WorldWideScience

Sample records for relative resting left

  1. Sex-related differences in amygdala functional connectivity during resting conditions.

    Science.gov (United States)

    Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F

    2006-04-01

    Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.

  2. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Thallium-201 myocardial scintigraphy and left ventricular function at rest in patients with rest angina pectoris

    International Nuclear Information System (INIS)

    Hakki, A.H.; Iskandrian, A.S.; Kane, S.A.; Amenta, A.

    1984-01-01

    The purpose of this study was to examine the rest thallium-201 perfusion pattern during angina-free periods in 40 patients with rest angina pectoris secondary to coronary artery disease (greater than or equal to 70% diameter narrowing). Seventeen patients had previous Q wave myocardial infarction. The perfusion defects were considered fixed or reversible, depending on the absence or presence of redistribution in the 4-hour delayed images. There were 40 perfusion defects (26 fixed and 14 reversible) in 27 patients whereas 13 patients had normal scans. Reversible perfusion defects were present in 10 patients (25%). Of the 26 fixed perfusion defects, 17 did not have corresponding Q waves. Occluded vessels (63%) had more perfusion defects than vessels with subtotal occlusion (30%) (p less than 0.01). The perfusion defect size was larger in patients with lower ejection fraction than in patients with higher ejection fraction. We conclude: (1) perfusion defects are common in patients with rest angina and are reversible in 25% of patients indicating reduced regional coronary blood flow; (2) the degree of stenosis affects the presence of perfusion defect; (3) fixed defects may be present without corresponding Q waves; and (4) global left ventricular function is related to the size of perfusion defects

  4. Improved left ventricular function and perfusion at rest after successful transluminal coronary angioplasty

    International Nuclear Information System (INIS)

    Klepzig, H.; Kaltenbach, M.; Standke, R.; Maul, F.D.; Hoer, G.

    1991-01-01

    The purpose of this study was to evaluate left ventricular function and perfusion at rest before and after percutaneous transluminal coronary angioplasty. In consecutive 69 patients in whom coronary stenoses were dilated, the radionuclide left ventricular ejection fraction at rest increased significantly. In 26 of these patients, the ejection fraction increased by at least 4%. In these patients, exercise-induced ischemic ST depression had been more pronounced than in the others. 36 other patients underwent 201 Tl myocardial scintigraphy before and after angioplasty. Twelve patients in whom pre-PTCA images had revealed regions with irreversible 201 Tl uptake defects, showed normal 201 Tl distribution patterns on post-PTCA scintigrams. Post-exercise 201 Tl uptake (representing myocardial perfusion and metabolic activity) during pre-PTCA exercise stress tests was significantly lower in these cases. It is concluded that PTCA can improve left ventricular function and perfusion at rest. This improvement is most obvious in patients with pronounced exercise-induced myocardial ischemia as diagnosed by typical ST segment depression and reduced thallium uptake. (orig.) [de

  5. Diagnosis of exercise-induced left bundle branch block at rest by scintigraphic phase analysis

    International Nuclear Information System (INIS)

    Schultz, D.A.; Wahl, R.L.; Juni, J.E.; Buda, A.J.; McMeekin, J.D.; Struble, L.R.; Tuscan, M.J.

    1986-01-01

    Accurate diagnosis of disease of the ventricular conducting system is essential for their appropriate therapy. Some conduction abnormalities, such as exercise-induced left bundle branch block (EX-LBBB), are not apparent on resting electrocardiograms. Phase analysis of rest and exercise radionuclide ventriculograms (RVG's) was used to compare four EX-LBBB patients with six normal controls. All patients had normal resting electrocardiograms, ejection fractions, and visually normal wall motion. First harmonic phase images were generated reflecting the timing of ventricular contraction. Dynamic phase displays were reviewed and graded in a blinded fashion by three independent experienced observers. Phase angle histograms of the right and left ventricle were determined for both resting and exercise images. The mean phase angle and standard deviation were also calculated for each ventricle. Visual grading of the resting phase images failed to show a significant difference between normal patients and patients with EX-LBBB. Quantitative analysis, however, revealed a significant difference in mean phase angle differences (LV-RV) in resting studies: 0.8 0 (+-1.9 0 SEM) in normal versus 9.3 0 (+-2.3 0 SEM) in EX-LBBB patients (P 0 in normals vs. 31.2 0 in EX-LBBB patients (P<0.001). Qualitative phase analysis of resting RVG's permits the diagnosis of cardiac conduction disease that is not apparent on the resting EKG and may result in better monitoring and treatment. (orig.)

  6. Pulmonary thallium uptake: Correlation with systolic and diastolic left ventricular function at rest and during exercise

    International Nuclear Information System (INIS)

    Mannting, F.

    1990-01-01

    Quantified pulmonary 201-thallium uptake, assessed as pulmonary/myocardial ratios (PM) and body surface area-corrected absolute pulmonary uptake (Pc), was determined from single photon emission computed tomography studies in 22 normal subjects and 46 consecutive patients with coronary artery disease (CAD). By means of equilibrium radionuclide angiography (ERNA), ejection fraction (EF), peak ejection rate (PER) in end-diastolic volume (EDV/sec) and peak filling rate (PFR) in EDV/sec and stroke volume (SV/sec) units, PFR/PER ratio, and time to peak filling rate (TPFR) in milliseconds were computed at rest and during exercise (n = 35). Left ventricular response to exercise was assessed as delta EF, relative delta EF, delta EDV, and delta ESV. In normal subjects the PM ratios showed significant inverse correlation with PER at rest and with EF, PER, and PFRedv during exercise. For the left ventricular response to exercise, delta ESV showed significant correlation with the PM ratios. The body surface area-corrected pulmonary uptake values showed no correlation with any of the variables. In patients with CAD the PM ratios and Pc uptake showed significant inverse correlation with EF, PER, PFRedv and to exercise EF, exercise PER, and exercise PFRedv. For the left ventricular response to exercise, delta EF showed significant inverse correlation with the PM ratios but not with the Pc uptake. Neither in normal subjects nor in patients with CAD did any of the independent diastolic variables show significant correlation with the PM ratios or Pc values. Thus pulmonary thallium uptake is correlated with systolic left ventricular function at rest and during exercise in normal subjects and in patients with CAD but not with diastolic function. In normal subjects delta ESV and in patients with CAD, delta EF showed correlation with pulmonary thallium uptake

  7. Relation of visual creative imagery manipulation to resting-state brain oscillations.

    Science.gov (United States)

    Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2018-02-01

    Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

  8. Right and left ventricular ejection fraction at rest and during exercise assessed with radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Dahlstroem, J.A.

    1982-01-01

    Right (RVEF) and left ventricular ejection fraction (LVEF) assessed with radionuclide angiocardiography were compared to simultaneously obtained catheterization results at rest and during exercise in patients with pulmonary hypertension and ischemic heart disease. Blood pool imaging was performed with red blood cells (RBC) labelled with 99 Tcsup(m) in vivo as this method gave more stable 99 Tcsup(m) levels in blood compared to 99 Tcsup(m)-labelled human serum albumin and because it was more convenient than labelling RBC in vitro. RVEF measured with first pass (FP) technique and equilibrium (EQ) technique correlated well at rest, r = 0.86, and during exercise, r = 0.91. The FP technique had the best reproducibility and reference values at rest were 49+-5 per cent increasing with exercise. When 99 Tcsup(m) and 133 Xe were compared to assess RVEF with FP technique, the correlation was good, r = 0.88. LVEF assessed with EQ technique and a fixed end-diastolic region of interest was very reproducible at rest and during exercise; reference values at rest were 56+-8 per cent increasing with exercise. In 10 patients with pulmonary hypertension significant negative correlations were found between RVEF assessed with FP technique and pressures in pulmonary artery and right atrium. Abnormal RVEF was found in all patients with right ventricular disfunction. In 22 patients with recent myocardial infarction measurements of LVEF detected left ventricular disfunction better than did measurement of pulmonary artery diastolic pressure. During effort angina in another 10 patients all had abnormal LVEF and abnormal hemodynamics. By combining ejection fraction and stroke volume, ventricular volumes were calculated at rest and during exercise. (author)

  9. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  10. Left ventricular filling pressure estimation at rest and during exercise in patients with severe aortic valve stenosis: comparison of echocardiographic and invasive measurements

    DEFF Research Database (Denmark)

    Dalsgaard, Morten; Kjaergaard, Jesper; Pecini, Redi

    2009-01-01

    BACKGROUND: The Doppler index of left ventricular (LV) filling (E/e') is recognized as a noninvasive measure for LV filling pressure at rest but has also been suggested as a reliable measure of exercise-induced changes. The aim of this study was to investigate changes in LV filling pressure......, measured invasively as pulmonary capillary wedge pressure (PCWP), at rest and during exercise to describe the relation with E/e' in patients with severe aortic stenosis. METHODS: Twenty-eight patients with an aortic valve areas

  11. Receiver operating characteristics of diagnostic efficacy of resting left ventricular performance (evaluating with a non-imaging ECG gated scintillation detector - nuclear stethoscope)

    International Nuclear Information System (INIS)

    Kotlyarov, E.V.; Reba, R.C.; Lindsay, J.

    1983-01-01

    Receiver operating characteristic (ROC) analysis of left ventricular performance at rest was applied to evaluate diagnostic utility of non-imaging nuclear detector (''Nuclear Stethoscope''), for screening patients with coronary artery disease (CAD). Thirty-one patients without CAD and normal rest and stress radionuclide ventriculography (MUGA) were used as a control group. Another 62 patients with abnormal left ventricular reserve and segmental wall motion abnormalities at rest were also studied. All 93 patients were studied with the Nuclear Stethoscope (30 minutes after conventional MUGA testing) both in beat-to-beat and gated equilibrium modes. ROC analysis showed that along with ejection fraction, stroke and end-diastolic volumes, evaluation of the left ventricular filling phase has a great potential for the identification of patients with a segmental wall motion abnormality and, therefore, significant CAD

  12. Efficiency at rest: magnetoencephalographic resting-state connectivity and individual differences in verbal working memory.

    Science.gov (United States)

    del Río, David; Cuesta, Pablo; Bajo, Ricardo; García-Pacios, Javier; López-Higes, Ramón; del-Pozo, Francisco; Maestú, Fernando

    2012-11-01

    Inter-individual differences in cognitive performance are based on an efficient use of task-related brain resources. However, little is known yet on how these differences might be reflected on resting-state brain networks. Here we used Magnetoencephalography resting-state recordings to assess the relationship between a behavioral measurement of verbal working memory and functional connectivity as measured through Mutual Information. We studied theta (4-8 Hz), low alpha (8-10 Hz), high alpha (10-13 Hz), low beta (13-18 Hz) and high beta (18-30 Hz) frequency bands. A higher verbal working memory capacity was associated with a lower mutual information in the low alpha band, prominently among right-anterior and left-lateral sensors. The results suggest that an efficient brain organization in the domain of verbal working memory might be related to a lower resting-state functional connectivity across large-scale brain networks possibly involving right prefrontal and left perisylvian areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Accuracy of diagnosis of coronary artery disease by radionuclide management of left ventricular function during rest and exercise

    International Nuclear Information System (INIS)

    Jones, R.H.; McEwan, P.; Newman, G.E.; Port, S.; Rerych, S.K.; Scholz, P.M.; Upton, M.T.; Peter, C.A.; Austin, E.H.; Leong, K.H.; Gibbons, R.J.; Cobb, F.R.; Coleman, R.E.; Sabiston, D.C. Jr.

    1981-01-01

    Rest and exercise radionuclide angiocardiographic measurements of left ventricular function were obtained in 496 patients who underwent cardiac catheterization for chest pain. Two hundred forty-eight of these patients also had an exercise treadmill test. An ejection fraction less than 50% was the abnormality of resting left ventricular function that provided the greatest diagnostic information. In patients with normal resting left ventricular function, exercise abnormalities that were optimal for diagnosis of coronary artery disease were an injection fraction at least 6% less than predicted, an increase greater than 20 ml in end-systolic volume and the appearance of an exercise-induced wall motion abnormality. The sensitivity and specificity of the test were lower in patients who were taking propranolol at the time of study and in patients who failed to achieve an adequate exercise end point. In the 387 patients with an optimal study, the test had a sensitivity of 90% and a specificity of 58%. Radionuclide angiocardiography was more sensitive and less specific than the exercise treadmill test. The high degree of sensitivity of the radionuclide test suggests that it is most appropriately applied to patient groups with a high prevalence of disease, including those considered for cardiac catheterization

  14. Determinants of global left ventricular peak diastolic filling rate during rest and exercise in normal volunteers

    International Nuclear Information System (INIS)

    Filiberti, A.W.; Bianco, J.A.; Baker, S.P.; Doherty; Nalivaika, L.A.; King, M.A.; Alpert, J.S.

    1984-01-01

    Early peak diastolic filling rate (PFR) of the left ventricle (LV) is said to be a sensitive index of LV dysfunction in patients with coronary disease, hypertension and hypertrophic cardiomyopathy. Radionuclide (RN0 multigated PFR was measured in 20 normal volunteers (13 males, 7 females, mean age 31 yrs., range 20-43) at rest and during supine bicycle exercise conducted to a symptomatic end-point. At rest, RN PFR was 3.4 +- SD 0.4 end-diastolic vols./sec (range 3.1 - 3.6). During exercise all normal volunteers had a progressive and numerically and statistically significant increase in PFR. Stepwise multiple linear regression (BMPD2R) was applied to the rest and exercise PFR data to develop a linear model describing the main determinants of the RN PFR. The potential independent variables which were included in the model were heart rate (HR), ejection fraction (EF), systolic arterial pressure, systolic ejection rate and exercise stage. Ranking of variables for prediction of RN PFR, and exclusion of less important variables, was done by F value criteria. The final multivariate equation was: LVPFR = -3.84437 + 0.03834 HR + 0.07537 LVEF. The model fit was highly significant (p<0.001), and accounted for 89 per cent of variability in the PFR. The authors conclude that the left ventricular peak filling rate is critically determined by heart rate and by ejection fraction at rest and during exercise

  15. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    Science.gov (United States)

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  16. Abnormalities of resting state functional connectivity are related to sustained attention deficits in MS.

    Directory of Open Access Journals (Sweden)

    Marisa Loitfelder

    Full Text Available OBJECTIVES: Resting state (RS functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls. DESIGN: Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS and 31 age- and gender matched healthy controls (HC. Participants underwent extensive cognitive testing. OBSERVATIONS: In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC, insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus. CONCLUSION: We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.

  17. Changes with age in left ventricular function and volumes at rest and postexercise in postmenopausal women

    International Nuclear Information System (INIS)

    Yamada, Kiyoyasu; Isobe, Satoshi; Hirai, Makoto

    2006-01-01

    In postmenopausal women, it has been reported that the plasma estrogen levels diminish immediately after menopause, and that this phenomenon affects left ventricular (LV) function and volumes. However, the effects of age on LV function and volumes for a relatively short period in the postmenopausal women remain to be established. Electrocardiographically gated-myocardial single-photon emission computed tomography (SPECT) has recently provided accurate estimations of perfusion, cardiac systolic and diastolic functions. We investigated the age-related changes in LV function and volumes in postmenopausal women using electrocardiographically gated-myocardial scintigraphy. Twenty-two consecutive healthy postmenopausal women (mean age of 63.8±9.4 years, from 42 to 77 years) without cardiac disease underwent stress/rest technetium-99m tetrofosmin gated-myocardial SPECT with 16 frames per cardiac cycle at baseline and follow-up (1.0±0.3 years later). LV ejection fraction (LVEF) and LV volumes were calculated by quantitative gated SPECT (QGS) software. Fourier series were retained for the analysis of the volume curve. From this volume curve, we derived the following diastolic indices: peak filling rate (PFR) and time to PFR (TPFR). End-systolic volume index (ESVI) significantly decreased at postexercise (p=0.02) and tended to decrease at rest (p=0.06) from the baseline to the follow-up study. LVEF significantly increased at both postexercise (p=0.01) and rest (p=0.03) from the baseline to the follow-up study. The TPFR at rest tended to be prolonged from the baseline to the follow-up study (p=0.07). The absolute increase in LVEF at postexercise tended to decrease with age [4.8% (50s) vs. 3.4% (60s) vs. 1.2% (70s)]. An age-related change in cardiac performance is apparent at an approximately 1 year follow-up in postmenopausal women. In particular, the increase in LV systolic function tends to show the greatest value in the 50s subjects among the 3 generations. (author)

  18. Comparison of exercise capacity with resting left ventricular function evaluated by various non-invasive methods in patients with old myocardial infarction

    International Nuclear Information System (INIS)

    Yamabe, Hiroshi; Kobayashi, Katsuya; Tajiri, Eiichi; Hayakawa, Masanori; Minamiji, Katsumi

    1982-01-01

    The relationship between exercise capacity and resting left ventricular function assessed by several non-invasive methods in patients with old myocardial infarction was investigated. Subjects were 25 male patients whose endpoint was either dyspnea or general fatigue at the symptom-limited maximal graded treadmill exercise test according to Bruce protocol. The indices obtained by non-invasive cardiac examinations included left ventricular fractional shortening (% FS), scintigraphic infact size (% SIS) by 201 Tl myocardial scintigraphy and PEP/ET. A significant correlation of exercise duration with % FS (r = 0.67, p < 0.001) or with % SIS (r = -0.55, p < 0.02) indicated that the more impaired resting left ventricular function, the more was decreased exercise capacity. Also, a significant correlation of systolic blood pressure at the endpoint in exercise test with % FS (r = 0.58, p < 0.005) or with % SIS (r = 0.69, p < 0.001) indicated that inadequate blood pressure response might be partially attributed to impaired left ventricular function during exercise. The response of heart rate at the Bruce protocol stage I correlated with % FS (r = -0.67, p < 0.001) and with % SIS (r = 0.53, p < 0.02), respectively. These findings may be interpreted as chronotropic compensatory mechanism for limited stroke volume during exercise in patients with impaired left ventricular function. Thus, it was concluded that resting left ventricular function assessed by non-invasive cardiac examinations may predict exercise capacity prior to the test to some extent. These informations can be utilized for the decision of the planning at cardiac rehabilitation and also for the guidance in daily activities. (J.P.N.)

  19. Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation.

    Science.gov (United States)

    Wang, Jiaojian; Xie, Sangma; Guo, Xin; Becker, Benjamin; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2017-03-01

    The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting-state functional connectivity (RSFC) and task-related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion-specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659-1675, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence.

    Science.gov (United States)

    Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E

    2018-04-01

    The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Eduardo A. Garza-Villarreal

    2015-07-01

    Full Text Available Music reduces pain in fibromyalgia (FM, a chronic pain disease, but the functional neural correlates of music-induced analgesia are still largely unknown. We recruited FM patients (n = 22 who listened to their preferred relaxing music and an auditory control (pink noise for 5 minutes without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the left angular gyrus showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex, the left caudate, and decreased connectivity with right anterior cingulate cortex, right supplementary motor area, precuneus and right precentral gyrus. Pain intensity analgesia was correlated (r = .61 to the connectivity of the left angular gyrus with the right precentral gyrus. Our results show that music-induced analgesia in FM is related to top-down regulation of the pain modulatory network by the default-mode network.

  2. Abnormal resting-state functional connectivity of the left caudate nucleus in obsessive-compulsive disorder.

    Science.gov (United States)

    Chen, Yunhui; Juhás, Michal; Greenshaw, Andrew J; Hu, Qiang; Meng, Xin; Cui, Hongsheng; Ding, Yongzhuo; Kang, Lu; Zhang, Yubo; Wang, Yuhua; Cui, Guangcheng; Li, Ping

    2016-06-03

    Altered brain activities in the cortico-striato-thalamocortical (CSTC) circuitry are implicated in the pathophysiology of obsessive-compulsive disorder (OCD). However, whether the underlying changes occur only within this circuitry or in large-scale networks is still not thoroughly understood. This study performed voxel-based functional connectivity analysis on resting-state functional magnetic resonance imaging (fMRI) data from thirty OCD patients and thirty healthy controls to investigate whole-brain intrinsic functional connectivity patterns in OCD. Relative to the healthy controls, OCD patients showed decreased functional connectivity within the CSTC circuitry but increased functional connectivity in other brain regions. Furthermore, decreased left caudate nucleus-thalamus connectivity within the CSTC circuitry was positively correlated with the illness duration of OCD. This study provides additional evidence that CSTC circuitry may play an essential role and alteration of large-scale brain networks may be involved in the pathophysiology of OCD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. In hypertrophic cardiomyopathy reduction of relative resting myocardial blood flow is related to late enhancement, T2-signal and LV wall thickness.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available To quantify resting myocardial blood flow (MBF in the left ventricular (LV wall of HCM patients and to determine the relationship to important parameters of disease: LV wall thickness, late gadolinium enhancement (LGE, T2-signal abnormalities (dark and bright signal, LV outflow tract obstruction and age.Seventy patients with proven HCM underwent cardiac MRI. Absolute and relative resting MBF were calculated from cardiac perfusion MRI by using the Fermi function model. The relationship between relative MBF and LV wall thickness, T2-signal abnormalities (T2 dark and T2 bright signal, LGE, age and LV outflow gradient as determined by echocardiography was determined using simple and multiple linear regression analysis. Categories of reduced and elevated perfusion in relation to non- or mildly affected reference segments were defined, and T2-signal characteristics and extent as well as pattern of LGE were examined. Statistical testing included linear and logistic regression analysis, unpaired t-test, odds ratios, and Fisher's exact test.804 segments in 70 patients were included in the analysis. In a simple linear regression model LV wall thickness (p<0.001, extent of LGE (p<0.001, presence of edema, defined as focal T2 bright signal (p<0.001, T2 dark signal (p<0.001 and age (p = 0.032 correlated inversely with relative resting MBF. The LV outflow gradient did not show any effect on resting perfusion (p = 0.901. Multiple linear regression analysis revealed that LGE (p<0.001, edema (p = 0.026 and T2 dark signal (p = 0.019 were independent predictors of relative resting MBF. Segments with reduced resting perfusion demonstrated different LGE patterns compared to segments with elevated resting perfusion.In HCM resting MBF is significantly reduced depending on LV wall thickness, extent of LGE, focal T2 signal abnormalities and age. Furthermore, different patterns of perfusion in HCM patients have been defined, which may represent different stages of

  4. From "rest" to language task: Task activation selects and prunes from broader resting-state network.

    Science.gov (United States)

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael R; Sharan, Ashwini; Tracy, Joseph I

    2017-05-01

    Resting-state networks (RSNs) show spatial patterns generally consistent with networks revealed during cognitive tasks. However, the exact degree of overlap between these networks has not been clearly quantified. Such an investigation shows promise for decoding altered functional connectivity (FC) related to abnormal language functioning in clinical populations such as temporal lobe epilepsy (TLE). In this context, we investigated the network configurations during a language task and during resting state using FC. Twenty-four healthy controls, 24 right and 24 left TLE patients completed a verb generation (VG) task and a resting-state fMRI scan. We compared the language network revealed by the VG task with three FC-based networks (seeding the left inferior frontal cortex (IFC)/Broca): two from the task (ON, OFF blocks) and one from the resting state. We found that, for both left TLE patients and controls, the RSN recruited regions bilaterally, whereas both VG-on and VG-off conditions produced more left-lateralized FC networks, matching more closely with the activated language network. TLE brings with it variability in both task-dependent and task-independent networks, reflective of atypical language organization. Overall, our findings suggest that our RSN captured bilateral activity, reflecting a set of prepotent language regions. We propose that this relationship can be best understood by the notion of pruning or winnowing down of the larger language-ready RSN to carry out specific task demands. Our data suggest that multiple types of network analyses may be needed to decode the association between language deficits and the underlying functional mechanisms altered by disease. Hum Brain Mapp 38:2540-2552, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Altered resting brain connectivity in persistent cancer related fatigue

    Directory of Open Access Journals (Sweden)

    Johnson P. Hampson

    2015-01-01

    Full Text Available There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI. Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected. This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52 and poor sleep quality (P = 0.04, r = 0.52 in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected. Mental fatigue scores were associated with greater default mode network (DMN connectivity to the superior frontal gyrus (P = 0.05 FDR corrected among fatigued subjects (r = 0.82 and less connectivity in the non-fatigued group (r = −0.88. These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent

  6. Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Santos, Mário; Rivero, Jose

    2017-01-01

    AIMS: Impaired left ventricular (LV) deformation despite preserved LV ejection fraction (LVEF) is common and predicts outcomes in heart failure with preserved LVEF. We hypothesized that impaired LV deformation at rest is a marker of impaired cardiac systolic and diastolic reserve, and aimed to de...

  7. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  8. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing.

    Science.gov (United States)

    Nashiro, Kaoru; Sakaki, Michiko; Braskie, Meredith N; Mather, Mara

    2017-06-01

    Correlations in activity across disparate brain regions during rest reveal functional networks in the brain. Although previous studies largely agree that there is an age-related decline in the "default mode network," how age affects other resting-state networks, such as emotion-related networks, is still controversial. Here we used a dual-regression approach to investigate age-related alterations in resting-state networks. The results revealed age-related disruptions in functional connectivity in all 5 identified cognitive networks, namely the default mode network, cognitive-auditory, cognitive-speech (or speech-related somatosensory), and right and left frontoparietal networks, whereas such age effects were not observed in the 3 identified emotion networks. In addition, we observed age-related decline in functional connectivity in 3 visual and 3 motor/visuospatial networks. Older adults showed greater functional connectivity in regions outside 4 out of the 5 identified cognitive networks, consistent with the dedifferentiation effect previously observed in task-based functional magnetic resonance imaging studies. Both reduced within-network connectivity and increased out-of-network connectivity were correlated with poor cognitive performance, providing potential biomarkers for cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Thallium-201 right lung/heart ratio during exercise in patients with coronary artery disease: relation to thallium-201 myocardial single-photon emission tomography, rest and exercise left ventricular function and coronary angiography

    International Nuclear Information System (INIS)

    Morel, O.; Pezard, P.; Le Jeune, J.J.; Denizot, B.; Jallet, P.; Furber, A.; Vielle, B.

    1999-01-01

    The aim of this study was to correlate lung thallium-201 uptake on exercise with 201 Tl single-photon emission tomography (SPET) myocardial perfusion imaging, rest and exercise equilibrium radionuclide angiographic and coronary angiographic findings in patients with coronary artery disease (CAD) using a simple, reproducible lung/heart (L/H) ratio that would be easy to use in clinical practice. L/H ratio was defined on the anterior planar image obtained during exercise 201 Tl SPET acquisition as the mean counts per pixel in an entire right lung field region of interest divided by the mean counts per pixel in the hottest myocardial wall region of interest. We studied 103 patients. Fifty-nine patients (group I) with 201 Tl SPET, radionuclide angiographic and coronary angiographic variables. The group I L/H ratio of 0.35±0.05 (mean ±1 SD) was significantly lower (P 0.45 (mean+2 SD in group I) was considered abnormal. In group II, L/H ratio showed a significant correlation with stress and rest 201 Tl perfusion defect size (r=0.39 and r=0.42, P<0.01, respectively), but not with extent of ischaemic myocardium. The mean L/H ratio was 0.41±0.10 in patients with one-vessel disease (n=15), 0.46±0.08 in those with two-vessel disease (n=17) and 0.47±0.12 in those with three-vessel disease (n=12), but no significant difference was found between the three subgroups. L/H ratio showed a significant inverse relation with rest and exercise left ventricular ejection fraction (r=-0.37 and r=-0.50, P<0.05 and P<0.001, respectively). Using stepwise multiple regression analysis, exercise left ventricular ejection fraction and previous history of hypertension were the sole two variables independently predictive of the L/H ratio. In conclusion, although lung thallium uptake is usually found to correlate with extent and severity of CAD, increased L/H ratio should primarily be considered as a marker of exercise-induced left ventricular systolic and perhaps diastolic dysfunction, probably

  10. Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, A-M; Siebner, H R; Soelberg Sørensen, P; Paulson, O B; Dyrby, T B; Blinkenberg, M; Madsen, K H

    2013-11-01

    To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). A total of 27 patients with relapsing-remitting MS (RR-MS) and 15 patients with secondary progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8 between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network with increasing clinical disability. No significant relation between motor resting-state connectivity of the right PMd and clinical disability was detected in MS. The increase in functional coupling between left PMd and the motor resting-state network with increasing clinical disability can be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing-remitting stage of the disease. © 2013 John Wiley & Sons A/S.

  11. Left ventricular function in chronic aortic regurgitation

    International Nuclear Information System (INIS)

    Iskandrian, A.S.; Hakki, A.H.; Manno, B.; Amenta, A.; Kane, S.A.

    1983-01-01

    Left ventricular performance was determined in 42 patients with moderate or severe aortic regurgitation during upright exercise by measuring left ventricular ejection fraction and volume with radionuclide ventriculography. Classification of the patients according to exercise tolerance showed that patients with normal exercise tolerance (greater than or equal to 7.0 minutes) had a significantly higher ejection fraction at rest (probability [p] . 0.02) and during exercise (p . 0.0002), higher cardiac index at exercise (p . 0.0008) and lower exercise end-systolic volume (p . 0.01) than did patients with limited exercise tolerance. Similar significant differences were noted in younger patients compared with older patients in ejection fraction at rest and exercise (both p . 0.001) and cardiac index at rest (p . 0.03) and exercise (p . 0.0005). The end-diastolic volume decreased during exercise in 60% of the patients. The patients with a decrease in volume were significantly younger and had better exercise tolerance and a larger end-diastolic volume at rest than did patients who showed an increase in volume. The mean corrected left ventricular end-diastolic radius/wall thickness ratio was significantly greater in patients with abnormal than in those with normal exercise reserve (mean +/- standard deviation 476 +/- 146 versus 377 +/- 92 mm Hg, p less than 0.05). Thus, in patients with chronic aortic regurgitation: 1) left ventricular systolic function during exercise was related to age, exercise tolerance and corrected left ventricular end-diastolic radius/wall thickness ratio, and 2) the end-diastolic volume decreased during exercise, especially in younger patients and patients with normal exercise tolerance or a large volume at rest

  12. Influence of age on left ventricular performance during exercise in normal Japanese subject

    International Nuclear Information System (INIS)

    Konishi, Tokuji; Koyama, Takao; Aoki, Toshikazu; Makino, Katsutoshi; Yamamuro, Masashi; Nakai, Kyudayu; Nakamura, Masayuki; Nakano, Takeshi.

    1990-01-01

    To assess the effects of age on left ventricular performance, multistage supine ergometer exercise radionuclide ventriculography (RNV) was performed in 92 normal subjects. The subjects ranged in age from 24 to 86 years and were free of cardiopulmonary disease and diabetes. Age-related changes in exercise duration, left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), cardiac output (CO) left ventricular ejection fraction (LVEF), left ventricular dv/dt, systolic and diastolic time indexes of dv/dt, and peak systolic pressure/left ventricular end-systolic volume (PSP/LVESV) were analyzed at rest and during the peak exercise stage. Age-related decrease in LVEDV and peak diastolic dv/dt were significant at rest. The time indexes of ECG R to peak systolic dv/dt and time of end-systole to peak diastolic dv/dt also were prolonged with age. Both maximum heart rate and exercise duration were shown to decline with age. No age-related difference was observed in LVESV, LVEF or PSP/LVESV either at rest or during exercise. However, the change of LVEF and LVESV during exercise was less in subjects aged 60 or more. These results indicate decreased left ventricular function during exercise in elderly subjects. (author)

  13. Left ventricular diastolic performance at rest in patients with angina and normal systolic function - assessment by equilibrium radionuclide angiography

    International Nuclear Information System (INIS)

    Maini, C.L.; Bonetti, M.G.; Valle, G.; Antonelli Incalzi, R.; Montenero, A.S.

    1985-01-01

    The aim of the study was to correlate diastolic function, as evaluated by peak filling rate (PFR) and relative time (TPFR), with the severity of ischemic heart disease, as evaluated by exercise electrocardiography. Accordingly, 83 ischemic patients with effort angina, but normal ejection function at rest and normal left ventricular size, were studied by equilibrium radionuclide angiocardiography within two weeks from the exercise ECG. Diastolic dysfunction, as determined from PFR and, to a lesser extent, from TPFR, is common in patients with ischemic heart disease and normal systolic function. The prevalence and severity of such dysfunction is related more to the severity of the ischemia, as evaluated by the exercise ECG, than to the presence of an old myocardial infarction. Such findings are consistent with the hypothesis that PFR reflects mainly the early diastolic active uncoupling process. (orig.) [de

  14. Memory reactivation during rest supports upcoming learning of related content

    Science.gov (United States)

    Schlichting, Margaret L.; Preston, Alison R.

    2014-01-01

    Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face–object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal–neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal–neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes. PMID:25331890

  15. Memory reactivation during rest supports upcoming learning of related content.

    Science.gov (United States)

    Schlichting, Margaret L; Preston, Alison R

    2014-11-04

    Although a number of studies have highlighted the importance of offline processes for memory, how these mechanisms influence future learning remains unknown. Participants with established memories for a set of initial face-object associations were scanned during passive rest and during encoding of new related and unrelated pairs of objects. Spontaneous reactivation of established memories and enhanced hippocampal-neocortical functional connectivity during rest was related to better subsequent learning, specifically of related content. Moreover, the degree of functional coupling during rest was predictive of neural engagement during the new learning experience itself. These results suggest that through rest-phase reactivation and hippocampal-neocortical interactions, existing memories may come to facilitate encoding during subsequent related episodes.

  16. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  17. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  18. Pressure-volume Relationship in the Stress-echocardiography Laboratory: Does (Left Ventricular End-diastolic) Size Matter?

    Science.gov (United States)

    Bombardini, Tonino; Mulieri, Louis A; Salvadori, Stefano; Costantino, Marco Fabio; Scali, Maria Chiara; Marzilli, Mario; Picano, Eugenio

    2017-02-01

    The variation between rest and peak stress end-systolic pressure-volume relation is an afterload-independent index of left ventricular contractility. Whether and to what extent it depends on end-diastolic volume remains unclear. The aim of this study was to assess the dependence of the delta rest-stress end-systolic pressure-volume relation on end-diastolic volume in patients with negative stress echo and all ranges of resting left ventricular function. We analyzed interpretable data obtained in 891 patients (593 men, age 63 ± 12 years) with ejection fraction 47% ± 12%: 338 were normal or near-normal or hypertensive; 229 patients had coronary artery disease; and 324 patients had ischemic or nonischemic dilated cardiomyopathy. They were studied with exercise (n = 172), dipyridamole (n = 482) or dobutamine (n = 237) stress echocardiography. The end-systolic pressure-volume relation was evaluated at rest and peak stress from raw measurement of systolic arterial pressure by cuff sphygmomanometer and end-systolic volume by biplane Simpson rule 2-dimensional echocardiography. Absolute values of delta rest-stress end-systolic pressure-volume relation were higher for exercise and dobutamine than for dipyridamole. In the overall population, an inverse relationship between end-systolic pressure-volume relation and end-diastolic volume was present at rest (r 2 = 0.69, P stress (r 2 = 0.56, P stress end-systolic pressure-volume relation was considered (r 2 = 0.13). Left ventricular end-diastolic volume does not affect the rest-stress changes in end-systolic pressure-volume relation in either normal or abnormal left ventricles during physical or pharmacological stress. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  20. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Science.gov (United States)

    Gao, Bin; Wang, Yiquan; Liu, Weibo; Chen, Zhiyu; Zhou, Heshan; Yang, Jinyu; Cohen, Zachary; Zhu, Yihong; Zang, Yufeng

    2015-01-01

    Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI) scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS) and Characteristics of Delusional Rating Scale (CDRS). Regional homogeneity (ReHo) was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  1. Resting EEG deficits in accused murderers with schizophrenia.

    Science.gov (United States)

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong; Li, Liejia

    2011-10-31

    Empirical evidence continues to suggest a biologically distinct violent subtype of schizophrenia. The present study examined whether murderers with schizophrenia would demonstrate resting EEG deficits distinguishing them from both non-violent schizophrenia patients and murderers without schizophrenia. Resting EEG data were collected from five diagnostic groups (normal controls, non-murderers with schizophrenia, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia) at a brain hospital in Nanjing, China. Murderers with schizophrenia were characterized by increased left-hemispheric fast-wave EEG activity relative to non-violent schizophrenia patients, while non-violent schizophrenia patients instead demonstrated increased diffuse slow-wave activity compared to all other groups. Results are discussed within the framework of a proposed left-hemispheric over-processing hypothesis specific to violent individuals with schizophrenia, involving left hemispheric hyperarousal deficits, which may lead to a homicidally violent schizophrenia outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Preliminary study of left ventricular cavity-to-myocardial count ratio. A new parameter for left ventricular function

    International Nuclear Information System (INIS)

    Zhou Ying; Qu Wanying; Zhu Ming; Gao Wenping; Zhao Hongshan

    1995-01-01

    A new simple quantitative parameter, left ventricular cavity-to-myocardial count ratio (C/M ratio) was suggested and compared with LVEF to assess its reliability and clinical value. Of 220 patients in the study, 102 had both exercise 99m Tc-MIBI myocardial SPECT imaging and resting radionuclide ventriculography, another 118 patients had both rest 99m Tc-MIBI myocardial SPECT imaging and rest radionuclide ventriculography, 740 MBq of 99m Tc-MIBI was injected intravenously. Both the exercise and rest C/M ratio were determined on short-axis tomograms and LVEF were calculated from radionuclide ventriculography. The correlation between LVEF and the C/M (exercise and rest) was analyzed. There was a positive linear correlation between LVEF measured by ventriculography and both C/M exercise ratio (r = 0.6964) and C/M rest ratio (r = 0.6995). The sensitivity of C/M exercise and rest ratio for detecting patients with left ventricular dysfunction is 71.9%, 68.6%; the specificity is 92.9%, 97.0%; the accuracy is 86.3%, 84.7% respectively. C/M ratio can accurately identify patients with CAD who have resting left ventricular dysfunction. It was highly reproducible, reliable and useful in clinical diagnosis

  3. Rest and exercise ventricular function in adults with congenital ventricular septal defects

    International Nuclear Information System (INIS)

    Jablonsky, G.; Hilton, J.D.; Liu, P.P.; Morch, J.E.; Druck, M.N.; Bar-Shlomo, B.Z.; McLaughlin, P.R.

    1983-01-01

    Rest and exercise right and left ventricular function were compared using equilibrium gated radionuclide angiography in 19 normal sedentary control subjects and 34 patients with hemodynamically documented congenital ventricular septal defect (VSD). Gated radionuclide angiography was performed at rest and during each level of graded supine bicycle exercise to fatigue. Heart rate, blood pressure, maximal work load achieved, and right and left ventricular ejection fractions were assessed. The control subjects demonstrated an increase in both the left and right ventricular ejection fractions with exercise. All study groups failed to demonstrate an increase in ejection fraction in either ventricle with exercise. Furthermore, resting left ventricular ejection fraction in Groups 2 and 3 was lower than that in the control subjects and resting right ventricular ejection fraction was lower in Group 3 versus control subjects. Thus left and right ventricular function on exercise were abnormal in patients with residual VSD as compared with control subjects; rest and exercise left ventricular ejection fractions remained abnormal despite surgical closure of VSD in the remote past; resting left and right ventricular function was abnormal in patients with Eisenmenger's complex; lifelong volume overload may be detrimental to myocardial function

  4. Left ventricular performance at rest and during peak exercise in never-treated hypertensive female - an assessment with radionuclide ventriculography

    International Nuclear Information System (INIS)

    Topuzovic, N.; Karner, I.; Rusic, A.; Krstonosic, B.

    2002-01-01

    Aim: The aim of this study was to investigate left ventricular performance and exercise tolerance in never-treated female hypertensive patients. Materials and Methods: Seventeen female patients with newly established, uncomplicated essential hypertension (aged 25 to 57 years) were evaluated with rest-stress radionuclide gated ventriculography, and were compared to 23 age-matched normotensive female volunteers. Results: Mean blood pressure was significantly higher in patients at rest and during exercise than in controls (121±13 vs. 89±7 mm Hg, and 143±11 vs. 122±9 mm Hg, respectively, p 2 , respectively, p<0.01), while ESV was similar in both groups. Ejection fraction (EF) at rest and stress did not differ significantly (54±10 vs. 55±8%, and 70±10 vs. 66±8%, respectively), but % rise in EF during exercise was significantly higher in patients. At rest and during exercise, there were no significant difference in peak ejection rate (PER) and time to PER (TPER) between patients and controls. Patients had similar peak filling rate (PFR) at rest (2.88±0.79 vs. 2.76±0.76 EDV/s) and during exercise (5.85±1.86 vs. 6.21±1.97 EDV/s), in addition to nonsignificant difference in time to PFR (at rest 143±62 vs. 146±42 ms at rest, and 97±20 vs. 91±19 ms during exercise). Conclusion: Female patients with newly diagnosed, never-treated hypertension have preserved maximal exercise performance, systolic function and diastolic function, but they have significant enlargement of EDV and elevated cardiac output during exercise

  5. Aortic insufficiency and hydralazine: behaviour of left ventricular ejection fraction and of stroke index ratio at rest and during exercise

    International Nuclear Information System (INIS)

    Sole, C.; Florenzano, F.; Morales, B.; Neubauer, S.; Escobar, E.; Mollerach, F.; Mollerach, A.; Avella, O.

