mM NaCl), AMF (Glomus etunicatum) and ASA (individually or in combination) confer protective effect on plant growth by enhanced root activity and improved root architecture. Therefore, synergistic use of AMF (G. etunicatum) and ASA can be eco-friendly and economically feasible option for tomato production in marginally salt affected lands and suggests further investigations. (author)

  6. Minimal length uncertainty relation and ultraviolet regularization

    Science.gov (United States)

    Kempf, Achim; Mangano, Gianpiero

    1997-06-01

    Studies in string theory and quantum gravity suggest the existence of a finite lower limit Δx0 to the possible resolution of distances, at the latest on the scale of the Planck length of 10-35 m. Within the framework of the Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance structure. Both rotation and translation invariance can be preserved. An example is studied in detail.

  7. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  8. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  9. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  10. A Model of Uranium Uptake by Plant Roots Allowing for Root-Induced Changes in the soil.

    Science.gov (United States)

    Boghi, Andrea; Roose, Tiina; Kirk, Guy J D

    2018-03-20

    We develop a model with which to study the poorly understood mechanisms of uranium (U) uptake by plants. The model is based on equations for transport and reaction of U and acids and bases in the rhizosphere around cylindrical plant roots. It allows for the speciation of U with hydroxyl, carbonate, and organic ligands in the soil solution; the nature and kinetics of sorption reactions with the soil solid; and the effects of root-induced changes in rhizosphere pH. A sensitivity analysis showed the importance of soil sorption and speciation parameters as influenced by pH and CO 2 pressure; and of root geometry and root-induced acid-base changes linked to the form of nitrogen taken up by the root. The root absorbing coefficient for U, relating influx to the concentration of U species in solution at the root surface, was also important. Simplified empirical models of U uptake by different plant species and soil types need to account for these effects.

  11. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Hemagglutinating activity has been found in acetate extracts from roots and stems of squash seedlings (Cucurbita ficifolia. The hemaglutinating activity changes during seeds germination and seedling development. Dot blot and Western blot techniques have shown that proteins from these vegetative tissues cross-reacted with antibodies raised against endogenous cotyledons lectin CLBa and Con A.Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol, affinity chromatography on Con A-Sepharose, gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. Three purified lectins (RLA1, RLA2, RLA3 were obtained from roots and four from stems (SLA1, SLA2, SLA3, SLA4. The purified lectins from roots and stems agglutinated all human red blood cells, but sheep erythrocytes were most sensitive to agglutination. The hemagglutination of the root lectins RLA2 and RLA3 was inhibited by a very low concentration of arabinose, while RLA1, of xylose and Ga1NAc. Arabinose and Xylose were also found to be the most effective inhibitors of all stem lectins.

  12. Asymmetry in development (mineralisation of permanent mandibular canine roots

    Directory of Open Access Journals (Sweden)

    Burić Mirjana V.

    2012-01-01

    Full Text Available Introduction. The development of the teeth is closely associated with the proper and unobstructed physical and psychological development of the child. Aim. To determine the existence of asymmetry in the development of the roots of the lower permanent canine teeth in different age groups of children of both sexes. Material and methods. The study was conducted on 523 ortopantomograms (253 boys and 270 girls of orthodontic patients aged 6 to 14 years of the Dental Clinic in Niš. We analyzed the development of asymmetry in the lower permanent canine root, using the method of Gleiser and Hunt, or the modification by Tijanić (1981. Results. It was found that asymmetry in the development of the root in both sexes of the lower canine teeth was present in 20 patients (3.82%, 10 boys (3.95% and 10 girls (3.70%. The difference is in the range of one stage. Asymmetric development of the roots of the lower incisors in girls and boys usually present in the 7th and 8th stages (60% in girls and in 50% in boys. In 90% of girls in developing asymmetry the root of the lower canine is present in a single stage, and in 10% of girls it presents within three stages. Asymmetric development of the root of the lower canine is the most common in the 7th and 8th stages of development (55%. Conclusion. Asymmetric root development of permanent lower canines was found in 3.82% of patients. More than half of respondents (55% had asymmetrical canine root development stage in half and three quarters of the total root length. The results of this study indicate that the canine is the tooth with very little variations in its development.

  13. Trade-offs in relative limb length among Peruvian children: extending the thrifty phenotype hypothesis to limb proportions.