    1982-01-01

    The gated blood pool ventriculography in patients undergoing in vivo red blood cells labelling with 99mTc-pertechnetate, was evaluated critically as a form of quantifying aortic valvular regurgitation (AVR) and was applicated in severe aortic insufficiency (AI) to determine the effects of Hydralazine at rest and during exercise on the ventricular function parameters thus obtained. The beneficious effects of Hydralazine on left ventricular performance in patients with AI, have already been reported. The results confirm this too, but using a non-invasive method. These beneficious effects of Hydralazine in patients with AI were proved to be a consequence of significant increase in left ventricular ejection fraction (LVEF)

  6. Electrophysiological resting-state biomarker for diagnosing mesial temporal lobe epilepsy with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2017-01-01

    The main aim of the present study was to evaluate whether resting-state functional connectivity of magnetoencephalography (MEG) signals can differentiate patients with mesial temporal lobe epilepsy (MTLE) from healthy controls (HC) and can differentiate between right and left MTLE as a diagnostic biomarker. To this end, a support vector machine (SVM) method among various machine learning algorithms was employed. We compared resting-state functional networks between 46 MTLE (right MTLE=23; left MTLE=23) patients with histologically proven HS who were free of seizure after surgery, and 46 HC. The optimal SVM group classifier distinguished MTLE patients with a mean accuracy of 95.1% (sensitivity=95.8%; specificity=94.3%). Increased connectivity including the right posterior cingulate gyrus and decreased connectivity including at least one sensory-related resting-state network were key features reflecting the differences between MTLE patients and HC. The optimal SVM model distinguished between right and left MTLE patients with a mean accuracy of 76.2% (sensitivity=76.0%; specificity=76.5%). We showed the potential of electrophysiological resting-state functional connectivity, which reflects brain network reorganization in MTLE patients, as a possible diagnostic biomarker to differentiate MTLE patients from HC and differentiate between right and left MTLE patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Science.gov (United States)

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Hemifacial Display of Emotion in the Resting State

    Directory of Open Access Journals (Sweden)

    M. K. Mandal

    1992-01-01

    Full Text Available The human face at rest displays distinguishable asymmetries with some lateralization of emotion or expression. The asymmetrical nature of the resting face was examined by preparing hemifacial composites, left–left, right–right, along with normal facial orientation. The left side and right side composites were constructed by using the lateral half of one side of the face and its mirror-reversal. The left side facial composites were found to be more emotional than the right side or normal facial orientations of neutral expressions.

  9. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  10. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  11. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis.

    Science.gov (United States)

    Lau, W K W; Leung, M-K; Lee, T M C; Law, A C K

    2016-04-26

    Amnestic mild cognitive impairment (aMCI) is a prodromal stage of Alzheimer's disease (AD). As no effective drug can cure AD, early diagnosis and intervention for aMCI are urgently needed. The standard diagnostic procedure for aMCI primarily relies on subjective neuropsychological examinations that require the judgment of experienced clinicians. The development of other objective and reliable aMCI markers, such as neural markers, is therefore required. Previous neuroimaging findings revealed various abnormalities in resting-state activity in MCI patients, but the findings have been inconsistent. The current study provides an updated activation likelihood estimation meta-analysis of resting-state functional magnetic resonance imaging (fMRI) data on aMCI. The authors searched on the MEDLINE/PubMed databases for whole-brain resting-state fMRI studies on aMCI published until March 2015. We included 21 whole-brain resting-state fMRI studies that reported a total of 156 distinct foci. Significant regional resting-state differences were consistently found in aMCI patients relative to controls, including the posterior cingulate cortex, right angular gyrus, right parahippocampal gyrus, left fusiform gyrus, left supramarginal gyrus and bilateral middle temporal gyri. Our findings support that abnormalities in resting-state activities of these regions may serve as neuroimaging markers for aMCI.

  13. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  14. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    International Nuclear Information System (INIS)

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  15. Abnormal Degree Centrality of Bilateral Putamen and Left Superior Frontal Gyrus in Schizophrenia with Auditory Hallucinations: A Resting-state Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua

    2015-12-05

    Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.

  16. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  17. The wandering mood: psychological and neural determinants of rest-related negative affect

    Directory of Open Access Journals (Sweden)

    Michal eGruberger

    2013-12-01

    Full Text Available Rest related negative affect (RRNA has gained scientific interest in the past decade. However, it is mostly studied within the context of mind-wandering (MW, and the relevance of other psychological and neural aspects of the resting state to its' occurrence has never been studied. Several indications associate RRNA with internally directed attention, yet the nature of this relation remains largely unknown. Moreover, the role of neural networks associated with rest related phenomenology - the default mode (DMN, executive (EXE and salience (SAL networks, has not been studied in this context. To this end, we explored two 5- (baseline and 15-minute resting-state simultaneous fMRI-EEG scans of 29 participants. As vigilance has been shown to affect attention, and thus its availability for inward allocation, EEG-based vigilance levels were computed for each participant. Questionnaires for affective assessment were administered before and after scans, and retrospective reports of MW were additionally collected. Results revealed increased negative affect following rest, but only among participants who retained high vigilance levels. Among low-vigilance participants, changes in negative affect were negligible, despite reports of MW occurrence in both groups. In addition, in the high-vigilance group only, a significant increase in functional connectivity (FC levels was found between the DMN-related ventral anterior cingulate cortex (ACC,associated with emotional processing, and the EXE-related dorsal ACC, associated with monitoring of self and other's behavior. These heightened FC levels further correlated with reported negative affect among this group. Taken together, these results demonstrate that, rather than an unavoidable outcome of the resting state, RRNA depends on internal allocation of attention at rest. Results are discussed in terms of two rest-related possible scenarios which defer in mental and neural processing, and subsequently, in the

  18. The wandering mood: psychological and neural determinants of rest-related negative affect.

    Science.gov (United States)

    Gruberger, Michal; Maron-Katz, Adi; Sharon, Haggai; Hendler, Talma; Ben-Simon, Eti

    2013-01-01

    Rest related negative affect (RRNA) has gained scientific interest in the past decade. However, it is mostly studied within the context of mind-wandering (MW), and the relevance of other psychological and neural aspects of the resting state to its' occurrence has never been studied. Several indications associate RRNA with internally directed attention, yet the nature of this relation remains largely unknown. Moreover, the role of neural networks associated with rest related phenomenology - the default mode (DMN), executive (EXE), and salience (SAL) networks, has not been studied in this context. To this end, we explored two 5 (baseline) and 15-minute resting-state simultaneous fMRI-EEG scans of 29 participants. As vigilance has been shown to affect attention, and thus its availability for inward allocation, EEG-based vigilance levels were computed for each participant. Questionnaires for affective assessment were administered before and after scans, and retrospective reports of MW were additionally collected. Results revealed increased negative affect following rest, but only among participants who retained high vigilance levels. Among low-vigilance participants, changes in negative affect were negligible, despite reports of MW occurrence in both groups. In addition, in the high-vigilance group only, a significant increase in functional connectivity (FC) levels was found between the DMN-related ventral anterior cingulate cortex (ACC), associated with emotional processing, and the EXE-related dorsal ACC, associated with monitoring of self and other's behavior. These heightened FC levels further correlated with reported negative affect among this group. Taken together, these results demonstrate that, rather than an unavoidable outcome of the resting state, RRNA depends on internal allocation of attention at rest. Results are discussed in terms of two rest-related possible scenarios which defer in mental and neural processing, and subsequently, in the occurrence of

  19. Mechanisms for decreased exercise capacity after bed rest in normal middle-aged men

    International Nuclear Information System (INIS)

    Hung, J.; Goldwater, D.; Convertino, V.A.; McKillop, J.H.; Goris, M.L.; DeBusk, R.F.

    1983-01-01

    The mechanisms responsible for the decrease in exercise capacity after bed rest were assessed in 12 apparently healthy men aged 50 +/- 4 years who underwent equilibrium gated blood pool scintigraphy during supine and upright multistage bicycle ergometry before and after 10 days of bed rest. After bed rest, echocardiographically measured supine resting left ventricular end-diastolic volume decreased by 16% (p less than 0.05). Peak oxygen uptake during supine effort after bed rest was diminished by 6% (p . not significant [NS]), whereas peak oxygen uptake during upright effort declined by 15% (p less than 0.05). After bed rest, increases in heart rate were also greater during exercise in the upright than in the supine position (p less than 0.05). Values of left ventricular ejection fraction increased normally during both supine and upright effort after bed rest and were higher than corresponding values before bed rest (p less than 0.05). After bed rest, increased left ventricular ejection fraction and heart rate largely compensated for the reduced cardiac volume during supine effort, but these mechanisms were insufficient to maintain oxygen transport capacity at levels during upright effort before bed rest. These results indicate that orthostatically induced cardiac underfilling, not physical deconditioning or left ventricular dysfunction, is the major cause of reduced effort tolerance after 10 days of bed rest in normal middle-aged men

  20. Unmasking the mechanism of diffuse left ventricular wall motion abnormality in ischemic cardiomyopathy by resting-redistribution thallium-201 single photon computed tomography

    International Nuclear Information System (INIS)

    Namura, Hiroyuki; Yamabe, Hiroshi; Kakimoto, Tetsuya; Hashimoto, Yasunori; Yasaka, Yoshinori; Yoshida, Hiroaki; Itoh, Kazushi; Yokoyama, Mitsuhiro; Maeda, Kazumi.

    1992-01-01

    The study population comprised patients with ischemic cardiomyopathy (ICM) who had left ventricular wall motion (LVWM) abnormality in 5 or more segments (n=9), those with extensive myocardial infarction (EMI) having LVWM abnormality in 4 or less segments (n=12), and those with dilated left ventricle (DLV) having LVWM abnormality in all 7 segments (n=9). Defect scores (DS), obtained by initial and delayed Tl-201 myocardial single photon emission computed tomography at rest, were visually assessed to compare perfusion patterns in the three patient groups. The group of ICM patients had greater defect segments (DSeg) and % redistribution (Rd) index than the other two groups, although there was no difference in the number of angiographically proven infarct-related coronary vessels between EMI and ICM. In the group of ICM patients, there was inverse correlation not only between left ventricular ejection fraction and the sum of DS but also between left ventricular enddiastolic volume index and both the sum of DSeg and % Rd index. The group of DLV patients had small sum of DSeg and redistribution, compared with the other two groups. Although diffuse LVWM abnormality, as observed in the group of ICM patients, was considered attributable to potential decrease of coronary perfusion shown as defect on SPECT images, it did not always coincide with findings of coronary angiography. Both DSeg and redistribution phenomenon on SPECT images seemed to have the ability to evaluate the severity of ICM, as well as to differentiate ICM, EMI, and DLV. (N.K.)

  1. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise

    International Nuclear Information System (INIS)

    Massie, B.; Kramer, B.L.; Topic, N.; Henderson, S.G.

    1982-01-01

    Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responses at rest were decreases in left and right ventricular end-diastolic volumes from 388 +/- 81 to 350 +/- 77 ml and from 52 +/- 26 to 43 +/- 20 volume units, respectively, and in their corresponding filling pressures, from 24 +/- 10 to 17 +/- 9 mm Hg and 10 +/- 5 to 6 +/- 5 mm Hg. Although stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 +/- 6% to 22+/- 5% and from 25 +/- 9% to 29 +/- 11%, respectively. During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. This, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured

  2. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  4. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  5. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Zhang, Jian; Chen, Yu-Chen; Feng, Xu; Yang, Ming; Liu, Bin; Qian, Cheng; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  6. Normal left ventricular emptying in coronary artery disease at rest: analysis by radiographic and equilibrium radionuclide ventriculography

    International Nuclear Information System (INIS)

    Denenberg, B.S.; Makler, P.T.; Bove, A.A.; Spann, J.F.

    1981-01-01

    The volume ejected early in systole has been proposed as an indicator of abnormal left ventricular function that is present at rest in patients with coronary artery disease with a normal ejection fraction and normal wall motion. The volume ejected in systole was examined by calculating the percent change in ventricular volume using both computer-assisted analysis of biplane radiographic ventriculograms at 60 frames/s and equilibrium gated radionuclide ventriculograms. Ventricular emptying was examined with radiographic ventriculography in 33 normal patients and 23 patients with coronary artery disease and normal ejection fraction. Eight normal subjects and six patients with coronary artery disease had both radiographic ventriculography and equilibrium gated radionuclide ventriculography. In all patients, there was excellent correlation between the radiographic and radionuclide ventricular emptying curves (r . 0.971). There were no difference in the ventricular emptying curves of normal subjects and patients with coronary artery disease whether volumes were measured by radiographic or equilibrium gated radionuclide ventriculography. It is concluded that the resting ventricular emptying curves are identical in normal subjects and patients with coronary artery disease who have a normal ejection fraction and normal wall motion

  7. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right

  8. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    Science.gov (United States)

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  9. Regional cerebral blood flow of the patients with schizophrenia. A study using 99mTc-ECD SPECT at rest and activation

    International Nuclear Information System (INIS)

    Hu Ping; Wu Kening; Zeng Shiquan; Lin Zengtao; Yu Jinlong

    1996-01-01

    Regional cerebral blood flow (rCBF) changes of the patients with schizophrenia were observed. 99m Tc-ECD SPECT was performed on 22 patients with schizophrenia and 10 healthy volunteers at rest and activation with a cognitive task: a modified Wisconsin Card Sorting Test. At rest state, only 4 patients have abnormal rCBF pattern: left hemisphere over-perfusion relative to the right. A significant relative activation deficit in the left inferior prefrontal region was revealed in the patients during activation. The patients with schizophrenia may have frontal lobe dysfunction

  10. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-01-01

    Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD) have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM) volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons), and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons). This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD. PMID:29636704

  11. Altered Gray Matter Volume and Resting-State Connectivity in Individuals With Internet Gaming Disorder: A Voxel-Based Morphometry and Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Ji-Woo Seok

    2018-03-01

    Full Text Available Neuroimaging studies on the characteristics of individuals with Internet gaming disorder (IGD have been accumulating due to growing concerns regarding the psychological and social problems associated with Internet use. However, relatively little is known about the brain characteristics underlying IGD, such as the associated functional connectivity and structure. The aim of this study was to investigate alterations in gray matter (GM volume and functional connectivity during resting state in individuals with IGD using voxel-based morphometry and a resting-state connectivity analysis. The participants included 20 individuals with IGD and 20 age- and sex-matched healthy controls. Resting-state functional and structural images were acquired for all participants using 3 T magnetic resonance imaging. We also measured the severity of IGD and impulsivity using psychological scales. The results show that IGD severity was positively correlated with GM volume in the left caudate (p < 0.05, corrected for multiple comparisons, and negatively associated with functional connectivity between the left caudate and the right middle frontal gyrus (p < 0.05, corrected for multiple comparisons. This study demonstrates that IGD is associated with neuroanatomical changes in the right middle frontal cortex and the left caudate. These are important brain regions for reward and cognitive control processes, and structural and functional abnormalities in these regions have been reported for other addictions, such as substance abuse and pathological gambling. The findings suggest that structural deficits and resting-state functional impairments in the frontostriatal network may be associated with IGD and provide new insights into the underlying neural mechanisms of IGD.

  12. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    DEFF Research Database (Denmark)

    Garza-Villarreal, Eduardo A; Jiang, Zhiguo; Vuust, Peter

    2015-01-01

    , correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (r......Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without...... external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn...

  13. Comparable Rest-related Promotion of Spatial Memory Consolidation in Younger and Older Adults

    Science.gov (United States)

    Craig, Michael; Wolbers, Thomas; Harris, Mathew A.; Hauff, Patrick; Della Sala, Sergio; Dewar, Michaela

    2017-01-01

    Flexible spatial navigation depends on cognitive mapping, a function that declines with increasing age. In young adults, a brief period of post-navigation rest promotes the consolidation/integration of spatial memories into accurate cognitive maps. We examined (1) whether rest promotes spatial memory consolidation/integration in older adults and (2) whether the magnitude of the rest benefit changes with increasing age. Young and older adults learned a route through a virtual environment, followed by a 10min delay comprising either wakeful rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to landmarks from different locations. Pointing accuracy was lower in the older than younger adults. However, there was a comparable rest-related enhancement in pointing accuracy in the two age groups. Together our findings suggest that (i) the age-related decline in cognitive mapping cannot be explained by increased consolidation interference in older adults, and (ii) as we grow older rest continues to support the consolidation/integration of spatial memories. PMID:27689512

  14. Resting-State Connectivity of the Left Frontal Cortex to the Default Mode and Dorsal Attention Network Supports Reserve in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Nicolai Franzmeier

    2017-08-01

    Full Text Available Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer’s disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44. Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education and better maintenance of memory in mild cognitive impairment (MCI. Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC and in an independent validation sample (23 MCI/32 HC. Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN, but positively correlated with the dorsal-attention network (DAN. Greater education predicted stronger LFC-DMN-connectivity (anti-correlation and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.

  15. Prediction of improvement in global left ventricular function in patients with chronic coronary artery disease and impaired left ventricular function: rest thallium-201 SPET versus low-dose dobutamine echocardiography

    International Nuclear Information System (INIS)

    Pace, L.; Salvatore, M.; Perrone-Filardi, P.; Dellegrottaglie, S.; Prastaro, M.; Crisci, T.; Ponticelli, M.P.; Piscione, F.; Chiariello, M.; Storto, G.; Della Morte, A.M.

    2000-01-01

    Accurate assessment of myocardial viability permits selection of patients who would benefit from myocardial revascularization. Currently, rest-redistribution thallium-201 scintigraphy and low-dose dobutamine echocardiography are among the most used techniques for the identification of viable myocardium. Thirty-one consecutive patients (all men, mean age 60±8 years) with chronic coronary artery disease and reduced left ventricular ejection fraction (31%±7%) were studied. Rest 201 Tl single-photon emission tomography (SPET), low-dose dobutamine echocardiography and radionuclide angiography were performed before revascularization. Radionuclide angiography and echocardiography were repeated after revascularization. An a/dyskinetic segment was considered viable on 201 Tl SPET when tracer uptake was >65%, while improvement on low-dose dobutamine echocardiography was considered a marker of viability. Increase in global ejection fraction was considered significant at ≥5%. In identifying viable segments, rest 201 Tl SPET showed higher sensitivity than low-dose dobutamine echocardiography (72% vs 53%, P 201 Tl SPET in group 1 than in group 2 (2.6±1.9 vs 0.6±1.2, P 201 Tl SPET and post-revascularization changes in ejection fraction (r=0.52, P 201 Tl SPET had a higher sensitivity (82% vs 53%, P=0.07) and showed a trend towards higher accuracy and specificity (77% vs 58%, and 71% vs 64%, respectively) as compared with low-dose dobutamine echocardiography. In conclusion, these findings suggest that when severely reduced global function is present, rest 201 Tl SPET evaluation of viability is more accurate than low-dose dobutamine echocardiography for the identification of patients who will benefit most from revascularization. (orig.)

  16. Temporal Changes in Left Ventricular Mechanics: Impact of Bed Rest and Exercise

    Science.gov (United States)

    Scott, Jessica M.; Matz, Timothy; Caine, Timothy; Martin, David S.; Downs, Meghan; Ploutz-Snyder, Lori

    2014-01-01

    BACKGROUND Current techniques used to assess cardiac function following spaceflight or head-down tilt bed rest (HDTBR) involve invasive and time consuming procedures such as Swan-Ganz catheterization or cardiac magnetic resonance imaging. An alternative approach, echocardiography, can monitor cardiac morphology and function via sequential measurements of left ventricular (LV) mass and ejection fraction (EF). However, LV mass and EF are insensitive measures of early (subclinical) cardiac deconditioning, and a decrease in LV mass and EF become evident only once significant deconditioning has already occurred. The use of more sensitive and specific echocardiographic techniques such as speckle tracking imaging may address the current limitations of conventional cardiac imaging techniques to provide insight into the magnitude and time course of cardiac deconditioning. METHODS Speckle tracking assessment of longitudinal, radial, and circumferential strain and twist was used to evaluate the impact of 70 days of HDTBR (n=7) and HDTBR + exercise (n=11) on temporal changes in LV mechanics. Echocardiograms were performed pre (BR-2), during (BR31, 70), and following (BR+4hr) HDTBR. Multi-level modeling was used to evaluate the effect of HDTBR condition (Control, Exercise) on cardiac variables. RESULTS Compared to BR-2, longitudinal (BR-2: - 19.0 +/- 1.8%; BR31: -15.9 +/- 2.4%; BR70: -14.9 +/- 2.4%; BR+4hr: -16.0 +/- 2.1%) and radial (BR-2: 15.0 +/- 1.9%; BR31: 12.3 +/- 2.4%; BR70: 11.3 +/- 2.2%; BR+4hr: 13.5 +/- 2.5% ) strains were significantly impaired during and following bed rest (pmechanics for longitudinal strain (BR-2: -19.1 +/- 1.5%; BR 31: -19.0 +/- 2.4%; BR70: -19.1 +/- 2.7%; BR+4hr: -17.8 +/- 2.1%), radial strain (BR-2: 13.8 +/- 2.4; BR31: 14.7 +/- 2.4; BR70: 14.4 +/- 1.6; BR+4hr: 14.4 +/- 2.4), and twist (BR-2: 17.8 +/- 3.6deg; BR31: 18.0 +/- 3.6deg; BR70: 18.2 +/- 5.9deg; BR+4hr: 18.3 +/- 4.2deg). CONCLUSIONS Speckle-tracking echocardiography provides important

  17. Suprathreshold Heat Pain Response Predicts Activity-Related Pain, but Not Rest-Related Pain, in an Exercise-Induced Injury Model

    Science.gov (United States)

    Coronado, Rogelio A.; Simon, Corey B.; Valencia, Carolina; Parr, Jeffrey J.; Borsa, Paul A.; George, Steven Z.

    2014-01-01

    Exercise-induced injury models are advantageous for studying pain since the onset of pain is controlled and both pre-injury and post-injury factors can be utilized as explanatory variables or predictors. In these studies, rest-related pain is often considered the primary dependent variable or outcome, as opposed to a measure of activity-related pain. Additionally, few studies include pain sensitivity measures as predictors. In this study, we examined the influence of pre-injury and post-injury factors, including pain sensitivity, for induced rest and activity-related pain following exercise induced muscle injury. The overall goal of this investigation was to determine if there were convergent or divergent predictors of rest and activity-related pain. One hundred forty-three participants provided demographic, psychological, and pain sensitivity information and underwent a standard fatigue trial of resistance exercise to induce injury of the dominant shoulder. Pain at rest and during active and resisted shoulder motion were measured at 48- and 96-hours post-injury. Separate hierarchical models were generated for assessing the influence of pre-injury and post-injury factors on 48- and 96-hour rest-related and activity-related pain. Overall, we did not find a universal predictor of pain across all models. However, pre-injury and post-injury suprathreshold heat pain response (SHPR), a pain sensitivity measure, was a consistent predictor of activity-related pain, even after controlling for known psychological factors. These results suggest there is differential prediction of pain. A measure of pain sensitivity such as SHPR appears more influential for activity-related pain, but not rest-related pain, and may reflect different underlying processes involved during pain appraisal. PMID:25265560

  18. Magnetic resonance imaging of functional connectivity in Parkinson disease in the resting brain

    International Nuclear Information System (INIS)

    Liu Xian; Liu Bo; Luo Xiaodong; Li Ningna; Chen Zhiguang; Chen Jun

    2009-01-01

    Objective: To investigate functional connectivity changes in Parkinson disease in the resting brain using functional magnetic resonance imaging. Methods: Nine patients with Parkinson disease and eight age-matched healthy volunteers were entered into the study. The bilateral globus pallidus were chosen as seed points, the functional MR data acquired in the resting state were processed to investigate functional connectivity in PD patients and the results were compared with those of the controls. Results: In age-matched healthy controls, there are regions which had functional connectivity with bilateral globus pallidus, including bilateral temporal poles, bilateral hippocampus, bilateral thalami, posterior cingulate cortex, right middle occipital gyms and right superior parietal gyms. In PD patients, brain regions including bilateral cerebellum, left hippocampus, bilateral superior temporal gyri, left inferior frontal gyrus, left middle frontal gyrus, left precentral gyrus, left inferior parietal gyrus and left superior parietal gyrus, had functional connectivity with bilateral globus pallidus. Compared to healthy controls, increased functional connectivity in bilateral cerebellum, bilateral temporal lobes, left frontal lobe and left parietal lobe, and decreased functional connectivity in bilateral thalami were observed in PD patients. Conclusion: Abnormal changes of brain functional connectivity exists in Parkinson's disease in the resting state. (authors)

  19. Changes in Resting-State Connectivity following Melody-Based Therapy in a Patient with Aphasia

    OpenAIRE

    Bitan, Tali; Simic, Tijana; Saverino, Cristina; Jones, Cheryl; Glazer, Joanna; Collela, Brenda; Wiseman-Hakes, Catherine; Green, Robin; Rochon, Elizabeth

    2018-01-01

    Melody-based treatments for patients with aphasia rely on the notion of preserved musical abilities in the RH, following left hemisphere damage. However, despite evidence for their effectiveness, the role of the RH is still an open question. We measured changes in resting-state functional connectivity following melody-based intervention, to identify lateralization of treatment-related changes. A patient with aphasia due to left frontal and temporal hemorrhages following traumatic brain injuri...

  20. Infinite Relational Modeling of Functional Connectivity in Resting State fMRI

    DEFF Research Database (Denmark)

    Mørup, Morten; Madsen, Kristoffer H.; Dogonowski, Anne Marie

    2010-01-01

    Functional magnetic resonance imaging (fMRI) can be applied to study the functional connectivity of the neural elements which form complex network at a whole brain level. Most analyses of functional resting state networks (RSN) have been based on the analysis of correlation between the temporal...... dynamics of various regions of the brain. While these models can identify coherently behaving groups in terms of correlation they give little insight into how these groups interact. In this paper we take a different view on the analysis of functional resting state networks. Starting from the definition...... of resting state as functional coherent groups we search for functional units of the brain that communicate with other parts of the brain in a coherent manner as measured by mutual information. We use the infinite relational model (IRM) to quantify functional coherent groups of resting state networks...

  1. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  2. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  3. Detecting abnormalities in left ventricular function during exercise by respiratory measurement

    International Nuclear Information System (INIS)

    Koike, A.; Itoh, H.; Taniguchi, K.; Hiroe, M.

    1989-01-01

    The degree of exercise-induced cardiac dysfunction and its relation to the anaerobic threshold were evaluated in 23 patients with chronic heart disease. A symptom-limited exercise test was performed with a cycle ergometer with work rate increased by 1 W every 6 seconds. Left ventricular function, as reflected by ejection fraction, was continuously monitored with a computerized cadmium telluride detector after the intravenous injection of technetium-labeled red blood cells. The anaerobic threshold (mean, 727 ± 166 ml/min) was determined by the noninvasive measurement of respiratory gas exchange. As work rate rose, the left ventricular ejection fraction increased but reached a peak value at the anaerobic threshold and then fell below resting levels. Ejection fraction at rest, anaerobic threshold, and peak exercise were 41.4 ± 11.3%, 46.5 ± 12.0%, and 37.2 ± 11.0%, respectively. Stroke volume also increased from rest (54.6 ± 17.0 ml/beat) to the point of the anaerobic threshold (65.0 ± 21.2 ml/beat) and then decreased at peak exercise (52.4 ± 18.7 ml/beat). The slope of the plot of cardiac output versus work rate decreased above the anaerobic threshold. The anaerobic threshold occurred at the work rate above which left ventricular function decreased during exercise. Accurate determination of the anaerobic threshold provides an objective, noninvasive measure of the oxygen uptake above which exercise-induced deterioration in left ventricular function occurs in patients with chronic heart disease

  4. Proteome profiles of longissimus and biceps femoris porcine muscles related to exercise and resting

    DEFF Research Database (Denmark)

    F.W.Te Pas, Marinus; Keuning, Els; Van der Wiel, Dick J.M.

    2011-01-01

    Exercise affects muscle metabolism and composition in the untrained muscles. The proteome of muscle tissue will be affected by exercise and resting. This is of economic importance for pork quality where transportation relates to exercise of untrained muscles. Rest reverses exercise effects....... The objective of this research was to develop potential protein biomarkers that predict the optimal resting time after exercise related to optimal pork quality. Ten litters of four female pigs were within litter allocated to the four treatment groups: exercise by running on a treadmill for 27 minutes followed...... by rest for 0, 1, or 3 h; control pigs without exercise. Proteome profiles and biochemical traits measuring energy metabolism and meat quality traits expected to be related to exercise were determined in the Longissimus and the Biceps femoris of the pigs. The results indicated associations between protein...

  5. Left ventricular performance during psychological stress

    International Nuclear Information System (INIS)

    Young, D.Z.; Massachusetts General Hospital, Boston; Dimsdale, J.E.; Moore, R.H.; Barlai-Kovach, M.; Newell, J.B.; McKusick, K.A.; Boucher, C.A.; Fifer, M.A.; Strauss, H.W.

    1989-01-01

    Left ventricular ejection fraction, systolic blood pressure and plasma norepinephrine were measured in six normotensive and six mildly hypertensive subjects during rest and psychological stress. Compared with rest, 8 of the 12 subjects developed significant changes in ejection fraction (increase in 6, decrease in 2); 10 of 12 subjects developed significant elevations of plasma norepinephrine; and all developed significant increases in systolic blood pressure. When the stress effects were examined for the total group, as opposed to within subjects, there were significant increases in plasma norepinephrine and systolic blood pressure but, interestingly, mean ejection fraction and stroke volume remained unchanged, implying stress led to increased left ventricular contractility. (orig.)

  6. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    Science.gov (United States)

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Impaired insight into illness and cognitive insight in schizophrenia spectrum disorders: Resting state functional connectivity

    Science.gov (United States)

    Gerretsen, Philip; Menon, Mahesh; Mamo, David C.; Fervaha, Gagan; Remington, Gary; Pollock, Bruce G.; Graff-Guerrero, Ariel

    2015-01-01

    Background Impaired insight into illness (clinical insight) in schizophrenia has negative effects on treatment adherence and clinical outcomes. Schizophrenia is described as a disorder of disrupted brain connectivity. In line with this concept, resting state networks (RSNs) appear differentially affected in persons with schizophrenia. Therefore, impaired clinical, or the related construct of cognitive insight (which posits that impaired clinical insight is a function of metacognitive deficits), may reflect alterations in RSN functional connectivity (fc). Based on our previous research, which showed that impaired insight into illness was associated with increased left hemisphere volume relative to right, we hypothesized that impaired clinical insight would be associated with increased connectivity in the DMN with specific left hemisphere brain regions. Methods Resting state MRI scans were acquired for participants with schizophrenia or schizoaffective disorder (n = 20). Seed-to-voxel and ROI-to-ROI fc analyses were performed using the CONN-fMRI fc toolbox v13 for established RSNs. Clinical and cognitive insight were measured with the Schedule for the Assessment of Insight—Expanded Version and Beck Cognitive Insight Scale, respectively, and included as the regressors in fc analyses. Results As hypothesized, impaired clinical insight was associated with increased connectivity in the default mode network (DMN) with the left angular gyrus, and also in the self-referential network (SRN) with the left insula. Cognitive insight was associated with increased connectivity in the dorsal attention network (DAN) with the right inferior frontal cortex (IFC) and left anterior cingulate cortex (ACC). Conclusion Increased connectivity in DMN and SRN with the left angular gyrus and insula, respectively, may represent neural correlates of impaired clinical insight in schizophrenia spectrum disorders, and is consistent with the literature attributing impaired insight to left

  8. Relationship between exercise capacity and left ventricular function at rest in patients with heart failure. An ambulatory left ventricular monitoring study; Relazione tra capacita' di esercizio e funzione ventricolare sinistra a riposo nei pazienti con insufficienza cardiaca. Studio mediante monitoraggio continuo radionuclidico della funzione ventricolare sinistra

    Energy Technology Data Exchange (ETDEWEB)

    Pace, L.; Cuocolo, A.; Salvatore, M. [Naples Univ. Federico 2., Naples (Italy). Medicina Nucleare; Centro di Medicina Nucleare, Naples (Italy); Nappi, A.; Imbriaco, M; Varrone, A. [Naples Univ. Federico 2., Naples (Italy). Medicina Nucleare; Romano, M.; Trimarco, B. [Naples Univ., Federico 2., Naples (Italy). Medicina Interna

    2000-09-01

    Purpose of this work is to evaluate the relationship of systolic and diastolic function at rest to exercise capacity. Seventeen patients with ischemic heart failure were included in the study. Ambulatory left ventricular monitoring at rest and during upright exercise with combined analysis of pulmonary gas exchange was performed. Ejection fraction, end-diastolic volume, end-systolic volume, stroke volume, cardiac output, and peak filling rate were measured. Significant positive correlations were found between rest ejection fraction and peak oxygen consumption (r=.60, p<.01), peak cardiac output (r=.67, p<.005). On the other hand, peak filling rate at rest showed a significant inverse correlation with peak end-diastolic (r=.48, p<.05) and end-systolic (r=-.66, p<.005) volumes. The patients were then sub grouped into two groups according to their rest ejection fraction (lower or higher than 40%). In the group with ejection fraction less than 40% a significant correlation was observed between rest ejection fraction and both peak stroke volume (r=-.66, p<.05) and peak ejection fraction (r=.69, p<.05). In the same group of patients an inverse correlation was found between peak filling rate and both end-diastolic (r=.65, p<.05) and end-systolic (r=.82, p<.005) volumes. The results of the present study suggest that exercise capacity is related to left ventricular function at rest and that rest diastolic function might be a determinant of left ventricular function during exercise in patients with heart failure. [Italian] Scopo di questo studio e' valutare se la capacita' di esercizio, determinata mediante il consumo di ossigeno e la funzione ventricolare sinistra, sia correlata alla funzione ventricolare sinistra a riposo nei pazienti con insufficienza cardiaca. Sono stati studiati 17 pazienti con insufficienza cardiaca di origine ischemica. Tutti sono stati sottoposti a monitoraggio radionuclidico continuo della funzione ventricolare sinistra in combinazione con

  9. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fractional amplitude analysis of low frequency fluctuation in alcohol dependent individuals: a resting state functional MRI study

    International Nuclear Information System (INIS)

    Yan Dingfang; Cheng Jun; Wu Hanbin; Xu Liangzhou; Liu Jinhuan; Zhao Yilin; Lin Xue; Liu Changsheng; Qiu Li

    2012-01-01

    Objective: To explore brain activity features during the resting state in alcohol dependent individuals, and study the relationship between the brain activity features and alcohol dependent individuals' clinical symptoms. Methods: Twenty-four alcohol dependent individuals and 22 healthy control subjects, well matched in gender, age, education and handedness, were enrolled as the alcohol dependent group and control group respectively. A GE 3.0 T MR scanner was used to acquire all the subjects' resting state data. DPARSF software was used to process resting functional MRI data, and then the whole brain fractional amplitudes of low frequency fluctuation (fALFF) data were acquired. Two-sample t test statistical analysis was made to access fALFF difference between the two groups. Results: In comparison with the control group, the alcohol dependent group showed reduced fALFF in bilateral medial prefrontal gyrus, right inferior occipital gyrus, left precuneus,left inferior temporal gyrus, and left posterior lobe of cerebellum (0.64-1.69 vs. 0.87-1.78, t=-4.23- -2.79, P<0.05). fALFF was increased in the alcohol dependent group at the anterior cingulate,bilateral inferior frontal gyrus,right middle frontal gyrus,bilateral insular lobe,bilateral dorsal thalamus (0.86-1.82 vs. 0.76-1.58, t=3.56-3.96, P<0.05). Conclusion: Alcohol dependent individuals had abnormal activity at the bilateral prefrontal lobe,anterior cingulate, bilateral dorsal thalamus, bilateral insular lobe, left posterior lobe of cerebellum et al, during the resting state, and these abnormal activities might be related with clinical manifestation and pathophysiology. (authors)

  11. Differences in Brain Adaptive Functional Reorganization in Right and Left Total Brachial Plexus Injury Patients.

    Science.gov (United States)

    Feng, Jun-Tao; Liu, Han-Qiu; Xu, Jian-Guang; Gu, Yu-Dong; Shen, Yun-Dong

    2015-09-01

    Total brachial plexus avulsion injury (BPAI) results in the total functional loss of the affected limb and induces extensive brain functional reorganization. However, because the dominant hand is responsible for more cognitive-related tasks, injuries on this side induce more adaptive changes in brain function. In this article, we explored the differences in brain functional reorganization after injuries in unilateral BPAI patients. We applied resting-state functional magnetic resonance imaging scanning to 10 left and 10 right BPAI patients and 20 healthy control subjects. The amplitude of low-frequency fluctuation (ALFF), which is a resting-state index, was calculated for all patients as an indication of the functional activity level of the brain. Two-sample t-tests were performed between left BPAI patients and controls, right BPAI patients and controls, and between left and right BPAI patients. Two-sample t-tests of the ALFF values revealed that right BPAIs induced larger scale brain reorganization than did left BPAIs. Both left and right BPAIs elicited a decreased ALFF value in the right precuneus (P right BPAI patients exhibited increased ALFF values in a greater number of brain regions than left BPAI patients, including the inferior temporal gyrus, lingual gyrus, calcarine sulcus, and fusiform gyrus. Our results revealed that right BPAIs induced greater extents of brain functional reorganization than left BPAIs, which reflected the relatively more extensive adaptive process that followed injuries of the dominant hand. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rest and treatment/rehabilitation following sport-related concussion: a systematic review.

    Science.gov (United States)

    Schneider, Kathryn J; Leddy, John J; Guskiewicz, Kevin M; Seifert, Tad; McCrea, Michael; Silverberg, Noah D; Feddermann-Demont, Nina; Iverson, Grant L; Hayden, Alix; Makdissi, Michael

    2017-06-01

    The objective of this systematic review was to evaluate the evidence regarding rest and active treatment/rehabilitation following sport-related concussion (SRC). Systematic review. MEDLINE (OVID), CINAHL (EbscoHost), PsycInfo (OVID), Cochrane Central Register of Controlled Trials (OVID), SPORTDiscus (EbscoHost), EMBASE (OVID) and Proquest DissertationsandTheses Global (Proquest) were searched systematically. Studies were included if they met the following criteria: (1) original research; (2) reported SRC as the diagnosis; and (3) evaluated the effect of rest or active treatment/rehabilitation. Review articles were excluded. Twenty-eight studies met the inclusion criteria (9 regarding the effects of rest and 19 evaluating active treatment). The methodological quality of the literature was limited; only five randomised controlled trials (RCTs) met the eligibility criteria. Those RCTs included rest, cervical and vestibular rehabilitation, subsymptom threshold aerobic exercise and multifaceted collaborative care. A brief period (24-48 hours) of cognitive and physical rest is appropriate for most patients. Following this, patients should be encouraged to gradually increase activity. The exact amount and duration of rest are not yet well defined and require further investigation. The data support interventions including cervical and vestibular rehabilitation and multifaceted collaborative care. Closely monitored subsymptom threshold, submaximal exercise may be of benefit. PROSPERO 2016:CRD42016039570. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Proteome Profiles of Longissimus and Biceps femoris Porcine Muscles Related to Exercise and Resting

    NARCIS (Netherlands)

    Pas, te M.F.W.; Keuning, E.; Wiel, van de D.F.M.; Young, J.F.; Oksbjerg, N.; Kruijt, L.

    2011-01-01

    Exercise affects muscle metabolism and composition in the untrained muscles. The proteome of muscle tissue will be affected by exercise and resting. This is of economic importance for pork quality where transportation relates to exercise of untrained muscles. Rest reverses exercise effects. The

  14. Evaluation of left cardiac function by exercise in hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Konishi, Tokuji; Horayama, Norihisa; Hamada, Masayuki; Nakano, Takeshi; Takezawa, Hideo

    1981-01-01

    Left ventricular systolic and diastolic features at rest and exercise in hypertrophic cardiomyopathy were evaluated by Fourier analysis of blood pool scintigraphy (intracorporeal labelling with sup(99m)Tc-RBC). In the normal group (17 subjects), the left ventricular ejection fraction showed a linear increase, but no abnormality of regional ventricular wall motion, by multistage exercises. The hypertrophic cardiomyopathy group showed higher left ventricular ejection fractions at rest than those of the normal group, and in the HCM group (non-obstructive, from morphological features; 7 cases) the left ventricular ejection fraction did not increase any more when it reached a certain plateau in accordance with increased stress. In the HOCM (obstructive; 5 cases), the left ventricular ejection fraction showed a decreasing tendency as the stress was increased and also showed contractile abnormalities from the left ventricular center to the apex. Fourier analysis was effective for the evaluation of these changes. (Chiba, N.)

  15. Related anomalies of origin of left vertebral and left inferior thyroid arteries

    International Nuclear Information System (INIS)

    Sartor, K.; Freckmann, N.; Boeker, D.K.; Allgemeines Krankenhaus Altona, Hamburg

    1981-01-01

    The known rare occurrence of related anomalies of origin of vertebral and inferior thyroid arteries appears not to be documented in the angiographic literature. Three cases with manifestation on the left side are presented. Embryology is discussed briefly. Knowledge of such anomalies is of importance to surgeons as well as angiographers. (orig.) [de

  16. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  17. Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder.