    Directory of Open Access Journals (Sweden)

    Emma Pomeroy

    Full Text Available BACKGROUND AND METHODS: Both the concept of 'brain-sparing' growth and associations between relative lower limb length, childhood environment and adult disease risk are well established. Furthermore, tibia length is suggested to be particularly plastic under conditions of environmental stress. The mechanisms responsible are uncertain, but three hypotheses may be relevant. The 'thrifty phenotype' assumes that some components of growth are selectively sacrificed to preserve more critical outcomes, like the brain. The 'distal blood flow' hypothesis assumes that blood nutrients decline with distance from the heart, and hence may affect limbs in relation to basic body geometry. Temperature adaptation predicts a gradient of decreased size along the limbs reflecting decreasing tissue temperature/blood flow. We examined these questions by comparing the size of body segments among Peruvian children born and raised in differentially stressful environments. In a cross-sectional sample of children aged 6 months to 14 years (n = 447 we measured head circumference, head-trunk height, total upper and lower limb lengths, and zeugopod (ulna and tibia and autopod (hand and foot lengths. RESULTS: Highland children (exposed to greater stress had significantly shorter limbs and zeugopod and autopod elements than lowland children, while differences in head-trunk height were smaller. Zeugopod elements appeared most sensitive to environmental conditions, as they were relatively shorter among highland children than their respective autopod elements. DISCUSSION: The results suggest that functional traits (hand, foot, and head may be partially protected at the expense of the tibia and ulna. The results do not fit the predictions of the distal blood flow and temperature adaptation models as explanations for relative limb segment growth under stress conditions. Rather, our data support the extension of the thrifty phenotype hypothesis to limb growth, and suggest that

  14. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer.

    Directory of Open Access Journals (Sweden)

    Xiaoguang Chen

    Full Text Available Humic acid (HA, not only promote the growth of crop roots, they can be combined with nitrogen (N to increase fertilizer use efficiency and yield. However, the effects of HA urea fertilizer (HA-N on root growth and yield of sweet potato has not been widely investigated. Xushu 28 was used as the experimental crop to investigate the effects of HA-N on root morphology, active oxygen metabolism and yield under field conditions. Results showed that nitrogen application alone was not beneficial for root growth and storage root formation during the early growth stage. HA-N significantly increased the dry weight of the root system, promoted differentiation from adventitious root to storage root, and increased the overall root activity, total root length, root diameter, root surface area, as well as root volume. HA-N thus increased the activity of superoxide dismutase (SOD, peroxidase (POD, and Catalase (CAT as well as increasing the soluble protein content of roots and decreasing the malondialdehyde (MDA content. HA-N significantly increased both the number of storage roots per plant increased by 14.01%, and the average fresh weight per storage root increased by 13.7%, while the yield was also obviously increased by 29.56%. In this study, HA-N increased yield through a synergistic increase of biological yield and harvest index.

  15. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  16. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  17. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    Science.gov (United States)

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid

  18. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    Science.gov (United States)

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Arduini, I.; Onnis, A. (Dipart. di Agronomia e Gestione dell' Agro-Ecosistema, Univ. degli Studi Pisa, Pisa (Italy)); Boldbold, D.L. (Forstbotanishces Institut, Univ. Goettingen, Goettingen (Germany))

    1994-01-01

    Heavy metal loads in forest soils have been increasing over time due to atmospheric inputs. Accumulation in the upper soil layers could affect establishment of seedlings and forest regeneration. Mediterranean species show a high initial root development, allowing seedlings to reach the moisture of deeper soil layers. In the present work seedlings of stone pine (Pinus pinea L.) and maritime pine (Pinus pinaster Ait.), were grown in culture solution supplied with 0.0, 0.1, 1 or 5 [mu]M CdSO[sub 4] or with 1 [mu]M CdSO[sub 4] and 1 [mu]M CuSO[sub 4] combined. In both species tap-root elongation was drastically reduced in the 5 [mu]M Cd[sup 2+] and in the (Cd[sup 2+] - Cu[sup 2+]) treatments. A supply of 0.1 or 1 [mu]M Cd[sup 2+] however, enhanced root elongation in Pinus pinea without significantly influencing root elongation in Pinus pinaster. In both species the root density (weight per unit length) and the width of the cortex increased in response to Cd[sup 2+] exposure. In Pinus pinaster the mitotic index decreased at the higher Cd[sup 2+] concentrations and when Cd[sup 2+] and Cu[sup 2+] were combined. The data suggest that cell elongation is more sensitive to Cd[sup 2+] than cell division. The number and length of the lateral roots were also affected by Cd[sup 2+] treatment to a higher degree in Pinus pinaster than in Pinus pinea, reflecting the different Cd-tolerance of the two species. (au)

  20. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  1. The Protective Effects of Aqueous Extract of Glycyrrhiza Glabra Root Against Liver-related Biochemical Factors Changes Induced by Thioacetamide in Male Rats

    Directory of Open Access Journals (Sweden)

    D. Moghadamnia

    2016-11-01

    Full Text Available Background: Thioacetamide is a liver toxin that causes centrilobular necrosis. In this study, the protective effect of aqueous extract of Glycyrrhiza glabra root against liver-related biochemical factors changes induced by thioacetamide in male rats was investigated. Materials and Methods: 35 male rats were divided into 5 groups of 7 : control group; sham group: receiving a single dose of 150mg/kg thioacetamide intraperitoneally; experimental groups 1 and 2 and 3: they received the aqueous extract of Glycyrrhiza glabra root at the doses of 100,200,300mg/kg daily orally during 3 months respectively and then a single dose of thioacetamide at 150 mg/kg as intraperitoneal injection . The serum levels of albumin, bilirubin and total protein were measured. Results: The mean of body weight in all experimental groups receiving aqueous extract of Glycyrrhiza glabra root and thioacetamide did not show significant changes compared to the group receiving thioacetamide. The mean levels of serum bilirubin in all experimental groups receiving aqueous extract of Glycyrrhiza glabra root and thioacetamide did not show significant changes compared to the group receiving thioacetamide. The mean of serum albumin concentration in all experimental groups receiving aqueous extract of Glycyrrhiza glabra root and thioacetamide decreased significantly compared to the group receiving thioacetamide. The mean of serum total protein concentration in experimental groups receiving aqueous extract of Glycyrrhiza glabra root and thioacetamide did not show significant changes compared to the group receiving thioacetamide( p<0. 05. Conclusion: The results of this study showed that the aqueous extract of Glycyrrhiza glabra root had protective effects against liver-related biochemical factors changes induced by thioacetamide in male rats. 

  2. Clinical and imaging characteristics of foraminal nerve root disorders of the lumbar spine

    International Nuclear Information System (INIS)

    Nishi, Tomio; Tani, Takayuki; Suzuki, Norio; Aonuma, Hiroshi

    2009-01-01

    We analyzed cases of lumbar nerve root compression at intervertebral foramina, by comparing 19 cases of foraminal stenosis (FS), and 38 cases of foraminal hernia (FH) with 21 cases of lumbar canal stenosis (LCS). Japan Orthopedic Association (JOA) scores, intervertebral disc degeneration, anatomical measurements of the nerve root foramina and the MRI findings were reviewed. The scores for pain in the lower extremities, and walking ability were both lowest in the FS group. The scores for low back pain, lower extremities, and sensory disturbances were lowest in the FH group. Anterior-posterior diameters of the nerve root foramina were smaller in the FS group and FH group than in the LCS group. More degenerated discs and short length of upper part of the nerve root foramina were seen in FS group than in the other groups. The MRI images of so-called black out nerve root foramina were positive in 63.6% of FS cases, 75% of FH cases. (author)

  3. STORAGE TIME EFFECT ON MINI-CUTTINGS ROOTING IN Tectona grandis LINN F. CLONES

    Directory of Open Access Journals (Sweden)

    Yorleny Badilla

    2017-08-01

    Full Text Available ABSTRACT The study aimed to evaluate the influence of storage length on Tectona grandis mini-cuttings survival and rooting. A factorial arrangement (4 x 7 was utilized, based on four clones (Carapá, Ipê, GU5 and TB7 and seven time intervals from mini-cuttings harvesting until final sowing (0, 1, 2, 4, 8, 12 and 16 hours. A randomized block design with three replicates and 16 mini-cuttings per experimental unit was utilized. Survival and rooting rates were evaluated after greenhouse culture (30 days after sowing and after shadow house culture (40 days after sowing; as well as height, collar diameter, aerial and root biomass 55 days after sowing. No significant differences were observed in survival and rooting rates among time intervals in teak mini-cuttings preparation from these four clones. However differences among clones were registered for rooting rate, suggesting a genotypic effect. Survival and rooting rates were very high after greenhouse culture (93% and 90% respectively, as well as survival after culture in a shadow-house (88%.

  4. Evaluation and Selection of Common Bean (Phaseolus Vulgaris L.) Genotypes for Root Traits Associated with Phosphorus (P) Acquisition Efficiency and the Use of {sup 32}P Isotope in Studies on P Uptake by Root Hairs

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, M. A.; Jochua, C. [Agricultural Research Institute of Mozambique (IIAM), Maputo (Mozambique); Lynch, J. P. [Pennsylvania State University, University Park, PA (United States)

    2013-11-15

    Low phosphorus (P) availability is one of the main edaphic constraints limiting crop production and productivity in most of the tropical agro-ecosystems. Several root traits are known to be associated with P acquisition efficiency in low P soils. These root traits include root hairs. Computer modeling, laboratory and field studies show the depletion of {sup 32}P-phosphate around roots and that the depletion zone is influenced by the length and density of root hairs. We conducted a study involving a series of experiments with the objective of evaluating the variability of root traits associated with P uptake efficiency among common bean (Phaseolus vulgaris L.) genotypes, and to understand the mechanisms of long root hairs leading to the increase in P uptake in common bean. The study included (a) the screening of common bean genotypes in the laboratory and in the field for root traits, and (b) the use of radioactive phosphorus ({sup 32}P) in the experiments conducted in the greenhouse. For laboratory screening, seedlings were germinated in paper rolls in a growth media for 3 days before evaluation for basal root whorl number (BRWN), basal root number (BRN), basal root growth angle (BRGA) and root hair length (RHL). Common bean genotypes were planted in the field with low P for 45 days after planting (DAP) before evaluation. For the {sup 32}P study four contrasting genotypes for root hairs were grown for 28 DAP in the greenhouse using 15-20 liter pots filled with a mixture of sand and vermiculate as the growth media. The radioactive P was incorporated in the growth medium in the form of alumina-P fertilizer. Normal phosphorus (non-radioactive {sup 31}P) was included in the nutrient solution in the form of calcium phosphate, Ca{sub 3}(PO{sub 4}){sub 2}, and supplied through irrigation. Screened genotypes exhibited different root traits associated with P uptake efficiency, and that a given genotype can have one or more root traits responsible for it P uptake efficiency