    Science.gov (United States)

    Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui

    2017-01-01

    This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t -test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD.

  18. Temporal reliability and lateralization of the resting-state language network.

    Science.gov (United States)

    Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong

    2014-01-01

    The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.

  19. Temporal reliability and lateralization of the resting-state language network.

    Directory of Open Access Journals (Sweden)

    Linlin Zhu

    Full Text Available The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.

  20. Temporal Reliability and Lateralization of the Resting-State Language Network

    Science.gov (United States)

    Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong

    2014-01-01

    The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058

  1. Laterality effects in functional connectivity of the angular gyrus during rest and episodic retrieval.

    Science.gov (United States)

    Bellana, Buddhika; Liu, Zhongxu; Anderson, John A E; Moscovitch, Morris; Grady, Cheryl L

    2016-01-08

    The angular gyrus (AG) is consistently reported in neuroimaging studies of episodic memory retrieval and is a fundamental node within the default mode network (DMN). Its specific contribution to episodic memory is debated, with some suggesting it is important for the subjective experience of episodic recollection, rather than retrieval of objective episodic details. Across studies of episodic retrieval, the left AG is recruited more reliably than the right. We explored functional connectivity of the right and left AG with the DMN during rest and retrieval to assess whether connectivity could provide insight into the nature of this laterality effect. Using data from the publically available 1000 Functional Connectome Project, 8min of resting fMRI data from 180 healthy young adults were analysed. Whole-brain functional connectivity at rest was measured using a seed-based Partial Least Squares (seed-PLS) approach (McIntosh and Lobaugh, 2004) with bilateral AG seeds. A subsequent analysis used 6-min of rest and 6-min of unconstrained, silent retrieval of autobiographical events from a new sample of 20 younger adults. Analysis of this dataset took a more targeted approach to functional connectivity analysis, consisting of univariate pairwise correlations restricted to nodes of the DMN. The seed-PLS analysis resulted in two Latent Variables that together explained ~86% of the shared cross-block covariance. The first LV revealed a common network consistent with the DMN and engaging the AG bilaterally, whereas the second LV revealed a less robust, yet significant, laterality effect in connectivity - the left AG was more strongly connected to the DMN. Univariate analyses of the second sample again revealed better connectivity between the left AG and the DMN at rest. However, during retrieval the left AG was more strongly connected than the right to non-medial temporal (MTL) nodes of the DMN, and MTL nodes were more strongly connected to the right AG. The multivariate

  2. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas.

    Directory of Open Access Journals (Sweden)

    Thomas J Baumgarten

    Full Text Available Neuronal oscillatory activity in the beta band (15-30 Hz is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy and beta oscillations (measured by magnetoencephalography at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex.

  3. Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

    Science.gov (United States)

    Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim

    2016-01-01

    Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089

  4. Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

    Science.gov (United States)

    Chen, Wen; Chen, Chunhui; Xia, Mingrui; Wu, Karen; Chen, Chuansheng; He, Qinghua; Xue, Gui; Wang, Wenjing; He, Yong; Dong, Qi

    2016-01-01

    Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo). PMID:27853425

  5. A comparison of resting images from two myocardial perfusion tracers

    International Nuclear Information System (INIS)

    Anagnostopoulos, C.; Laney, R.; Pennell, D.; Proukakis, H.; Underwood, R.

    1995-01-01

    We have compared stress-redistribution and delayed rest thallium-201 with rest technetium-99m methoxyisobutylisonitrile (MIBI) tomograms in order to compare the tracers for the assessment of myocardial viability and to validate a rapid protocol combining the two tracers. We studied 30 consecutive patients with known or suspected coronary artery disease [group 1: 16 with normal left ventricular function, mean left ventricular ejection fraction (LVEF) 55%, SD 6%; group 2: 14 with abnormal function, mean LVEF 28%, SD 8%]. 201 Tl was injected during infusion of adenosine followed by acquisition of conventional stress and redistribution tomograms. On a separate day, 201 Tl was injected at rest with imaging 4 h later. 99m Tc-MIBI was then given at rest and imaging was performed. Three images were compared: redistribution 201 Tl, rest 201 Tl, and rest 99m Tc-MIBI. Tracer activity was classified visually and quantitatively in nine segments and segments with>50% activity were defined as containing clinically significant viable myocardium. Mean global tracer uptake as a percentage of maximum was similar in group 1 (rest 201 Tl 69%±12%, redistribution 201 Tl 69%±15%, rest 99m Tc-MIBI 70%±13%), but in group 2 mean tracer uptake was significantly greater in the rest 201 Tl images (59%±16%) than in redistribution 201 Tl images (53%±17%) or rest 99m Tc-MIBI images (53%±19%). Overall agreement for regional uptake score was excellent (κ from 0.79 to 0.84), although there were a significant number of segments with less uptake shown by redistribution 201 Tl and by rest 99m Tc-MIBI than by rest 201 Tl in group 2. The number of segments with significant viable myocardium in group 1 was very similar between the three images but in group 2 rest 201 Tl identified significantly more segments as viable than the other images. (orig./MG) (orig.). With 1 fig., 7 tabs

  6. Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2011-01-01

    Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact

  7. Assessment of cardiac blood pool imaging in patients with left ventricular outflow tract stenosis

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ono, Yasuo; Kohata, Tohru; Tsubata, Shinichi; Kamiya, Tetsuroh.

    1993-01-01

    We performed cardiac blood pool imagings with Tc-99m at rest and during supine ergometer exercise to evaluate left ventricular performance in 14 patients with left ventricular outflow tract stenosis. All catheterized patients were divided into two subgroups: 8 patients with peak systolic left ventricular to descending aortic pressure gradients of less than 50 mmHg (LPG group) and 6 patients with peak systolic gradients of more than 50 mmHg (HPG group). Control group included 10 patients without stenotic coronary lesions after Kawasaki disease. Left ventricular ejection fraction (LVEF) was obtained as systolic index; both filling fraction during the first third of diastole (1/3FF) and mean filling rate during the first third of diastole (1/3FR mean) were obtained as diastolic indices. None of the patients had abnormal findings on 201 Tl imaging. LVEF at rest in HPG group was significantly higher than those in control group, but LVEF in HPG group did not increase after exercise. It increased significantly in control group and LPG group. 1/3 FF in HPG group was significantly lower not only at rest but also during exercise. 1/3 FR mean at rest was not different significantly among the 3 groups. However, 1/3FR mean during exercise in LPG group was significantly lower; and 1/3 FR mean during exercise was significantly lower in HPG group than LPG group. The ratio of left ventricular muscular mass to left ventricular end-diastolic volume (M/V) calculated from left ventricular cineangiograms was different significantly among the 3 groups. The M/V ratio showed a correlation with LVEF and 1/3 FF both at rest and during exercise. These results would indicate that systolic function was impaired on exercise in severe left ventricular outflow tract stenosis and diastolic function was impaired on exercise in mild and severe left ventricular outflow tract stenosis. This may correlate with left ventricular hypertrophy and interaction of systolic function. (author)

  8. Influence of left ventricular hypertrophy on infarct size and left ventricular ejection fraction in ST-elevation myocardial infarction

    International Nuclear Information System (INIS)

    Małek, Łukasz A.; Śpiewak, Mateusz; Kłopotowski, Mariusz; Petryka, Joanna; Mazurkiewicz, Łukasz; Kruk, Mariusz; Kępka, Cezary; Miśko, Jolanta; Rużyłło, Witold; Witkowski, Adam

    2012-01-01

    Background: Left ventricular hypertrophy (LVH) predisposes to larger infarct size, which may be underestimated by the left ventricular ejection fraction (LVEF) due to supranormal systolic performance often present in patients with LVH. The aim of the study was to compare infarct size and LVEF in patients with ST-segment elevation myocardial infarction (STEMI) and increased left ventricular mass on cardiac magnetic resonance (CMR). Methods: The study included unselected group of 52 patients (61 ± 11 years, 69% male) with first STEMI who had CMR after median 5 days from the onset of the event. Left ventricular hypertrophy (LVH) was defined as left ventricular mass index exceeding 95th percentile of references values for age and gender. Infarct size was assessed with means of late gadolinium enhancement (LGE). Results: LVH was found in 16 patients (31%). In comparison to the rest of the group, patients with LVH had higher absolute and relative infarct mass (p = 0.002 and p = 0.02, respectively). LVH was related to higher prevalence of microvascular obstruction and myocardial haemorrhage and higher number of LV segments with transmural necrosis (p = 0.02, p = 0.01 and p = 0.01, respectively). Despite marked difference in the infarct size between both studied subgroups there was no difference in LVEF and mean number of dysfunctional LV segments. Conclusions: Patients with LVH undergoing STEMI have larger infarct size underestimated by the LV systolic performance in comparison to patients without LVH.

  9. Sleeping and resting respiratory rates in dogs and cats with medically-controlled left-sided congestive heart failure.

    Science.gov (United States)

    Porciello, F; Rishniw, M; Ljungvall, I; Ferasin, L; Haggstrom, J; Ohad, D G

    2016-01-01

    Sleeping and resting respiratory rates (SRR and RRR, respectively) are commonly used to monitor dogs and cats with left-sided cardiac disease and to identify animals with left-sided congestive heart failure (L-CHF). Dogs and cats with subclinical heart disease have SRRmean values dogs and cats with CHF that is well controlled with medical therapy. In this study, SRR and RRR were measured by the owners of 51 dogs and 22 cats with stable, well-controlled CHF. Median canine SRRmean was 20 breaths/min (7-39 breaths/min); eight dogs were ≥25 breaths/min and one dog only was ≥30 breaths/min. Canine SRRmean was unrelated to pulmonary hypertension or diuretic dose. Median feline SRRmean was 20 breaths/min (13-31 breaths/min); four cats were ≥25 breaths/min and only one cat was ≥30 breaths/min. Feline SRRmean was unrelated to diuretic dose. SRR remained stable during collection in both species with little day-to-day variability. The median canine RRRmean was 24 breaths/min (12-44 breaths/min), 17 were ≥25 breaths/min, seven were ≥30 breaths/min, two were >40 breaths/min. Median feline RRRmean was 24 breaths/min (15-45 breaths/min); five cats had RRRmean ≥25 breaths/min; one had ≥30 breaths/min, and two had ≥40 breaths/min. These data suggest that most dogs and cats with CHF that is medically well-controlled and stable have SRRmean and RRRmean dogs and cats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Longitudinal changes in resting-state fMRI from age 5 to age 6years covary with language development.

    Science.gov (United States)

    Xiao, Yaqiong; Friederici, Angela D; Margulies, Daniel S; Brauer, Jens

    2016-03-01

    Resting-state functional magnetic resonance imaging is a powerful technique to study the whole-brain neural connectivity that underlies cognitive systems. The present study aimed to define the changes in neural connectivity in their relation to language development. Longitudinal resting-state functional data were acquired from a cohort of preschool children at age 5 and one year later, and changes in functional connectivity were correlated with language performance in sentence comprehension. For this, degree centrality, a voxel-based network measure, was used to assess age-related differences in connectivity at the whole-brain level. Increases in connectivity with age were found selectively in a cluster within the left posterior superior temporal gyrus and sulcus (STG/STS). In order to further specify the connection changes, a secondary seed-based functional connectivity analysis on this very cluster was performed. The correlations between resting-state functional connectivity (RSFC) and language performance revealed developmental effects with age and, importantly, also dependent on the advancement in sentence comprehension ability over time. In children with greater advancement in language abilities, the behavioral improvement was positively correlated with RSFC increase between left posterior STG/STS and other regions of the language network, i.e., left and right inferior frontal cortex. The age-related changes observed in this study provide evidence for alterations in the language network as language develops and demonstrates the viability of this approach for the investigation of normal and aberrant language development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Selective vulnerability related to aging in large-scale resting brain networks.

    Science.gov (United States)

    Zhang, Hong-Ying; Chen, Wen-Xin; Jiao, Yun; Xu, Yao; Zhang, Xiang-Rong; Wu, Jing-Tao

    2014-01-01

    Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60-80 years) and 18 younger (aged 22-33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.

  12. Whole brain resting-state analysis reveals decreased functional connectivity in major depression

    Directory of Open Access Journals (Sweden)

    Ilya M. Veer

    2010-09-01

    Full Text Available Recently, both increases and decreases in resting-state functional connectivity have been found in major depression. However, these studies only assessed functional connectivity within a specific network or between a few regions of interest, while comorbidity and use of medication was not always controlled for. Therefore, the aim of the current study was to investigate whole-brain functional connectivity, unbiased by a priori definition of regions or networks of interest, in medication-free depressive patients without comorbidity. We analyzed resting-state fMRI data of 19 medication-free patients with a recent diagnosis of major depression (within six months before inclusion and no comorbidity, and 19 age- and gender-matched controls. Independent component analysis was employed on the concatenated data sets of all participants. Thirteen functionally relevant networks were identified, describing the entire study sample. Next, individual representations of the networks were created using a dual regression method. Statistical inference was subsequently done on these spatial maps using voxelwise permutation tests. Abnormal functional connectivity was found within three resting-state networks in depression: 1 decreased bilateral amygdala and left anterior insula connectivity in an affective network, 2 reduced connectivity of the left frontal pole in a network associated with attention and working memory, and 3 decreased bilateral lingual gyrus connectivity within ventromedial visual regions. None of these effects were associated with symptom severity or grey matter density. We found abnormal resting-state functional connectivity not previously associated with major depression, which might relate to abnormal affect regulation and mild cognitive deficits, both associated with the symptomatology of the disorder.

  13. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  14. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  15. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  16. Increased Brain Activation for Foot Movement During 70-Day 6 Deg Head-Down Bed Rest (HDBR): Evidence from Functional Magnetic Resonance Imaging (fMRI)

    Science.gov (United States)

    Yuan, P.; Koppelmans, V.; Cassady, K.; Cooke, K.; De Dios, Y. E.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, P. A.; hide

    2015-01-01

    Bed rest has been widely used as a simulation of weightlessness in studying the effects of microgravity exposure on human physiology and cognition. Changes in muscle function and functional mobility have been reported to be associated with bed rest. Understanding the effect of bed rest on neural control of movement would provide helpful information for spaceflight. In the current study, we evaluated how the brain activation for foot movement changed as a function of bed rest. Eighteen healthy men (aged 25 to 39 years) participated in this HDBR study. They remained continuously in the 6deg head-down tilt position for 70 days. Functional MRI was acquired during 1-Hz right foot tapping, and repeated at 7 time points: 12 days pre-, 8 days pre-, 7 days in-, 50 days in-, 70 days in-, 8 days post-, and 12 days post- HDBR. In all 7 sessions, we observed increased activation in the left motor cortex, right cerebellum and right occipital cortex during foot movement blocks compared to rest. Compared to the pre-HDBR baseline (1st and 2nd sessions), foot movement-induced activation in the left hippocampus increased during HDBR. This increase emerged in the 4th session, enlarged in the 5th session, and remained significant in the 6th and 7th sessions. Furthermore, increased activation relative to the baseline in left precuneus was observed in the 5th, 6th and 7th sessions. In addition, in comparison with baseline, increased activation in the left cerebellum was found in the 4th and 5th sessions, whereas increased activation in the right cerebellum was observed in the 4th, 6th and 7th sessions. No brain region exhibited decreased activation during bed rest compared to baseline. The increase of foot movement related brain activation during HDBR suggests that in a long-term head-down position, more neural control is needed to accomplish foot movements. This change required a couple of weeks to develop in HDBR (between 3rd and 4th sessions), and did not return to baseline even 12

  17. Effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced on workdays and weekends.

    Science.gov (United States)

    Vahle-Hinz, Tim; Bamberg, Eva; Dettmers, Jan; Friedrich, Niklas; Keller, Monika

    2014-04-01

    The present study reports the lagged effects of work stress on work-related rumination, restful sleep, and nocturnal heart rate variability experienced during both workdays and weekends. Fifty employees participated in a diary study. Multilevel and regression analyses revealed a significant relationship between work stress measured at the end of a workday, work-related rumination measured during the evening, and restful sleep measured the following morning. Work stress, measured as the mean of 2 consecutive workdays, was substantially but not significantly related to restful sleep on weekends. Work stress was unrelated to nocturnal heart rate variability. Work-related rumination was related to restful sleep on weekends but not on workdays. Additionally, work-related rumination on weekends was positively related to nocturnal heart rate variability during the night between Saturday and Sunday. No mediation effects of work stress on restful sleep or nocturnal heart rate variability via work-related rumination were confirmed.

  18. Validation of rest and exercise radionuclide angiography in patients with aortic regurgitation

    International Nuclear Information System (INIS)

    Gosiewska-Marcinkowska, E.; Rawczynska-Englert, I.; Szumilak, B.; Konieczna, S.; Rozycka-Chrzanowska, B.

    1992-01-01

    The aim of the study was to evaluate the significance of rest and stress test using radionuclide angiography (RA) in assessment of left ventricular (LV) function in the patients with aortic regurgitation (AR). In 32 patients we analyzed pre and 12 months after aortic valve replacement (AVR) the clinical data (including LV cavity dimension, LV hypertrophy, relative heart volume - RHV, the value of diastolic pressure) and the RA at rest and during supine stress test. We compared the clinical data with eject fraction (EF) and rest (EFr), at exercise (EFex) and ΔEF=EFex-EFr. Results show good correlation between clinical data and EF. Conclusions: 1) exercise RA is an useful method of estimation of LV function and after AVR; 2) early evaluation of the reserve of the LV allows to establish the appropriate time for AVR even before the signs of insufficiency of the LV are revealed. (author). 8 refs, 2 tabs

  19. Decreases in left atrial compliance during early-stage exercise are related to exercise intolerance in asymptomatic significant mitral stenosis.

    Science.gov (United States)

    Jung, Mi-Hyang; Jung, Hae Ok; Lee, Jung-Won; Youn, Ho-Joong

    2017-11-01

    Doppler-driven net atrioventricular compliance (C n ), which represents left atrial (LA) compliance, is an important determinant of pulmonary hypertension in mitral stenosis (MS). We hypothesized that decreases in C n during early-stage exercise underlie exercise intolerance in patients with MS. Thirty-three asymptomatic patients with significant MS (valve area 1.24 ± 0.16 cm 2 ) underwent resting and bicycle exercise echocardiography. LA compliance and conventional parameters were assessed at each workload. The patients were classified into two groups based on whether they developed dyspnea during exercise: an exercise-intolerance group (n = 22) and an exercise-tolerance group (n = 11). Moreover, "50 W" was defined as an early exercise stage. Although the groups had similar resting characteristics, there were striking differences in their echocardiographic parameters from the early stages of exercise. The relative C n decrease at 50 W (expressed as a percentage of the resting C n ) was significantly greater in the exercise-intolerance group (70.3 ± 15.4% vs 49.7 ± 9.7%, P intolerance group (P = .0005). Furthermore, differences in the trends in this parameter were observed between the two groups (P intolerance (adjusted OR 1.105, 95% CI 1.030-1.184) after adjustment for other conventional parameters. Decreases in C n during early-stage exercise are an important mechanism underlying exercise intolerance in MS. © 2017, Wiley Periodicals, Inc.

  20. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI

    Directory of Open Access Journals (Sweden)

    Castellano Gabriela

    2010-06-01

    Full Text Available Abstract Background Mesial temporal lobe epilepsy (MTLE, the most common type of focal epilepsy in adults, is often caused by hippocampal sclerosis (HS. Patients with HS usually present memory dysfunction, which is material-specific according to the hemisphere involved and has been correlated to the degree of HS as measured by postoperative histopathology as well as by the degree of hippocampal atrophy on magnetic resonance imaging (MRI. Verbal memory is mostly affected by left-sided HS, whereas visuo-spatial memory is more affected by right HS. Some of these impairments may be related to abnormalities of the network in which individual hippocampus takes part. Functional connectivity can play an important role to understand how the hippocampi interact with other brain areas. It can be estimated via functional Magnetic Resonance Imaging (fMRI resting state experiments by evaluating patterns of functional networks. In this study, we investigated the functional connectivity patterns of 9 control subjects, 9 patients with right MTLE and 9 patients with left MTLE. Results We detected differences in functional connectivity within and between hippocampi in patients with unilateral MTLE associated with ipsilateral HS by resting state fMRI. Functional connectivity resulted to be more impaired ipsilateral to the seizure focus in both patient groups when compared to control subjects. This effect was even more pronounced for the left MTLE group. Conclusions The findings presented here suggest that left HS causes more reduction of functional connectivity than right HS in subjects with left hemisphere dominance for language.

  1. Early changes in left atrial volume after acute myocardial infarction

    DEFF Research Database (Denmark)

    Bakkestrom, R.; Andersen, Mads J; Ersboll, M.

    2016-01-01

    . The objective was to assess changes in LA volume early after MI in patients with diastolic dysfunction and the relation to invasive hemodynamics and natriuretic peptides. Methods: 62 patients with left ventricle ejection fraction (LVEF) >= 45%, diastolic E/e' > 8 and LA volume index >34 ml/m(2) within 48 h......Background: Dilatation of left atrium (LA) reflects chronic LA pressure or volume overload that possesses considerable prognostic information. Little is known regarding the interaction between LA remodeling after acute myocardial infarction (MI) and left atrial pressure at rest and during exercise...... of MI were enrolled. After 1 and 4 months blood sampling, echocardiography and right heart catheterization were performed during exercise test. Results: LA remodeling was considered in patients with a change from mild (35-41 ml/m(2)), to severe (>48ml/m(2)) dilatation after 4 months (Found in 22...

  2. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  3. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  4. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  5. Gender Differences in Cerebral Regional Homogeneity of Adult Healthy Volunteers: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Chunsheng Xu

    2015-01-01

    Full Text Available Objective. We sought to use the regional homogeneity (ReHo approach as an index in the resting-state functional MRI to investigate the gender differences of spontaneous brain activity within cerebral cortex and resting-state networks (RSNs in young adult healthy volunteers. Methods. One hundred and twelve healthy volunteers (56 males, 56 females participated in the resting-state fMRI scan. The ReHo mappings in the cerebral cortex and twelve RSNs of the male and female groups were compared. Results. We found statistically significant gender differences in the primary visual network (PVN (P<0.004, with Bonferroni correction and left attention network (LAtN, default mode network (DMN, sensorimotor network (SMN, executive network (EN, and dorsal medial prefrontal network (DMPFC as well (P<0.05, uncorrected. The male group showed higher ReHo in the left precuneus, while the female group showed higher ReHo in the right middle cingulate gyrus, fusiform gyrus, left inferior parietal lobule, precentral gyrus, supramarginal gyrus, and postcentral gyrus. Conclusions. Our results suggested that men and women had regional specific differences during the resting-state. The findings may improve our understanding of the gender differences in behavior and cognition from the perspective of resting-state brain function.

  6. Comparison of rest and exercise thallium-201 kinetics in man and implications for quantitation

    International Nuclear Information System (INIS)

    Freeman, M.R.; Kanwar, N.; Armstrong, P.W.

    1989-01-01

    To develop a technique for quantitative analysis of resting thallium scintigrams, an understanding of thallium kinetics at rest is required. This study evaluates in normal man the thallium distribution and washout rates of thallium at rest and compares these findings to similar data obtained during exercise. The thallium half-life in normal resting myocardium is significantly longer than after exercise, 10.2 +/- 1.4 hours versus 3.9 +/- 0.3 hours (P less than .01). Differences in resting thallium half-life exist between the anterior, 45 degrees left anterior oblique (LAO), and 70 degrees LAO views and are 11.4 +/- 1.0, 10.6 +/- 1.0, 8.8 +/- 0.7 hours, respectively (all significantly different from each other by ANOVA, P less than or equal to .01); these differences are related to the imaging sequence. After exercise, the thallium half-life also varies according to imaging sequence, but in the opposite direction; i.e., anterior, 45 degrees LAO, and 70 degrees LAO views are 3.6 +/- 0.1, 3.9 +/- 0.3, 4.2 +/- 0.3 hours, respectively (P less than or equal to .01). Since imaging sequence and time of acquisition at rest and exercise were similar, this finding may be related to earlier maximal uptake of thallium after exercise as compared to rest. There are also significant segmental differences in thallium half-life at rest in the 45 degrees LAO view (9.8 +/- 0.9, septal vs. 11.0 +/- 0.9, posterolateral, P less than .01) and 70 degrees LAO view (8.3 +/- 0.4, anteroseptal vs. 9.2 +/- 0.6, inferior, P less than or equal to .01)

  7. Resting-state, functional MRI on regional homogeneity changes of brain in the heavy smokers

    International Nuclear Information System (INIS)

    Yang Shiqi; Wu Guangyao; Lin Fuchun; Kong Xiangquan; Zhou Guofeng; Pang Haopeng; Zhu Ling; Liu Guobing; Lei Hao

    2012-01-01

    Objective: To explore the mechanism of self-awareness in the heavy smokers (HS) by using regional homogeneity (ReHo) combined with resting-state functional MRI (fMRI). Methods: Thirty HS and 31 healthy non-smokers (NS) matched for age and sex underwent a 3.0 T resting-state fMRI. The data were post-processed by SPM 5 and then the ReHo values were calculated by REST software. The ReHo values between the two groups were compared by two-sample t-test. The brain map with significant difference of ReHo value was obtained. Results: Compared with that in NS group, the regions with decreased ReHo value included the bilateral precuneus, superior frontal gyrus,medial prefrontal cortex, right angular gyrus, inferior frontal gyrus, inferior occipital gyrus, cerebellum, and left middle frontal gyrus in HS group. The regions of increased ReHo value included the bilateral insula, parahippocampal gyrus, white matter of parietal lobe, pons, left inferior parietal lobule, lingual gyrus, thalamus, inferior orbital gyrus, white matter of temporal-frontal lobe, and cerebellum. The difference was more obvious in the left hemisphere. Conclusions: In HS, abnormal ReHo on a resting state which reflects network of smoking addiction. This method may be helpful in understanding the mechanism of self-awareness in HS. (authors)

  8. Difference in resting-state fractional amplitude of low-frequency fluctuation between bipolar depression and unipolar depression patients.

    Science.gov (United States)

    Yu, H-L; Liu, W-B; Wang, T; Huang, P-Y; Jie, L-Y; Sun, J-Z; Wang, C; Qian, W; Xuan, M; Gu, Q-Q; Liu, H; Zhang, F-L; Zhang, M-M

    2017-04-01

    To investigate the difference in fractional amplitude of low-frequency fluctuation (fALFF) of localized brain activities in the resting-state between bipolar depression and unipolar depression patients and to find biological markers that differentiate the two groups of patients. Thirteen patients with bipolar depression, 15 patients with unipolar depression, and 16 healthy control subjects that were matched in age and years of education were subjected to 3.0 T resting-state functional magnetic resonance scans. The values of whole brain fALFF were calculated and statistical analysis was performed. The fALFF-values of the right inferior temporal gyrus, left cerebellar posterior lobe, right middle temporal gyrus, left inferior frontal gyrus/insula, right inferior frontal gyrus/insula, left lingual gyrus and right middle temporal gyrus of the three groups showed significant differences (p superior temporal gyrus, left insula, left inferior frontal gyrus, right inferior frontal gyrus, right supramarginal gyrus and right medial frontal gyrus but significantly decreased in the right medial occipital gyrus, left frontal lobe, right superior parietal lobule; the fALFF-values of the bipolar depression (BD) patient group significantly decreased in the left cerebellum posterior lobe, right lingual gyrus, left lingual gyrus, right middle temporal gyrus, left middle temporal gyrus, and left superior frontal gyrus and significantly increased in the right inferior frontal gyrus and left insula compared to those of the HC group; compared with those of the UD group, the fALFF-values of the BD group significantly decreased in the left middle occipital gyrus, right middle temporal gyrus, left middle frontal gyrus, and left medial frontal gyrus. The brain activities of BD and UD patients in the resting-state exhibit abnormalities, which differ between the two groups of patients.

  9. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    International Nuclear Information System (INIS)

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  11. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Structure-function relationships in elderly resting-state-networks : influence of age and cognitive performance

    OpenAIRE

    Jockwitz, Christiane

    2016-01-01

    The aim of this work was to investigate the structure-function relationship in cognitive resting state networks in a large population-based elderly sample. The first study characterized the functional connectivity in four cognitive resting state networks with respect to age, gender and cognitive performance: Default Mode Network (DMN), executive, and left and right frontoparietal resting state networks. The second study assessed the structural correlates of the functional reorganization of th...

  13. Myocardial scintigraphy (thallium-201) and electrocardiography at rest and during exercise in angina pectoris

    International Nuclear Information System (INIS)

    Minning, E.; Scharf-Bornhofen, E.; Brueggeman, Th.; Chen, T.; Barthel, W.; Bluemchen, G.; Sankt-Josef-Hospital, Oberhausen

    1980-01-01

    Ecg (at rest and during exercise) was compared to Thallium-201 myocardial perfusion imaging (at rest and after exercise) in 65 patients with coronary heart disease (myocardial infarction in 53 patients) and angina pectoris. These results were compared to coronary angiography and left ventricular angiography. (orig./AJ) [de

  14. fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies

    Directory of Open Access Journals (Sweden)

    Luis R. Peraza

    2014-01-01

    Full Text Available Cognitive fluctuations are a core symptom in dementia with Lewy bodies (DLB and may relate to pathological alterations in distributed brain networks. To test this we analysed resting state fMRI changes in a cohort of fluctuating DLB patients (n = 16 compared with age matched controls (n = 17 with the aim of finding functional connectivity (FC differences between these two groups and whether these associate with cognitive fluctuations in DLB. Resting state networks (RSNs were estimated using independent component analysis and FC between the RSN maps and the entirety of the brain was assessed using dual regression. The default mode network (DMN appeared unaffected in DLB compared to controls but significant cluster differences between DLB and controls were found for the left fronto-parietal, temporal, and sensory–motor networks. Desynchronization of a number of cortical and subcortical areas related to the left fronto-parietal network was associated with the severity and frequency of cognitive fluctuations. Our findings provide empirical evidence for the potential role of attention–executive networks in the aetiology of this core symptom in DLB.

  15. Resting technetium-99m methoxyisobutylisonitrile cardiac imaging in chronic coronary artery disease: comparison with rest-redistribution thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Cuocolo, A.; Maurea, S.; Pace, L.; Nicolai, E.; Nappi, A.; Imbriaco, M.; Trimarco, B.; Salvatore, M.

    1993-01-01

    We studied 19 patients with angiographically proven coronary artery disease and left ventricular dysfunction (ejection fraction 33%±8%) by resting technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) and rest-redistribution thallium-201 cardiac imaging. Thallium and 99m Tc-MIBI studies were visually analysed. Of 285 segments, 203 (71%) had normal thallium uptake, 48 (17%) showed reversible thallium defects and 34 (12%) showed irreversible thallium defects. Of these 34 irreversible thallium defects, 19 (56%) were moderate and 15 (44%) were severe. Of the corresponding 285 segments, 200 (70%) had normal 99m Tc-MIBI uptake, while 37 (13%) showed moderate and 48 (17%) showed severe reduction of MIBI uptake. Myocardial segmental agreement for regional uptake score between initial thallium and resting 99m Tc-MIBI images was 90% (κ=0.78). Segmental agreement between delayed thallium and resting 99m Tc-MIBI images was 77% (κ=0.44). In particular, in 26 (9%) segments 99m Tc-MIBI uptake was severely reduced while delayed thallium uptake was normal or only moderately reduced. These data suggest that although rest-redistribution thallium and resting 99m Tc-MIBI cardiac imaging provide concordant results in the majority of myocardial segments, some segments with severely reduced resting 99m Tc-MIBI uptake may contain viable but hypoperfused myocardium. Thus, conclusions on myocardial viability based on 99m Tc-MIBI uptake should be made with caution in chronic coronary artery disease. (orig.)

  16. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning.

    Science.gov (United States)

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C M

    2016-03-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The "competition" (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest--ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success

  17. Resting-state low-frequency fluctuations reflect individual differences in spoken language learning

    Science.gov (United States)

    Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C.M.

    2016-01-01

    A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The “competition” (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest – ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success

  18. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Peter Goodin

    Full Text Available One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC data was extracted from four seed regions, i.e. primary (S1 and secondary (S2 somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2, and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group and contra-lesional S2 (both groups. We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other

  19. Real-time radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary-artery disease

    International Nuclear Information System (INIS)

    Borer, J.S.; Bacharach, S.L.; Green, M.V.; Kent, K.M.; Epstein, S.E.; Johnston, G.S.

    1977-01-01

    Although coronary angiography defines regions of potential ischemia in patients with coronary-artery disease, accurate assessment of the presence and functional importance of ischemia requires appraisal of regional and global left ventricular function during stress. To perform such assessment, we developed a noninvasive real-time radionuclide cineangiographic procedure permitting continuous monitoring and analysis of left ventricular function during exercise. In 11 patients with coronary disease who had normal regional and global ventricular function at rest, new regions of dysfunction developed during exercise (P less than 0.001), and in 10, global ejection fraction dropped 7 to 47 percent. Fourteen age-matched normal subjects were studied; during exercise none had regional dysfunction, and each increased global ejection fraction (average increase, 23 +- 3 percent [+-S.E.], P less than 0.001 as compared with patients with coronary disease). Radionuclide cineangiography during exercise permits accurate assessment of the presence and functional severity of ischemic heart disease

  20. Imaging network level language recovery after left PCA stroke.

    Science.gov (United States)

    Sebastian, Rajani; Long, Charltien; Purcell, Jeremy J; Faria, Andreia V; Lindquist, Martin; Jarso, Samson; Race, David; Davis, Cameron; Posner, Joseph; Wright, Amy; Hillis, Argye E

    2016-05-11

    The neural mechanisms that support aphasia recovery are not yet fully understood. Our goal was to evaluate longitudinal changes in naming recovery in participants with posterior cerebral artery (PCA) stroke using a case-by-case analysis. Using task based and resting state functional magnetic resonance imaging (fMRI) and detailed language testing, we longitudinally studied the recovery of the naming network in four participants with PCA stroke with naming deficits at the acute (0 week), sub acute (3-5 weeks), and chronic time point (5-7 months) post stroke. Behavioral and imaging analyses (task related and resting state functional connectivity) were carried out to elucidate longitudinal changes in naming recovery. Behavioral and imaging analysis revealed that an improvement in naming accuracy from the acute to the chronic stage was reflected by increased connectivity within and between left and right hemisphere "language" regions. One participant who had persistent moderate naming deficit showed weak and decreasing connectivity longitudinally within and between left and right hemisphere language regions. These findings emphasize a network view of aphasia recovery, and show that the degree of inter- and intra- hemispheric balance between the language-specific regions is necessary for optimal recovery of naming, at least in participants with PCA stroke.

  1. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    Science.gov (United States)

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All

  2. Left atrial function in heart failure with impaired and preserved ejection fraction.

    Science.gov (United States)

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  3. Hemodynamic Characteristics in Significant Symptomatic and Asymptomatic Primary Mitral Valve Regurgitation at Rest and during Exercise

    DEFF Research Database (Denmark)

    Bakkestrøm, Rine; Banke, Ann; Christensen, Nicolaj L.

    2018-01-01

    ventricular ejection fraction, >60%) were included. Right heart catheterization during rest and exercise, echocardiography, magnetic resonance imaging, and peak oxygen consumption test was performed. Symptomatic subjects had significantly higher pulmonary capillary wedge pressure at rest (14±4 versus 11±3 mm...... mean PAP and left ventricular ejection fraction (r=-0.52; P=0.02) and right ventricular ejection fraction (r=-0.67; Pequal and normal in both groups and correlated with left ventricular stroke volume but not with pulmonary capillary wedge pressure. Conclusions...

  4. Overview of potential procedural and participant-related confounds for neuroimaging of the resting state

    Science.gov (United States)

    Duncan, Niall W.; Northoff, Georg

    2013-01-01

    Studies of intrinsic brain activity in the resting state have become increasingly common. A productive discussion of what analysis methods are appropriate, of the importance of physiologic correction and of the potential interpretations of results has been ongoing. However, less attention has been paid to factors other than physiologic noise that may confound resting-state experiments. These range from straightforward factors, such as ensuring that participants are all instructed in the same manner, to more obscure participant-related factors, such as body weight. We provide an overview of such potentially confounding factors, along with some suggested approaches for minimizing their impact. A particular theme that emerges from the overview is the range of systematic differences between types of study groups (e.g., between patients and controls) that may influence resting-state study results. PMID:22964258

  5. Evaluation with equilibrium radionuclide angiography of left ventricular systolic and diastolic function in pulmonary hypertension secondary to chronic pulmonary diseases

    International Nuclear Information System (INIS)

    Inoue, Kazuya; Sera, Kazuaki; Fukuzaki, Hisashi.

    1989-01-01

    To evaluate left ventricular systolic and diastolic function in patients with pulmonary hypertension secondary to chronic pulmonary diseases, 86 patients were studied using equilibrium radionuclide angiography with forward and reverse gating from the R wave. At rest left ventricular function, both in systolic and diastolic properties, in patients with pulmonary hypertension was significantly lower than in normal subjects (LVEF; P<0.05, PER; P<0.05, PFR; P<0.025, FF; P<0.025). During exercise left ventricular systolic function did not increase as much as in normals (LVEF; N.S., PER; N.S.). Left ventricular diastolic function during exercise was significantly lower than at rest (PFR; P<0.05, FF; P<0.001). The indices of left ventricular function obtained from radionuclide angiography had no close correlation with pulmonary hemodynamics or with blood gases. These results demonstrated that left ventricular dysfunction in patients with pulmonary hypertension was observed both at rest and during exercise, and might play an important role in reduced exercise tolerance. (author)

  6. Evaluation with equilibrium radionuclide angiography of left ventricular systolic and diastolic function in pulmonary hypertension secondary to chronic pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Kazuya; Sera, Kazuaki [National Akashi Hospital, Hyogo (Japan); Fukuzaki, Hisashi

    1989-08-01

    To evaluate left ventricular systolic and diastolic function in patients with pulmonary hypertension secondary to chronic pulmonary diseases, 86 patients were studied using equilibrium radionuclide angiography with forward and reverse gating from the R wave. At rest left ventricular function, both in systolic and diastolic properties, in patients with pulmonary hypertension was significantly lower than in normal subjects (LVEF; P<0.05, PER; P<0.05, PFR; P<0.025, FF; P<0.025). During exercise left ventricular systolic function did not increase as much as in normals (LVEF; N.S., PER; N.S.). Left ventricular diastolic function during exercise was significantly lower than at rest (PFR; P<0.05, FF; P<0.001). The indices of left ventricular function obtained from radionuclide angiography had no close correlation with pulmonary hemodynamics or with blood gases. These results demonstrated that left ventricular dysfunction in patients with pulmonary hypertension was observed both at rest and during exercise, and might play an important role in reduced exercise tolerance. (author).

  7. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    Science.gov (United States)

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  8. Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla.

    Science.gov (United States)

    Barry, Robert L; Rogers, Baxter P; Conrad, Benjamin N; Smith, Seth A; Gore, John C

    2016-06-01

    We recently reported our findings of resting state functional connectivity in the human spinal cord: in a cohort of healthy volunteers we observed robust functional connectivity between left and right ventral (motor) horns and between left and right dorsal (sensory) horns (Barry et al., 2014). Building upon these results, we now quantify the within-subject reproducibility of bilateral motor and sensory networks (intraclass correlation coefficient=0.54-0.56) and explore the impact of including frequencies up to 0.13Hz. Our results suggest that frequencies above 0.08Hz may enhance the detectability of these resting state networks, which would be beneficial for practical studies of spinal cord functional connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Absence of resting cardiovascular dysfunction in middle-aged endurance-trained athletes with exaggerated exercise blood pressure responses.

    Science.gov (United States)

    Currie, Katharine D; Sless, Ryan T; Notarius, Catherine F; Thomas, Scott G; Goodman, Jack M

    2017-08-01

    Untrained individuals with exaggerated blood pressure (EBP) responses to graded exercise testing are characterized as having resting dysfunction of the sympathetic and cardiovascular systems. The purpose of this study was to determine the resting cardiovascular state of endurance-trained individuals with EBP through a comparison of normotensive athletes with and without EBP. EBP was defined as a maximal systolic blood pressure (SBP) at least 190 mmHg and at least 210 mmHg for women and men respectively, in response to a graded exercise test. Twenty-two life-long endurance-trained athletes (56 ± 5 years, 16 men) with EBP (EBP+) and 11 age and sex-matched athletes (55 ± 5 years, eight men) without EBP (EBP-) participated in the study. Sympathetic reactivity was assessed using BP responses to a cold pressor test, isometric handgrip exercise, and postexercise muscle ischemia. Resting left ventricular structure and function was assessed using two-dimensional echocardiography, whereas central arterial stiffness was assessed using carotid-to-femoral pulse wave velocity. Calf vascular conductance was measured at rest and peak postexercise using strain-gauge plethysmography. All sympathetic reactivity, left ventricular, and arterial stiffness indices were similar between groups. There was no between-group difference in resting vascular conductance, whereas peak vascular conductance was higher in EBP+ relative to EBP- (1.81 ± 0.65 vs. 1.45 ± 0.32 ml/100 ml/min/mmHg, P < 0.05). Findings from this study suggest that athletes with EBP do not display the resting cardiovascular state typically observed in untrained individuals with EBP. This response in athletes, therefore, is likely a compensatory mechanism to satisfy peripheral blood-flow demands rather than indicative of latent dysfunction.