  5. A posteriori registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment.

    Science.gov (United States)

    Kreich, Eliane Maria; Chibinski, Ana Cláudia; Coelho, Ulisses; Wambier, Letícia Stadler; Zedebski, Rosário de Arruda Moura; de Moraes, Mari Eli Leonelli; de Moraes, Luiz Cesar

    2016-03-01

    This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment.

  6. A posterior registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kreich, Eliane Maria; Chibinski, Ana Claudia; Coelho, Ulisses; Wambier, Leticia Stadler; Zedebski, Rosaio De Arruda Moura [School of Dentistry, Ponta Grossa State University, Ponta Grossa, Parana (Brazil); De Moraes, Mari Eli Leonelli; De Moraes, Luiz Cesar [Dept. of Dental Radiology, School of Dentistry, State University of Sao Paulo, Sao Jose dos Campos, Sao Paulo (Brazil)

    2016-03-15

    This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment.

  7. A posterior registration and subtraction of periapical radiographs for the evaluation of external apical root resorption after orthodontic treatment

    International Nuclear Information System (INIS)

    Kreich, Eliane Maria; Chibinski, Ana Claudia; Coelho, Ulisses; Wambier, Leticia Stadler; Zedebski, Rosaio De Arruda Moura; De Moraes, Mari Eli Leonelli; De Moraes, Luiz Cesar

    2016-01-01

    This study employed a posteriori registration and subtraction of radiographic images to quantify the apical root resorption in maxillary permanent central incisors after orthodontic treatment, and assessed whether the external apical root resorption (EARR) was related to a range of parameters involved in the treatment. A sample of 79 patients (mean age, 13.5±2.2 years) with no history of trauma or endodontic treatment of the maxillary permanent central incisors was selected. Periapical radiographs taken before and after orthodontic treatment were digitized and imported to the Regeemy software. Based on an analysis of the posttreatment radiographs, the length of the incisors was measured using Image J software. The mean EARR was described in pixels and relative root resorption (%). The patient's age and gender, tooth extraction, use of elastics, and treatment duration were evaluated to identify possible correlations with EARR. The mean EARR observed was 15.44±12.1 pixels (5.1% resorption). No differences in the mean EARR were observed according to patient characteristics (gender, age) or treatment parameters (use of elastics, treatment duration). The only parameter that influenced the mean EARR of a patient was the need for tooth extraction. A posteriori registration and subtraction of periapical radiographs was a suitable method to quantify EARR after orthodontic treatment, and the need for tooth extraction increased the extent of root resorption after orthodontic treatment

  8. Iron absorption by roots of fruit plants : some characteristics of the phenomena

    International Nuclear Information System (INIS)

    Bindra, A.S.

    1979-01-01

    Using young plants of peach, plum and almond growing in water culture, study was undertaken on the absorption and translocation of labelled iron. When peach plants deficient in this element were supplied with it, they tended to absorb it very rapidly, especially during the first 30 minutes. This absorption was not a superficial adsorption. Iron absorption was found to be linked to the length of non-lignified roots. Of the three species, almond absorbed more iron than peach but less than olum. No significant varietal difference was found regarding the iron absorption capacity of roots of different varieties of peach. Removal of foliage did not influence the absorption of iron by roots of peach plants in the early stages. (auth.)

  9. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    Science.gov (United States)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  10. Comparison of relationship between antral floor and maxillary root apex in bisecting and panoramic techniques

    International Nuclear Information System (INIS)

    You, Dong Soo; Kim, In Soo

    1986-01-01

    This study was performed to compare the difference of intraoral bisecting and panoramic techniques in evaluating the relationship of antral floor and maxillary roots. The vertical distances form maxillary root apices to antral floor were measured on both orthopantomograms and bisecting projections obtained form fifth subjects. The results were as follows: 1. Tooth lengths measured on orthopantomogram were larger than on bisecting projection and the magnification ratios were 1.08-1.17. 2. The dimensions from maxillary root apices to antral floor measured on orthopantomogram were larger than on bisecting projection. 3. The above results held true regardless of age and sex.