  10. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  11. Congenital Absence of Left Circumflex Coronary Artery

    Directory of Open Access Journals (Sweden)

    Zahra Ansari

    2009-09-01

    Full Text Available Congenital absence of left circumflex artery is a rare congenitalanomaly of the coronary arteries. The prevalence of theanomaly in different studies ranges from 0.6% to 1.3%. Ofthese, 80% are benign and asymptomatic and 20% are clinicallyimportant. We report a 56-year-old man presented withacute resting chest pain who was diagnosed as having acuteanterolateral infarction accompanied by electrocardiographicchanges and elevated cardiac enzymes. Coronary angiographyin different views was conducted, however, no left circumflexartery was found. The territory supplied by the artery had beenperfused by the super dominant right coronary artery. Therewas no left circumflex coronary artery with anomalous origin.Sever stenosis of left anterior ascending artery superimposedto the absent left circumflex artery was presented as acute anterolateralinfarction. Although absence of the artery is mostlyconsidered as a benign condition, atherosclerotic lesions maybe more important in such cases because of diminished compensatingmechanisms.

  12. Effect of age on left ventricular function during exercise in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Hakki, A.H.; DePace, N.L.; Iskandrian, A.S.

    1983-01-01

    The purpose of this study was to assess the effect of age on left ventricular performance during exercise in 79 patients with coronary artery disease (greater than or equal to 50% narrowing of one or more major coronary arteries). Fifty patients under the age of 60 years (group I) and 29 patients 60 years or older (group II) were studied. Radionuclide angiograms were obtained at rest and during symptom-limited upright bicycle exercise. The history of hypertension, angina or Q wave myocardial infarction was similar in both groups. Multivessel coronary artery disease was present in 30 patients (60%) in group I and in 19 patients (66%) in group II (p . not significant). There were no significant differences between the two groups in the hemodynamic variables (at rest or during exercise) of left ventricular ejection fraction, end-diastolic volume, end-systolic volume and cardiac index. Exercise tolerance was higher in group I than in group II (7.8 +/- 0.4 versus 5.7 +/- 0.4 minutes, p . 0.009), although the exercise heart rate and rate-pressure product were not significantly different between the groups. There was poor correlation between age and ejection fraction, end-diastolic volume and end-systolic volume at rest and during exercise. Abnormal left ventricular function at rest or an abnormal response to exercise was noted in 42 patients (84%) in group I and in 25 patients (86%) in group II (p . not significant). Thus, in patients with coronary artery disease, age does not influence left ventricular function at rest or response to exercise. Older patients with coronary artery disease show changes in left ventricular function similar to those in younger patients with corresponding severity of coronary artery disease

  13. Radionuclide ventriculographic evaluation of exercised left ventricular performance in asymptomatic diabetic patients

    International Nuclear Information System (INIS)

    Fujii, Yusuke; Hara, Fumio

    1991-01-01

    Radionuclide ventriculography was made in 49 asymptomatic diabetic patients, aged 30∼70 years, to investigate cardiac function. Comparisons were made with 33 age- and sex-matched non-diabetic controls. Radionuclide ventriculography was performed at rest and during dynamic exercise by multigraded, supine bicycle ergometer. The resting left ventricular ejection fractions were similar between the diabetic patients and control subjects. No significant rise in the left ventricular ejection fractions during dynamic exercise was observed in the diabetic patients [58.4±9.8% (mean±SD) to 60.3±9.9]. In the control subjects, the left ventricular ejection fractions increased during dynamic exercise [59.3±8.4 to 63.0±11.4 (p -1 ) vs -2.66±0.52] and during dynamic exercise [-3.25±0.74 vs -3.23±0.90]. Time to end-systole were similar in both groups at rest [315±42 (ms) vs 309±42] and during dynamic exercise [258±37 vs 262±37]. The resting peak filling rates were similar in both groups [2.27±0.62 (s -1 ) vs 2.45±0.58], and the peak filling rates increased (p 1c in the diabetic patients. These results suggest that diabetic patients have less cardiac reserved performance. (author)

  14. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state

    Directory of Open Access Journals (Sweden)

    Pengyun eWang

    2016-03-01

    Full Text Available Several studies have reported working memory deficits in patients with mild cognitive impairment (MCI. However, previous studies investigating the neural mechanisms of MCI have primarily focused on brain activity alterations during working memory tasks. No study to date has compared brain network alterations in the working memory state between MCI patients and normal control subjects. Therefore, using the index of regional homogeneity (ReHo, we explored brain network impairments in MCI patients during a working memory task relative to the resting state, and identified frequency-dependent effects in separate frequency bands.Our results indicate that, in MCI patients, ReHo is altered in the posterior cingulate cortex in the slow-3 band (0.073–0.198 Hz, and in the bottom of the right occipital lobe and part of the right cerebellum, the right thalamus, a diffusing region in the bilateral prefrontal cortex, the left and right parietal-occipital regions, and the right angular gyrus in the slow-5 band (0.01–0.027 Hz. Furthermore, in normal controls, the value of ReHo in clusters belonging to the default mode network decreased, while the value of ReHo in clusters belonging to the attentional network increased during the task state. However, this pattern was reversed in MCI patients, and was associated with decreased working memory performance. In addition, we identified altered functional connectivity of the abovementioned regions with other parts of the brain in MCI patients.This is the first study to compare frequency-dependent alterations of ReHo in MCI patients between resting and working memory states. The results provide a new perspective regarding the neural mechanisms of working memory deficits in MCI patients, and extend our knowledge of altered brain patterns in resting and task-evoked states.

  15. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation.

    Science.gov (United States)

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-09-15

    Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P protein synthesis increased before bed rest in both age groups (P protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  16. Early sensitivity of left perisylvian cortex to relationality in nouns and verbs.

    Science.gov (United States)

    Williams, Adina; Reddigari, Samir; Pylkkänen, Liina

    2017-06-01

    The ability to track the relationality of concepts, i.e., their capacity to encode a relationship between entities, is one of the core semantic abilities humans possess. In language processing, we systematically leverage this ability when computing verbal argument structure, in order to link participants to the events they participate in. Previous work has converged on a large region of left posterior perisylvian cortex as a locus for such processing, but the wide range of experimental stimuli and manipulations has yielded an unclear picture of the region's exact role(s). Importantly, there is a tendency for effects of relationality in single-word studies to localize to posterior temporo-parietal cortex, while argument structure effects in sentences appear in left superior temporal cortex. To characterize these sensitivities, we designed two MEG experiments that cross the factors relationality and eventivity. The first used minimal noun phrases and tested for an effect of semantic composition, while the second employed full sentences and a manipulation of grammatical category. The former identified a region of the left inferior parietal lobe sensitive to relationality, but not eventivity or combination, beginning at 170ms. The latter revealed a similarly-timed effect of relationality in left mid-superior temporal cortex, independent of eventivity and category. The results suggest that i) multiple sub-regions of perisylvian cortex are sensitive to the relationality carried by concepts even in the absence of arguments, ii) linguistic context modulates the locus of this sensitivity, consistent with prior studies, and iii) relationality information is accessed early - before 200ms - regardless of the concept's event status or syntactic category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in migraine patients: a resting-state functional MRI study

    International Nuclear Information System (INIS)

    Wang, J.-J.; Chen, X.; Sah, S.K.; Zeng, C.; Li, Y.-M.; Li, N.; Liu, M.-Q.; Du, S.-I.

    2016-01-01

    Aim: To evaluate the amplitude of low-frequency oscillations (LFOs) of the brain in migraine patients using amplitude of low-frequency fluctuation (ALFF) and fractional ALFF in the interictal period, in comparison to healthy controls (HCs). Materials and methods: A total of 54 subjects, including 30 migraineurs and 24 gender- and age-matched HCs completed the fMRI. All the data and ALFF, fALFF analyses were preprocessed with the Data Processing Assistant for Resting-State fMRI (DPARSF). All of the statistical analyses were performed using the REST software to explore the differences in ALFF and fALFF between migraine patients and HCs. Results: In contrast to HCs, migraine patients showed significant ALFF increase in the left medulla and pons, the bilateral cerebellum posterior lobe and right insula. The regions showing decreased ALFF in migraine patients included the bilateral cerebellum posterior lobe, left cerebellum anterior lobe, bilateral orbital cortex, right middle frontal gyrus, bilateral occipital lobe, right fusiform gyrus, and bilateral postcentral gyrus. The fALFFs in migraine patients were significantly increased in the bilateral insular and left orbital cortex, but were decreased in the left occipital lobe and bilateral cerebellum posterior lobe. Conclusion: These ALFF and fALFF alterations in the brain regions of migraineurs are in keeping with the domains associated with pain and cognition. Such brain functional alteration may contribute to further understanding of migraine-related network imbalances demonstrated in previous studies. - Highlights: • Migraine is a common, paroxysmal, highly disabling primary headache disorder. • Resting-state fMRI offers a novel approach to measure spontaneous brain activity in migraine patients • The ALFF and fALFF alterations in migraineurs' brain regions are in keeping with the domains associated with pain and cognition.

  18. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    Science.gov (United States)

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    Science.gov (United States)

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Is Love Right? Prefrontal Resting Brain Asymmetry is Related to the Affiliation Motive

    Directory of Open Access Journals (Sweden)

    Markus eQuirin

    2013-12-01

    Full Text Available Previous research on relationships between affective-motivational traits and hemispheric asymmetries in resting frontal alpha band power as measured by electroencephalography (EEG has focused on individual differences in motivational direction (approach vs. withdrawal or behavioral activation. The present study investigated resting frontal alpha asymmetries in 72 participants as a function of individual differences in the implicit affiliation motive as measured with the operant motive test (OMT and explored the brain source thereof. As predicted, relative right frontal activity as indexed by increased alpha band suppression was related to the implicit affiliation motive. No relationships were found for explicit personality measures. Intracranial current density distributions of alpha based on Variable Resolution Electromagnetic Tomography (VARETA source estimations suggests that the source of cortical alpha distribution is located within the right ventromedial prefrontal cortex (PFC. The present results are discussed with respect to differential roles of the two hemispheres in social motivation.

  1. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  2. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo

    2012-06-01

    To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the treatment of brain-related diseases (e.g., depression). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effects of Early and Late Bilingualism on Resting-State Functional Connectivity.

    Science.gov (United States)

    Berken, Jonathan A; Chai, Xiaoqian; Chen, Jen-Kai; Gracco, Vincent L; Klein, Denise

    2016-01-27

    Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting

  4. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study.

    Science.gov (United States)

    Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A

    2011-02-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Changes of left ventricular function at exercise after lung resection

    International Nuclear Information System (INIS)

    Fujisaki, Takashi; Gomibuchi, Makoto; Shoji, Tasuku

    1992-01-01

    To determine the effect of lung resection on left ventricular function, 29 surgical patients were examined by using a nuclear stethoscope as a non-invasive means for measuring ventricular function at exercise. Pre- and post-operative parameters were obtained at rest and exercise. At rest, postoperative stroke volume (SV), end-diastolic volume (EDV), ejection fraction (EF), and ejection rate (ER) were significantly decreased; heart rate (HR) was significantly increased; and both filling rate (FR) and cardiac output (CO) remained unchanged. At maximum exercise, postoperative EDV, SV, ER and FR were significantly decreased; and there was no significant difference in either HR or EF, resulting in a significantly decreased CO. A ratio of CO and FR at maximum exercise to at rest was significantly decreased after surgery, as compared with that before surgery. According to the number of lobe resection, similar findings for all parameters, except for EF, were observed in the group of two lobe or more resection (n=13); and only two parameters, ER and FR, had the same tendency as those mentioned above in the group of a single lobe resection (n=16). The age group of 60 years or less (n=14) had similar findings for all parameters. In the group of 65 years or more (n=10), resting HR after surgery was not different from that before surgery; and postoperative CO was significantly decreased at rest, but not different from preoperative value at maximum exercise. In conclusion, left ventricular function associated with lung resection is reflected by decreased EDV and SV resulting from reduced pre-load. These changes may be corrected at rest, but not corrected at maximum exercise, resulting in decreased CO. More noticeable decrease in EDV and SV seems to be associated with larger lung resection. In older patients, HR is not corrected well, resulting in a decrease in CO at rest. (N.K.)

  6. A Computational Study on the Relation between Resting Heart Rate and Atrial Fibrillation Hemodynamics under Exercise.

    Directory of Open Access Journals (Sweden)

    Matteo Anselmino

    Full Text Available Clinical data indicating a heart rate (HR target during rate control therapy for permanent atrial fibrillation (AF and assessing its eventual relationship with reduced exercise tolerance are lacking. The present study aims at investigating the impact of resting HR on the hemodynamic response to exercise in permanent AF patients by means of a computational cardiovascular model.The AF lumped-parameter model was run to simulate resting (1 Metabolic Equivalent of Task-MET and various exercise conditions (4 METs: brisk walking; 6 METs: skiing; 8 METs: running, considering different resting HR (70 bpm for the slower resting HR-SHR-simulations, and 100 bpm for the higher resting HR-HHR-simulations. To compare relative variations of cardiovascular variables upon exertion, the variation comparative index (VCI-the absolute variation between the exercise and the resting values in SHR simulations referred to the absolute variation in HHR simulations-was calculated at each exercise grade (VCI4, VCI6 and VCI8.Pulmonary venous pressure underwent a greater increase in HHR compared to SHR simulations (VCI4 = 0.71, VCI6 = 0.73 and VCI8 = 0.77, while for systemic arterial pressure the opposite is true (VCI4 = 1.15, VCI6 = 1.36, VCI8 = 1.56.The computational findings suggest that a slower, with respect to a higher resting HR, might be preferable in permanent AF patients, since during exercise pulmonary venous pressure undergoes a slighter increase and systemic blood pressure reveals a more appropriate increase.

  7. A Computational Study on the Relation between Resting Heart Rate and Atrial Fibrillation Hemodynamics under Exercise.

    Science.gov (United States)

    Anselmino, Matteo; Scarsoglio, Stefania; Saglietto, Andrea; Gaita, Fiorenzo; Ridolfi, Luca

    2017-01-01

    Clinical data indicating a heart rate (HR) target during rate control therapy for permanent atrial fibrillation (AF) and assessing its eventual relationship with reduced exercise tolerance are lacking. The present study aims at investigating the impact of resting HR on the hemodynamic response to exercise in permanent AF patients by means of a computational cardiovascular model. The AF lumped-parameter model was run to simulate resting (1 Metabolic Equivalent of Task-MET) and various exercise conditions (4 METs: brisk walking; 6 METs: skiing; 8 METs: running), considering different resting HR (70 bpm for the slower resting HR-SHR-simulations, and 100 bpm for the higher resting HR-HHR-simulations). To compare relative variations of cardiovascular variables upon exertion, the variation comparative index (VCI)-the absolute variation between the exercise and the resting values in SHR simulations referred to the absolute variation in HHR simulations-was calculated at each exercise grade (VCI4, VCI6 and VCI8). Pulmonary venous pressure underwent a greater increase in HHR compared to SHR simulations (VCI4 = 0.71, VCI6 = 0.73 and VCI8 = 0.77), while for systemic arterial pressure the opposite is true (VCI4 = 1.15, VCI6 = 1.36, VCI8 = 1.56). The computational findings suggest that a slower, with respect to a higher resting HR, might be preferable in permanent AF patients, since during exercise pulmonary venous pressure undergoes a slighter increase and systemic blood pressure reveals a more appropriate increase.

  8. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Science.gov (United States)

    Diaz, B. Alexander; Van Der Sluis, Sophie; Moens, Sarah; Benjamins, Jeroen S.; Migliorati, Filippo; Stoffers, Diederick; Den Braber, Anouk; Poil, Simon-Shlomo; Hardstone, Richard; Van't Ent, Dennis; Boomsma, Dorret I.; De Geus, Eco; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2013-01-01

    Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ). Based on ARSQ data from 813 participants assessed after 5 min eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer's disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease. PMID:23964225

  9. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    International Nuclear Information System (INIS)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek

    2016-01-01

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  10. Isometric stress in cardiovascular magnetic resonance - a simple and easily replicable method of assessing cardiovascular differences not apparent at rest

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Kristian H.; Jones, Alexander; Steeden, Jennifer A.; Taylor, Andrew M.; Muthurangu, Vivek [UCL Centre for Cardiovascular MR, UCL Institute of Cardiovascular Science, Level 6 Old Nurses Home, Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London (United Kingdom)

    2016-04-15

    Isometric exercise may unmask cardiovascular disease not evident at rest, and cardiovascular magnetic resonance (CMR) imaging is proven for comprehensive resting assessment. This study devised a simple isometric exercise CMR methodology and assessed the hemodynamic response evoked by isometric exercise. A biceps isometric exercise technique was devised for CMR, and 75 healthy volunteers were assessed at rest, after 3-minute biceps exercise, and 5-minute of recovery using: (1) blood pressure (BP) and (2) CMR measured aortic flow and left ventricular function. Total peripheral resistance (SVR) and arterial compliance (TAC), cardiac output (CO), left ventricular volumes and function (ejection fraction, stroke volume, power output), blood pressure (BP), heart rate (HR), and rate pressure product were assessed at all time points. Image quality was preserved during stress. During exercise there were increases in CO (+14.9 %), HR (+17.0 %), SVR (+9.8 %), systolic BP (+22.4 %), diastolic BP (+25.4 %) and mean BP (+23.2 %). In addition, there were decreases in TAC (-22.0 %) and left ventricular ejection fraction (-6.3 %). Age and body mass index modified the evoked response, even when resting measures were similar. Isometric exercise technique evokes a significant cardiovascular response in CMR, unmasking physiological differences that are not apparent at rest. (orig.)

  11. Resting-state brain networks revealed by granger causal connectivity in frogs.

    Science.gov (United States)

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Effect of scanner acoustic background noise on strict resting-state fMRI

    Directory of Open Access Journals (Sweden)

    C. Rondinoni

    2013-04-01

    Full Text Available Functional MRI (fMRI resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs. Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal, while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  13. Effect of scanner acoustic background noise on strict resting-state fMRI.

    Science.gov (United States)

    Rondinoni, C; Amaro, E; Cendes, F; dos Santos, A C; Salmon, C E G

    2013-04-01

    Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a 'resting-state' fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced "silent" pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.

  14. Radionuclide angiographic evaluation of left ventricular performance at rest and during exercise in patients with aortic regurgitation

    International Nuclear Information System (INIS)

    Iskandrian, A.S.; Heo, J.

    1986-01-01

    Radionuclide angiographic evaluation of LV performance at rest and during exercise in patients with AR have shown that an abnormal EF response to exercise may be observed in asymptomatic patients with normal resting LV function. The EF response to exercise has been correlated with a number of clinical and exercise measurements; important among these are the slope of the systolic pressure-to-end-systolic volume, end-systolic volume, cardiac index, pulmonary capillary wedge pressure, and wall stress. The changes in the regurgitant fraction, EF, and LV volume have shown considerable individual variability; they have also allowed a better understanding of the circulatory responses during exercise. Radionuclide angiography provides a reliable and reproducible method of measuring the rest LVEF that is important in the timing and the outcome of valve replacement. The value of the EF response to exercise in patient management is not yet clear; it is possible that other radionuclide-derived measurements at rest or during exercise, such as the systolic pressure-to-end-systolic volume relationship, and the end-systolic volume may provide complementary information to that provided by the EF

  15. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Science.gov (United States)

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  16. Neural markers of loss aversion in resting-state brain activity.

    Science.gov (United States)

    Canessa, Nicola; Crespi, Chiara; Baud-Bovy, Gabriel; Dodich, Alessandra; Falini, Andrea; Antonellis, Giulia; Cappa, Stefano F

    2017-02-01

    Neural responses in striatal, limbic and somatosensory brain regions track individual differences in loss aversion, i.e. the higher sensitivity to potential losses compared with equivalent gains in decision-making under risk. The engagement of structures involved in the processing of aversive stimuli and experiences raises a further question, i.e. whether the tendency to avoid losses rather than acquire gains represents a transient fearful overreaction elicited by choice-related information, or rather a stable component of one's own preference function, reflecting a specific pattern of neural activity. We tested the latter hypothesis by assessing in 57 healthy human subjects whether the relationship between behavioral and neural loss aversion holds at rest, i.e. when the BOLD signal is collected during 5minutes of cross-fixation in the absence of an explicit task. Within the resting-state networks highlighted by a spatial group Independent Component Analysis (gICA), we found a significant correlation between strength of activity and behavioral loss aversion in the left ventral striatum and right posterior insula/supramarginal gyrus, i.e. the very same regions displaying a pattern of neural loss aversion during explicit choices. Cross-study analyses confirmed that this correlation holds when voxels identified by gICA are used as regions of interest in task-related activity and vice versa. These results suggest that the individual degree of (neural) loss aversion represents a stable dimension of decision-making, which reflects in specific metrics of intrinsic brain activity at rest possibly modulating cortical excitability at choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Long Duration Head Down Tilt Bed Rest and Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    Science.gov (United States)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Cassady, K.; Yuan, P.; Kofman, I. S.; De Dios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2017-01-01

    We have recently completed a long duration head down tilt bed rest (HDBR) study in which we performed structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations in a spaceflight analog environment. We are also collecting the same measures in crewmembers prior to and following a six month International Space Station mission. We will present data demonstrating that bed rest resulted in functional mobility and balance deterioration with recovery post-HDBR. We observed numerous changes in brain structure, function, and connectivity relative to a control group which were associated with pre to post bed rest changes in sensorimotor function. For example, gray matter volume (GMv) increased in posterior parietal areas and decreased in frontal regions. GMv increases largely overlapped with fluid decreases and vice versa. Larger increases in precentral gyrus (M1)/ postcentral gyrus (S1+2) GMv and fluid decreases were associated with smaller balance decrements. Vestibular activation in the bilateral insular cortex increased with bed rest and subsequently recovered. Larger increases in vestibular activation in multiple brain regions were associated with greater decrements in balance and mobility. We found connectivity increases between left M1 with right S1+2 and the superior parietal lobule, and right vestibular cortex with the cerebellum. Decreases were observed between right Lobule VIII with right S1+2 and the supramarginal gyrus, right posterior parietal cortex (PPC) with occipital regions, and the right superior posterior fissure with right Crus I and II. Connectivity strength between left M1 and right S1+2/superior parietal lobule increased the most in individuals that exhibited the least balance impairments. In sum, we observed HDBR-related changes in measures of brain structure, function, and network connectivity, which correlated with indices of sensorimotor

  18. Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available In the resting state, blood oxygen level-dependent (BOLD oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR. To address these two questions, we estimated phase-locking (PL values between precentral gyrus (PCG and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002 with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.

  19. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    Science.gov (United States)

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  20. Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension.

    Science.gov (United States)

    Henein, Michael; Mörner, Stellan; Lindmark, Krister; Lindqvist, Per

    2013-09-30

    Heart failure (HF) patients with preserved left ventricular (LV) ejection fraction (EF) (HFpEF) due to systemic hypertension (SHT) are known to have limited exercise tolerance. Despite having normal EF at rest, we hypothesize that these patients have abnormal systolic function reserve limiting their exercise capacity. Seventeen patients with SHT (mean age 68 ± 9 years) but no valve disease and 14 healthy individuals (mean age of 65 ± 10 years) underwent resting and peak exercise echocardiography using conventional, tissue Doppler and speckle tracking techniques. The differences between resting and peak exercise values were also analyzed (Δ). Exercise capacity was determined as the workload divided by body surface area. Resting values for left atrial (LA) volume/BSA (r=-0.66, pexercise capacity. LVEF increased during exercise in normals (mean Δ EF=10 ± 8%) but failed to do so in patients (mean Δ EF=0.6 ± 9%, pexercise in patients, to the same extent as it did in normals (0.2 ± 0.2 vs. 0.6 ± 0.3 1/s, pexercise (Δ) in LV lateral wall systolic velocity from tissue Doppler (s') (0.71, pexercise capacity independent of changes in heart rate. HFpEF patients with hypertensive LV disease have significantly limited exercise capacity which is related to left atrial enlargement as well as compromised LV systolic function at the time of the symptoms. The limited myocardial systolic function reserve seems to be underlying important explanation for their limited exercise capacity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Quantification of left ventricular function by gated myocardial perfusion SPECT using multidimTM

    International Nuclear Information System (INIS)

    Huang Jin; Song Wenzhong; Chen Mingxi

    2004-01-01

    Objective: To evaluate the accuracy of left ventricular function by gated SPECT using the software Multidim TM . Methods: Rest gated SPECT was performed on 42 cases involved 26 normal subjects and 16 patients with myocardial infarct (MI). All cases underwent rest equilibrium radionuclide angiocardiography (ERNA) within 1 w. Results: (1)End diastolic volume (EDV), end systolic volume (ESV) and left ventricular ejection fraction(LVEF)were calculated using the software MultidimtMand ERNA. The correlation coefficient between the two Methods was 0.90,0.89,0.92 respectively(P TM , but the EDV and ESV value measured by this software maybe high with small heart. (authors)

  2. Beat-to-beat left ventricular performance in atrial fibrillation: radionuclide assessment with the computerized nuclear probe

    International Nuclear Information System (INIS)

    Schneider, J.; Berger, H.J.; Sands, M.J.; Lachman, A.B.; Zaret, B.L.

    1983-01-01

    There is wide beat-to-beat variability in cycle length and left ventricular performance in patients with atrial fibrillation. In this study, left ventricular ejection fraction and relative left ventricular volumes were evaluated on a beat-to-beat basis with the computerized nuclear probe, an instrument with sufficiently high sensitivity to allow continuous evaluation of the radionuclide time-activity curve. Of 18 patients with atrial fibrillation, 5 had mitral stenosis, 6 had mitral regurgitation, and 7 had coronary artery disease. Fifty consecutive beats were analyzed in each patient. The mean left ventricular ejection fraction ranged from 17 to 51%. There was substantial beat-to-beat variation in cycle length and left ventricular ejection fraction in all patients, including those with marked left ventricular dysfunction. In 14 patients who also underwent multiple gated cardiac blood pool imaging, there was an excellent correlation between mean ejection fraction derived from the nuclear probe and gated ejection fraction obtained by gamma camera imaging (r . 0.90). Based on beat-to-beat analysis, left ventricular function was dependent on relative end-diastolic volume and multiple preceding cycle lengths, but not preceding end-systolic volumes. This study demonstrates that a single value for left ventricular ejection fraction does not adequately characterize left ventricular function in patients with atrial fibrillation. Furthermore, both the mean beat-to-beat and the gated ejection fraction may underestimate left ventricular performance at rest in such patients

  3. The Amsterdam Resting-State Questionnaire reveals multiple phenotypes of resting-state cognition

    Directory of Open Access Journals (Sweden)

    B. Alexander eDiaz

    2013-08-01

    Full Text Available Resting-state neuroimaging is a dominant paradigm for studying brain function in health and disease. It is attractive for clinical research because of its simplicity for patients, straightforward standardization, and sensitivity to brain disorders. Importantly, non-sensory experiences like mind wandering may arise from ongoing brain activity. However, little is known about the link between ongoing brain activity and cognition, as phenotypes of resting-state cognition—and tools to quantify them—have been lacking. To facilitate rapid and structured measurements of resting-state cognition we developed a 50-item self-report survey, the Amsterdam Resting-State Questionnaire (ARSQ. Based on ARSQ data from 813 participants assessed after five minutes eyes-closed rest in their home, we identified seven dimensions of resting-state cognition using factor analysis: Discontinuity of Mind, Theory of Mind, Self, Planning, Sleepiness, Comfort, and Somatic Awareness. Further, we showed that the structure of cognition was similar during resting-state fMRI and EEG, and that the test-retest correlations were remarkably high for all dimensions. To explore whether inter-individual variation of resting-state cognition is related to health status, we correlated ARSQ-derived factor scores with psychometric scales measuring depression, anxiety, and sleep quality. Mental health correlated positively with Comfort and negatively with Discontinuity of Mind. Finally, we show that sleepiness may partially explain a resting-state EEG profile previously associated with Alzheimer’s disease. These findings indicate that the ARSQ readily provides information about cognitive phenotypes and that it is a promising tool for research on the neural correlates of resting-state cognition in health and disease.

  4. The relation between resting state connectivity and creativity in adolescents before and after training

    NARCIS (Netherlands)

    Cousijn, Janna; Zanolie, Kiki; Munsters, Robbert J M; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    An important component of creativity is divergent thinking, which involves the ability to generate novel and useful problem solutions. In this study, we tested the relation between resting-state functional connectivity of brain areas activated during a divergent thinking task (i.e., supramarginal

  5. Productive structure and production relations between polarized region by Londrina and the rest of Paraná in 2006

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Moretto

    2015-07-01

    Full Text Available This article had as objective estimate the sector linkages and the overflowing of the production multiplier between the North of Parana and the Rest of Parana, using the interregional input-output matrix for 1995. The main results showed that a agriculture and food processing sectors stood out in the productive structure of North of Parana State, comparing to the Rest of Parana State, as disseminators of inter-sector relations b the industrial structure of the Rest of Parana presented more diversification as compared to the North Region, showing less dependence on agriculture and food processing sectors for its dynamic; c the overflowing effect of the production multiplier in the direction Rest of Parana-North of Parana was 4,9%, whereas in the direction North of Parana-Rest of Parana it was 12%, revealing a greater dependency of the productive process of the North of Parana vis-a-vis the Rest of Parana; d the Rest of Parana, although more diversified in its productive structure, showed more dependence on the North of Parana as for the answer to the input requirements of the food processing sectors when facing growth in its final demand.

  6. Resting-state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals.

    Science.gov (United States)

    Doucet, Gaëlle E; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R; Tracy, Joseph I

    2015-01-01

    In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. © 2014 Wiley Periodicals, Inc.

  7. [Acute stent thrombosis and reverse transient left ventricular dilatation after performing a single-photon emission computed tomography myocardial perfusion].

    Science.gov (United States)

    Miranda, B; Pizzi, M N; Aguadé-Bruix, S; Domingo, E; Candell-Riera, J

    2015-01-01

    A 63-year-old male patient with a history of stent implantation in the left anterior descending three months before. Due to the presentation of vegetative symptoms, he was referred for gated-SPECT myocardial perfusion. During acquisition of the resting images he presented chest pain and ST segment elevation, so that urgent cardiac catheterization was performed, showing stent thrombosis. Rest perfusion imaging showed a defect in anterior and apical perfusion, more severe and extensive than in the stress images, with striking left ventricular dilatation and a fall in the ejection fraction related to the acute ischemia phenomenon. Intense exercise is associated with a transient activation of the coagulation system and hemodynamic changes that might induce thrombosis, especially in recently implanted coronary stents that probably still have not become completely endothelialized. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  8. Patients with Chronic Visceral Pain Show Sex-Related Alterations in Intrinsic Oscillations of the Resting Brain

    Science.gov (United States)

    Hong, Jui-Yang; Kilpatrick, Lisa A.; Labus, Jennifer; Gupta, Arpana; Jiang, Zhiguo; Ashe-McNalley, Cody; Stains, Jean; Heendeniya, Nuwanthi; Ebrat, Bahar; Smith, Suzanne; Tillisch, Kirsten; Naliboff, Bruce

    2013-01-01

    Abnormal responses of the brain to delivered and expected aversive gut stimuli have been implicated in the pathophysiology of irritable bowel syndrome (IBS), a visceral pain syndrome occurring more commonly in women. Task-free resting-state functional magnetic resonance imaging (fMRI) can provide information about the dynamics of brain activity that may be involved in altered processing and/or modulation of visceral afferent signals. Fractional amplitude of low-frequency fluctuation is a measure of the power spectrum intensity of spontaneous brain oscillations. This approach was used here to identify differences in the resting-state activity of the human brain in IBS subjects compared with healthy controls (HCs) and to identify the role of sex-related differences. We found that both the female HCs and female IBS subjects had a frequency power distribution skewed toward high frequency to a greater extent in the amygdala and hippocampus compared with male subjects. In addition, female IBS subjects had a frequency power distribution skewed toward high frequency in the insula and toward low frequency in the sensorimotor cortex to a greater extent than male IBS subjects. Correlations were observed between resting-state blood oxygen level-dependent signal dynamics and some clinical symptom measures (e.g., abdominal discomfort). These findings provide the first insight into sex-related differences in IBS subjects compared with HCs using resting-state fMRI. PMID:23864686

  9. Diabetes as an independent predictor of left ventricular longitudinal strain reduction at rest and during dobutamine stress test in patients with significant coronary artery disease.

    Science.gov (United States)

    Wierzbowska-Drabik, Karina; Trzos, Ewa; Kurpesa, Malgorzata; Rechcinski, Tomasz; Miskowiec, Dawid; Cieslik-Guerra, Urszula; Uznanska-Loch, Barbara; Sobczak, Maria; Kasprzak, Jaroslaw Damian

    2017-12-09

    Diabetes (DM) is a strong cardiovascular risk factor modifying also the left ventricular (LV) function that may be objectively assessed with echocardiographic strain analysis. Although the impact of isolated DM on myocardial deformation has been already studied, few data concern diabetics with coronary artery disease (CAD), especially in all stages of dobutamine stress echocardiography (DSE). We compared LV systolic function during DSE in CAD with and without DM using state-of-the art speckle-tracking quantification and assessed the impact of DM on LV systolic strain. DSE was performed in 250 patients with angina who afterwards had coronarography with ≥50% stenosis in the left main artery and ≥70% in other arteries considered as significant. In this analysis, we included 127 patients with confirmed CAD: 42 with DM [DM(+); mean age 64 ± 9 years] and 85 patients without DM [DM(-); mean age 63 ± 9 years]. The severity of CAD and LV ejection fraction (EF) were similar in both groups. Global and regional LV peak systolic longitudinal strain (PSLS) revealed in all DSE phases lower values in DM(+) group: 14.5 ± 3.6% vs. 17.4 ± 4.0% at rest; P = 0.0001, 13.8 ± 3.9% vs. 16.7 ± 4.0% at peak stress; P = 0.0002, and 14.2 ± 3.1% vs. 15.5 ± 3.5% at recovery; P = 0.0432 for global parameters, although dobutamine challenge did not enhance further resting differences. LV EF, body surface area, and diabetes were independent predictors for strain in 16-variable model (R2 = 0, 51, P coexisting CAD and DM on myocardial strain. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  10. Neural correlates of verbal creativity: Differences in resting-state functional connectivity associated with expertise in creative writing

    Directory of Open Access Journals (Sweden)

    Martin eLotze

    2014-07-01

    Full Text Available Neural characteristics of verbal creativity as assessed by word generation tasks have been recently identified, but differences in resting-state functional connectivity (rFC between experts and non-experts in creative writing have not been reported yet. Previous electroencephalography (EEG coherence measures during rest demonstrated a decreased cooperation between brain areas in association with creative thinking ability. Here, we used resting-state functional magnetic resonance imaging to compare 20 experts in creative writing and 23 age-matched non-experts with respect to rFC strengths within a brain network previously found to be associated with creative writing. Decreased rFC for experts was found between areas 44 of both hemispheres. Increased rFC for experts was observed between right hemispheric caudate and intraparietal sulcus. Correlation analysis of verbal creativity indices with rFC values in the expert group revealed predominantly negative associations, particularly of rFC between left area 44 and left temporal pole. Overall, our data support previous findings on reduced connectivity between interhemispheric areas and increased right-hemispheric connectivity during rest in highly verbally creative individuals.

  11. Speech networks at rest and in action: interactions between functional brain networks controlling speech production

    Science.gov (United States)

    Fuertinger, Stefan

    2015-01-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. PMID:25673742

  12. Lateralization of Resting State Networks and Relationship to Age and Gender

    Science.gov (United States)

    Agcaoglu, O.; Miller, R.; Mayer, A.R.; Hugdahl, K.; Calhoun, V.D.

    2014-01-01

    Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun, Adali, Pearlson, & Pekar, 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age

  13. Lateralization of resting state networks and relationship to age and gender.

    Science.gov (United States)

    Agcaoglu, O; Miller, R; Mayer, A R; Hugdahl, K; Calhoun, V D

    2015-01-01

    Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun et al., 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age were found in

  14. Heart rate index: an indicator of left ventricular ejection fraction. Comparison of left ventricular ejection fraction and variables assessed by exercise test in patients studied early after acute myocardial infarction

    DEFF Research Database (Denmark)

    Haedersdal, C; Pedersen, F H; Svendsen, Jesper Hastrup

    1992-01-01

    The present study compares the variables assessed by standard exercise test with the left ventricular ejection fraction (LVEF) measured by multigated radionuclide angiocardiography (MUGA) in 77 patients early after myocardial infarction. The exercise test and MUGA were performed within two weeks...... at rest, 4) rise in systolic blood pressure, 5) rate pressure product at rest, 6) rise in rate pressure product, 7) ratio (rHR) between maximal rate pressure product and rate pressure product at rest, 8) total exercise time. The heart rate was corrected for effects caused by age (heart index (HR...

  15. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2014-01-01

    Full Text Available This study investigated changes in resting-state functional connectivity (rsFC of posterior cingulate cortex (PCC in smokers and nonsmokers with Internet gaming addiction (IGA. Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA.

  16. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  18. Relationships Between Biomarkers and Left Ventricular Filling Pressures at Rest and During Exercise in Patients After Myocardial Infarction

    DEFF Research Database (Denmark)

    Andersen, Mads J; Ersbøll, Mads; Bro-Jeppesen, John

    2014-01-01

    samples were collected at rest for assessment of midregional pro-A-type natriuretic peptide (MR-proANP), N-terminal pro-B-type natriuretic peptide (NT-proBNP), galectin-3 (Gal-3), copeptin, and midregional pro-adrenomedullin (MR-proADM). Plasma levels of MR-proANP and PCWP were associated at rest (r = 0.......33; P = .002) and peak exercise (r = 0.35; P = .002) as well as with changes in PCWP (r = 0.26; P = .03). Plasma levels of NT-proBNP and PCWP were weakly associated at rest (r = 0.23; P = .03) and peak exercise (r = 0.28; P = .02) but not with changes in PCWP (r = 0.20; P = .09). In a multivariable...

  19. Technetium-99m sestamibi imaging to predict left ventricular ejection fraction outcome after revascularisation in patients with chronic coronary artery disease and left ventricular dysfunction: comparison between baseline and nitrate-enhanced imaging

    International Nuclear Information System (INIS)

    Sciagra, R.; Pupi, A.; Leoncini, M.; Dabizzi, R.P.; Marcucci, G.

    2001-01-01

    Acceptance of technetium-99m sestamibi as a tracer of myocardial viability is growing, particularly when nitrate-enhanced imaging is used. However, few data are available on the ability of 99m Tc-sestamibi to predict the evolution of global left ventricular ejection fraction (EF). The aim of this study was to examine the ability of resting and nitrate 99m Tc-sestamibi single-photon emission tomography (SPET) to predict EF changes after revascularisation in patients who have chronic coronary artery disease with left ventricular dysfunction. Using baseline resting and nitrate 99m Tc-sestamibi SPET, we studied 61 patients scheduled for revascularisation because of left ventricular dysfunction. EF was estimated using two-dimensional echocardiography before and after the intervention. A post-revascularisation improvement of ≥5 EF units was defined as significant. Using a 13-segment model, 99m Tc-sestamibi activity was quantified and the nitrate-induced activity changes calculated. Three different criteria for detecting viability (defined as post-revascularisation reversible dysfunction) in asynergic segments were compared: (1) resting 99m Tc-sestamibi activity ≥60%; (2) nitrate 99m Tc-sestamibi activity ≥65%; and (3) nitrate-induced increase >+10% or nitrate-induced increase ≤+10% and nitrate activity ≥65%. EF increased significantly in 32 patients. The number of viable asynergic segments was significantly higher in these patients than in the remaining 29 subjects, and the difference was greater (P 99m Tc-sestamibi SPET appears able to predict the evolution of global left ventricular EF after revascularisation, thereby confirming the value of 99m Tc-sestamibi as a tracer of myocardial viability. The combination of baseline resting and nitrate imaging seems to significantly improve the diagnostic accuracy of 99m Tc-sestamibi SPET for this particular purpose. (orig.)

  20. Resting electrocardiogram and stress myocardial perfusion imaging in the determination of left ventricular systolic function: an assessment enhancing the performance of gated SPET.