  11. The effect of photobiomodulation on root resorption during orthodontic treatment

    Directory of Open Access Journals (Sweden)

    Nimeri G

    2014-01-01

    Full Text Available Ghada Nimeri, Chung H Kau, Rachel Corona, Jeffery Shelly Department of Orthodontics, University of Alabama, Birmingham, AL, USA Abstract: Photobiomodulation is used to accelerate tooth movement during orthodontic treatments. The changes in root morphology in a group of orthodontic patients who received photobiomodulation were evaluated using the cone beam computed tomography technique. The device used is called OrthoPulse, which produces low levels of light with a near infrared wavelength of 850 nm and an intensity of 60 mW/cm2 continuous wave. Twenty orthodontic patients were recruited for these experiments, all with class 1 malocclusion and with Little's Irregularity Index (>2 mm in either of the arches. Root resorption was detected by measuring changes in tooth length using cone beam computed tomography. These changes were measured before the orthodontic treatment and use of low-level laser therapy and after finishing the alignment level. Little's Irregularity Index for all the patients was calculated in both the maxilla and mandible and patients were divided into three groups for further analysis, which were then compared to the root resorption measurements. Our results showed that photobiomodulation did not cause root resorption greater than the normal range that is commonly detected in orthodontic treatments. Furthermore, no correlation between Little's Irregularity Index and root resorption was detected. Keywords: photobiomodulation, root resorption, accelerate tooth movement, orthodontics, cone beam computed tomography

  12. Searching for plant root traits to improve soil cohesion and resist soil erosion

    Science.gov (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  13. Length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces

    Science.gov (United States)

    Al-jebory, Taymaa A.; Das, Simon K.; Usup, Gires; Bakar, Y.; Al-saadi, Ali H.

    2018-04-01

    In this study, length-weight and length-length relationships of common carp (Cyprinus carpio L.) in the middle and southern Iraq provinces were determined. Fish specimens were procured from seven provinces from July to December, 2015. A negative and positive allometric growth pattern was obtained, where the total length (TL) ranged from 25.60 cm to 33.53 cm, and body weight (BW) ranged from 700 g to 1423 g. Meanwhile, the lowest of 1.03 and highest of 3.54 in "b" value was recorded in group F and group C, respectively. Therefore, Fulton condition factor (K) range from 2.57 to 4.94. While, relative condition factor (Kn) was in the ranged of 0.95 to 1.01. A linear relationship between total length (TL) and standard length (SL) among the provinces for fish groups was obtained. The variances in "b" value ranged from 0.10 to 0.93 with correlation coefficient (r2) of 0.02 to 0.97. This research could be used as a guide to study the ecology and biology of common Carp (Cyprinus carpio L.) in the middle and southern Iraq provinces.

  14. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  15. Radiographing roots and shoots

    International Nuclear Information System (INIS)

    Shariffah Noor Khamseah Al Idid

    1985-01-01

    The effect of seed orientation on germination time and on shoot and root growth patterns is studied. Neutron radiography is used to observe the development of 4 types of plants, maize, greenpea, soya bean and padi. These plants were grown in varying orientations; sand sizes, sand thicknesses, and level of water content. Radiography of the seeds and plants were obtained for time exposure ranging from 3-12 hours and at reactor thermal power level, ranging from 500-750 kilowatts. Results obtained showed that seeds planted in varying orientations need different length of time for shoot emergence. Neutron radiography is now developed to other areas of non-industrial applications in Malaysia. (A.J.)

  16. Regulation of root development in Arabidopsis thaliana by phytohormone-secreting epiphytic methylobacteria.

    Science.gov (United States)

    Klikno, Jana; Kutschera, Ulrich

    2017-09-01

    In numerous experimental studies, seedlings of the model dicot Arabidopsis thaliana have been raised on sterile mineral salt agar. However, under natural conditions, no plant has ever grown in an environment without bacteria. Here, we document that germ-free (gnotobiotic) seedlings, raised on mineral salt agar without sucrose, develop very short root hairs. In the presence of a soil extract that contains naturally occurring microbes, root hair elongation is promoted; this effect can be mimicked by the addition of methylobacteria to germ-free seedlings. Using five different bacterial species (Methylobacterium mesophilicum, Methylobacterium extorquens, Methylobacterium oryzae, Methylobacterium podarium, and Methylobacterium radiotolerans), we show that, over 9 days of seedling development in a light-dark cycle, root development (hair elongation, length of the primary root, branching patterns) is regulated by these epiphytic microbes that occur in the rhizosphere of field-grown plants. In a sterile liquid culture test system, auxin (IAA) inhibited root growth with little effect on hair elongation and significantly stimulated hypocotyl enlargement. Cytokinins (trans-zeatin, kinetin) and ethylene (application of the precursor ACC) likewise exerted an inhibitory effect on root growth but, in contrast to IAA, drastically stimulated root hair elongation. Methylobacteria are phytosymbionts that produce/secrete cytokinins. We conclude that, under real-world conditions (soil), the provision of these phytohormones by methylobacteria (and other epiphytic microbes) regulates root development during seedling establishment.

  17. The Electromagnetic Conception of Nature at the Root of the Special and General Relativity Theories and Its Revolutionary Meaning

    Science.gov (United States)

    Giannetto, Enrico R. A.

    2009-01-01

    The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German "Naturphilosophie" and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the…

  18. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  19. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa).