    Science.gov (United States)

    Moralidis, Efstratios; Spyridonidis, Tryfon; Arsos, Georgios; Skeberis, Vassilios; Anagnostopoulos, Constantinos; Gavrielidis, Stavros

    2010-01-01

    This study aimed to determine systolic dysfunction and estimate resting left ventricular ejection fraction (LVEF) from information collected during routine evaluation of patients with suspected or known coronary heart disease. This approach was then compared to gated single photon emission tomography (SPET). Patients having undergone stress (201)Tl myocardial perfusion imaging followed by equilibrium radionuclide angiography (ERNA) were separated into derivation (n=954) and validation (n=309) groups. Logistic regression analysis was used to develop scoring systems, containing clinical, electrocardiographic (ECG) and scintigraphic data, for the discrimination of an ERNA-LVEFstatistic (mean+/-2SD) provided values of 0.001+/-0.176, 0.071+/-0.196 and 0.040+/-0.152, respectively. The average LVEF was a better discriminator of systolic dysfunction than gated SPET-LVEF in receiver operating characteristic (ROC) analysis and identified more patients (89%) with a stress myocardial perfusion imaging variables. This model provides reliable LVEF estimations, comparable to those from (201)Tl gated SPET, and can enhance the clinical performance of the latter.

  1. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    Science.gov (United States)

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  2. Exercise left ventricular performance in patients with chest pain, ischemic-appearing exercise electrocardiograms, and angiographically normal coronary arteries

    International Nuclear Information System (INIS)

    Berger, H.J.; Sands, M.J.; Davies, R.A.; Wackers, F.J.; Alexander, J.; Lachman, A.S.; Williams, B.W.; Zaret, B.L.

    1981-01-01

    Left ventricular performance was evaluated using first-pass radionuclide angiocardiography in 31 patients with chest pain, an ischemic-appearing exercise electrocardiogram, and angiographically normal coronary arteries at rest and during maximal upright bicycle exercise. 201 Tl imaging was done in all patients after treadmill exercise and in selected patients after ergonovine provocation. Resting left ventricular performance was normal in all patients. An abnormal ejection fraction response to exercise was detected in 12 of 31 patients. Regional dysfunction was present during exercise in four patients, all of whom also had abnormal global responses. Three of these 12 patients and two additional patients had exercise-induced 201 Tl perfusion defects. In all nine patients who underwent ergonovine testing, there was no suggestion of coronary arterial spasm. Thus, left ventricular dysfunction during exercise, in the presence of normal resting performance, was found in a substantial number of patients with chest pain, an ischemic-appearing exercise electrocardiogram, and normal coronary arteries

  3. Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution

    Science.gov (United States)

    Avelar-Pereira, Bárbara; Bäckman, Lars; Wåhlin, Anders; Nyberg, Lars; Salami, Alireza

    2017-01-01

    Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture. PMID:28588476

  4. [Surgical treatment of congenital obstruction of the left ventricular outflow tract].

    Science.gov (United States)

    Biocina, B; Sutlić, Z; Husedinović, I; Letica, D; Sokolić, J

    1993-01-01

    This report presents the classification and all types of left ventricular outflow tract obstructions. The possibilities of operative therapies are surveyed as well. Results of surgical treatment in 34 patients with obstruction to left ventricular outflow are shown. The majority of patients underwent operation under extracorporeal circulation (84.4%), while the rest were operated by means of the inflow occlusion technique (14.7%). The obtained results were compared with those from the literature. The importance of echocardiographic evaluation of location of the left ventricular outflow tract obstruction and the appropriate choice of a surgical technique according to the patient's age are emphasized.

  5. Changes in Resting-State Connectivity following Melody-Based Therapy in a Patient with Aphasia

    Directory of Open Access Journals (Sweden)

    Tali Bitan

    2018-01-01

    Full Text Available Melody-based treatments for patients with aphasia rely on the notion of preserved musical abilities in the RH, following left hemisphere damage. However, despite evidence for their effectiveness, the role of the RH is still an open question. We measured changes in resting-state functional connectivity following melody-based intervention, to identify lateralization of treatment-related changes. A patient with aphasia due to left frontal and temporal hemorrhages following traumatic brain injuries (TBI more than three years earlier received 48 sessions of melody-based intervention. Behavioral measures improved and were maintained at the 8-week posttreatment follow-up. Resting-state fMRI data collected before and after treatment showed an increase in connectivity between motor speech control areas (bilateral supplementary motor areas and insulae and RH language areas (inferior frontal gyrus pars triangularis and pars opercularis. This change, which was specific for the RH, was greater than changes in a baseline interval measured before treatment. No changes in RH connectivity were found in a matched control TBI patient scanned at the same intervals. These results are compatible with a compensatory role for RH language areas following melody-based intervention. They further suggest that this therapy intervenes at the level of the interface between language areas and speech motor control areas necessary for language production.

  6. Left ventricular structure and diastolic function in subjects with two hypertensive parents

    DEFF Research Database (Denmark)

    Andersen, U B; Steensgaard-Hansen, F; Rokkedal, J

    2001-01-01

    hypertension and 26 matched controls with normotensive parents. Families with non-insulin-dependent diabetes or morbid obesity were excluded. (i) Echocardiography; (ii) plasma concentrations of renin, angiotensin-II, aldosterone, epinephrine and norepinephrine; (iii) euglycaemic, hyperinsulinemic clamp study......PURPOSE: To examine the influence of (i) strong predisposition to essential hypertension and (ii) insulin sensitivity and plasma levels of cardiomyotrophic hormones on echocardiographic parameters of left ventricular structure and function. METHODS: 26 normotensive subjects (age 18-35) with bi-parental....... RESULTS (means +/- SD): Hypertension-prone subjects vs controls had (i) higher resting systolic (117.0 +/- 14.0 vs 107.1 +/- 11.9 mmHg), and 24-h diastolic blood pressure (77.9 +/- 7.1 vs 72.9 +/- 7.2 mmHg), (ii) higher relative wall thickness (RWT) (0.39 +/- 0.09 vs 0.34 +/- 0.06). They had similar left...

  7. Association between social capital and health-related quality of life among left behind and not left behind older people in rural China.

    Science.gov (United States)

    Zhong, Yaqin; Schön, Pär; Burström, Bo; Burström, Kristina

    2017-12-16

    The association between social capital and health-related quality of life (HRQoL) has not been thoroughly studied among older persons in rural China, especially among those who were left behind or not. This study investigates the association between social capital and HRQoL and examines possible differences of this association between being left behind or not in rural China. A cross-sectional survey of 825 people aged 60 years and older, residing in three rural counties in Jiangsu Province in China, was conducted in 2013. Factor analysis was performed to measure social capital. EQ-5D was used to measure HRQoL. Tobit regression analysis with upper censoring was conducted to explore the association between social capital and EQ-5D index. After controlling for individual characteristics, low social capital and being left behind were significantly associated with low HRQoL. Old people with low social capital had 0.055 lower EQ-5D index compared to those with high social capital. Old people being left behind had 0.040 lower EQ-5D index compared to those who were not left behind. For different dimensions of social capital, the main effects came from the domain of trust and reciprocity. There was a significant interaction between low social capital and being left behind on HRQoL, suggesting that low social capital was associated with low HRQoL among persons left behind. Our findings indicate that the left behind old people with low social capital were a potentially vulnerable group in rural China. Formulating and implementing initiatives and strategies which increase social capital may foster better HRQoL, especially for old people who were left behind.

  8. [Resting state fMRI study of emotional network in patients with postconcussion syndrome].

    Science.gov (United States)

    Zhang, X; Qian, R B; Fu, X M; Lin, B; Zhang, D; Xia, C S; Wei, X P; Niu, C S; Wang, Y H

    2017-07-04

    Objective: To discuss functional connectivity changes in the emotional network of patients with post-concussion syndrome (PCS) and their clinical significance by resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Twenty-seven patients with PCS were recruited from the Department of Neurosurgery of Anhui provincial hospital affiliated to Anhui medical university from October 2015 to April 2016, and 27 healthy subjects were recruited as the controls. The Hamilton Anxiety Scale (HAMA) and The Hamilton Depression Scale (HAMD) were used to evaluate the emotional state of two groups of subjects. All fMRI data were preprocessed after RS-fMRI scanning, the left and right amygdala were selected as region of interest (ROI) to make functional connectivity (FC) calculation with the whole brain and then the results were did statistical analysis in order to obtain the altered brain areas of amygdala and whole brain functional connectivity in the PCS patient, to understand the functional changes of emotional network. Results: HAMA and HAMD scores of PCS group and the health controls had significant statistical difference (HAMA: the PCS group 9.8±1.5, the health controls 4.5±1.2, P =0.044; HAMD: the PCS group 12±1.2, the health controls was 4.2±1.5, P =0.024). Compared with the health controls, the left amygdala in PCS patients showed decreased FC with left insula, left putamen, left anterior cingulate gyrus, left inferior orbital frontal gyrus, left medial superior frontal gyrus, bilateral superior temporal gyrus, left superior temporal pole, bilateral supramarginal gyrus et al, on the contrary with the increased FC with right superior orbital frontal gyrus, right middle frontal lobe, right orbital frontal lobe, right middle frontal gyrus. The right amygdala in PCS patients showed decreased FC with bilateral putamen, right inferior orbital frontal gyrus, left insula, bilateral precuneus, bilateral superior temporal pole, right superior temporal gyrus

  9. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress.

    Science.gov (United States)

    Scali, Maria Chiara; Zagatina, Angela; Simova, Iana; Zhuravskaya, Nadezhda; Ciampi, Quirino; Paterni, Marco; Marzilli, Mario; Carpeggiani, Clara; Picano, Eugenio

    2017-11-01

    Various lung ultrasound (LUS) scanning modalities have been proposed for the detection of B-lines, also referred to as ultrasound lung comets, which are an important indication of extravascular lung water at rest and after exercise stress echo (ESE). The aim of our study was to assess the lung water spatial distribution (comet map) at rest and after ESE. We performed LUS at rest and immediately after semi-supine ESE in 135 patients (45 women, 90 men; age 62 ± 12 y, resting left ventricular ejection fraction = 41 ± 13%) with known or suspected heart failure or coronary artery disease. B-lines were measured by scanning 28 intercostal spaces (ISs) on the antero-lateral chest, 2nd-5th IS, along with the midaxillary (MA), anterior axillary (AA), mid-clavicular (MC) and parasternal (PS) lines. Complete 28-region, 16-region (3rd and 4th IS), 8-region (3rd IS), 4-region (3rd IS, only AA and MA) and 1-region (left 3rd IS, MA) scans were analyzed. In each space, the B-lines were counted from 0 = black lung to 10 = white lung. Interpretable images were obtained in all spaces (feasibility = 100 %). B-lines (>0 in at least 1 space) were present at ESE in 93 patients (69%) and absent in 42. More B-lines were found in the 3rd IS and along AA and MA lines. The B-line cumulative distribution was symmetric at rest (right/left = 1.10) and asymmetric with left lung predominance during stress (right/left = 0.67). The correlation of per-patient B-line number between 28-S and 16-S (R 2  = 0.9478), 8-S (R 2  = 0.9478) and 4-S scan (R 2  = 0.9146) was excellent, but only good with 1-S (R 2  = 0.8101). The average imaging and online analysis time were 5 s per space. In conclusion, during ESE, the comet map of lung water accumulation follows a predictable spatial pattern with wet spots preferentially aligned with the third IS and along the AA and MA lines. The time-saving 4-region scan is especially convenient during stress, simply dismissing dry regions and

  10. Daily physical-rest activities in relation to nutritional state, metabolism, and quality of life in cancer patients with progressive cachexia.

    Science.gov (United States)

    Fouladiun, Marita; Körner, Ulla; Gunnebo, Lena; Sixt-Ammilon, Petra; Bosaeus, Ingvar; Lundholm, Kent

    2007-11-01

    To evaluate daily physical-rest activities in cancer patients losing weight in relation to disease progression. Physical activity-rest rhythms were measured (ActiGraph, armband sensor from BodyMedia) in relation to body composition (dual-energy X-ray absorptiometry), energy metabolism, exercise capacity (walking test), and self-scored quality of life (SF-36, Hospital Anxiety and Depression Scale) in weight-losing outpatients with systemic cancer (71 +/- 2 years, n = 53). Well-nourished, age-matched, and previously hospitalized non-cancer patients served as controls (74 +/- 4 years, n = 8). Middle-aged healthy individuals were used as reference subjects (49 +/- 5 years, n = 23). Quality of life was globally reduced in patients with cancer (P sleep and bed-rest activities did not differ between patients with cancer and age-matched non-cancer patients. Spontaneous physical activity correlated weakly with maximum exercise capacity in univariate analysis (r = 0.41, P < 0.01). Multivariate analysis showed that spontaneous physical activity was related to weight loss, blood hemoglobin concentration, C-reactive protein, and to subjectively scored items of physical functioning and bodily pain (SF-36; P < 0.05-0.004). Anxiety and depression were not related to spontaneous physical activity. Patient survival was predicted only by weight loss and serum albumin levels (P < 0.01), although there was no such prediction for spontaneous physical activity. Daily physical-rest activities represent variables which probably reflect complex mental physiologic and metabolic interactions. Thus, activity-rest monitoring provides a new dimension in the evaluation of medical and drug interventions during palliative treatment of patients with cancer.

  11. Family history of hypertension and left ventricular mass in youth: possible mediating parameters.

    Science.gov (United States)

    Cook, B B; Treiber, F A; Mensah, G; Jindal, M; Davis, H C; Kapuku, G K

    2001-04-01

    Whether positive family history (FH) of essential hypertension (EH) in normotensive youth is associated with increased left ventricular mass (LVM) and hemodynamic, anthropometric, and demographic parameters previously associated with increased LVM in adults is unknown. To examine these issues, 323 healthy youth (mean age, 13.6 +/- 1.3 years), 194 with positive FH of EH (61% African Americans, 39% whites) and 129 with negative FH of EH (33% African Americans, 67% whites) were evaluated. Hemodynamics were measured at rest and during four stressors (ie, postural change, car driving simulation, video game, forehead cold). Echocardiographic-derived measures of LVM were indexed separately to body surface area and height(2.7). Controlling for age and race differences (ie, 74% of African Americans v 47% of whites had positive FH), the positive FH group exhibited greater LVM/height(2.7), LVM/body surface area, higher systolic (SBP) and diastolic blood pressures (DBP), and total peripheral resistance index (TPRI) and lower cardiac index at rest (P men), general adiposity, resting cardiac index and blood pressure (BP), and TPRI responsivity to video game and cold stimulation (P < .05 for all). Thus, greater LVM index in positive FH of EH youth appears in part related to their greater BP and TPRI at rest and during stress.

  12. SERUM IGF-I AND HORMONAL RESPONSES TO INCREMENTAL EXERCISE IN ATHLETES WITH AND WITHOUT LEFT VENTRICULAR HYPERTROPHY

    Directory of Open Access Journals (Sweden)

    Aleksandra Zebrowska

    2009-03-01

    Full Text Available We investigated the response of insulin-like growth factor (IGF- I, insulin-like growth factor binding protein-3 (IGFBP-3 and some hormones, i.e., testosterone (T, growth hormone (GH, cortisol (C, and insulin (I, to maximal exercise in road cyclists with and without diagnosed left ventricular hypertrophy. M-mode and two-dimensional Doppler echocardiography was performed in 30 professional male endurance athletes and a group of 14 healthy untrained subjects using a Hewlett-Packard Image Point HX ultrasound system with standard imaging transducers. Echocardiography and an incremental physical exercise test were performed during the competitive season. Venous blood samples were drawn before and immediately after the maximal cycling exercise test for determination of somatomedin and hormonal concentrations. The basal concentration of IGF-I was statistically higher (p < 0.05 in athletes with left ventricular muscle hypertrophy (LVH when compared to athletes with a normal upper limit of the left ventricular wall (LVN (p < 0.05 and to the control group (CG (p < 0.01. The IGF-I level increased significantly at maximal intensity of incremental exercise in CG (p < 0.01, LVN (p < 0.05 and LVH (p < 0.05 compared to respective values at rest. Long-term endurance training induced an increase in resting (p < 0.01 and post-exercise (p < 0.05 IGF-I/IGFBP-3 ratio in athletes with LVH compared to LVN. The testosterone (T level was lower in LVH at rest compared to LVN and CG groups (p < 0.05. These results indicate that resting serum IGF-I concentration were higher in trained subjects with LVH compared to athletes without LVH. Serum IGF- I/IGFBP-3 elevation at rest and after exercise might suggest that IGF-I act as a potent stimulant of left ventricular hypertrophy in chronically trained endurance athletes

  13. Night-rest urinary catecholamine excretion in relation to aspects of free time, work and background data in a teacher group.

    Science.gov (United States)

    Kinnunen, U; Vihko, V

    1991-01-01

    Free time, work and background data were related to night-rest catecholamine excretion rates in a teacher group (n = 137) during an autumn term. The explained interindividual variance increased slightly towards the end of the term. Adrenaline excretion was predicted better than noradrenaline, notedly by coffee consumption, amount of physical activity, and subjective stress feelings which explained 16% of the variance in adrenaline excretion during night rest. However, the results indicated that the differences in catecholamine excretion during night rest remained mostly unpredictable.

  14. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults Differentially during Resting and Task States

    Directory of Open Access Journals (Sweden)

    Yang eJiang

    2016-02-01

    Full Text Available ß-amyloid (Aß plaques and tau-related neurodegeneration are pathologic hallmarks of Alzheimer’s disease (AD. The utility of AD biomarkers, including those measured in cerebrospinal fluid (CSF, in predicting future AD risk and cognitive decline is still being refined. Here we explored potential relationships between functional connectivity patterns within the default-mode network (DMN, age, CSF biomarkers (Aß42 and pTau181 and cognitive status in older adults. Multiple measures of functional connectivity were explored including a novel time series based measure (Total Interdependence; TI. In our sample of 27 cognitively normal older adults, no significant associations were found between levels of Aß42 or pTau181 and cognitive scores or regional brain volumes. However, we observed several novel relationships between these biomarkers and measures of functional connectivity in DMN during both resting-state and a short-term memory task. First, increased connectivity between bilateral anterior middle temporal gyri was associated with higher levels of CSF Aβ42 and Aβ42/pTau181 ratio (reflecting lower AD risk during both rest and task. Second, increased bilateral parietal connectivity during the short-term memory task, but not during rest, was associated with higher levels of CSF pTau181 (reflecting higher AD risk. Third, increased connectivity between left middle temporal and left parietal cortices during the active task was associated with decreased global cognitive status but not CSF biomarkers. Lastly, we found that our new TI method was more sensitive to the CSF Aβ42-connectivity relationship whereas the traditional cross-correlation method was more sensitive to levels of CSF pTau181 and cognitive status. With further refinement, resting-state connectivity and task-driven connectivity measures hold promise as non-invasive neuroimaging markers of Aβ and pTau burden in cognitively normal older adults.

  15. Regional myocardial perfusion in patients with atherosclerotic coronary artery disease, at rest and during angina pectoris induced by tachycardia

    International Nuclear Information System (INIS)

    Maseri, A.; L'Abbate, A.; Pesola, A.; Michelassi, C.; Marzilli, M.; De Nes, M.

    1977-01-01

    We studied regional myocardial perfusion by scintigraphic computer-assisted analysis of initial distribution, washout rates, and residual activity of 133 Xe injected into the left coronary artery of four patients with normal arteriograms and 14 patients with coronary stenosis. At rest, residual activity in poststenotic regions was always greater than in control regions, but initial washout rates were not slower. During angina, following xenon injections, the amount of indicator distributed to the poststenotic regions was markedly reduced; the increase of the initial washout rates was smaller than in control regions relative to rest, and residual activity was higher. Initial washout rates did not differ as much as from those of normal myocardium because in severe ischemia too little indicator is deposited initially in these regions to produce a change of any magnitude. Indeed, when angina was induced immediately after the xenon injection, poststenotic washout rates became much slower during angina than at rest, a finding that implicates functional factors in impairing poststenotic myocardial perfusion during angina

  16. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  17. Astronaut Norman Thagard rests on middeck while other team is on duty

    Science.gov (United States)

    1985-01-01

    Astronaut Norman E. Thagard, mission specialist for the 'silver' team, rests on the middeck while the 'gold' team is on duty in the science module. Don L. Lind, left, 'gold' team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  18. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  19. Evaluation of 17-mm St. Jude Medical Regent prosthetic aortic heart valves by rest and dobutamine stress echocardiography

    Directory of Open Access Journals (Sweden)

    Minardi Giovanni

    2006-09-01

    Full Text Available Abstract Background The prosthesis used for aortic valve replacement in patients with small aortic root can be too small in relation to body size, thus showing high transvalvular gradients at rest and/or under stress conditions. This study was carried out to evaluate rest and Dobutamine stress echocardiography (DSE hemodynamic response of 17-mm St. Jude Medical Regent (SJMR-17 mm in relatively aged patients at mean 24 months follow-up. Methods and results The study population consisted of 19 patients (2 men, 17 women, mean age 69.2 ± 7.3 years. All patients underwent rest Doppler echocardiography before and after surgery and basal and DSE at follow up (infused at rate of 5 micrg/Kg/min and increased by 5 microg/Kg/min at 5 min intervals up to 40 microg/Kg/min. The following parameters were evaluated at rest and/or under DSE: heart rate (HR, ejection fraction (EF, cardiac output (CO, peak and mean velocity and pressure gradients (MxV, MnV, MxPG, MnPG, effective orifice area (EOA, indexed EOA (EOAi, left ventricular mass (LVM, indexed LVM (LVMi, Velocity Time Integral at left ventricular outflow tract (VTI LVOT and transvalvular (Aortic VTI, Doppler velocity index (DVI. At rest MxPG and MnPG were 29.2 ± 7.1 and 16.6 ± 5.8mmHg, respectively; EOA and EOAi resulted 1.14 ± 0.3 cm2 and 0.76 ± 0.2 cm2/m2; DVI was normal (0.50 ± 0.1. At follow-up LVM and LVMi decreased significantly from pre-operative value of 258 ± 43g and 157.4 ± 27.7g/m2 to 191 ± 23.8g and 114.5 ± 10.6g/m2, respectively. DSE increased significantly HR, CO, EF, MxGP (up to 83.4 ± 2 1.9mmHg, MnPG (up to 43.2 ± 12.7mmHg. EOA, EOAi, DVI increased insignificantly (from baseline up to 1.2 ± 0.4 cm2, 0.75 ± 0.3cm2/m2 and 0.48 ± 0.1 respectively. Two patients developed significant intraventricular gradients. Conclusion These data show that SJMR 17-mm prostheses can be safely implanted in aortic position in relatively aged patients, offering a satisfactory hemodynamic

  20. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    Science.gov (United States)

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.

  1. Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: a (15)O-H(2)O PET study.

    Science.gov (United States)

    Monkul, E Serap; Silva, Leandro A P; Narayana, Shalini; Peluso, Marco A M; Zamarripa, Frank; Nery, Fabiano G; Najt, Pablo; Li, John; Lancaster, Jack L; Fox, Peter T; Lafer, Beny; Soares, Jair C

    2012-02-01

    We investigated the differences in the resting state corticolimbic blood flow between 20 unmedicated depressed patients and 21 healthy comparisons. Resting state cerebral blood flow (CBF) was measured with H(2)(15)O PET. Anatomical MRI scans were performed on an Elscint 1.9 T Prestige system for PET-MRI coregistration. Significant changes in cerebral blood flow indicating neural activity were detected using an ROI-free image subtraction strategy. In addition, the resting blood flow in patients was correlated with the severity of depression as measured by HAM-D scores. Depressed patients showed decreases in blood flow in right anterior cingulate (Brodmann areas 24 and 32) and increased blood flow in left and right posterior cingulate (Brodmann areas 23, 29, 30), left parahippocampal gyrus (Brodmann area 36), and right caudate compared with healthy volunteers. The severity of depression was inversely correlated with the left middle and inferior frontal gyri (Brodmann areas 9 and 47) and right medial frontal gyrus (Brodmann area 10) and right anterior cingulate (Brodmann areas 24, 32) blood flow, and directly correlated with the right thalamus blood flow. These findings support previous reports of abnormalities in the resting state blood flow in the limbic-frontal structures in depressed patients compared to healthy volunteers. Copyright © 2011 Wiley Periodicals, Inc.

  2. Serial thallium-201 imaging at rest in patients with unstable and stable angina pectoris: relationship of myocardial perfusion at rest to presenting clinical syndrome

    International Nuclear Information System (INIS)

    Brown, K.A.; Okada, R.D.; Boucher, C.A.; Phillips, H.R.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    In order to determine whether there are differences in myocardial perfusion at rest among patients with various unstable and stable angina syndromes, serial thallium-201 imaging was performed at rest in 19 patients presenting with rapidly worsening exertional angina (unstable angina, group A), 12 patients with rest angina alone without exertional symptoms (unstable angina, group B), and 34 patients with chronic stable angina. No patient had an episode of angina within 4 hours of study. Nineteen of 19 (100%) patients in group A demonstrated transient defects compared to only 3 of 12 (25%) patients in group B (p less than 0.0001) and 4 of 34 (12%) stable angina patients (p less than 0.0001). The majority of zones demonstrating transient defects in group A were associated with hypokinesis of the corresponding left ventriculogram segment without associated ECG evidence of previous infarction. There were no significant differences in the frequency of persistent thallium defects, severity of angiographic coronary artery disease, or frequency of regional wall motion abnormalities of myocardial segments supplied by stenotic coronary arteries among the three groups of patients. Transient defects have been shown to reflect reduction in regional coronary blood flow to viable myocardium. Therefore, we conclude that regional resting hypoperfusion of viable myocardium is far more common in patients with exertional unstable angina symptoms than in patients with rest angina alone or chronic stable angina

  3. Serial assessment of left ventricular function following coronary bypass surgery by radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Kawasuji, Michio; Sawa, Shigeharu; Sakakibara, Naoki; Iwa, Takashi; Taki, Junichi; Bunko, Hisashi

    1988-01-01

    The serial change in left ventricular function was investigated by radionuclide angiocardiography in 25 patients undergoing coronary artery bypass grafting (CABG). Multiple gated equilibrium blood pool imaging was performed at rest before, and at 1, 2 and 4 weeks after the operation and also during exercise on a supine bicycle ergometer before and 4 weeks after surgery. Global ejection fraction at rest was unchanged after CABG while peak ejection rate increased significantly at 1 and 2 weeks (p < 0.01 and p < 0.05 respectively) after the operation. Peak filling rate at rest was generally unchanged after surgery but peak filling rate during the first third of diastole at rest decreased significantly at 1 and 2 weeks (p < 0.01 and p < 0.05). After CABG, the increases in ejection fraction and peak ejection rate with exercise were significantly greater than those values measured before surgery. The increases, due to exercise, in peak filling rate and peak filling rate during the first third of diastole were unchanged after the operation. Radionuclide angiocardiography affords a safe, noninvasive, and highly reproducible procedure for serially assessing ventricular function in patients undergoing CABG. Our study revealed early diastolic dysfunction within 2 weeks of surgery and that CABG abolished abnormalities in left ventricular function induced by exercise. (author)

  4. Resting-state functional connectivity of the default mode network associated with happiness.

    Science.gov (United States)

    Luo, Yangmei; Kong, Feng; Qi, Senqing; You, Xuqun; Huang, Xiting

    2016-03-01

    Happiness refers to people's cognitive and affective evaluation of their life. Why are some people happier than others? One reason might be that unhappy people are prone to ruminate more than happy people. The default mode network (DMN) is normally active during rest and is implicated in rumination. We hypothesized that unhappiness may be associated with increased default-mode functional connectivity during rest, including the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and inferior parietal lobule (IPL). The hyperconnectivity of these areas may be associated with higher levels of rumination. One hundred forty-eight healthy participants underwent a resting-state fMRI scan. A group-independent component analysis identified the DMNs. Results indicated increased functional connectivity in the DMN was associated with lower levels of happiness. Specifically, relative to happy people, unhappy people exhibited greater functional connectivity in the anterior medial cortex (bilateral MPFC), posterior medial cortex regions (bilateral PCC) and posterior parietal cortex (left IPL). Moreover, the increased functional connectivity of the MPFC, PCC and IPL, correlated positively with the inclination to ruminate. These results highlight the important role of the DMN in the neural correlates of happiness, and suggest that rumination may play an important role in people's perceived happiness. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increased spatial granularity of left brain activation and unique age/gender signatures: a 4D frequency domain approach to cerebral lateralization at rest.

    Science.gov (United States)

    Agcaoglu, O; Miller, R; Mayer, A R; Hugdahl, K; Calhoun, V D

    2016-12-01

    Cerebral lateralization is a well-studied topic. However, most of the research to date in functional magnetic resonance imaging (fMRI) has been carried out on hemodynamic fluctuations of voxels, networks, or regions of interest (ROIs). For example, cerebral differences can be revealed by comparing the temporal activation of an ROI in one hemisphere with the corresponding homotopic region in the other hemisphere. While this approach can reveal significant information about cerebral organization, it does not provide information about the full spatiotemporal organization of the hemispheres. The cerebral differences revealed in literature suggest that hemispheres have different spatiotemporal organization in the resting state. In this study, we evaluate cerebral lateralization in the 4D spatiotemporal frequency domain to compare the hemispheres in the context of general activation patterns at different spatial and temporal scales. We use a gender-balanced resting fMRI dataset comprising over 600 healthy subjects ranging in age from 12 to 71, that have previously been studied with a network specific voxel-wise and global analysis of lateralization (Agcaoglu, et al. NeuroImage, 2014). Our analysis elucidates significant differences in the spatiotemporal organization of brain activity between hemispheres, and generally more spatiotemporal fluctuation in the left hemisphere especially in the high spatial frequency bands, and more power in the right hemisphere in the low and middle spatial frequencies. Importantly, the identified effects are not visible in the context of a typical assessment of voxelwise, regional, or even global laterality, thus our study highlights the value of 4D spatiotemporal frequency domain analyses as a complementary and powerful tool for studying brain function.

  7. Increased sensitivity to age-related differences in brain functional connectivity during continuous multiple object tracking compared to resting-state.

    Science.gov (United States)

    Dørum, Erlend S; Kaufmann, Tobias; Alnæs, Dag; Andreassen, Ole A; Richard, Geneviève; Kolskår, Knut K; Nordvik, Jan Egil; Westlye, Lars T

    2017-03-01

    Age-related differences in cognitive agility vary greatly between individuals and cognitive functions. This heterogeneity is partly mirrored in individual differences in brain network connectivity as revealed using resting-state functional magnetic resonance imaging (fMRI), suggesting potential imaging biomarkers for age-related cognitive decline. However, although convenient in its simplicity, the resting state is essentially an unconstrained paradigm with minimal experimental control. Here, based on the conception that the magnitude and characteristics of age-related differences in brain connectivity is dependent on cognitive context and effort, we tested the hypothesis that experimentally increasing cognitive load boosts the sensitivity to age and changes the discriminative network configurations. To this end, we obtained fMRI data from younger (n=25, mean age 24.16±5.11) and older (n=22, mean age 65.09±7.53) healthy adults during rest and two load levels of continuous multiple object tracking (MOT). Brain network nodes and their time-series were estimated using independent component analysis (ICA) and dual regression, and the edges in the brain networks were defined as the regularized partial temporal correlations between each of the node pairs at the individual level. Using machine learning based on a cross-validated regularized linear discriminant analysis (rLDA) we attempted to classify groups and cognitive load from the full set of edge-wise functional connectivity indices. While group classification using resting-state data was highly above chance (approx. 70% accuracy), functional connectivity (FC) obtained during MOT strongly increased classification performance, with 82% accuracy for the young and 95% accuracy for the old group at the highest load level. Further, machine learning revealed stronger differentiation between rest and task in young compared to older individuals, supporting the notion of network dedifferentiation in cognitive aging. Task

  8. Implications of Being Left-Handed as Related To Being Right-Handed.

    Science.gov (United States)

    Thomas, Jana H.

    Research indicates that there are physical and social, and possibly cognitive, differences between left-handers and right-handers. The three substantive sections of this colloquium paper cover brain functions, theories pertaining to the genesis of handedness, and cognitive development as related to handedness. Section 1 provides a brief…

  9. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  10. Selective Activation Around the Left Occipito-Temporal Sulcus for Words Relative to Pictures: Individual Variability or False Positives?

    OpenAIRE

    Wright, Nicholas D; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J; Rombouts, Serge ARB; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J

    2007-01-01

    We used high-resolution fMRI to investigate claims that learning to read results in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In the first experiment, 9/16 subjects performing a one-back task showed activation in ?1 left OT voxel for words relative to pictures (P < 0.05 uncorrected). In a second experiment, another 9/15 subjects performing a semantic decision task activated ?1 left OT voxel for words relative to pictures. However, at thi...

  11. Rapid computation of single PET scan rest-stress myocardial blood flow parametric images by table look up.

    Science.gov (United States)

    Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Ruskin, Jeremy N; Shoup, Timothy M; Woo, Jonghye; Ptaszek, Leon M; Fakhri, Georges El; Alpert, Nathaniel M

    2017-09-01

    We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (f LV ) and right (f RV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K 1r ) and stress (K 1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K 1map LM  = 1.019 × K 1 ROI NLM  + 0.019, R 2  = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). We developed a table lookup method for fast

  12. Validity of predicting left ventricular end systolic pressure changes following an acute bout of exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Cook, Marc D; Hall, Grenita; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2013-01-01

    Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance and is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Measured LV ESP vs. LV ESP values from the prediction equations were compared at rest, 15 min and 30 min following peak aerobic exercise in 60 participants. LV ESP was obtained by applanation tonometry at rest, 15 min post and 30 min post peak cycle exercise. Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). The two commonly used prediction equations did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young, healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Resting state glutamate predicts elevated pre-stimulus alpha during self-relatedness: A combined EEG-MRS study on "rest-self overlap".

    Science.gov (United States)

    Bai, Yu; Nakao, Takashi; Xu, Jiameng; Qin, Pengmin; Chaves, Pedro; Heinzel, Alexander; Duncan, Niall; Lane, Timothy; Yen, Nai-Shing; Tsai, Shang-Yueh; Northoff, Georg

    2016-01-01

    Recent studies have demonstrated neural overlap between resting state activity and self-referential processing. This "rest-self" overlap occurs especially in anterior cortical midline structures like the perigenual anterior cingulate cortex (PACC). However, the exact neurotemporal and biochemical mechanisms remain to be identified. Therefore, we conducted a combined electroencephalography (EEG)-magnetic resonance spectroscopy (MRS) study. EEG focused on pre-stimulus (e.g., prior to stimulus presentation or perception) power changes to assess the degree to which those changes can predict subjects' perception (and judgment) of subsequent stimuli as high or low self-related. MRS measured resting state concentration of glutamate, focusing on PACC. High pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power significantly correlated with both perception of stimuli judged to be highly self-related and with resting state glutamate concentrations in the PACC. In sum, our results show (i) pre-stimulus (e.g., prior to stimulus presentation or perception) alpha power and resting state glutamate concentration to mediate rest-self overlap that (ii) dispose or incline subjects to assign high degrees of self-relatedness to perceptual stimuli.

  14. Functional network centrality in obesity: A resting-state and task fMRI study.

    Science.gov (United States)

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Resting-state network disruption and APOE genotype in Alzheimer's disease: a lagged functional connectivity study.

    Directory of Open Access Journals (Sweden)

    Leonides Canuet

    Full Text Available BACKGROUND: The apolipoprotein E epsilon 4 (APOE-4 is associated with a genetic vulnerability to Alzheimer's disease (AD and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called "lagged phase synchronization". METHODOLOGY/PRINCIPAL FINDINGS: Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions. CONCLUSIONS/SIGNIFICANCE: In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially

  16. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  17. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  18. Predicting Risk-Taking Behavior from Prefrontal Resting-State Activity and Personality

    Science.gov (United States)

    Studer, Bettina; Pedroni, Andreas; Rieskamp, Jörg

    2013-01-01

    Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior. PMID:24116176

  19. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti

    2013-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  20. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-07-01

    Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery

  1. Left ventricular diastolic function in patients with coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, P.T.

    1986-08-01

    In 302 patients with confirmed coronary disease we determined the left ventricular diastolic function with the Nuclear Stethoscope by the aid of the Peak Filling Rate (PFR) and the Time to Peak Filling Rate (TPFR). Moreover we investigated the ejection fraction (EF). 201 patients had already suffered a myocardial infarction, of these 99 an anterior wall and 102 an inferior wall infarction. The remaining 101 patients had a CAD without a history of myocardial infarction. The PFR was 2.19 +- 0.65 EDV/sec in the 99 patients after anterior wall infarction and 2.62 +- 0.85 EDV/sec in the 102 patients after inferior wall infarction and 2.79 +- 0.85 EDV/sec in 101 patients with coronary artery disease without a history of myocardial infarction. For the PFR there could be found a statistically significant difference between normal patients and patients after anterior wall infarction (p < 0.0001), normal patients and patients after inferior wall infarction (p < 0.0001) and normal patients and patients with coronary artery disease (p < 0.0001). The TPFR was 180 +- 37.5 msec after anterior - and 158 +- 50.7 msec after inferior wall infarction and 156 +- 45.2 msec in the patients with CAD without previous infarction. The left ventricular diastolic function (PFR and/or TPFR) was abnormal in 88% after anterior- and in 82% after inferior wall infarction and in 69% in coronary patients without previous myocardial infarction. In comparison with this the ejection fraction was reduced in 66% in anterior- and in 61% inferior wall infarction at rest. These results indicate that the diastolic function at rest appears to be more informative for evaluation of a left ventricular dysfunction than the systolic function at rest.

  2. The resting electrocardiogram of t. cruzi-infected rats

    Directory of Open Access Journals (Sweden)

    Reinaldo B. Bestetti

    1987-08-01

    Full Text Available A total of 125 rats were infected with the Colômbia strain of T. cruzi (2000 parasites/g shortly after weaning. Of these, 58 survived the acute phase and were used in the present experiment. Twenty eight similar but not infected rats served as controls. All rats were submitted to the resting ECG When they were 6 months old. Classic and 3 precordial leads were employed in order to record the ECG as completely as possible. Electrocardiographic changes similar to those found in human chronic Chagas' heart disease and not previously described in this model were found in 44% of the T. cruzi-infected rats: left axis deviation (22%, right axis deviation (7%, lengthened and bizarre QRS complex (14% and abnormal J point elevation (3%. On the basis of these results, we believe that the resting ECG constitutes a valuable tool for studying experimental chronic Chagas' heart disease in rats.

  3. Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Rigo, P.; Baxter, R.H.; Alderson, P.O.; Douglass, K.H.; Housholder, D.F.

    1979-01-01

    A portable nonimaging device, the nuclear stethoscope, for measuring beat to beat ventricular time-activity curves in normal people and patients with heart disease, both at rest and during exercise, is being developed and evaluated. The latest device has several operting modes that facilitate left ventricular and background localization, measurement of transit times and automatic calculation and display of left ventricular ejection fraction. The correlation coefficient of left ventricular ejection fraction obtained with the device and with a camera-computer system was 0.92 in 35 subjects. During bicycle exercise the ejection fraction in 15 normal persons increased from 44 to 64% (P less than 0.001), whereas among 12 patients with heart disease it was unchanged in 5 and decreased in 7

  4. Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector.

    Science.gov (United States)

    Wagner, H N; Rigo, P; Baxter, R H; Alderson, P O; Douglass, K H; Housholder, D F

    1979-05-01

    A portable nonimaging device, the nuclear stethoscope, for measuring beat to beat ventricular time-activity curves in normal people and patients with heart disease, both at rest and during exercise, is being developed and evaluated. The latest device has several operating modes that facilitate left ventricular and background localization, measurement of transit times and automatic calculation and display of left ventricular ejection fraction. The correlation coefficient of left ventricular ejection fraction obtained with the device and with a camera-computer system was 0.92 in 35 subjects. During bicycle exercise the ejection fraction in 15 normal persons increased from 44 to 64 percent (P less than 0.001), whereas among 12 patients with heart disease it was unchanged in 5 and decreased in 7.

  5. Functional substrate for memory function differences between patients with left and right mesial temporal lobe epilepsy associated with hippocampal sclerosis.

    Science.gov (United States)

    Jin, Seung-Hyun; Chung, Chun Kee

    2015-10-01

    Little is known about the functional substrate for memory function differences in patients with left or right mesial temporal lobe epilepsy (mTLE) associated with hippocampal sclerosis (HS) from an electrophysiological perspective. To characterize these differences, we hypothesized that hippocampal theta connectivity in the resting-state might be different between patients with left and right mTLE with HS and be correlated with memory performance. Resting-state hippocampal theta connectivity, identified via whole-brain magnetoencephalography, was evaluated. Connectivity and memory function in 41 patients with mTLE with HS (left mTLE=22; right mTLE=19) were compared with those in 46 age-matched healthy controls and 28 patients with focal cortical dysplasia (FCD) but without HS. Connectivity between the right hippocampus and the left middle frontal gyrus was significantly stronger in patients with right mTLE than in patients with left mTLE. Moreover, this connectivity was positively correlated with delayed verbal recall and recognition scores in patients with mTLE. Patients with left mTLE had greater delayed recall impairment than patients with right mTLE and FCD. Similarly, delayed recognition performance was worse in patients with left mTLE than in patients with right mTLE and FCD. No significant differences in memory function between patients with right mTLE and FCD were detected. Patients with right mTLE showed significantly stronger hippocampal theta connectivity between the right hippocampus and left middle frontal gyrus than patients with FCD and left mTLE. Our results suggest that right hippocampal-left middle frontal theta connectivity could be a functional substrate that can account for differences in memory function between patients with left and right mTLE. This functional substrate might be related to different compensatory mechanisms against the structural hippocampal lesions in left and right mTLE groups. Given the positive correlation between

  6. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Resting site use of giant pandas in Wanglang Nature Reserve.