    Science.gov (United States)

    Cao, Qing; Rediske, Richard R; Yao, Lei; Xie, Liqiang

    2018-03-01

    A 30 days indoor hydroponic experiment was carried out to evaluate the effect of microcystins (MCs) on rice root morphology and exudation, as well as bioaccumulation of MCs in rice. MCs were bioaccumulated in rice with the greatest concentrations being observed in the leaves (113.68μgg -1 Fresh weight (FW)) when exposed to 500μgL -1 MCs. Root activity at 500μgL -1 decreased 37%, compared to the control. MCs also induced disruption of the antioxidant system and lipid peroxidation in rice roots. Root growth was significantly inhibited by MCs. Root weight, length; surface area and volume were significantly decreased, as well as crown root number and lateral root number. After 30 days exposure to MCs, an increase was found in tartaric acid and malic acid while the other organic acids were not affected. Glycine, tyrosine, and glutamate were the only amino acids stimulated at MCs concentrations of 500μgL -1 . Similarly, dissolved organic carbon (DOC) and carbohydrate at 50 and 500μgL -1 treatments were significantly increased. The increase of DOC and carbohydrate in root exudates was due to rice root membrane permeability changes induced by MCs. Overall, this study indicated that MCs significantly inhibited rice root growth and affected root exudation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    Science.gov (United States)

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation.

    Science.gov (United States)

    Schwab, S M; Menge, J A; Leonard, R T

    1983-11-01

    A comparison was made of water-soluble root exudates and extracts of Sorghum vulgare Pers. grown under two levels of P nutrition. An increase in P nutrition significantly decreased the concentration of carbohydrates, carboxylic acids, and amino acids in exudates, and decreased the concentration of carboxylic acids in extracts. Higher P did not affect the relative proportions of specific carboxylic acids and had little effect on proportions of specific amino acids in both extracts and exudates. Phosphorus amendment resulted in an increase in the relative proportion of arabinose and a decrease in the proportion of fructose in exudates, but did not have a large effect on the proportion of individual sugars in extracts. The proportions of specific carbohydrates, carboxylic acids, and amino acids varied between exudates and extracts. Therefore, the quantity and composition of root extracts may not be a reliable predictor of the availability of substrate for symbiotic vesicular-arbuscular mycorrhizal fungi. Comparisons of the rate of leakage of compounds from roots with the growth rate of vesicular-arbuscular mycorrhizal fungi suggest that the fungus must either be capable of using a variety of organic substrates for growth, or be capable of inducing a much higher rate of movement of specific organic compounds across root cell membranes than occurs through passive exudation as measured in this study.

  2. Quality of root fillings performed with two root filling techniques. An in vitro study using micro-CT

    DEFF Research Database (Denmark)

    Møller, L; Wenzel, A; Wegge-Larsen, AM

    2013-01-01

    -section images from Micro-computed Tomography scans. Results. All root canal fillings had voids. Permutation test showed no statistically significant difference between the two root filling techniques in relation to presence of voids (p = 0.092). A statistically significant difference in obturation time between...

  3. Long-Term Effects of Season of Prescribed Burn on the Fine-Root Growth, Root Carbohydrates, and Foliar Dynamics of Mature Longleaf Pine

    Science.gov (United States)

    Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries

    2004-01-01

    Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...

  4. Morphological evaluation of lumbar dorsal root ganglion on three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shen Jun; Chen Jianyu; Zhou Cuiping; Liang Biling; Xu Xiaomao

    2007-01-01

    Objective: To investigate the morphological features of normal lumbar dorsal root ganglia using a three-dimensional (3D) coronal MR imaging. Methods: One hundred and fifteen volunteers were included. Ages ranged from 15 to 75 years, with a mean of 40 years. Coronal 3D fast field echo (FFE) with water selective excitation (Proset) MR examination of 1150 dorsal root ganglia were underwent at nerve root levels from L1 to L5. The source coronal images were further reconstructed into a series of rotational alignment coronal images with an interval angel of 12 degree using maximum intensity projection (MIP) technique. All DRGs of bilateral spinal nerve from L1 to L5 were morphologically analyzed on the original and MIP images including qualitative evaluation of the location, signal intensity, architecture and quantitative dimensional measurement. Results: There were 225, 225, 219, 210 and 160 foraminal ganglia from L1 to L5 level, respectively. The incidence of intraspinal ganglia from L3 to L5 gradually increased with a maximum at L5 level of 29.1% (X 2 =188.371, P<0.01). One thousand one hundred and thirteen (96.8%) DRGs were intermediate intensity on MIP images. The width and length of L1 DRGs were from 2. 00 to 5.50 mm (3.38±0.77) mm, 2.00 to 7.00 mm (4.35±0.89) mm, respectively. The width and length of L5 DRGs were from 3.50 to 9.00 mm (6.40±0.91) mm, 6.00 to 19.00 mm [(11.58± 2.25) mm], respectively. There was statistically significant difference in the dimension of DRGs from L5 to L1 (F=41.527-205.998, P<0.01). In 1150 DRGs, three types of architecture of DRGs including 822 singular, 317 bi- and 11 tri-ganglion DRGs could be found with a high prevalence of the bi-ganglia in L4 and L3 DRGs and a higher incidence of the singular ganglia in the L5 and L2 and L1 DRGs. Conclusions: The normal anatomy and variant of the lumbar dorsal root ganglia could be clearly demonstrated by 3D FFE MR imaging with Proset. As the level of the nerve root traveled down caudally