    Science.gov (United States)

    Kang, Dongwei; Wang, Xiaorong; Li, Junqing

    2017-10-23

    Little is known about the resting sites used by the giant panda (Ailuropoda melanoleuca), which restricts our understanding of their resting habits and limits conservation efforts. To enhance our understanding of resting site requirements and factors affecting the resting time of giant pandas, we investigated the characteristics of resting sites in the Wanglang Nature Reserve, Sichuan Province, China. The results indicated that the resting sites of giant pandas were characterised by a mean slope of 21°, mean nearest tree size of 53.75 cm, mean nearest shrub size of 2.82 cm, and mean nearest bamboo number of 56. We found that the resting sites were closer to bamboo than to trees and shrubs, suggesting that the resting site use of giant pandas is closely related to the presence of bamboo. Considering that giant pandas typically rest near a large-sized tree, protection of large trees in the forests is of considerable importance for the conservation of this species. Furthermore, slope was found to be an important factor affecting the resting time of giant pandas, as they tended to rest for a relatively longer time in sites with a smaller degree of slope.

  8. Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography

    International Nuclear Information System (INIS)

    Shechter, Guy; Resar, Jon R.; McVeigh, Elliot R.

    2005-01-01

    Magnetic resonance (MR) and computed tomography coronary imaging is susceptible to artifacts caused by motion of the heart. The presence of rest periods during the cardiac and respiratory cycles suggests that images free of motion artifacts could be acquired. In this paper, we studied the rest period (RP) duration of the coronary arteries during a cardiac contraction and a tidal respiratory cycle. We also studied whether three MR motion correction methods could be used to increase the respiratory RP duration. Free breathing x-ray coronary angiograms were acquired in ten patients. The three-dimensional (3D) structure of the coronary arteries was reconstructed from a biplane acquisition using stereo reconstruction methods. The 3D motion of the arterial model was then recovered using an automatic motion tracking algorithm. The motion field was then decomposed into separate cardiac and respiratory components using a cardiac respiratory parametric model. For the proximal-to-middle segments of the right coronary artery (RCA), a cardiac RP (<1 mm 3D displacement) of 76±34 ms was measured at end systole (ES), and 65±42 ms in mid-diastole (MD). The cardiac RP was 80±25 ms at ES and 112±42 ms at MD for the proximal 5 cm of the left coronary tree. At end expiration, the respiratory RP (in percent of the respiratory period) was 26±8% for the RCA and 27±17% for the left coronary tree. Left coronary respiratory RP (<0.5 mm 3D displacement) increased with translation (32% of the respiratory period), rigid body (51%), and affine (79%) motion correction. The RCA respiratory RP using translational (27%) and rigid body (33%) motion correction were not statistically different from each other. Measurements of the cardiac and respiratory rest periods will improve our understanding of the temporal and spatial resolution constraints for coronary imaging

  9. Evaluation of hemodynamic significance of coronary fistulae. Diagnostic integration between coronary angiography and stress/rest myocardial scintigraphy

    International Nuclear Information System (INIS)

    Rubini, G.; Sebastiani, M.

    2000-01-01

    It is here reported on the importance of the integration of data obtained from digital coronary angiography and stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography in evaluationing the hemodynamic significance of coronary arteriovenous fistulae. Coronary fistulae were detected with coronary angiography in 9 patients. All patients underwent clinical examination, trans thoracic echocardiography, stress electrocardiogram and stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography. Stress/rest 99m Tc sestamibi myocardial perfusion single photon tomography and stress electrocardiogram showed stress-induced myocardial ischemia in 2 patients. The first patient with familial predisposition and risk factors for ischemic heart disease presented a mesocardic heart murmur on clinical examination. At stress ECG (125 Watt, 153 b/m max frequency 93%, arterial pressure 230 mmHg, max frequency pressure product 35200) ischemic alterations were recorded at the first minute of the second stage of the Bruce protocol. Coronary angiography detected a circumflex artery fistula in the coronary sinus. Stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography for the evaluation of stress/rest perfusion detected a reversible perfusion defect of the proximal portion of the posterolateral and lateral walls, thus confirming the hemodynamic importance of the flow through the fistula during stress cycloergometric testing. In the second patient familial predisposition to ischemic heart disease and previous inferior wall myocardial infarction and non-significant stress ECG, coronary angiography identified a seclusive stenosis of the right coronary artery and anomaly between the anterior interventricular artery and the left pulmonary artery. The presence of the contrast medium in the left pulmonary artery identified a flow from the left ventricle to the left pulmonary artery. Good angiographic results were obtained

  10. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients

    DEFF Research Database (Denmark)

    Bang, Casper; Gerdts, Eva; Aurigemma, Gerard P

    2013-01-01

    Left ventricular hypertrophy [LVH, high left ventricular mass (LVM)] is traditionally classified as concentric or eccentric based on left ventricular relative wall thickness. We evaluated left ventricular systolic function in a new four-group LVH classification based on left ventricular dilatation...... [high left ventricular end-diastolic volume (EDV) index and concentricity (LVM/EDV)] in hypertensive patients....

  11. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  12. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    Science.gov (United States)

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

  13. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  14. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    OpenAIRE

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the c...

  15. Diastolic compliance and exercise-induced left ventricular diastolic volume changes in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Choi, W.; Varma, V.; Wasserman, A.; Katz, R.; Reba, R.; Ross, A.

    1983-01-01

    This study consists of 46 consecutive patients who had supine resting and exercise multigated (MUGA) blood pool studies. All patients had angio-graphically important coronary stenosis in at least one major vessel. Thirty-five out of 46 patients with coronary artery disease increased left ventricular end diastolic volume with a supine exercise. The remaining eleven patients dit not dilate the left ventricle. Those patients, who were able to increase their end diastolic volume during exercise, had better compliance of the left ventricle manifested by lower end diastolic pressures, whereas, patients with poor left ventricular compliance were unable to volume expand during supine exercise

  16. Changes of left ventricular function at exercise after lung resection; Study with a nuclear stethoscope

    Energy Technology Data Exchange (ETDEWEB)

    Fujisaki, Takashi; Gomibuchi, Makoto; Shoji, Tasuku (Nippon Medical School, Tokyo (Japan))

    1992-09-01

    To determine the effect of lung resection on left ventricular function, 29 surgical patients were examined by using a nuclear stethoscope as a non-invasive means for measuring ventricular function at exercise. Pre- and post-operative parameters were obtained at rest and exercise. At rest, postoperative stroke volume (SV), end-diastolic volume (EDV), ejection fraction (EF), and ejection rate (ER) were significantly decreased; heart rate (HR) was significantly increased; and both filling rate (FR) and cardiac output (CO) remained unchanged. At maximum exercise, postoperative EDV, SV, ER and FR were significantly decreased; and there was no significant difference in either HR or EF, resulting in a significantly decreased CO. A ratio of CO and FR at maximum exercise to at rest was significantly decreased after surgery, as compared with that before surgery. According to the number of lobe resection, similar findings for all parameters, except for EF, were observed in the group of two lobe or more resection (n=13); and only two parameters, ER and FR, had the same tendency as those mentioned above in the group of a single lobe resection (n=16). The age group of 60 years or less (n=14) had similar findings for all parameters. In the group of 65 years or more (n=10), resting HR after surgery was not different from that before surgery; and postoperative CO was significantly decreased at rest, but not different from preoperative value at maximum exercise. In conclusion, left ventricular function associated with lung resection is reflected by decreased EDV and SV resulting from reduced pre-load. These changes may be corrected at rest, but not corrected at maximum exercise, resulting in decreased CO. More noticeable decrease in EDV and SV seems to be associated with larger lung resection. In older patients, HR is not corrected well, resulting in a decrease in CO at rest. (N.K.).

  17. Your resting brain CAREs about your risky behavior.

    Directory of Open Access Journals (Sweden)

    Christine L Cox

    2010-08-01

    Full Text Available Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI and resting state functional connectivity (RSFC methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate. We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion was associated with 1 stronger positive functional connectivity between right inferior frontal gyrus (IFG and right insula, and 2 weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that

  18. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    Science.gov (United States)

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  19. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  20. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    Science.gov (United States)

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to

  1. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    Science.gov (United States)

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  2. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  3. Study on resting-state fMRI based on amplitude of low-frequency fluctuation in patients with major depression

    Directory of Open Access Journals (Sweden)

    Meng-jie PAN

    2018-04-01

    Full Text Available Objective To observe characteristics of resting-state functional magnetic resonance imaging (rs-fMRI in patients with major depression and explore the possible pathogenesis. Methods A total of 24 major depression patients and 26 sex-, age- and education-matched healthy controls were scanned with rs-fMRI based on amplitude of low-frequency fluctuation (ALFF. The correlation between mALFF values of brain regions and Hamilton Depression Rating Scale-17 (HAMD-17 score was analyzed by Spearman rank correlation analysis. Results Compared with control group, mALFF values in bilateral dorsolateral prefrontal cortex (DLPFC, right orbital superior frontal gyrus, right inferior temporal gyrus, left operculum inferior frontal gyrus, left medial superior frontal gyrus and left gyrus rectus in major depression group were significantly increased (P 0.05, for all. Conclusions Abnormal brain spontaneous activity within default mode network (DMN and limbic system could emerge in major depression patients during resting-state, which may be neurobiological substrate of major depression. DOI: 10.3969/j.issn.1672-6731.2018.03.005

  4. Impact of age on pulmonary artery systolic pressures at rest and with exercise

    Directory of Open Access Journals (Sweden)

    Garvan C Kane

    2016-06-01

    Full Text Available Aim: It is not well known if advancing age influences normal rest or exercise pulmonary artery pressures. The purpose of the study was to evaluate the association of increasing age with measurements of pulmonary artery systolic pressure at rest and with exercise. Subjects and methods: A total of 467 adults without cardiopulmonary disease and normal exercise capacity (age range: 18–85 years underwent symptom-limited treadmill exercise testing with Doppler measurement of rest and exercise pulmonary artery systolic pressure. Results: There was a progressive increase in rest and exercise pulmonary artery pressures with increasing age. Pulmonary artery systolic pressures at rest and with exercise were 25 ± 5 mmHg and 33 ± 9 mmHg, respectively, in those <40 years, and 30 ± 5 mmHg and 41 ± 12 mmHg, respectively, in those ≥70 years. While elevated left-sided cardiac filling pressures were excluded by protocol design, markers of arterial stiffness associated with the age-dependent effects on pulmonary pressures. Conclusion: These data demonstrate that in echocardiographically normal adults, pulmonary artery systolic pressure increases with advancing age. This increase is seen at rest and with exercise. These increases in pulmonary pressure occur in association with decreasing transpulmonary flow and increases in systemic pulse pressure, suggesting that age-associated blood vessel stiffening may contribute to these differences in pulmonary artery systolic pressure.

  5. Selective activation around the left occipito-temporal sulcus for words relative to pictures: individual variability or false positives?

    Science.gov (United States)

    Wright, Nicholas D; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J; Rombouts, Serge A R B; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J

    2008-08-01

    We used high-resolution fMRI to investigate claims that learning to read results in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In the first experiment, 9/16 subjects performing a one-back task showed activation in > or =1 left OT voxel for words relative to pictures (P or =1 left OT voxel for words relative to pictures. However, at this low statistical threshold false positives need to be excluded. The semantic decision paradigm was therefore repeated, within subject, in two different scanners (1.5 and 3 T). Both scanners consistently localised left OT activation for words relative to fixation and pictures relative to words, but there were no consistent effects for words relative to pictures. Finally, in a third experiment, we minimised the voxel size (1.5 x 1.5 x 1.5 mm(3)) and demonstrated a striking concordance between the voxels activated for words and pictures, irrespective of task (naming vs. one-back) or script (English vs. Hebrew). In summary, although we detected differential activation for words relative to pictures, these effects: (i) do not withstand statistical rigour; (ii) do not replicate within or between subjects; and (iii) are observed in voxels that also respond to pictures of objects. Our findings have implications for the role of left OT activation during reading. More generally, they show that studies using low statistical thresholds in single subject analyses should correct the statistical threshold for the number of comparisons made or replicate effects within subject. (c) 2007 Wiley-Liss, Inc.

  6. Light, rest mass and electric charge quanta all formed by neutrinos?

    Science.gov (United States)

    Chen, Shao-Guang

    In high energy physics experiments the electric charge and rest mass of particles can commonly transform into the photons, vice versa. Its reason QFT can only give a vague answer: based on the particle creation and annihilation operators. There are not more clear answers or conjecture? At least, light, electric charge and rest mass should have a collective structure component, if not, the transformation is unable understanding. An elementary answer is that neutrino and antineutrino as their collective structure component. In the paper ‘Chen Qiliang & Wang Bin, The formation and characteristics of Chen Shaoguang's formula, China Science &Technology Overview 127101-103 (2011)’, the lowest energy state vertical polarized left spin 1/2 neutrino and right spin 1/2 antineutrino are just the left, right advance unit quanta la _{0}nuυ, ra nuυ _{0} and left, right back unit quanta lb (0) nuυ, rb nuυ (0) , it again compose into spin 1 unit photon la-ra _{0}nuυnuυ _{0} and back-photon lb-rb (0) nuυnuυ (0) , spin 0 unit rest mass ra-rb nuυ _{0}nuυ (0) and anti-mass la-lb _{0}nuυ (0) nuυ, spin 0 unit positive charge la-rb _{0}nuυnuυ (0) and negative charge ra-lb nuυ _{0} (0) nuυ. The physical vacuum is the even collocation of non-combinational nuυ _{0} or _{0}nuυ. It accord to the high energy physics experimental results of the transformation among the photons, masses quanta and charges quanta. In my paper ‘Quanta turn-advance ism, China Science && Technology Overview 131 192-210 (2011)’, QFT four-dimensional uncertainty principle and momentum-energy conservation law had been generalized as a five-dimensional equations: de Broglie wavelength as a position vector \\underline{q}= (i c t, r, s), momentum \\underline{P} = (i E / c, P, U c), \\underline{q} = i h / \\underline{P}, \\underline{q} \\underline{q} = 0, \\underline{P} \\underline{P} = 0, Sigma∑ \\underline{P} = \\underline{P} (0) . The five-dimensional time-space-spin had been quantized as a

  7. Left ventricular diastolic filling in patients with systemic hypertension

    International Nuclear Information System (INIS)

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Honda, Minoru; Kanao, Keisuke

    1985-01-01

    To study the prevalence and significance of left ventricular (LV) diastolic dysfunction in mild to moderate systemic hypertension (HT), cardiac blood pool imagings with Tc-99 m were obtained in 10 normal subjects and 27 patients with HT. The patients with HT did not show any evidence of coronary heart disease, renal insufficiency, cerebrovascular accident or diabetes mellitus. They were divided into 3 groups; (1) HT-1 (n=10): without evidence of echocardiographic (UCG) and electrocardiographic (ECG) left ventricular hypertrophy (LVH), (2) HT-2 (n=8): with evidence of ECG-LVH without UCG-LVH, (3) HT-3 (n=9): with evidence of UCG-LVH. UCG-LVH was defined when posterior or interventricular septal tall thickness exceeded 13 mm at end-diastole. From UCG findings LV mass was calculated and from UCG findings and auscultating brachial systolic pressure LV peak-systolic wall stress (WS) was obtained. Cardiac blood pool imagings were performed at modified LAO at rest and during exercise stress. Indices of LV systolic function (rest ejection fraction, mean ejection rate during the first third of ejection and exercise ejection fraction response) were essentially similar in normal subjects and all HT groups. In contrast, LV diastolic filling rate during the first third of diastole (1/3 FR mean) decreased significantly in any group of HT, and it was prominent in HT-3. In patients with HT, 1/3 FR mean did not correlate with blood pressure, LV peak-systolic WS, LV systolic functions and LV end-diastolic volume. But it correlated inversely with LV mass (r=-0.84). These results suggest that impairment of early diastolic LV filling can be detected before systolic cardiac impairment and LVH develop, and it is, at least in part, relate to the LV mass. (author)

  8. A task-related and resting state realistic fMRI simulator for fMRI data validation

    Science.gov (United States)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  9. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder.

    Science.gov (United States)

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-12-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.

  10. RESTful Java web services security

    CERN Document Server

    Enríquez, René

    2014-01-01

    A sequential and easy-to-follow guide which allows you to understand the concepts related to securing web apps/services quickly and efficiently, since each topic is explained and described with the help of an example and in a step-by-step manner, helping you to easily implement the examples in your own projects. This book is intended for web application developers who use RESTful web services to power their websites. Prior knowledge of RESTful is not mandatory, but would be advisable.

  11. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI.

    Directory of Open Access Journals (Sweden)

    Xiaoming Lin

    Full Text Available Amblyopia, also known as lazy eye, usually occurs during early childhood and results in poor or blurred vision. Recent neuroimaging studies have found cortical structural/functional abnormalities in amblyopia. However, until now, it was still not known whether the spontaneous activity of the brain changes in amblyopia subjects. In the present study, regional homogeneity (ReHo, a measure of the homogeneity of functional magnetic resonance imaging signals, was used for the first time to investigate changes in resting-state local spontaneous brain activity in individuals with anisometropic amblyopia. Compared with age- and gender-matched subjects with normal vision, the anisometropic amblyopia subjects showed decreased ReHo of spontaneous brain activity in the right precuneus, the left medial prefrontal cortex, the left inferior frontal gyrus, and the left cerebellum, and increased ReHo of spontaneous brain activity was found in the bilateral conjunction area of the postcentral and precentral gyri, the left paracentral lobule, the left superior temporal gyrus, the left fusiform gyrus, the conjunction area of the right insula, putamen and the right middle occipital gyrus. The observed decreases in ReHo may reflect decreased visuo-motor processing ability, and the increases in ReHo in the somatosensory cortices, the motor areas and the auditory area may indicate compensatory plasticity in amblyopia.

  12. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    International Nuclear Information System (INIS)

    Liu Yaou; Liang Peipeng; Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen; Dong Huiqing; Ye Jing; Li Kuncheng

    2011-01-01

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  13. Abnormal baseline brain activity in patients with neuromyelitis optica: A resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yaou [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Liang Peipeng [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); International WIC institute, Beijing University of Technology, Beijing 100024 (China); Duan Yunyun; Jia Xiuqin; Wang Fei; Yu Chunshui; Qin Wen [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong Huiqing; Ye Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2011-11-15

    Purpose: Recent immunopathologic and MRI findings suggest that tissue damage in neuromyelitis optica (NMO) is not limited to spinal cord and optic nerve, but also in brain. Baseline brain activity can reveal the brain functional changes to the tissue damages and give clues to the pathophysiology of NMO, however, it has never been explored by resting-state functional MRI (fMRI). We used regional amplitude of low frequency fluctuation (ALFF) as an index in resting-state fMRI to investigate how baseline brain activity changes in patients with NMO. Methods: Resting-state fMRIs collected from seventeen NMO patients and seventeen age- and sex-matched normal controls were compared to investigate the ALFF difference between the two groups. The relationships between ALFF in regions with significant group differences and the EDSS (Expanded Disability Status Scale), disease duration were further explored. Results: Our results showed that NMO patients had significantly decreased ALFF in precuneus, posterior cingulate cortex (PCC) and lingual gyrus; and increased ALFF in middle frontal gyrus, caudate nucleus and thalamus, compared to normal controls. Moderate negative correlations were found between the EDSS and ALFF in the left middle frontal gyrus (r = -0.436, p = 0.040) and the left caudate (r = -0.542, p = 0.012). Conclusion: The abnormal baseline brain activity shown by resting-state fMRI in NMO is relevant to cognition, visual and motor systems. It implicates a complex baseline brain status of both functional impairments and adaptations caused by tissue damages in these systems, which gives clues to the pathophysiology of NMO.

  14. Changes in Resting EEG in Colombian Ex-combatants ith Antisocial Personality Disorder.

    Science.gov (United States)

    Ramos, Claudia; Duque-Grajales, Jon; Rendón, Jorge; Montoya-Betancur, Alejandro; Baena, Ana; Pineda, David; Tobón, Carlos

    Although the social and economic consequences of Colombian internal conflicts mainly affected the civilian population, they also had other implications. The ex-combatants, the other side of the conflict, have been the subject of many studies that question their personality structures and antisocial features. Results suggest that ex-combatants usually have characteristics of an antisocial personality disorder (ASPD) that is related with their behaviour. Quantitative EEG (qEEG) was used to evaluate differences in cortical activity patterns between an ex-combatants group and a control group. The Psychopathy Checklist-Revised (PCL-R) was used to assess the presence of ASPD in the ex-combatants group, as well as the Diagnostic Interview for Genetic Studies (DIGS) for other mental disorders classified in the DCI-10. There are significant differences in psychopathy levels between groups, as well as in alpha-2 and beta waves, especially in left temporal and frontal areas for alpha-2 waves and left temporal-central regions for beta waves. qEEG measurements allow spectral resting potential to be differentiated between groups that are related with features typically involved in antisocial personality disorder, and to correlate them with patterns in the questionnaires and clinical interview. Copyright © 2017 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  15. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    Science.gov (United States)

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  16. Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback.

    Science.gov (United States)

    Kluetsch, R C; Ros, T; Théberge, J; Frewen, P A; Calhoun, V D; Schmahl, C; Jetly, R; Lanius, R A

    2014-08-01

    Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8-12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with post-traumatic stress disorder (PTSD). Twenty-one individuals with PTSD related to childhood abuse underwent 30 min of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase ('rebound') in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Our study represents a first step in elucidating the potential neurobehavioural mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG 'rebound' after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Clinical physiology of bed rest

    Science.gov (United States)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  18. Reduction of myocardial blood flow reserve in idiopathic dilated cardiomyopathy without overt heart failure and its relation with functional indices: an echo-Doppler and positron emission tomography study.

    Science.gov (United States)

    Morales, Maria-Aurora; Neglia, Danilo; L'Abbate, Antonio

    2008-08-01

    Myocardial blood flow during pharmacological vasodilatation is depressed in patients with idiopathic dilated cardiomyopathy even the in absence of overt heart failure; the extent of myocardial blood flow abnormalities is not predictable by left ventricular ejection fraction (LVEF) and diastolic dimensions. To assess whether myocardial blood flow impairment in idiopathic dilated cardiomyopathy without overt heart failure can be related to Doppler-derived dP/dt and to echocardiographically determined left ventricular end systolic stress - which is linked to myocardial blood flow reserve in advanced disease. Twenty-six patients, New York Heart Association Class I-II, (LVEF 37.4 +/- 1.4%, left ventricular diastolic dimensions 62.6 +/- 0.9 mm) underwent resting/dipyridamole [13N]NH3 flow positron emission tomography and an ultrasonic study. Regional myocardial blood flow values (ml/min per g) were computed from positron emission tomography data in 13 left ventricular (LV) myocardial regions and averaged to provide mean myocardial blood flow and myocardial blood flow reserve, defined as dipyridamole/resting mean myocardial blood flow ratio. Resting myocardial blood flow was 0.686 +/- 0.045, dipyridamole myocardial blood flow 1.39 +/- 0.15 and myocardial blood flow reserve 2.12 +/- 0.2, lower than in controls (P < 0.01). The ratio dP/dt was directly related to dipyridamole myocardial blood flow and myocardial blood flow reserve (r = 0.552 and 0.703, P < 0.005 and P < 0.0001); no relation was found between myocardial blood flow and LVEF left ventricular diastolic dimensions, and left ventricular end systolic stress. In idiopathic dilated cardiomyopathy patients without overt heart failure, the extent of myocardial blood flow reserve impairment is related to dP/dt but not to more classical indices of left ventricular function.

  19. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    Directory of Open Access Journals (Sweden)

    SuPing eCai

    2015-08-01

    Full Text Available Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnestic mild cognitive impairment (aMCI subjects. Here, we employed a resting state functional MRI (fMRI to examine changes in functional connectivity of left/right FG comparing aMCI patients with age-matched control subjects. Forty-eight aMCI and thirty-eight control subjects from the Alzheimer’s disease Neuroimaging Initiative (ADNI were analyzed. We focused on the correlation between low frequency fMRI signal fluctuations in the FG and those in all other brain regions. Compared to the control group, we found some discrepant regions in the aMCI group which presented increased or decreased connectivity with the left/right FG including the left precuneus, left lingual gyrus, right thalamus, supramarginal gyrus, left supplementary motor area, left inferior temporal gyrus, and left parahippocampus. More importantly, we also obtained that both left and right FG have increased functional connections with the left middle occipital gyrus (MOG and right anterior cingulate gyrus (ACC in aMCI patients. That was not a coincidence and might imply that the MOG and ACC also play a critical role in visual cognition, especially face recognition. These findings in a large part supported our hypothesis and provided a new insight in understanding the important subtype of MCI.

  20. Relation of the Number of Parity to Left Ventricular Diastolic Function in Pregnancy.

    Science.gov (United States)

    Keskin, Muhammed; Avşar, Şahin; Hayıroğlu, Mert İlker; Keskin, Taha; Börklü, Edibe Betül; Kaya, Adnan; Uzun, Ahmet Okan; Akyol, Burcu; Güvenç, Tolga Sinan; Kozan, Ömer

    2017-07-01

    Left ventricular diastolic dysfunction (LVDD) has been relatively less studied than other cardiac changes during pregnancy. Previous studies revealed a mild diastolic deterioration during pregnancy. However, these studies did not evaluate the long-term effect of parity on left ventricular diastolic function. A comprehensive study evaluating the long-term effect of parity on diastolic function is required. A total of 710 women with various number of parity were evaluated through echocardiography to reveal the status of diastolic function. Echocardiographic parameters were compared among the women by parity number and categorized accordingly: none, 0 to 4 and 4 4 parity and that had 21 and 5.8 times higher than nulliparous group, respectively. In conclusion, according to the present study, grand multiparity but not multiparity, severely deteriorates left ventricular diastolic function. Further studies are warranted to evaluate the risk of gradual diastolic dysfunction after each pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Effects of Long Duration Bed Rest on Functional Mobility and Balance: Relationship to Resting State Motor Cortex Connectivity

    Science.gov (United States)

    Erdeniz, B.; Koppelmans, V.; Bloomberg, J. J.; Kofman, I. S.; DeDios, Y. E.; Riascos-Castaneda, R. F.; Wood, S. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    NASA offers researchers from a variety of backgrounds the opportunity to study bed rest as an experimental analog for space flight. Extended exposure to a head-down tilt position during long duration bed rest can resemble many of the effects of a low-gravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The aim of our study is to a) identify changes in brain function that occur with prolonged bed rest and characterize their recovery time course; b) assess whether and how these changes impact behavioral and neurocognitive performance. Thus far, we completed data collection from six participants that include task based and resting state fMRI. The data have been acquired through the bed rest facility located at the University of Texas Medical Branch (Galveston, TX). Subjects remained in bed with their heads tilted down 6 degrees below their feet for 70 consecutive days. Behavioral measures and neuroimaging assessments were obtained at seven time points: a) 7 and 12 days before bed rest; b) 7, 30, and 65 days during bed rest; and c) 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (FcMRI) analysis was performed to assess the connectivity of motor cortex in and out of bed rest. We found a decrease in motor cortex connectivity with vestibular cortex and the cerebellum from pre bed rest to in bed rest. We also used a battery of behavioral measures including the functional mobility test and computerized dynamic posturography collected before and after bed rest. We will report the preliminary results of analyses relating brain and behavior changes. Furthermore, we will also report the preliminary results of a spatial working memory task and vestibular stimulation during in and out of bed rest.

  2. Exercise Effects on the Brain and Sensorimotor Function in Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; hide

    2016-01-01

    using both a region of interest (ROI, or seed-to-voxel) approach as well as a whole brain intrinsic connectivity (i.e., voxel-to-voxel) analysis. For the ROI analysis we selected 11 ROIs of brain regions that are involved in sensorimotor function (i.e., L. Insular C., L. Putamen, R. Premotor C., L.+R. Primary Motor C., R. Vestibular C., L. Posterior Cingulate G., R. Cerebellum Lobule V + VIIIb + Crus I, and the R. Superior Parietal G.) and correlated their time course of brain activation during rest with all other voxels in the brain. The whole brain connectivity analysis tests changes in the strength of the global connectivity pattern between each voxel and the rest of the brain. Functional mobility was assessed using an obstacle course. Vestibular contribution to balance was measured using Neurocom Sensory Organization Test 5. Behavioral measures were assessed pre-HDBR, and 0, 8 and 12 days post-HDBR. Linear mixed models were used to test for effects of time, group, and group-by-time interactions. Family-wise error corrected VBM revealed significantly larger increases in GM volume in the right primary motor cortex in bed rest control subjects than in bed rest exercise subjects. No other significant group by time interactions in gray matter changes with bed rest were observed. Functional connectivity MRI revealed that the increase in connectivity during bed rest of the left putamen with the bilateral midsagittal precunes and the right cingulate gyrus was larger in bed rest control subjects than in bed rest exercise subjects. Furthermore, the increase in functional connectivity with bed rest of the right premotor cortex with the right inferior frontal gyrus and the right primary motor cortex with the bilateral premotor cortex was smaller in bed rest control subjects than in bed rest exercise subjects. Functional mobility performance was less affected by HDBR in exercise subjects than in control subjects and post HDBR exercise subjects recovered faster than control

  3. Fiddler's neck: Chin rest-associated irritant contact dermatitis and allergic contact dermatitis in a violin player.

    Science.gov (United States)

    Caero, Jennifer E; Cohen, Philip R

    2012-09-15

    Fiddler's neck refers to an irritant contact dermatitis on the submandibular neck of violin and viola players and an allergic contact dermatitis to nickel from the bracket attaching the violin to the chin rest on the violinist's supraclavicular neck. A 26-year-old woman developed submandibular and supraclavicular left neck lesions corresponding to the locations of the chin rest and bracket that was attached to her violin that held it against her neck when she played. Substitution of a composite chin rest, which did not contain nickel, and the short-term application of a low potency topical corticosteroid cream, resulted in complete resolution of the allergic contact dermatitis supraclavicular neck lesion. The irritant contact dermatitis submandibular neck lesion persisted. In conclusion, violin players are predisposed to developing irritant contact dermatitis or allergic contact dermatitis from the chin rest. We respectfully suggest that the submandibular neck lesions from contact with the chin rest be referred to as 'fiddler's neck - type 1,' whereas the supraclavicular neck lesions resulting from contact of the bracket holding the chin rest in place be called 'fiddler's neck - type 2.' A composite chin rest should be considered in patients with a preceding history of allergic contact dermatitis to nickel.

  4. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    Science.gov (United States)

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke

  5. Diagnostic value of dilatation of the left ventricular cavity on exercise 99Tcm-MIBI imaging for coronary artery disease

    International Nuclear Information System (INIS)

    Zhang Xiangsong; Tang Anwu; Zhang Bin; Liu Bin; Xu Weiping

    2000-01-01

    Objective: To investigate the diagnostic value of dilatation of the left ventricular cavity on exercise 99 Tc m -MIBI imaging for triple-vessel disease. Methods: Exercise and rest myocardial perfusion imaging were performed on 76 patients with known angiograms. The exercise/rest ratio of the left ventricular dimension (LVD) from the 99 Tc m -MIBI imaging was defined as the left ventricular dilatation ratio (LVDR). Results: 21 of 76 patients showed an abnormal LVDR, and 19 of the 21 patients (90%) had triple-vessel disease. By routine analysis method, the sensitivity and specificity for diagnosing triple-vessel disease was 50% and 91%, respectively, whereas LVDR had a sensitivity of 82% and a specificity of 94%. When LVDR was used in combination with the routine analysis method, sensitivity increased to 91% without a significant loss of specificity. Conclusions: Quantitatively analysis of the dilatation of the left ventricular cavity on exercise 99 Tc m -MIBI imaging could increase the sensitivity for diagnosing triple-vessel disease and provide complementary information to exercise 99 Tc m -MIBI imaging

  6. Anatomical variations of the thymus in relation to the left brachiocephalic vein, findings of necropsia.

    Science.gov (United States)

    Plaza, Oscar Alonso; Moreno, Freddy

    2018-04-01

    Two cases of anatomical variations of the thymus are presented with respect to the anatomical relations with the left brachiocephalic vein and found during the necropsy process. Less than 2 days after birth with Noonan Syndrome, when the left brachiocephalic vein was scanning behind the upper thymus horns, there were other adjacent lesions consisting of three supernumerary spleens and three hepatic veins. The second case was an 8-year-old infant with child malpractice who died from urinary sepsis due to obstructive uropathy, in which case the upper lobes of the thymus were fused and formed a ring through which the left brachiocephalic vein passed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.

    Science.gov (United States)

    Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise

    2018-03-01

    We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hypothalamus-Related Resting Brain Network Underlying Short-Term Acupuncture Treatment in Primary Hypertension

    Directory of Open Access Journals (Sweden)

    Hongyan Chen

    2013-01-01

    Full Text Available The present study attempted to explore modulated hypothalamus-seeded resting brain network underlying the cardiovascular system in primary hypertensive patients after short-term acupuncture treatment. Thirty right-handed patients (14 male were divided randomly into acupuncture and control groups. The acupuncture group received a continuous five-day acupuncture treatment and undertook three resting-state fMRI scans and 24-hour ambulatory blood pressure monitoring (ABPM as well as SF-36 questionnaires before, after, and one month after acupuncture treatment. The control group undertook fMRI scans and 24-hour ABPM. For verum acupuncture, average blood pressure (BP and heart rate (HR decreased after treatment but showed no statistical differences. There were no significant differences in BP and HR between the acupuncture and control groups. Notably, SF-36 indicated that bodily pain (P = 0.005 decreased and vitality (P = 0.036 increased after acupuncture compared to the baseline. The hypothalamus-related brain network showed increased functional connectivity with the medulla, brainstem, cerebellum, limbic system, thalamus, and frontal lobes. In conclusion, short-term acupuncture did not decrease BP significantly but appeared to improve body pain and vitality. Acupuncture may regulate the cardiovascular system through a complicated brain network from the cortical level, the hypothalamus, and the brainstem.

  9. Radionuclide analysis of right and left ventricular response to exercise in patients with atrial and ventricular septal defects

    International Nuclear Information System (INIS)

    Peter, C.A.; Bowyer, K.; Jones, R.H.

    1983-01-01

    In patients with ventricular or atrial septal defect, the ventricle which is chronically volume overloaded might not appropriately respond to increased demand for an augmentation in output and thereby might limit total cardiac function. In this study we simultaneously measured right and left ventricular response to exercise in 10 normal individuals, 10 patients with ventricular septal defect (VSD), and 10 patients with atrial septal defect (ASD). The normal subjects increased both right and left ventricular ejection fraction, end-diastolic volume, and stroke volume to achieve a higher cardiac output during exercise. Patients with VSD failed to increase right ventricular ejection fraction, but increased right ventricular end-diastolic volume and stroke volume. Left ventricular end-diastolic volume did not increase in these patients but ejection fraction, stroke volume, and forward left ventricular output achieved during exercise were comparable to the response observed in healthy subjects. In the patients with ASD, no rest-to-exercise change occurred in either right ventricular ejection fraction, end-diastolic volume, or stroke volume. In addition, left ventricular end-diastolic volume failed to increase, and despite an increase in ejection fraction, left ventricular stroke volume remained unchanged from rest to exercise. Therefore, cardiac output was augmented only by the heart rate increase in these patients. Right ventricular function appeared to be the major determinant of total cardiac output during exercise in patients with cardiac septal defects and left-to-right shunt

  10. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  11. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  12. Individual and sex-related differences in pain and relief responsiveness are associated with differences in resting-state functional networks in healthy volunteers.

    Science.gov (United States)

    Galli, Giulia; Santarnecchi, Emiliano; Feurra, Matteo; Bonifazi, Marco; Rossi, Simone; Paulus, Martin P; Rossi, Alessandro

    2016-02-01

    Pain processing is associated with neural activity in a number of widespread brain regions. Here, we investigated whether functional connectivity at rest between these brain regions is associated with individual and sex-related differences in thermal pain and relief responsiveness. Twenty healthy volunteers (ten females) were scanned with functional magnetic resonance imaging in resting conditions. Half an hour after scanning, we administered thermal pain on the back of their right hand and collected pain and relief ratings in two separate runs of twelve stimuli each. Across the whole group, mean pain ratings were associated with decreased connectivity at rest between brain regions belonging to the default mode and the visual resting-state network. In men, pain measures correlated with increased connectivity within the visual resting-state network. In women, in contrast, decreased connectivity between this network and parietal and prefrontal brain regions implicated in affective cognitive control were associated with both pain and relief ratings. Our findings indicate that the well documented individual variability and sex differences in pain sensitivity may be explained, at least in part, by network dynamics at rest in these brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  14. Resting state glucose utilization and the CERAD cognitive battery in patients with Alzheimer's disease.

    Science.gov (United States)

    Teipel, S J; Willoch, F; Ishii, K; Bürger, K; Drzezga, A; Engel, R; Bartenstein, P; Möller, H-J; Schwaiger, M; Hampel, H

    2006-05-01

    The present study examined the cortical functional representation of neuropsychological domains in Alzheimer's disease (AD) using positron emission tomography (PET) and the neuropsychological assessment battery of the Consortium to Establish a Registry of Alzheimer's Disease (CERAD). Thirty patients with clinical probable AD and 10 elderly healthy controls underwent (18)FDG brain PET imaging during a resting state. Correlations between metabolic values and cognitive measures were determined using a region of interest analysis with NEUROSTAT (University of Michigan, USA) and a voxel-based analysis with SPM96 (Wellcome Department, London, UK). Specific correlations were seen between measures of episodic memory, verbal fluency and naming and left hemispheric temporal and prefrontal metabolism. Drawing was correlated with metabolism in left prefrontal and left inferior parietal regions. The presented data support the use of metabolic-cognitive correlations to demonstrate the neuronal substrates of cognitive impairment in AD. Subtests of the CERAD battery give a good representation of left, but not of right hemisphere function in AD.

  15. Left Atrial Enlargement in Young High-Level Endurance Athletes – Another Sign of Athlete’s Heart?

    Directory of Open Access Journals (Sweden)

    Król Wojciech

    2016-12-01

    Full Text Available Enlargement of the left atrium is perceived as a part of athlete’s heart syndrome, despite the lack of evidence. So far, left atrial size has not been assessed in the context of exercise capacity. The hypothesis of the present study was that LA enlargement in athletes was physiological and fitness-related condition. In addition, we tried to assess the feasibility and normal values of left atrial strain parameters and their relationship with other signs of athlete’s heart. The study group consisted of 114 international-level rowers (17.5 ± 1.5 years old; 46.5% women. All participants underwent a cardio-pulmonary exercise test and resting transthoracic echocardiography. Beside standard echocardiographic measurements, two dimensional speckle tracking echocardiography was used to assess average peak atrial longitudinal strain, peak atrial contraction strain and early left atrial diastolic longitudinal strain. Mild, moderate and severe left atrial enlargement was present in 27.2°%, 11.4% and 4.4% athletes, respectively. There were no significant differences between subgroups with different range of left atrial enlargement in any of echocardiographic parameters of the left ventricle diastolic function, filling pressure or hypertrophy. A significant correlation was found between the left atrial volume index and maximal aerobic capacity (R > 0.3; p < 0.001. Left atrial strain parameters were independent of atrial size, left ventricle hypertrophy and left ventricle filling pressure. Decreased peak atrial longitudinal strain was observed in 4 individuals (3.5%. We concluded that LA enlargement was common in healthy, young athletes participating in endurance sport disciplines with a high level of static exertion and was strictly correlated with exercise capacity, therefore, could be perceived as another sign of athlete’s heart.

  16. Reverse redistribution phenomenon on rest 99mTc-tetrofosmin myocardial single photon emission computed tomography involves impaired left ventricular contraction in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Kurokawa, Kazuyuki; Ohte, Nobuyuki; Miyabe, Hiromichi; Akita, Sachie; Yajima, Kazuhiro; Hayano, Junichiro; Kimura, Genjiro

    2003-01-01

    The purpose of this study was to investigate the clinical significance of the reverse redistribution (RR) phenomenon on technetium-99m ( 99m Tc)-tetrofosmin myocardial single photon emission computed tomography (SPECT) performed at rest. Twenty-five patients underwent myocardial SPECT 3 weeks after the onset of acute myocardial infarction. Myocardial images were acquired at 40 min (early) and 4 h (delayed) after the injection of 740 MBq of 99m Tc-tetrofosmin. The regional myocardial uptake of the tracer in 26 segments of the left ventricular (LV) wall was visually scored from 0 (no activity) to 3 (normal activity), and then the RR was defined as a decrease of more than 1 point in the activity score on the delayed image compared with that on the early image. Regions with an activity score of 3 on both the early and delayed images were defined as normal, and those with a score of 0 or 1 on the early image were considered to have a fixed defect. The regional myocardial 99m Tc-tetrofosmin uptake and washout rate were also quantitatively assessed in each region. In addition, exercise stress electrocardiograph-gated SPECT with 99m Tc-tetrofosmin was performed within 1 week of the rest study, and the percent count increase (%CI) during myocardial contraction in each corresponding region was studied. RR was observed in 18 of the 25 patients. The regional washout rate of 99m Tc-tetrofosmin was significantly higher in the RR regions (45.0±3.8%) than in either the normal regions (36.4±4.1%, p 99m Tc-tetrofosmin SPECT have severely impaired LV wall contraction after exercise. (author)

  17. Immunological functioning in Alzheimer's disease: differential effects of relative left versus right temporoparietal dysfunction.