  5. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    Science.gov (United States)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi

  6. Sequential optimization of approximate inhibitory rules relative to the length, coverage and number of misclassifications

    KAUST Repository

    Alsolami, Fawaz

    2013-01-01

    This paper is devoted to the study of algorithms for sequential optimization of approximate inhibitory rules relative to the length, coverage and number of misclassifications. Theses algorithms are based on extensions of dynamic programming approach. The results of experiments for decision tables from UCI Machine Learning Repository are discussed. © 2013 Springer-Verlag.

  7. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  8. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    Science.gov (United States)

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  9. Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Mølmann, Jørgen; Bengtsson, Gunnar B; Johansen, Tor J

    2013-11-13

    Vegetables grown at different latitudes are exposed to various temperatures and day lengths, which can affect the content of health- and sensory-related compounds in broccoli florets. A 2 × 2 factorial experiment was conducted under controlled growth conditions, with contrasting temperatures (15/9 and 21/15 °C) and day lengths (12 and 24 h), to investigate the effect on glucosinolates, vitamin C, flavonols, and soluble sugars. Aliphatic glucosinolates, quercetin, and kaempferol were at their highest levels at high temperatures combined with a 12 h day. Levels of total glucosinolates, d-glucose, and d-fructose were elevated by high temperatures. Conversely, the content of vitamin C was highest with a 12 h day length combined with 15/9 °C. Our results indicate that temperature and day length influence the contents of health-related compounds in broccoli florets in a complex way, suggesting no general superiority of any of the contrasting growth conditions.

  10. Enraizamento de microestacas de Lavandula angustifolia Rooting of Lavandula angustifolia microcuttings

    Directory of Open Access Journals (Sweden)

    Marília Pereira Machado

    2011-05-01

    Full Text Available A eliminação da etapa de enraizamento in vitro na micropropagação de plantas é desejável do ponto de vista econômico, além de proporcionar a melhoria na qualidade do sistema radicial formado. Dois experimentos foram realizados com os objetivos de avaliar diferentes concentrações (0; 2,5; 5,0 e 10mM de ácido indolbutírico (AIB no enraizamento ex vitro de lavanda (L. angustifolia, cv. 'Provence Blue' e avaliar a capacidade de enraizamento ex vitro das cultivares 'Vera', 'Provence Blue', 'English' e 'Elegance Ice'. Após 30 dias, foi avaliado o número de microestacas enraizadas, comprimento das raízes principais, porcentagem de enraizamento e porcentagem de sobrevivência. A concentração de 5,0mM de AIB foi mais efetiva para o comprimento de raízes e porcentagem de enraizamento das microestacas de lavanda cv. 'Provence Blue', apesar de reduzir o número de raízes formadas. Entre as cultivares estudadas, a porcentagem de sobrevivência das plantas variou de 82% a 100%. As cultivares apresentaram diferenças no enraizamento ex vitro das microestacas, sendo as maiores médias de porcentagem de enraizamento registradas na 'Provence Blue' e 'Elegance Ice'. Conclui-se que a microestaquia pode ser uma técnica eficiente para a propagação de lavanda, pelo tratamento das microestacas com 5,0mM de AIB, por proporcionar alta porcentagem de enraizamento e sobrevivência das plantas.Two experiments were carried out aiming to evaluate the ex vitro rooting of L. angustifolia cv. 'Provence Blue' treated with different concentrations (0, 2.5, 5.0 and 10mM of indolebutyric acid (IBA with talc as a vehicle to evaluated the ex vitro rooting of 'Vera', 'Provence Blue', 'English' and 'Elegance Ice' lavender cultivars. The experiments were carried out in a greenhouse using three concentrations of AIB plus control. After the 30th day, it was evaluated: surviving microcuttings percentage, percentage of rooted microcuttings, roots number, roots length

  11. The root epidermis-specific pea gene RH2 is homologous to a pathogenesis-related gene.

    NARCIS (Netherlands)

    Mylona, P.; Moerman, M.; Yang, W.C.; Gloudemans, T.; Kerckhove, van de J.; Kammen, van A.; Bisseling, T.; Franssen, H.J.

    1994-01-01

    Two-dimensional gel electrophoresis of pea root and root hair proteins revealed the existence of at least 10 proteins present at elevated levels in root hairs. One of these, named RH2, was isolated and a partial amino acid sequence was determined from two tryptic peptides. Using this sequence

  12. Cervical length at 23 weeks' gestation - relation to demographic ...

    African Journals Online (AJOL)

    significance of differences in median cervical lengths between subgroups was calculated according to maternal age, ethnic origin, maternal body mass ... and mortality worldwide, with major health care and economic consequences.u In South ...

  13. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ren, Jinghua [Geological Survey of Jiangsu Province, Nanjing 210018 (China); Tang, Hao [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Di, E-mail: dxu@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xie, Xianchuan, E-mail: xchxie@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydroscience Research, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Oxygen (O{sub 2}) availability within the sediment–root interface is critical to the survival of macrophytes in O{sub 2}-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O{sub 2} is relatively limited. In this study, a non-invasive imaging technology was utilized to map O{sub 2} micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36 day-period revealed an abundance of O{sub 2} spatiotemporal patterns ranging from 0 to 250 μmol L{sup −} {sup 1}. The root-induced O{sub 2} leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O{sub 2} images revealed V. spiralis exhibited radial O{sub 2} loss (ROL) along the entire root, and the O{sub 2} distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O{sub 2} levels increased with root growth and irradiance intensities ranging from 0 to 216 μmol photons m{sup −} {sup 2} s{sup −} {sup 1}. A weak ROL measuring < 20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O{sub 2} supply from overlying water via plant aerenchyma. The estimated total O{sub 2} release to the rhizosphere of V. spiralis was determined to range from 8.80 ± 7.32 to 30.34 ± 17.71 nmol m{sup −} {sup 2} s{sup −} {sup 1}, which is much higher than many other macrophyte species. This O{sub 2} release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. - Highlights: • Planar imaging method was used to map O2 micro-distribution. • Highly dynamic rhizospheric O2-spatiotemporal distribution was observed. • O{sub 2} leakage along the entire root of Vallisneria spirals were

  14. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.

  15. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.

    Science.gov (United States)

    Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D

    2007-07-01

    Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in

  16. Correlation Between Orthodontic Forces and Root Resorption – a Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Vlasa Alexandru

    2016-09-01

    Full Text Available Orthodontically induced external apical root resorption (OIEARR is a major concern regarding periodontal status after nonsurgical orthodontic treatment. The aim of this study was to assess this sequel by a systematic review of published data. For assessment, we performed an electronic search of one database for comprehensive data, using keywords in different combinations: “root resorption”, “periodontics” and “nonsurgical orthodontic treatment”. We supplemented the results searching by hand in published journals and we cross-referenced with the accessed articles. Patients included in the results presented a good general health status, with no previous history of OIEARR and no other associated pathologies. Finally, twenty-three studies were selected and included in this review. A high prevalence (69–98% and moderate severity of OIEARR (<5 mm and <1/3 from original root length were reported. No difference in root resorption was found regarding the sex of the patients. A moderate positive correlation between treatment duration and root resorption was found. Also, a mild correlation regarding antero-posterior apical displacement and root resorption was found.

  17. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  18. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  19. Valve-sparing root replacement in children with aortic root aneurysm: mid-term results.

    Science.gov (United States)

    Lange, Rüdiger; Badiu, Catalin C; Vogt, Manfred; Voss, Bernhard; Hörer, Jürgen; Prodan, Zsolt; Schreiber, Christian; Mazzitelli, Domenico

    2013-05-01

    We aimed at evaluating the results of aortic valve-sparing root replacement (AVSRR) in children with aortic root aneurysm (ARA) due to genetic disorders in terms of mortality, reoperation and recurrent aortic valve regurgitation (AVR). Thirteen patients (mean age 9.7 ± 6.5 years, 10 months-18 years) underwent AVSRR for ARA between 2002 and 2011. Six of the 13 patients had Marfan syndrome, 3 Loeys-Dietz syndrome (LDS), 2 bicuspid aortic valve syndrome and 2 an unspecified connective tissue disorder. AVR was graded as none/trace, mild and severe in 5, 7 and 1 patient, respectively. The mean pre-operative root diameter was 45 ± 10 mm (mean Z-score 10.3 ± 2.0). Remodelling of the aortic root was performed in 4 patients, reimplantation of the aortic valve in 9 and a concomitant cusp repair in 4. The diameter of the prostheses used for root replacement varied from 22 to 30 mm (mean Z-score = 2.3 ± 3). The follow-up was 100% complete with a mean follow-up time of 3.7 years. There was no operative mortality. One patient with LDS died 2.5 years after the operation due to spontaneous rupture of the descending aorta. Root re-replacement with mechanical conduit was necessary in 1 patient for severe recurrent AVR 8 days after remodelling of the aortic root. At final follow-up, AVR was graded as none/trace and mild in all patients. Eleven patients presented in New York Heart Association functional Class I and 1 in Class II. In paediatric patients with ARA, valve-sparing root replacement can be performed with low operative risk and excellent mid-term valve durability. Hence, prosthetic valve-related morbidity may be avoided. Due to the large diameters of the aortic root and the ascending aorta, the size of the implanted root prostheses will not limit later growth of the native aorta.

  20. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.