    Science.gov (United States)

    Foster, Paul S; Roosa, Katelyn M; Williams, Megan R; Witt, John C; Heilman, Kenneth M; Drago, Valeria

    2013-10-15

    The cerebral hemispheres are differentially involved in regulating immunological functioning and the neuropathology associated with Alzheimer's disease (AD) is asymmetrical. Thus, subgroups of AD patients may exhibit different patterns of immunological dysfunction. We explored this possibility in a group of AD patients and found that patients with low white blood cell counts and low lymphocyte numbers exhibited better performance on tests of right temporoparietal functioning. Also, a significant positive relationship exists between lymph numbers and performance on a test of left temporoparietal functioning. Thus, some AD patients have greater immunological dysfunction based on relative left versus right temporoparietal functioning. © 2013.

  18. Auditory Hallucinations and the Brain’s Resting-State Networks: Findings and Methodological Observations

    Science.gov (United States)

    Alderson-Day, Ben; Diederen, Kelly; Fernyhough, Charles; Ford, Judith M.; Horga, Guillermo; Margulies, Daniel S.; McCarthy-Jones, Simon; Northoff, Georg; Shine, James M.; Turner, Jessica; van de Ven, Vincent; van Lutterveld, Remko; Waters, Flavie; Jardri, Renaud

    2016-01-01

    In recent years, there has been increasing interest in the potential for alterations to the brain’s resting-state networks (RSNs) to explain various kinds of psychopathology. RSNs provide an intriguing new explanatory framework for hallucinations, which can occur in different modalities and population groups, but which remain poorly understood. This collaboration from the International Consortium on Hallucination Research (ICHR) reports on the evidence linking resting-state alterations to auditory hallucinations (AH) and provides a critical appraisal of the methodological approaches used in this area. In the report, we describe findings from resting connectivity fMRI in AH (in schizophrenia and nonclinical individuals) and compare them with findings from neurophysiological research, structural MRI, and research on visual hallucinations (VH). In AH, various studies show resting connectivity differences in left-hemisphere auditory and language regions, as well as atypical interaction of the default mode network and RSNs linked to cognitive control and salience. As the latter are also evident in studies of VH, this points to a domain-general mechanism for hallucinations alongside modality-specific changes to RSNs in different sensory regions. However, we also observed high methodological heterogeneity in the current literature, affecting the ability to make clear comparisons between studies. To address this, we provide some methodological recommendations and options for future research on the resting state and hallucinations. PMID:27280452

  19. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  20. Extraversion modulates functional connectivity hubs of resting-state brain networks.

    Science.gov (United States)

    Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-09-01

    Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.

  1. Resting eggs in free living marine and estuarine copepods

    DEFF Research Database (Denmark)

    Holm, Mark Wejlemann; Kiørboe, Thomas; Brun, Philipp Georg

    2018-01-01

    Marine free living copepods can survive harsh periods and cope with seasonal fluctuations in environmental conditions using resting eggs (embryonic dormancy). Laboratory experiments show that temperature is the common driver for resting egg production. Hence, we hypothesize (i) that seasonal...... temperature variation, rather than variation in food abundance is the main driver for the occurrence of the resting eggs strategy in marine and estuarine copepod species; and (ii) that the thermal boundaries of the distribution determine where resting eggs are produced and whether they are produced to cope...... with warm or cold periods. We compile literature information on the occurrence of resting egg production and relate this to spatio-temporal patterns in sea surface temperature and chlorophyll a concentration obtained from satellite observations. We find that the production of resting eggs has been reported...

  2. Left Frontal Hub Connectivity during Memory Performance Supports Reserve in Aging and Mild Cognitive Impairment.

    Science.gov (United States)

    Franzmeier, Nicolai; Hartmann, Julia C; Taylor, Alexander N W; Araque Caballero, Miguel Á; Simon-Vermot, Lee; Buerger, Katharina; Kambeitz-Ilankovic, Lana M; Ertl-Wagner, Birgit; Mueller, Claudia; Catak, Cihan; Janowitz, Daniel; Stahl, Robert; Dichgans, Martin; Duering, Marco; Ewers, Michael

    2017-01-01

    Reserve in aging and Alzheimer's disease (AD) is defined as maintaining cognition at a relatively high level in the presence of neurodegeneration, an ability often associated with higher education among other life factors. Recent evidence suggests that higher resting-state functional connectivity within the frontoparietal control network, specifically the left frontal cortex (LFC) hub, contributes to higher reserve. Following up these previous resting-state fMRI findings, we probed memory-task related functional connectivity of the LFC hub as a neural substrate of reserve. In elderly controls (CN, n = 37) and patients with mild cognitive impairment (MCI, n = 17), we assessed global connectivity of the LFC hub during successful face-name association learning, using generalized psychophysiological interaction analyses. Reserve was quantified as residualized memory performance, accounted for gender and proxies of neurodegeneration (age, hippocampus atrophy, and APOE genotype). We found that greater education was associated with higher LFC-connectivity in both CN and MCI during successful memory. Furthermore, higher LFC-connectivity predicted higher residualized memory (i.e., reserve). These results suggest that higher LFC-connectivity contributes to reserve in both healthy and pathological aging.

  3. Exercise testing in asymptomatic or minimally symptomatic aortic regurgitation: relationship of left ventricular ejection fraction to left ventricular filling pressure during exercise

    International Nuclear Information System (INIS)

    Boucher, C.A.; Wilson, R.A.; Kanarek, D.J.; Hutter, A.M. Jr.; Okada, R.D.; Liberthson, R.R.; Strauss, H.W.; Pohost, G.M.

    1983-01-01

    Exercise radionuclide angiography is being used to evaluate left ventricular function in patients with aortic regurgitation. Ejection fraction is the most common variable analyzed. To better understand the rest and exercise ejection fraction in this setting, 20 patients with asymptomatic or minimally symptomatic severe aortic regurgitation were studied. All underwent simultaneous supine exercise radionuclide angiography and pulmonary gas exchange measurement and underwent rest and exercise measurement of pulmonary artery wedge pressure (PAWP) during cardiac catheterization. Eight patients had a peak exercise PAWP less than 15 mm Hg (group 1) and 12 had a peak exercise PAWP greater than or equal to 15 mm Hg (group 2). Group 1 patients were younger and more were in New York Heart Association class I. The two groups had similar cardiothoracic ratios, changes in ejection fractions with exercise, and rest and exercise regurgitant indexes. Using multiple regression analysis, the best correlate of the exercise PAWP was peak oxygen uptake (r . -0.78, p less than 0.01). No other measurement added significantly to the regression. When peak oxygen uptake was excluded, rest and exercise ejection fraction also correlated significantly (r . -0.62 and r . -0.60, respectively, p less than 0.01). Patients with asymptomatic or minimally symptomatic severe aortic regurgitation have a wide spectrum of cardiac performance in terms of the PAWP during exercise. The absolute rest and exercise ejection fraction and the level of exercise achieved are noninvasive variables that correlate with exercise PAWP in aortic regurgitation, but the change in ejection fraction with exercise by itself is not

  4. Strength of Default Mode Resting-State Connectivity Relates to White Matter Integrity in Children

    Science.gov (United States)

    Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

    2011-01-01

    A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging.…

  5. Regional homogeneity, resting-state functional connectivity and amplitude of low frequency fluctuation associated with creativity measured by divergent thinking in a sex-specific manner.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Makoto Miyauchi, Carlos; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta

    2017-05-15

    Brain connectivity is traditionally thought to be important for creativity. Here we investigated the associations of creativity measured by divergent thinking (CMDT) with resting-state functional magnetic imaging (fMRI) measures and their sex differences. We examined these relationships in the brains of 1277 healthy young adults. Whole-brain analyses revealed a significant interaction between verbal CMDT and sex on (a) regional homogeneity within an area from the left anterior temporal lobe (b) on the resting state functional connectivity (RSFC) between the mPFC and the left inferior frontal gyrus and (c) on fractional amplitude of low frequency fluctuations (fALFF) in several distinct areas, including the precuneus and middle cingulate gyrus, left middle temporal gyrus, right middle frontal gyrus, and cerebellum. These interactions were mediated by positive correlations in females and negative correlations in males. These findings suggest that greater CMDT in females is reflected by (a) regional coherence (regional homogeneity) of brain areas responsible for representing and combining concepts as well as (b) the efficient functional connection (RSFC) between the key areas for the default state of cognitive activity and speech production, and (c) greater spontaneous neural activity (fALFF) during the resting of brain areas involved in frontal lobe functions, default cognitive activities, and language functions. Furthermore, these findings suggest that the associations between creativity and resting state brain connectivity patterns are different between males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Altered Amygdala Resting-State Functional Connectivity and Hemispheric Asymmetry in Patients With Social Anxiety Disorder

    Directory of Open Access Journals (Sweden)

    Ye-Ha Jung

    2018-04-01

    Full Text Available Background: The amygdala plays a key role in emotional hyperreactivity in response to social threat in patients with social anxiety disorder (SAD. We investigated resting-state functional connectivity (rs-FCN of the left and right amygdala with various brain regions and functional lateralization in patients with SAD.Methods: A total of 36 patients with SAD and 42 matched healthy controls underwent functional magnetic resonance imaging (fMRI at rest. Using the left and right amygdala as seed regions, we compared the strength of the rs-FCN in the patient and control groups. Furthermore, we investigated group differences in the hemispheric asymmetry of the functional connectivity maps of the left and right amygdala.Results: Compared with healthy controls, the rs-FCN between the left amygdala and the dorsolateral prefrontal cortex was reduced in patients with SAD, whereas left amygdala connectivity with the fusiform gyrus, anterior insula, supramarginal gyrus, and precuneus was increased or positively deflected in the patient group. Additionally, the strength rs-FCN between the left amygdala and anterior insula was positively associated with the severity of the fear of negative evaluation in patients with SAD (r = 0.338, p = 0.044. The rs-FCN between the right amygdala and medial frontal gyrus was decreased in patients with SAD compared with healthy controls, whereas connectivity with the parahippocampal gyrus was greater in the patient group than in the control group. The hemispheric asymmetry patterns in the anterior insula, intraparietal sulcus (IPS, and inferior frontal gyrus of the patient group were opposite those of the control group, and functional lateralization of the connectivity between the amygdala and the IPS was associated with the severity of social anxiety symptoms (r = 0.365, p = 0.037.Conclusion: Our findings suggest that in addition to impaired fronto-amygdala communication, the functional lateralization of amygdala function

  7. Rationale and Design of the Reduce Elevated Left Atrial Pressure in Patients With Heart Failure (Reduce LAP-HF) Trial

    DEFF Research Database (Denmark)

    Hasenfuss, Gerd; Gustafsson, Finn; Kaye, David

    2015-01-01

    OBJECTIVE: Heart failure with preserved ejection fraction (HFpEF) is characterized by elevated left atrial pressure during rest and/or exercise. The Reduce LAP-HF (Reduce Elevated Left Atrial Pressure in Patients With Heart Failure) trial will evaluate the safety and performance of the Interatrial...... Shunt Device (IASD) System II, designed to directly reduce elevated left atrial pressure, in patients with HFpEF. METHODS: The Reduce LAP-HF Trial is a prospective, nonrandomized, open-label trial to evaluate a novel device that creates a small permanent shunt at the level of the atria. A minimum of 60...... patients with ejection fraction ≥40% and New York Heart Association functional class III or IV heart failure with a pulmonary capillary wedge pressure (PCWP) ≥15 mm Hg at rest or ≥25 mm Hg during supine bike exercise will be implanted with an IASD System II, and followed for 6 months to assess the primary...

  8. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  9. Termination of dobutamine infusion causes transient rebound left heart diastolic dysfunction in healthy elderly women but not in men

    DEFF Research Database (Denmark)

    Ahtarovski, Kiril A; Iversen, Kasper K; Lønborg, Jacob T

    2013-01-01

    Men and women are known to react differently to stress. Thus, stress cardiomyopathy almost solely strikes women. Stress cardiomyopathy is suggested to relate to sex differences in catecholamine reaction. Left heart function during dobutamine stress is well described, but sex-specific inotropic...... and lusitropic response to abrupt termination of dobutamine stress is not. We aimed to investigate sex differences in left ventricular (LV) and atrial (LA) function during and after dobutamine stress. We enrolled 20 healthy elderly subjects (60-70 yr, 10 females) and measured their LV and LA volumes throughout......, and conduit volumes. Sex differences were not observed at rest or during dobutamine stress. Compared with prestress values, at T15 a rebound decrease in LV peak filling rate was observed in women (-22 ± 3%, P...

  10. Relative left frontal activity in reappraisal and suppression of negative emotion: Evidence from frontal alpha asymmetry (FAA).

    Science.gov (United States)

    Choi, Damee; Sekiya, Takahiro; Minote, Natsumi; Watanuki, Shigeki

    2016-11-01

    Previous studies have shown that reappraisal (changing the way that one thinks about emotional events) is an effective strategy for regulating emotion, compared with suppression (reducing emotion-expressive behavior). In the present study, we investigated relative left frontal activity when participants were instructed to use reappraisal and suppression of negative emotion, by measuring frontal alpha asymmetry (FAA). Two electroencephalography (EEG) experiments were conducted; FAA was analyzed while 102 healthy participants (59 men, 43 women) watched negative images after being instructed to perform reappraisal (Experiment 1) and suppression (Experiment 2). Habitual use of reappraisal and suppression was also assessed using the emotion regulation questionnaire (ERQ). The results of Experiment 1 showed that relative left frontal activity was greater when instructed to use reappraisal of negative images than when normally viewing negative images. In contrast, we observed no difference between conditions of instructed suppression and normal viewing in Experiment 2. In addition, in male participants, habitual use of reappraisal was positively correlated with increased relative left frontal activity for instructed reappraisal, while habitual use of suppression did not show a significant correlation with changes in relative left frontal activity for instructed suppression. These results suggest that emotional responses to negative images might be decreased for instructed reappraisal, but not suppression. These findings support previous reports that reappraisal is an effective emotion regulation strategy, compared with suppression. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning

    Science.gov (United States)

    Branco, Paulo; Seixas, Daniela; Deprez, Sabine; Kovacs, Silvia; Peeters, Ronald; Castro, São L.; Sunaert, Stefan

    2016-01-01

    Functional magnetic resonance imaging (fMRI) is a well-known non-invasive technique for the study of brain function. One of its most common clinical applications is preoperative language mapping, essential for the preservation of function in neurosurgical patients. Typically, fMRI is used to track task-related activity, but poor task performance and movement artifacts can be critical limitations in clinical settings. Recent advances in resting-state protocols open new possibilities for pre-surgical mapping of language potentially overcoming these limitations. To test the feasibility of using resting-state fMRI instead of conventional active task-based protocols, we compared results from fifteen patients with brain lesions while performing a verb-to-noun generation task and while at rest. Task-activity was measured using a general linear model analysis and independent component analysis (ICA). Resting-state networks were extracted using ICA and further classified in two ways: manually by an expert and by using an automated template matching procedure. The results revealed that the automated classification procedure correctly identified language networks as compared to the expert manual classification. We found a good overlay between task-related activity and resting-state language maps, particularly within the language regions of interest. Furthermore, resting-state language maps were as sensitive as task-related maps, and had higher specificity. Our findings suggest that resting-state protocols may be suitable to map language networks in a quick and clinically efficient way. PMID:26869899

  12. The effects of stress on left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kiess, M.C.; Dimsdale, J.E.; Moore, R.H.; Liu, P.; Newell, J.; Barlai-Kovach, M.; Boucher, C.A.; Strauss, H.W.; Massachusetts General Hospital, Boston; Massachusetts General Hospital, Boston

    1988-01-01

    The left ventricular ejection fraction (EF) was studied in 17 healthy volunteers with a new ambulatory left ventricular function monitor. Heart rate, EF, and blood pressure measurements were made during rest, a psychiatric stress interview, cold exposure, exercise, and eating. An increase in EF was seen during emotional stress (from 0.45±0.09 to 0.51±0.13, P<0.001). This increase was comparable to that observed during exercise (0.52±0.14) and eating (0.52±0.10, P<0.001). In contrast, cold exposure caused a decrease in EF (0.43±0.13, P<0.05). These observations demonstrate the powerful hemodynamic consequences of common behaviors as well as the utility and feasability of studying such behavioral factors in ambulatory subjects. (orig.)

  13. REST: a toolkit for resting-state functional magnetic resonance imaging data processing.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Song

    Full Text Available Resting-state fMRI (RS-fMRI has been drawing more and more attention in recent years. However, a publicly available, systematically integrated and easy-to-use tool for RS-fMRI data processing is still lacking. We developed a toolkit for the analysis of RS-fMRI data, namely the RESting-state fMRI data analysis Toolkit (REST. REST was developed in MATLAB with graphical user interface (GUI. After data preprocessing with SPM or AFNI, a few analytic methods can be performed in REST, including functional connectivity analysis based on linear correlation, regional homogeneity, amplitude of low frequency fluctuation (ALFF, and fractional ALFF. A few additional functions were implemented in REST, including a DICOM sorter, linear trend removal, bandpass filtering, time course extraction, regression of covariates, image calculator, statistical analysis, and slice viewer (for result visualization, multiple comparison correction, etc.. REST is an open-source package and is freely available at http://www.restfmri.net.

  14. Evaluation of left ventricular ejection fraction using quantitative gated SPECT (QGS)

    International Nuclear Information System (INIS)

    Musa, M. A. A.

    2010-07-01

    Electrocardiographic ally gated myocardial perfusion SPECT (G SPECT) is a state-of the art technique for the combined evaluation of myocardial perfusion and left ventricular function within a single study. It is currently one of the most commonly performed cardiology procedures in a nuclear medicine department. Automation of the image processing and quantification has made this techniques highly reproducible, practical and user friendly in the clinical setting . In patients with coronary artery disease, gating enhances the diagnostic and prognostic capability of myocardial perfusion imaging provides incremental information over the the perfusion data, and has shown potentials for myocardial viability assessment and sequential follow-up after therapy. Evaluation of the left ventricular (L V) function is important in clinical cardiology. Quantifying the degree and extent of the L V functional abnormalities permits a systematic assessment of the disease process on the myocardial performance. The aim of this thesis is to evaluate left ventricular ejection fraction (LVEF) in patients with no evidence of ischemic response during the stress test. This investigation was carried out in view of the few reports concerning the findings ventricular function with gated SPECT in these situations in the normal population, which is relevant when considering the possibility of myocardial stunning. Method: We prospectively studied 30 selected patients, in difference age and gender. A one-day protocol was used, with injection 555 MBq - 1.11 MBq (15 - 30 mCi) of 99 mTc-M1 B1 at stress and rest. Gated perfusion SPECT was acquired 30 to 60 minutes after radiotracer injection in both condition and processed using QGSPECT software. Difference between stress and rest LVEF was calculated. Result and conclusion: rest LVEF was higher in the stress (exercise) group, A trend line was done in both groups and r-value was (0.9) and p=0.04 in acceptance value. Standard deviation of LVEF also was

  15. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG.

    Science.gov (United States)

    Dong, Li; Li, Fali; Liu, Qiang; Wen, Xin; Lai, Yongxiu; Xu, Peng; Yao, Dezhong

    2017-01-01

    Reference electrode standardization technique (REST) has been increasingly acknowledged and applied as a re-reference technique to transform an actual multi-channels recordings to approximately zero reference ones in electroencephalography/event-related potentials (EEG/ERPs) community around the world in recent years. However, a more easy-to-use toolbox for re-referencing scalp EEG data to zero reference is still lacking. Here, we have therefore developed two open-source MATLAB toolboxes for REST of scalp EEG. One version of REST is closely integrated into EEGLAB, which is a popular MATLAB toolbox for processing the EEG data; and another is a batch version to make it more convenient and efficient for experienced users. Both of them are designed to provide an easy-to-use for novice researchers and flexibility for experienced researchers. All versions of the REST toolboxes can be freely downloaded at http://www.neuro.uestc.edu.cn/rest/Down.html, and the detailed information including publications, comments and documents on REST can also be found from this website. An example of usage is given with comparative results of REST and average reference. We hope these user-friendly REST toolboxes could make the relatively novel technique of REST easier to study, especially for applications in various EEG studies.

  16. Comparison of exercise and pharmacological stress gated SPECT in detecting transient left ventricular dysfunction.

    Science.gov (United States)

    Demir, Hakan; Tan, Yusuf Z; Isgoren, Serkan; Gorur, Gozde D; Kozdag, Guliz; Ural, Ertan; Berk, Fatma

    2008-06-01

    Transient left ventricular contractile dysfunction (TLVD) is observed owing to post-exercise stunning in patients with coronary artery disease (CAD). Pharmacological stimulation differs from exercise stress because it does not cause demand ischemia. The aim of this study was to determine whether TLVD could also be seen after pharmacological stress (dipyridamole). Of the patients in whom gated single-photon emission computed tomography (GSPECT) was performed in our institution from January 2004 to April 2007, 439 subjects with known or suspected CAD were included in the study. GSPECT was performed for all patients following exercise (group I, n = 220) or pharmacological stress (group II, n = 219) according to a 2-day (stress-rest) protocol after injection of Tc-99m methoxyisobutyl-isonitrile (MIBI). Stress, rest, and difference (stress-rest value) left ventricular ejection fractions (SLVEF, RLVEF, and DLVEF) and transient ischemic dilatation (TID) ratio were derived automatically. Summed stress score, summed rest score, and summed difference score (SDS) for myocardial perfusion were calculated using a 20-segment model and a five-point scoring system. An SDS > 3 was considered as ischemic. On the basis of the perfusion findings, patients were subdivided into a normal (group A, n = 216) and ischemia group (group B, n = 223). DLVEF and perfusion scores of all groups were compared. Relationships between DLVEF and perfusion, and between TID ratio and DLVEF were also evaluated. Stress-induced ischemia was observed in 223 of 439 patients (50.8%). In group A, the difference between stress and rest LVEF values was not significant (P = 0.670 and P = 0.200 for groups IA and IIA, respectively). However, LVEF was significantly decreased after stress compared with rest values for group B (P good correlations between TID ratios and DLVEF values in four subgroups (r = -0.55, r = -0.62, r = -0.59, and r = -0.41; for groups IA, IB, IIA, and IIB, respectively, P stress was observed

  17. An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

    OpenAIRE

    Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from...

  18. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  19. REST based mobile applications

    Science.gov (United States)

    Rambow, Mark; Preuss, Thomas; Berdux, Jörg; Conrad, Marc

    2008-02-01

    Simplicity is the major advantage of REST based webservices. Whereas SOAP is widespread in complex, security sensitive business-to-business aplications, REST is widely used for mashups and end-user centric applicatons. In that context we give an overview of REST and compare it to SOAP. Furthermore we apply the GeoDrawing application as an example for REST based mobile applications and emphasize on pros and cons for the use of REST in mobile application scenarios.

  20. Connectivity pattern differences bilaterally in the cerebellum posterior lobe in healthy subjects after normal sleep and sleep deprivation: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Liu XM

    2015-05-01

    Full Text Available Xuming Liu,1 Zhihan Yan,2 Tingyu Wang,1 Xiaokai Yang,1 Feng Feng,3 Luping Fan,1 Jian Jiang4 1Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, 2Department of Radiology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, 3Peking Union Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 4Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China Objective: The aim of this study was to use functional magnetic resonance imaging (fMRI technique to explore the resting-state functional connectivity (rsFC differences of the bilaterial cerebellum posterior lobe (CPL after normal sleep (NS and after sleep deprivation (SD. Methods: A total of 16 healthy subjects (eight males, eight females underwent an fMRI scan twice at random: once following NS and the other following 24 hours’ SD, with an interval of 1 month between the two scans. The fMRI scanning included resting state and acupuncture stimulation. The special activated regions located during the acupuncture stimulation were selected as regions of interest for rsFC analysis. Results: Bilateral CPLs were positively activated by acupuncture stimulation. In the NS group, the left CPL showed rsFC with the bilateral CPL, bilateral frontal lobe (BFL, left precuneus and right inferior parietal lobule, while the right CPL showed rsFC with the bilateral temporal lobe, right cerebellum anterior lobe, right CPL, left frontal lobe, left anterior cingulate, right posterior cingulate, and bilateral inferior parietal lobule. In the SD group, the left CPL showed rsFC with the left posterior cingulate gyrus bilateral CPL, left precuneus, left precentral gyrus, BFL, and the left parietal lobe, while the right CPL showed rsFC with bilateral cerebellum anterior lobe, bilateral CPL, left frontal lobe and left temporal lobe. Compared with the NS group, the

  1. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  2. Changes in resting-state fMRI in vestibular neuritis.

    Science.gov (United States)

    Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F

    2014-11-01

    Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric

  3. Effect of sex on wasted left ventricular effort following maximal exercise.

    Science.gov (United States)

    Lane, A D; Ranadive, S M; Yan, H; Kappus, R M; Cook, M D; Sun, P; Woods, J A; Wilund, K; Fernhall, B

    2013-09-01

    Wasted left ventricular effort (∆Ew) refers to work required of the left ventricle to eject blood that does not result in increased stroke volume and is related to left ventricular hypertrophy. Literature shows that men and women have differing ventricular and vascular responses to and following exercise. Our purpose was to determine how ∆Ew changes post-exercise in men and women and examine potential mechanisms. We hypothesized a reduction in ∆Ew that would be greater in men and that central pulse wave velocity and wave intensity (WIA) would be related to ∆Ew. Blood pressures, central pulse wave velocity (cPWV), and WIA were obtained at rest, 15 and 30 min after maximal exercise. Both sexes reduced ∆Ew post-maximal exercise (p>0.05 for interaction), but women had higher ∆Ew at each time point (p<0.05). The first peak of WIA increased 15 min post-exercise only in women (p<0.05). cPWV was attenuated (p<0.05) in women at 15 min and men at 30 min (p<0.05) post-exercise with a significant time by sex interaction (p<0.05). WIA (1st peak) was correlated (p<0.05) to ∆Ew in both sexes before and 15 min post-exercise, but cPWV was only associated with ∆Ew in men at 30 min post-exercise. We conclude that both sexes decrease ∆Ew after maximal exercise, but vascular and ventricular changes associated with the attenuation of ∆Ew are not uniform between sexes. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  5. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  6. Left atrial systolic force in hypertensive patients with left ventricular hypertrophy: the LIFE study

    DEFF Research Database (Denmark)

    Chinali, M.; Simone, G. de; Wachtell, K.

    2008-01-01

    In hypertensive patients without prevalent cardiovascular disease, enhanced left atrial systolic force is associated with left ventricular hypertrophy and increased preload. It also predicts cardiovascular events in a population with high prevalence of obesity. Relations between left atrial...... systolic force and left ventricular geometry and function have not been investigated in high-risk hypertrophic hypertensive patients. Participants in the Losartan Intervention For Endpoint reduction in hypertension echocardiography substudy without prevalent cardiovascular disease or atrial fibrillation (n...... = 567) underwent standard Doppler echocardiography. Left atrial systolic force was obtained from the mitral orifice area and Doppler mitral peak A velocity. Patients were divided into groups with normal or increased left atrial systolic force (>14.33 kdyn). Left atrial systolic force was high in 297...

  7. Abnormal regional homogeneity in patients with essential tremor revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    Full Text Available Essential tremor (ET is one of the most common movement disorders in human adults. It can be characterized as a progressive neurological disorder of which the most recognizable feature is a tremor of the arms or hands that is apparent during voluntary movements such as eating and writing. The pathology of ET remains unclear. Resting-state fMRI (RS-fMRI, as a non-invasive imaging technique, was employed to investigate abnormalities of functional connectivity in ET in the brain. Regional homogeneity (ReHo was used as a metric of RS-fMRI to assess the local functional connectivity abnormality in ET with 20 ET patients and 20 age- and gender-matched healthy controls (HC. The ET group showed decreased ReHo in the anterior and posterior bilateral cerebellar lobes, the bilateral thalamus and the insular lobe, and increased ReHo in the bilateral prefrontal and parietal cortices, the left primary motor cortex and left supplementary motor area. The abnormal ReHo value of ET patients in the bilateral anterior cerebellar lobes and the right posterior cerebellar lobe were negatively correlated with the tremor severity score, while positively correlated with that in the left primary motor cortex. These findings suggest that the abnormality in cerebello-thalamo-cortical motor pathway is involved in tremor generation and propagation, which may be related to motor-related symptoms in ET patients. Meanwhile, the abnormality in the prefrontal and parietal regions may be associated with non-motor symptoms in ET. These findings suggest that the ReHo could be utilized for investigations of functional-pathological mechanism of ET.

  8. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    Science.gov (United States)

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by

  9. Selective activation around the left occipito-temporal sulcus for words relative to pictures: Individual variability or false positives?

    NARCIS (Netherlands)

    Wright, Nicholas D.; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J.; Rombouts, Serge A. R. B.; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J.

    2008-01-01

    We used high-resolution fMRI to investigate claims that learning to read r !sults in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In tl e first experiment, 9/16 subjects performing a one-back task showed activation in >= 1 left OT voxel for word:

  10. Identification of Resting State Networks Involved in Executive Function.

    Science.gov (United States)

    Connolly, Joanna; McNulty, Jonathan P; Boran, Lorraine; Roche, Richard A P; Delany, David; Bokde, Arun L W

    2016-06-01

    The structural networks in the human brain are consistent across subjects, and this is reflected also in that functional networks across subjects are relatively consistent. These findings are not only present during performance of a goal oriented task but there are also consistent functional networks during resting state. It suggests that goal oriented activation patterns may be a function of component networks identified using resting state. The current study examines the relationship between resting state networks measured and patterns of neural activation elicited during a Stroop task. The association between the Stroop-activated networks and the resting state networks was quantified using spatial linear regression. In addition, we investigated if the degree of spatial association of resting state networks with the Stroop task may predict performance on the Stroop task. The results of this investigation demonstrated that the Stroop activated network can be decomposed into a number of resting state networks, which were primarily associated with attention, executive function, visual perception, and the default mode network. The close spatial correspondence between the functional organization of the resting brain and task-evoked patterns supports the relevance of resting state networks in cognitive function.

  11. Evaluating the normal individual cardiac function in different imaging phases post exercise and rest by gated SPECT myocardial perfusion

    International Nuclear Information System (INIS)

    Hua, W.; Li, S.J.; Liu, J.Z.; Li, X.F.; Jin, C.R.; Hu, G.; Wang, J.

    2007-01-01

    Full text: Objectives: To evaluate the normal individual cardiac function in the different imaging phases post-exercise and rest by GSPECT. Methods: 46 normal individuals underwent exercise/rest GSPECT using 99mTc-MIBI by 2- day program. Sequential imaging was started 15, 35 and 120 minutes after exercise and rest imaging was performed the following day. The left ventricular EF and EDV, ESV values were calculated with the Cedars-Sinai program. Results: The EF values of post- exercise at 15, 35, and 120m was 64.48±7.43%, 65.02±7.66%, and 60.98±7.28% respectively, and the rest EF value was 61.46±7.23%. The post exercise EF at 15m and 35m was higher than EF at post- exercise 120m and rest, but there is a significant difference only between post exercise 35m and rest (P< 0.05), and all post exercise EF did not increase at least 5% from EF at-rest. The EDV and ESV values did not have statistically significant differences at 15, 35,120m post-exercise and rest. The heart rate at 15,35m post- exercise was higher significantly than at rest. Conclusions: The different imaging phases after exercise with 99mTc-MIBI GSPECT affects LVEF in normal individuals, the 35m post- exercise EF is highest. (author)

  12. A Closer Look at the Brain As Related to Teachers and Learners.

    Science.gov (United States)

    Haglund, Elaine

    1981-01-01

    Recent findings related to neurological research include: (1) the Proster Theory implies that the brain works by sets of programs or prosters; (2) the Brain Growth Spurts theory defines the growth of the brain in spurts with cycles of rest; and (3) in the Hemispheric Specialization Theory, the left and right hemispheres of the brain have specific…

  13. Radionuclide determination of right and left ventricular stroke volumes

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei Feng; Roubin, G S; Choong, C Y.P.; Harris, P J; Flether, P J; Kelly, D T; Uren, R F; Hutton, B F

    1985-03-01

    The relationship between radionuclide and thermodilution measurement of stroke volumes (SV) was investigated in 30 patients without valvular regurgitation or intracardiac shunt (group A) at rest and during exercise. Both attenuated radionuclide right ventricular (RV) and left ventricular (LV) SV measurements correlated well with the SV determined by the thermodilution method (r = 0.87 and r = 0.93, all P < 0.001). The reliability of the radionuclide method to estimate SV was evaluated prospectively in two additional groups of patients. In 11 patients without valvular regurgitation or intracardiac shunt (group B) the radionuclide RVSV and LVSV closely approximated to thermodilution SV at rest and during exercise. In 15 patients with aortic regurgitation (group C) the radionuclide stroke volume ratio correlated well with the angiographic regurgitant fraction. Thus, both RVSV and LVSV and the severity of aortic regurgitation can be reliably measured with gated radionuclide ventriculography.

  14. Migraine classification using magnetic resonance imaging resting-state functional connectivity data.

    Science.gov (United States)

    Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J

    2017-08-01

    Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.

  15. Exercise countermeasures for bed-rest deconditioning

    Science.gov (United States)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  16. Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy.

    Science.gov (United States)

    Takashi, Yuichi; Kinoshita, Yuka; Hori, Michiko; Ito, Nobuaki; Taguchi, Manabu; Fukumoto, Seiji

    2017-05-01

    Fibroblast growth factor 23 (FGF23) is a hormone regulating phosphate metabolism. Excessive actions of FGF23 cause several types of FGF23-related hypophosphatemic rickets/osteomalacia. Recently, it was reported that FGF23 levels were independently correlated with left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). In addition, FGF23 was also shown to cause cardiac hypertrophy directly acting on cardiomyocytes. However, there is no study indicating the correlation between FGF23 and LVH in adult patients with FGF23-related hypophosphatemic rickets/osteomalacia. Therefore, we examined the existence of LVH in these patients. We recruited consecutive 24 patients with FGF23-related hypophosphatemic diseases. Their serum intact FGF23 levels and the parameters associated with LVH, including left ventricular mass index (LVMI), relative wall thickness (RWT), Sokolow-Lyon voltage, and Cornell product, were measured. The correlations between FGF23 and these parameters were examined. The participants did not show LVH on the whole. In addition, no significant correlation was observed by these examinations. It seems unlikely that FGF23 levels are the apparent determinant of the cardiac mass in patients with FGF23-related hypophosphatemic rickets/osteomalacia.

  17. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.

    Science.gov (United States)

    Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi

    2014-12-01

    To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.

  18. Technetium-99m tetrofosmin rest/stress myocardial SPET with a same-day 2-hour protocol: comparison with coronary angiography. A Spanish-Portuguese multicentre clinical trial

    International Nuclear Information System (INIS)

    Montz, R.; Perez-Castejon, M.J.; Jurado, J.A.; Martin-Comin, J.; Esplugues, E.; Salgado, L.; Ventosa, A.; Cantinho, G.; Sa, E.P.; Fonseca, A.T.; Vieira, M.R.; Ortiz-Berrocal, J.; Magrina, J.; Ortega, D.; Puente, C.; Ferrer, A.I.; Pedrosa, J.; Latre, J.M.; Carreras, J.L.

    1996-01-01

    Technetium-99m tetrofosmin (Myoview) has unique properties for myocardial perfusion imaging very early after injection of the tracer. We used a very short same-day rest/stress protocol, to be performed within 2 h and evaluated its diagnostic accuracy. The study included 144 patients from seven Spanish and four Portuguese centres with a diagnosis of uncomplicated coronary artery disease (CAD); 78 patients (54%) had no history of prior myocardial infarction. Patients were injected with ≤300 MBq 99m Tc-tetrofosmin at rest and ≤900 MBq approximately 1 h later at peak exercise. Single-photon emission tomographic (SPET) acquisitions were initiated within 5-30 min post injection. The results were compared with those of coronary angiography (CA). The data of 142 patients were completely evaluable (two with non-evaluable images were excluded). The quality of rest images was excellent or good in 86%, regionally problematic in 7%, poor but well interpretable in 5% and non-evaluable in 2%. The overall sensitivity for the detection of CAD was 93%, the specificity 38% and the accuracy 85%. The localization of defects by SPET in relation the perfusion territories of stenosed vessels (≥=50%) was achieved with a sensitivity of 64% for the left anterior descending artery, 49% for the left circumflex artery and 86% for the right coronary artery, and an accuracy of 71%, 72% and 73% respectively. Concordance of SPET and CA was 62% for single-vessel disease and 68% for multivessel disease. In conclusion, this Spanish-Portuguese multicentre clinical trial confirmed, in a considerable number of patients who underwent coronary angiography, the feasibility of 99m Tc terofosmin (Myoview) rest/stress myocardial SPET using a very short protocol (2 h). (orig.)

  19. Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Wang Zhiqun; Jia Xiuqin; Liang Peipeng; Qi Zhigang; Yang Yanhui; Zhou Weidong; Li Kuncheng

    2012-01-01

    Purpose: The subcortical region such as thalamus was believed to have close relationship with many cerebral cortexes which made it especially interesting in the study of functional connectivity. Here, we used resting state functional MRI (fMRI) to examine changes in thalamus connectivity in mild cognitive impairment (MCI), which presented a neuro-disconnection syndrome. Materials and methods: Data from 14 patients and 14 healthy age-matched controls were analyzed. Thalamus connectivity was investigated by examination of the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Results: We found that functional connectivity between the left thalamus and a set of regions was decreased in MCI; these regions are: bilateral cuneus, middle occipital gyrus (MOG), superior frontal gyrus (SFG), medial prefrontal cortex (MPFC), precuneus, inferior frontal gyrus (IFG) and precentral gyrus (PreCG). There are also some regions showed reduced connectivity to right thalamus; these regions are bilateral cuneus, MOG, fusiform gyrus (FG), MPFC, paracentral lobe (PCL), precuneus, superior parietal lobe (SPL) and IFG. We also found increased functional connectivity between the left thalamus and the right thalamus in MCI. Conclusion: The decreased connectivity between the thalamus and the other brain regions might indicate reduced integrity of thalamus-related cortical networks in MCI. Furthermore, the increased connectivity between the left and right thalamus suggest compensation for the loss of cognitive function. Briefly, impairment and compensation of thalamus connectivity coexist in the MCI patients.

  20. His-Purkinje system-related incessant ventricular tachycardia arising from the left coronary cusp

    Directory of Open Access Journals (Sweden)

    Eiji Sato, MD

    2014-08-01

    Full Text Available We describe the case of a 23-year-old woman who had His-Purkinje system-related incessant ventricular tachycardia with a narrow QRS configuration. The ventricular tachycardia was ablated successfully in the left coronary cusp where the earliest endocardial activation had been recorded. We hypothesize that a remnant of the subaortic conducting tissue was the source of the ventricular arrhythmias.

  1. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.

    Science.gov (United States)

    Cabibel, Vincent; Muthalib, Makii; Teo, Wei-Peng; Perrey, Stephane

    2018-04-01

    The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (-11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.

  2. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    2014-01-01

    Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

  3. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan

    2013-01-01

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  4. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Science.gov (United States)

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  5. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Directory of Open Access Journals (Sweden)

    Yolanda R Schlumpf

    Full Text Available In accordance with the Theory of Structural Dissociation of the Personality (TSDP, studies of dissociative identity disorder (DID have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP and the "Apparently Normal Part" (ANP, have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls.Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events.DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent

  6. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  7. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation

    DEFF Research Database (Denmark)

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob

    2015-01-01

    during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related...... to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P protein synthesis increased before bed rest in both age groups...... (P protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P

  8. Cognitive and default-mode resting state networks: do male and female brains "rest" differently?

    Science.gov (United States)

    Weissman-Fogel, Irit; Moayedi, Massieh; Taylor, Keri S; Pope, Geoff; Davis, Karen D

    2010-11-01

    Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex. © 2010 Wiley-Liss, Inc.

  9. Improved left ventricular function after growth hormone replacement in patients with hypopituitarism: assessment with radionuclide angiography

    International Nuclear Information System (INIS)

    Cuocolo, A.; Nicolai, E.; Colao, A.; Longobardi, S.; Cardei, S.; Fazio, S.; Merola, B.; Lombardi, G.; Sacca, L.; Salvatore, M.

    1996-01-01

    Prolonged growth hormone deficiency (GHD) leads to marked cardiac dysfunction; however, whether reversal of this abnormality may be achieved after specific replacement therapy has not yet been completely clarified. Fourteen patients with childhood-onset GHD (nine men and five women, mean age 27±4 years) and 12 normal control subjects underwent equilibrium radionuclide angiography under control conditions at rest. Patients with GHD were also studied 6 months after recombinant human (rh) GH treatment (0.05 IU/kg per day). Normal control subjects and patients with GHD did not differ with respect to age, gender and heart rate. In contrast, left ventricular ejection fraction (53%±9% vs 66%±6%, P 2 , P 2 , P 2 , P 2 , P <0.01) was observed in GHD patients. In conclusion, prolonged lack of GH leads to impaired left ventricular function at rest. Reversal of this abnormality may be observed after 6 months of specific replacement therapy in patients with childhood-onset GHD. (orig.). With 4 figs., 1 tab

  10. Are particle rest masses variable: Theory and constraints from solar system experiments

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1977-01-01

    Particle rest mass variation in spacetime is considered. According to Dicke, if this is the case various null experiments indicate that all masses vary in the same way. Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein's equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke's reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the curvature of strength q. The r and q are the only parameters of the theory. Comparison with experiment is facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The results of solar system experiments, usually used to test general relativity, are here used to delimit the acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which agree with all null and solar system experiments, and yet contradict the strong equivalence principle by allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall investigate the implications of various cosmological and astrophysical data for the theory of variable rest masses. The ultimate goal is a firm decision on whether rest masses vary or not

  11. Alternative REST Splicing Underappreciated

    OpenAIRE

    Chen, Guo-Lin; Miller, Gregory

    2017-01-01

    As a major orchestrator of the cellular epigenome, the repressor element-1 silencing transcription factor (REST) can either repress or activate thousands of genes depending on cellular context, suggesting a highly context-dependent REST function tuned by environmental cues. While REST shows cell-type non-selective active transcription, an N-terminal REST4 isoform caused by alternative splicing - inclusion of an extra exon (N3c) which introduces a pre-mature stop codon - has been implicated in...

  12. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  13. Amygdala Hyperactivity at Rest in Paranoid Individuals With Schizophrenia.

    Science.gov (United States)

    Pinkham, Amy E; Liu, Peiying; Lu, Hanzhang; Kriegsman, Michael; Simpson, Claire; Tamminga, Carol

    2015-08-01

    The amygdala's role in threat perception suggests that increased activation of this region may be related to paranoid ideation. However, investigations of amygdala function in paranoid individuals with schizophrenia, compared with both healthy individuals and nonparanoid individuals with schizophrenia, have consistently reported reduced task-related activation. The reliance of blood-oxygen-level-dependent functional MRI on a contrast between events and baseline, and the inability to quantitatively measure this baseline, may account for these counterintuitive findings. The present study tested for differences in baseline levels of amygdala activity in paranoid and nonparanoid individuals with schizophrenia using arterial spin labeling perfusion MRI. Resting cerebral blood flow (CBF) and task-related activation of the amygdala were measured in 25 healthy individuals, 16 individuals with schizophrenia who were actively paranoid at the time of scanning, and 16 individuals with schizophrenia who were not paranoid. Analysis of relative CBF values extracted from the amygdala bilaterally revealed significantly increased activity in the left amygdala in paranoid patient volunteers compared with healthy comparison subjects and nonparanoid patient volunteers. Increased CBF was also evident in the right amygdala but did not reach the level of statistical significance. Paranoid volunteers also showed significantly decreased task-related activation of the amygdala compared with the two other groups. These findings suggest that amygdala hyperactivation may underlie paranoia in schizophrenia. Additionally, the reported differences between paranoid and nonparanoid patient volunteers emphasize the importance of considering symptom-based subgroups and baseline levels of activity in future investigations of neural activation in schizophrenia.

  14. Myocardial perfusion and left ventricular function during exercise evaluated by 201Tl myocardial scintigraphy and 99mTc radionuclide ventriculography in patients treated with PTCA

    International Nuclear Information System (INIS)

    Honda, Toshio; Jo, Tadafumi; Doiuchi, Junji

    1992-01-01

    To evaluate the effects of percutaneous transluminal coronary angioplasty (PTCA), we investigated myocardial ischemia and left ventricular function during exercise before and after successful PTCA in 30 patients. We used extent and severity scores of 201 thallium ( 201 Tl) exercise myocardial scintigraphy to assess myocardial ischemia and determined global and regional left ventricular ejection fraction (EF and REF) of 99m Tc-RBC exercise radionuclide ventriculography to assess left ventricular function. The extent and severity scores of stress images were significantly less after PTCA than before PTCA. The scores of the redistribution images were unchanged before and after PTCA. Global EF during exercise was significantly higher after PTCA than before PTCA. There was no difference in resting global EF between before and after PTCA. Myocardial ischemia induced by exercise was semi-quantitatively analyzed as transient perfusion defect with severity score. Severity score was significantly less after PTCA than before PTCA. ΔEF, which was obtained by subtraction of resting global EF from exercise one, was significantly higher after PTCA than before PTCA. However, the degree of improvement in myocardial ischemia and left ventricular function varied from patient to patient. In 17 patients with one-vessel left anterior descending artery disease, ΔREF, which was determined by subtracting resting regional EF from exercise one, was significantly higher in septal and apical segments after PTCA than before PTCA. Myocardial ischemia and left ventricular function under exercise were alleviated by PTCA. However, the degree of improvement varied from patient to patient and it might have been affected by various factors including coronary dissection, edema, thrombus, restenosis, spasm, side branch stenosis or occlusion, distal thrombus, and myocardial hibernation. (author)

  15. Resting-state functional MR changes in Alzheimer's disease patients visualized by amplitude of low-frequency fluctuation and fraction of amplitude of low-frequency fluctuation

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan; Feng Jie; Zhang Hongtao; Liu Tie; Shen Wen; Qi Ji

    2013-01-01

    Objective: To investigate the difference of amplitude of low-frequency fluctuation (ALFF) and fraction of amplitude of low-frequency fluctuation (fALFF) between Alzheimer's disease (AD)patients and normal aging (NA) controls by voxel-based analysis. Methods: Thirty-one AD patients and 44 NA controls were enrolled in the study. Blood oxygen level dependent functional (BOLD) EPI data were obtained during resting-state by using 32-channel head coil. Data were realigned, normalized and then smoothed with 8 mm FWHM kernel. Resting-state fMRI toolkit (version 1.6) was used to generate ALFF and fALFF images. Independent two sample t-test was performed with SPM5 to compare ALFF and fALFF of AD and NA controls. Pearson correlation analysis was performed to examine the relationship between MMSE score and ALFF, fALFF parameters. The significance level was set to be uncorrected O.001 on the voxel level and 0.05 on the cluster level. Results: AD patients showed increased ALFF in left temporal lobe (0.492 ± 0.119) and right cingulated cortex (0.434 ± 0.093) of AD patients, which were 0.443 ± 0.068 and 0.380 ± 0.081 in NA controls (t = 2.658, 2.227, P < 0.05). Decreased fALFF was found in bilateral posterior cingulate cortices (1.167 ± 0.203) and increased fALFF was found in bilateral temporal lobes (left 1.226 ± 0.127, right 1.146 ± 0.214) with left side dominance, which were 1.453 ± 0.269, 1.134 ± 0.088, 1.014 ± O.132 in NA controls (t =5.001, 3.695, 3.285, P < 0.05). Bilateral temporal ALFF and fALFF correlated with MMSE positively (r = 0.768-0.909, P < 0.05) with left dominance. Conclusion: AD patients showed increased resting-state functional MRI changes correlated with MMSE score in the temporal lobes with left dominance, which indicated left temporal lobe may be the best location for the observation of disease progression in AD patients. (authors)

  16. Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    OpenAIRE

    New, Anneliese B.; Robin, Donald A.; Parkinson, Amy L.; Duffy, Joseph R.; McNeil, Malcom R.; Piguet, Olivier; Hornberger, Michael; Price, Cathy J.; Eickhoff, Simon B.; Ballard, Kirrie J.

    2015-01-01

    Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere ...

  17. Prevalence of exercise-induced left ventricular outflow tract obstruction in symptomatic patients with non-obstructive hypertrophic cardiomyopathy.

    LENUS (Irish Health Repository)

    Shah, J S

    2008-10-01

    Resting left ventricular outflow tract obstruction (LVOTO) occurs in 25% of patients with hypertrophic cardiomyopathy (HCM) and is an important cause of symptoms and disease progression. The prevalence and clinical significance of exercise induced LVOTO in patients with symptomatic non-obstructive HCM is uncertain.

  18. Age and regional cerebral blood flow at rest and during cognitive activity

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Obrist, W.D.; Skolnick, B.E.; Reivich, M.

    1987-01-01

    The relationship between age and regional cerebral blood flow (rCBF) activation for cognitive tasks was investigated with the xenon (Xe 133) inhalation technique. The sample consisted of 55 healthy subjects, ranging in age from 18 to 72 years, who were studied during rest and during the performance of verbal analogy and spatial orientation tasks. The dependent measures were indexes of gray-matter rCBF and average rCBF (gray and white matter) as well as the percentage of gray-matter tissue. Advanced age was associated with reduced flow, particularly pronounced in anterior regions. However, the extent and pattern of rCBF changes during cognition was unaffected by age. For the percentage of gray matter, there was a specific reduction in anterior regions of the left hemisphere. The findings suggest the utility of this research paradigm for investigating neural underpinnings of the effects of dementia on cognitive functioning, relative to the effects of normal aging

  19. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. EMF-REST: Generation of RESTful APIs from Models

    OpenAIRE

    Hamza , Ed-Douibi; Cánovas Izquierdo , Javier Luis; Gómez , Abel; Tisi , Massimo; Cabot , Jordi

    2016-01-01

    In the last years, RESTful Web services have become more and more popular as a lightweight solution to connect remote systems in distributed and Cloud-based architectures. However, being an architectural style rather than a specification or standard, the proper design of RESTful Web services is not trivial since developers have to deal with a plethora of recommendations and best practices. Model-Driven Engineering (MDE) emphasizes the use of models and model transformations to raise the level...

  1. Exercising self-control increases relative left frontal cortical activation.

    Science.gov (United States)

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of perfusion detect on the measurement of left ventricular mass, ventricular volume and post-stress left ventricular ejection fraction in gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Ahn, Byeong Cheol; Bae, Sun Keun; Lee, Sang Woo; Jeong, Sin Young; Lee, Jae Tae; Lee, Kyu Bo

    2002-01-01

    The presence of perfusion defect may influence the left ventricular mass (LVM) measurement by quantitative gated myocardial perfusion SPECT (QGS), and ischemic myocardium, usually showing perfusion defect may produce post-stress LV dysfunction. This study was aimed to evaluated the effects of extent and reversibility of perfusion defect on the automatic measurement of LVM by QGS and to investigate the effect of reversibility of perfusion defect on post-stress LV dysfunction. Forty-six patients (male/female=34:12, mean age=64 years) with perfusion defect on myocardial perfusion SPECT underwent rest and post-stress QGS. Forty patients (87%) showed reversible defect. End-diastolic volume (EDV), end-systolic volume (ESV), LV ejection fraction (EF), and LV myocardial volume were obtained from QGS by autoquant program, and LVM was calculated by multiplying the LV myocardial volume by the specific gravity of myocardium. LVMs measured at rest and post-stress QGS showed good correlation, and higher correlation was founded in the subjects with fixed perfusion defect and with small defect (smaller than 20%). There were no significant differences in EDVs, ESVs and EFs between obtained by rest and post-stress QGS in patients with fixed myocardial defect. Whereas, EF obtained by post-stress QGS was lower than that by rest QGS in patients with reversible defect and 10 (25%) of them showed decreases in EF more than 5% in post-stress QGS, as compared to that of rest QGS. Excellent correlations of EDVs, ESVs, EFs between rest and post-stress QGS were noted. Patients with fixed defect had higher correlation between defect can affect LVM measurement by QGS and patients with reversible defect shows post-stress LV dysfunction more frequently than patients with fixed perfusion defect

  3. Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium - 82 PET

    International Nuclear Information System (INIS)

    Lee, D. S.; Kamg, K. W.; Lee, K. H.; Jeong, J. M.; Kwark, C. E.; Chung, J. K.; Lee, M.C.; Seo, J. D.; Koh, C. S.

    1995-01-01

    We compared stress/rest myocardial Tc-99m-MIBI tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed, rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium, or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709-stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBI scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9(rest) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segmental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day- human studies, these segmental analyses with

  4. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Feng-Mei Lu

    Full Text Available Conduct disorder (CD is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD individuals. Independent component analysis (ICA was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus, which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus, the lateral visual network (left superior occipital gyrus, and the medial visual network (right fusiform, left lingual gyrus and right calcarine, which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network and a high-order cognitive network (the default mode network. Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD.

  5. Spatiotemporal psychopathology I: No rest for the brain's resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms.

    Science.gov (United States)

    Northoff, Georg

    2016-01-15

    Despite intense neurobiological investigation in psychiatric disorders like major depressive disorder (MDD), the basic disturbance that underlies the psychopathological symptoms of MDD remains, nevertheless, unclear. Neuroimaging has focused mainly on the brain's extrinsic activity, specifically task-evoked or stimulus-induced activity, as related to the various sensorimotor, affective, cognitive, and social functions. Recently, the focus has shifted to the brain's intrinsic activity, otherwise known as its resting state activity. While various abnormalities have been observed during this activity, their meaning and significance for depression, along with its various psychopathological symptoms, are yet to be defined. Based on findings in healthy brain resting state activity and its particular spatial and temporal structure - defined in a functional and physiological sense rather than anatomical and structural - I claim that the various depressive symptoms are spatiotemporal disturbances of the resting state activity and its spatiotemporal structure. This is supported by recent findings that link ruminations and increased self-focus in depression to abnormal spatial organization of resting state activity. Analogously, affective and cognitive symptoms like anhedonia, suicidal ideation, and thought disorder can be traced to an increased focus on the past, increased past-focus as basic temporal disturbance o the resting state. Based on these findings, I conclude that the various depressive symptoms must be conceived as spatiotemporal disturbances of the brain's resting state's activity and its spatiotemporal structure. Importantly, this entails a new form of psychopathology, "Spatiotemporal Psychopathology" that directly links the brain and psyche, therefore having major diagnostic and therapeutic implications for clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Discovering EEG resting state alterations of semantic dementia.

    Science.gov (United States)

    Grieder, Matthias; Koenig, Thomas; Kinoshita, Toshihiko; Utsunomiya, Keita; Wahlund, Lars-Olof; Dierks, Thomas; Nishida, Keiichiro

    2016-05-01

    Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer's disease. Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    Science.gov (United States)

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  8. Disrutpted resting-state functional architecture of the brain after 45-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-06-01

    Full Text Available Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI to study whether the functional architecture of the brain is altered after 45 days of -6° head-down tilt (HDT bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of -6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC, to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC analysis. We found decreased DC in two regions, the left anterior insula (aINS and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies, in the male volunteers after 45 days of -6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function and central neural activity.

  9. Non-invasive assessment of right ventricular function at rest and on exercise in obstructive airways disease

    International Nuclear Information System (INIS)

    Tweddel, A.; Martin, W.; McGhie, I.; Neilly, B.; Stevenson, R.; Hutton, I.

    1985-01-01

    Non-invasive assessment of right ventricular function is of clinical interest in the patient with obstructive airways disease. Gated Xenon 133 scanning allows right ventricular function to be evaluated in isolation from the left ventricle, and with rapid clearance from the lungs, scans may be repeated within 5 minutes. 400mBq of Xenon 133 were injected intravenously over 20 seconds and images were obtained using a mobile gamma camera. Maximal symptom limited exercise was performed on a supine bicycle ergometer. The normal range for right ventricular ejection fraction (RVEF) was obtained from 10 volunteers - 40-55% at rest rising by 5-15% during exercise. In 10 patients with acute obstructive airways disease, all had reduced RVEF 21 +- 3%. In chronic obstructive airways disease, if resting RVEF was greater than 30%, ejection fraction increased on exercise. If resting ejection fraction was abnormal than RVEF was reduced or unchanged on exercise (mean 15 +- 9%), and this was associated with dilatation of both the right ventricle and atrium. In conclusion, gated Xenon 133 offers a simple method of assessing right ventricular function at rest and on exercise in the patient with obstructive airways disease

  10. Altered thalamo-cortical resting state functional connectivity in smokers.

    Science.gov (United States)

    Wang, Chaoyan; Bai, Jie; Wang, Caihong; von Deneen, Karen M; Yuan, Kai; Cheng, Jingliang

    2017-07-13

    The thalamus has widespread connections with the prefrontal cortex (PFC) and modulates communication between the striatum and PFC, which is crucial to the neural mechanisms of smoking. However, relatively few studies focused on the thalamic resting state functional connectivity (RSFC) patterns and their association with smoking behaviors in smokers. 24 young male smokers and 24 non-smokers were enrolled in our study. Fagerström Test for Nicotine Dependence (FTND) was used to assess the nicotine dependence level. The bilateral thalamic RSFC patterns were compared between smokers and non-smokers. The relationship between neuroimaging findings and smoking behaviors (FTND and pack-years) were also investigated in smokers. Relative to nonsmokers, smokers showed reduced RSFC strength between the left thalamus and several brain regions, i.e. the right dorsolateral prefrontal cortex (dlPFC), the anterior cingulate cortex (ACC) and the bilateral caudate. In addition, the right thalamus showed reduced RSFC with the right dlPFC as well as the bilateral insula in smokers. Therefore, the findings in the current study revealed the reduced RSFC of the thalamus with the dlPFC, the ACC, the insula and the caudate in smokers, which provided new insights into the roles of the thalamus in nicotine addiction from a function integration perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  12. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  13. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  14. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  15. Activity flow over resting-state networks shapes cognitive task activations.

    Science.gov (United States)

    Cole, Michael W; Ito, Takuya; Bassett, Danielle S; Schultz, Douglas H

    2016-12-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.

  16. Electroconvulsive therapy changes the regional resting state function measured by regional homogeneity (ReHo) and amplitude of low frequency fluctuations (ALFF) in elderly major depressive disorder patients: An exploratory study.

    Science.gov (United States)

    Kong, Xiao-Ming; Xu, Shu-Xian; Sun, Yan; Wang, Ke-Yong; Wang, Chen; Zhang, Ji; Xia, Jin-Xiang; Zhang, Li; Tan, Bo-Jian; Xie, Xin-Hui

    2017-06-30

    Electroconvulsive therapy (ECT) is the most effective and rapid treatment for severe major depressive disorder (MDD) in elderly patients. The mechanism of ECT is unclear, and studies on ECT in elderly MDD patients by resting-state functional magnetic resonance imaging are rare. Thirteen elderly MDD patients were scanned before and after ECT using a 3.0T MRI scanner. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuations (ALFF) were processed to compare resting-state function before and after treatment. Depression and anxiety symptoms of all patients abated after ECT. Decreased ReHo values in the bilateral superior frontal gyrus (SFG) were observed after ECT, and the values of right SFG significantly correlated with an altered Hamilton depression rating scale score. Increased ALFF values in the left middle frontal gyrus, right middle frontal gyrus, orbital part, and decreased ALFF values in the left midcingulate area, left precentral gyrus, right SFG/middle frontal gyrus after ECT were also observed. These results support the hypothesis that ECT may affect the regional resting state brain function in geriatric MDD patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study.

    Science.gov (United States)

    Chang, Haifeng; Li, Wei; Li, Qiang; Chen, Jiajie; Zhu, Jia; Ye, Jianjun; Liu, Jierong; Li, Zhe; Li, Yongbin; Shi, Ming; Wang, Yarong; Wang, Wei

    2016-08-18

    Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT. Forty MMT patients were included and received a 12-month follow-up. All patients were given baseline resting-state fMRI scans by using a 3.0 T GE Signa Excite HD whole-body MRI system. Monthly self-report and urine test were used to assess heroin relapse or non-relapse. Subjective craving was measured with visual analog scale. The correlation between ReHo and the degree of heroin relapse was analyzed. Compared with the non-relapsers, ReHo values were increased in the bilateral medial orbitofrontal cortex, right caudate, and right cerebellum of the heroin relapsers while those in the left parahippocampal gyrus, left middle temporal gyrus, right lingual gyrus, and precuneus were decreased in heroin relapsers. Importantly, altered ReHo in the right caudate were positively correlated with heroin relapse rates or subjective craving response. Using the resting-state fMRI technique by analysis of ReHo, we provided the first resting-state fMRI evidence that right caudate may serve as a potential biomarker for heroin relapse prediction and also as a promising target for reducing relapse risk.

  18. Myocardial blood flow assessment with 82rubidium-PET imaging in patients with left bundle branch block

    International Nuclear Information System (INIS)

    Falcao, Andrea; Chalela, William; Giorgi, Maria Clementina; Imada, Rodrigo; Soares Junior, Jose; Do Val, Renata; Oliveira, Marco Antonio; Izaki, Marisa; Kalil Filho, Roberto; Meneghetti, Jose C.

    2015-01-01

    Objectives: Perfusion abnormalities are frequently seen in Single Photon Emission Computed Tomography (SPECT) when a left bundle branch block is present. A few studies have shown decreased coronary flow reserve in the left anterior descending territory, regardless of the presence of coronary artery disease. Objective: we sought to investigate rubidium-82 ( 82 Rb) positron emission tomography imaging in the assessment of myocardial blood flow and coronary flow reserve in patients with left bundle branch block. Methods: thirty-eight patients with left bundle branch block (GI), median age 63.5 years, 22 (58%) female, 12 with coronary artery disease (≥70%; GI-A) and 26 with no evidence of significant coronary artery disease (GI-B), underwent rest-dipyridamole stress 82 Rb-positron emission tomography with absolute quantitative flow measurements using Cedars-Sinai software (mL/min/g). The relative myocardial perfusion and left ventricular ejection fraction were assessed in 17 segments. These parameters were compared with those obtained from 30 patients with normal 82 Rb-positron emission tomography studies and without left bundle branch block (GII). Results: stress myocardial blood flow and coronary flow reserve were significantly lower in GI than in GII (p>0.05). The comparison of coronary flow reserve between GI-A and GI-B showed that it was different from the global coronary flow reserve (p<0.05) and the stress flow was significantly lower in the anterior than in the septal wall for both groups. Perfusion abnormalities were more prevalent in GI-A (p=0.06) and the left ventricular ejection fraction was not different between GI-A and GI-B, whereas it was lower in GI than in GII (p<0.001). Conclusion: the data confirm that patients with left bundle branch block had decreased myocardial blood flow and coronary flow reserve and coronary flow reserve assessed by 82 Rb-positron emission tomography imaging may be useful in identifying coronary artery disease in patients

  19. Rest and exercise radionuclide ventriculography in the ambulatory monitoring of patients with valvular heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Raichlen, J.S.; Brest, A.N.

    1988-01-01

    Radionuclide angiography serves as a valuable adjunct in the noninvasive evaluation and monitoring of patients with valvular heart disease. Although estimations of regurgitant fractions and the differences between left and right ventricular stroke volumes can be made, the limitations of the techniques do not enable adequate quantitation of the severity of valvular insufficiency to warrant routine use in ambulatory management. The importance of radionuclide ventriculography, however, lies in its ability to examine global ventricular function both at rest and with exercise, thus enabling assessment of the functional reserve of the left and right ventricles. Such data are of considerable value in determining the need for invasive evaluation and the timing of valve replacement in patients with valvular heart disease. 41 references.

  20. Rest and exercise radionuclide ventriculography in the ambulatory monitoring of patients with valvular heart disease

    International Nuclear Information System (INIS)

    Raichlen, J.S.; Brest, A.N.

    1988-01-01

    Radionuclide angiography serves as a valuable adjunct in the noninvasive evaluation and monitoring of patients with valvular heart disease. Although estimations of regurgitant fractions and the differences between left and right ventricular stroke volumes can be made, the limitations of the techniques do not enable adequate quantitation of the severity of valvular insufficiency to warrant routine use in ambulatory management. The importance of radionuclide ventriculography, however, lies in its ability to examine global ventricular function both at rest and with exercise, thus enabling assessment of the functional reserve of the left and right ventricles. Such data are of considerable value in determining the need for invasive evaluation and the timing of valve replacement in patients with valvular heart disease. 41 references

  1. Effect of exercise on circulating atrial natriuretic peptide and left ventricular ejection fraction in healthy persons and patients with coronary artery disease

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Ichikawa, Shuichi; Sakamaki, Tetsuo; Suzuki, Tadashi; Iizuka, Toshio; Yagi, Atsuko; Kurashina, Toshiaki; Kumakura, Hisao; Murata, Kazuhiko

    1988-01-01

    Radionuclide angiographic measurements of left ventricular ejection fraction were performed at rest and during exercise in 10 normal persons and 11 patients with coronary artery disease. Exercise was continued on a supine bicycle exercise table up to a symptom-limited maximum. Plasma levels of atrial natriuretic peptide (ANP) were also determined at rest and during exercise. Ejection fraction in the normal volunteers was 59±3% (mean±SEM) at rest and increased significantly (p<0.01) to 69±3% during exercise. Ejection fraction in the patients was 47±5% at rest and did not change significantly during exercise (51±7%). Plasma ANP in the normals rose significantly (p<0.01) from 62±16 pg/ml at rest to 454±94 pg/ml during exercise. Plasma ANP in the patients also rose significantly (p<0.01) from 231±102 pg/ml to 794±170 pg/ml. The response of plasma ANP to exercise was enhanced significantly (p<0.05) in the patients as compared with the normals in relation to ejection fraction by analysis of covariance. In both the normals and the patients, plasma ANP was inversely and significantly correlated with ejection fraction during exercise (r=0.46, p<0.05, n=21), however, not at rest. Because it has been reported that plasma ANP is correlated positively with pulmonary artery wedge pressure, the estimation of plasma ANP during an exercise stress test might be used for the evaluation of cardiac reserve in coronary artery disease. (author)

  2. Dynamic reorganization of human resting-state networks during visuospatial attention.

    Science.gov (United States)

    Spadone, Sara; Della Penna, Stefania; Sestieri, Carlo; Betti, Viviana; Tosoni, Annalisa; Perrucci, Mauro Gianni; Romani, Gian Luca; Corbetta, Maurizio

    2015-06-30

    Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing "idling" activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a "prior" for attention selection.

  3. Brain-Derived Neurotrophic Factor Val66Met Polymorphism Affects the Relationship Between an Anxiety-Related Personality Trait and Resting Regional Cerebral Blood Flow.

    Science.gov (United States)

    Wei, Shau-Ming; Eisenberg, Daniel P; Nabel, Katherine G; Kohn, Philip D; Kippenhan, J Shane; Dickinson, Dwight; Kolachana, Bhaskar; Berman, Karen F

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) is an important modulator of constitutive stress responses mediated by limbic frontotemporal circuits, and its gene contains a functional polymorphism (Val66Met) that may influence trait stress sensitivity. Reports of an association of this polymorphism with anxiety-related personality traits have been controversial and without clear neurophysiological support. We, therefore, determined the relationship between resting regional cerebral blood flow (rCBF) and a well-validated measure of anxiety-related personality, the TPQ Harm Avoidance (HA) scale, as a function of BDNF Val66Met genotype. Sixty-four healthy participants of European ancestry underwent resting H215O positron emission tomography scans. For each genotype group separately, we first determined the relationship between participants' HA scores and their resting rCBF values in each voxel across the entire brain, and then directly compared these HA-rCBF relationships between Val66Met genotype groups. HA-rCBF relationships differed between Val homozygotes and Met carriers in several regions relevant to stress regulation: subgenual cingulate, orbital frontal cortex, and the hippocampal/parahippocampal region. In each of these areas, the relationship was positive in Val homozygotes and negative in Met carriers. These data demonstrate a coupling between trait anxiety and basal resting blood flow in frontolimbic neurocircuitry that may be determined in part by genetically mediated BDNF signaling. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Left-cut contribution to the dispersion relation for the elastic electron - atomic-hydrogen scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Kuchiev, M.Yu.

    1979-01-01

    The jump in the electron - atomic-hydrogen forward scattering amplitude at the cut extending to the left from E = -0.5 au is calculated as a function of the incident electron energy, E, by using the second Born approximation. The contribution from this singularity to the dispersion relation is determined. (Auth.)

  5. EEG classification for motor imagery and resting state in BCI applications using multi-class Adaboost extreme learning machine

    Science.gov (United States)

    Gao, Lin; Cheng, Wei; Zhang, Jinhua; Wang, Jue

    2016-08-01

    Brain-computer interface (BCI) systems provide an alternative communication and control approach for people with limited motor function. Therefore, the feature extraction and classification approach should differentiate the relative unusual state of motion intention from a common resting state. In this paper, we sought a novel approach for multi-class classification in BCI applications. We collected electroencephalographic (EEG) signals registered by electrodes placed over the scalp during left hand motor imagery, right hand motor imagery, and resting state for ten healthy human subjects. We proposed using the Kolmogorov complexity (Kc) for feature extraction and a multi-class Adaboost classifier with extreme learning machine as base classifier for classification, in order to classify the three-class EEG samples. An average classification accuracy of 79.5% was obtained for ten subjects, which greatly outperformed commonly used approaches. Thus, it is concluded that the proposed method could improve the performance for classification of motor imagery tasks for multi-class samples. It could be applied in further studies to generate the control commands to initiate the movement of a robotic exoskeleton or orthosis, which finally facilitates the rehabilitation of disabled people.

  6. Sex-dependent alterations in resting-state cerebral blood flow, amplitude of low-frequency fluctuations and their coupling relationship in schizophrenia.

    Science.gov (United States)

    Ma, Xiaomei; Wang, Di; Zhou, Yujing; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Yu, Chunshui

    2016-04-01

    We aimed to investigate sex-dependent alterations in resting-state relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling in patients with schizophrenia. Resting-state functional magnetic resonance imaging and three-dimensional pseudo-continuous arterial spin labeling imaging were performed to obtain resting-state amplitude of low-frequency fluctuations and relative cerebral blood flow in 95 schizophrenia patients and 99 healthy controls. Sex differences in relative cerebral blood flow and amplitude of low-frequency fluctuations were compared in both groups. Diagnostic group differences in relative cerebral blood flow, amplitude of low-frequency fluctuations and relative cerebral blood flow-amplitude of low-frequency fluctuations coupling were compared in male and female subjects, respectively. In both healthy controls and schizophrenia patients, the males had higher relative cerebral blood flow in anterior brain regions and lower relative cerebral blood flow in posterior brain regions than did the females. Compared with multiple regions exhibiting sex differences in relative cerebral blood flow, only the left middle frontal gyrus had a significant sex difference in amplitude of low-frequency fluctuations. In the females, schizophrenia patients exhibited increased relative cerebral blood flow and amplitude of low-frequency fluctuations in the basal ganglia, thalamus and hippocampus and reduced relative cerebral blood flow and amplitude of low-frequency fluctuations in the frontal, parietal and occipital regions compared with those of healthy controls. However, there were fewer brain regions with diagnostic group differences in the males than in the females. Brain regions with diagnostic group differences in relative cerebral blood flow and amplitude of low-frequency fluctuations only partially overlapped. Only the female patients exhibited increased relative cerebral

  7. Left phrenic nerve anatomy relative to the coronary venous system: Implications for phrenic nerve stimulation during cardiac resynchronization therapy.

    Science.gov (United States)

    Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A

    2015-07-01

    The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. © 2015 Wiley Periodicals, Inc.

  8. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    Science.gov (United States)

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (pketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  9. Spatial Relation Between Left Atrial Anatomical Contact Areas and Circular Activation in Persistent Atrial Fibrillation.

    Science.gov (United States)

    Nakahara, Shiro; Yamaguchi, Takanori; Hori, Yuichi; Anjo, Naofumi; Hayashi, Akiko; Kobayashi, Sayuki; Komatsu, Takaaki; Sakai, Yoshihiko; Fukui, Akira; Tsuchiya, Takeshi; Taguchi, Isao

    2016-05-01

    Atrial low-voltage zones (LVZs) may be related to maintenance of atrial fibrillation (AF). The influence of left atrial (LA) contact areas (CoAs) on reentrant or rotor-like sources maintaining AF has not been investigated. Forty patients with persistent AF (PsAF) were analyzed. Three representative CoA regions in the LA (ascending aorta: anterior wall; descending aorta: left inferior pulmonary vein; and vertebrae: posterior wall) were visualized by enhanced CT. Using circular catheters, the LVZs (80% of the mean AF cycle length. A pivot was defined as the core of the localized circular activation. Anterior (39/40 patients, 98%), left pulmonary vein antrum (27/40, 68%), and posterior (19/40, 48%) CoAs were identified, and 80% (68/85) of those sites were overlapped by or close (<3 mm) to LVZs. Thirty-six (90%) patients demonstrated circular activation (3.1±1.7 sites/patients) along with significantly higher organized dominant frequencies (6.3 ± 0.5 Hz, regularity-index: 0.26 [0.23-0.41]) within the LA, and the average electrogram amplitude of those pivots was 0.30 mV (0.18-0.52). Of those sites, 55% (66/120) were located at or close to CoA regions. Catheter ablation including of LVZs neighboring CoAs terminated AF in 9 (23%) patients. External anatomical structures contacting the LA may be related to unique conduction properties in diseased myocardium necessary for PsAF maintenance. © 2016 Wiley Periodicals, Inc.

  10. Age related changes in striatal resting state functional connectivity in autism

    Directory of Open Access Journals (Sweden)

    Aarthi ePadmanabhan

    2013-11-01

    Full Text Available Characterizing the nature of developmental change is critical to understanding the mechanisms that are impaired in complex neurodevelopment disorders such as autism spectrum disorder (ASD and, pragmatically, may allow us to pinpoint periods of plasticity when interventions are particularly useful. Although aberrant brain development has long been theorized as a characteristic feature of ASD, the neural substrates have been difficult to characterize, in part due to a lack of developmental data and to performance confounds. To address these issues, we examined the development of intrinsic functional connectivity with resting state fMRI from late childhood to early adulthood (8-36 years, using a seed based functional connectivity method with the striatum. Overall, we found that both groups show decreases in cortico-striatal circuits over age. However, when controlling for age, ASD participants showed increased connectivity with parietal cortex and decreased connectivity with prefrontal cortex relative to TD participants. In addition, ASD participants showed aberrant age-related changes in connectivity with anterior aspects of cerebellum, and posterior temporal regions (e.g. fusiform gyrus, inferior and superior temporal gyri. In sum, we found prominent differences in the development of striatal connectivity in ASD, most notably, atypical development of connectivity in striatal networks that may underlie cognitive and social reward processing. Our findings highlight the need to identify the biological mechanisms of perturbations in brain reorganization over development, which also may help clarify discrepant findings in the literature.

  11. Posture Used in fMRI-PET Elicits Reduced Cortical Activity and Altered Hemispheric Asymmetry with Respect to Sitting Position: An EEG Resting State Study

    Directory of Open Access Journals (Sweden)

    Chiara Spironelli

    2017-12-01

    Full Text Available Horizontal body position is a posture typically adopted for sleeping or during brain imaging recording in both neuroscience experiments and diagnostic situations. Recent literature showed how this position and similar ones with head down are associated to reduced plasticity, impaired pain and emotional responses. The present study aimed at further understanding the decrease of cortical activity associated with horizontal body position by measuring high-frequency EEG bands – typically associated with high-level cognitive activation – in a resting state experimental condition. To this end, two groups of 16 female students were randomly assigned to either sitting control (SC or 2-h horizontal Bed Rest condition (hBR while EEG was recorded from 38 scalp recording sites. The hBR group underwent several body transitions, from sitting to supine, and from supine to sitting. Results revealed a clear effect of horizontal posture: the hBR group showed, compared to its baseline and to SC, reduced High-Beta and Gamma EEG band amplitudes throughout the 2-h of hBR condition. In addition, before and after the supine condition, hBR group as well as SC exhibited a greater left vs. right frontal activation in both EEG bands while, on the contrary, the supine position induced a bilateral and reduced activation in hBR participants. The cortical sources significantly more active in SC compared with hBR participants included the left Inferior Frontal Gyrus and left Insula. Results are discussed in relation to the differences among neuroimaging methods (e.g., fMRI, EEG, NIRS, which can be partially explained by posture-induced neural network changes.

  12. Measurement of global and regional left ventricular performance with isotope technique in coronary heart disease

    International Nuclear Information System (INIS)

    Bostroem, P.-A.; Svensson, M.; Lilja, B.

    1988-01-01

    To evaluate left ventricular function in coronary artery disease, radionuclide measurements of global and regional ejection fraction (EF), regional wall motion and phase analyses of left ventricular contraction were performed by equilibrium technique, using sup(99m)Tc. One group of patients with angina pectoris and one group with myocardial infarction were compared with a control group. All above-mentioned parameters significantly separated the infarction group from the reference group both at rest and during work, while the group of patients with angina pectoris showed disturbances mainly during work, such as impaired ability to increase global and regional ejection fraction and regional wall motion. Adding regional analysis and phase analysis to the global EF determination increases the possibility of studying the left ventricular function. However, this addition has a limited value in detecting impaired left ventricular function compared to the determination of just global EF in patients with angina pectoris and in patients with myocardial infarction. (author)

  13. Association Between Left Atrial Dilatation and Invasive Hemodynamics at Rest and During Exercise in Asymptomatic Aortic Stenosis

    DEFF Research Database (Denmark)

    Christensen, Nicolaj Lyhne; Dahl, Jordi Sanchez; Carter-Storch, Rasmus

    2016-01-01

    BACKGROUND: Transition from an asymptomatic to symptomatic state in severe aortic stenosis is often difficult to assess. Identification of a morphological sign of increased hemodynamic load may be important in asymptomatic aortic stenosis to identify patients at risk. METHODS AND RESULTS: Thirty...... was similar between groups (0.81±0.15 versus 0.84±0.18 cm(2); P=0.58). PCWP was higher at rest and during exercise in patients with LA volume index ≥35 mL/m(2) (Prest, PCWP was

  14. An embedding for general relativity with variable rest mass

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1984-01-01

    There is considerable interest currently in theories of gravity where rest masses vary slowly with time. A new theory of this type is proposed which is believed to be superior to others, and which contains Einstein's theory embedded within it. The theory is five dimensional, where the extra coordinate is x 4 is equivalent to Gm/c 2 (G is the Newtonian gravitational parameter, c the velocity of light, and m the mass). The theory reduces to Einstein's if w is equivalent to (G/c 3 ) dm/dt = O and the fifth dimension is absent. The theory agrees with observation provided w << 1, but the size of w in the real world can only be determined by experiment. (author)

  15. The significance of resting thallium-201 delayed SPECT for assessing viability of infarcted regions

    International Nuclear Information System (INIS)

    Mori, Takao; Yamabe, Hiroshi; Yoshida, Hiroyuki; Maeda, Kazumi; Fukuzaki, Hisashi

    1991-01-01

    Thirty-eight patients with old myocardial infarction (OMI) and 35 patients with effort angina pectoris (EAP) underwent resting thallium-201 (Tl) SPECT one week after exercise (Ex) Tl SPECT. On the basis of both resting and Ex Tl SPECT scans, OMI patients were divided into 3 groups: those who had Tl redistribution (RD) on Ex images and the same perfusion defect (PD) on both resting and Ex delayed images (n=12, Group 1); those who had a lower PD on resting delayed images than Ex delayed images (n=15, Group 2); and those who had no Tl RD on Ex images in spite of the same PD on both resting and EX delayed images (n=11, Group 3). EAP patients were divided into Group 1 (n=18) in whom no PD was seen on Ex delayed image and Group 2 (n=17) in whom PD was not seen on Ex delayed images either, but seen on resting delayed images. EX images showed higher pulmonary artery wedge pressure in Group 2 than Group 1 of both OMI and EAP patients (27±7 mmHg vs 15±6 mmHg for OMI patients; 22±6 mmHg vs 12±7 mmHg for EAP patients). For PD, Tl uptake rate on Ex initial images was higher in Group 1 than Gorup 2 of both OMI and EAP patients (63±7% vs 55±9% for OMI patients; 72±7% vs 65±9% for EAP patients). Resting delayed images for OMI patients showed the highest Tl uptake rate in Group 1 (78±7%), followed by Group 2 (74±8%) and then Group 3 (41±10%). In the group of OMI patients, the incidence of akinetic or dyskinetic wall motion on left ventriculography was the highest in Group 3 (85.7%), followed by Group 2 (52.2%) and Group 1 (24.3%). OMI patients, as well as EAP patients, had lower PD on resting delayed images than EX delayed images. Thus, severer ischemia may be associated with stress and infarcted areas may not involve viable muscle when Tl PD is decreased on resting delayed images. (N.K.)

  16. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  17. Rest but busy: Aberrant resting-state functional connectivity of triple network model in insomnia.

    Science.gov (United States)

    Dong, Xiaojuan; Qin, Haixia; Wu, Taoyu; Hu, Hua; Liao, Keren; Cheng, Fei; Gao, Dong; Lei, Xu

    2018-02-01

    One classical hypothesis among many models to explain the etiology and maintenance of insomnia disorder (ID) is hyperarousal. Aberrant functional connectivity among resting-state large-scale brain networks may be the underlying neurological mechanisms of this hypothesis. The aim of current study was to investigate the functional network connectivity (FNC) among large-scale brain networks in patients with insomnia disorder (ID) during resting state. In the present study, the resting-state fMRI was used to evaluate whether patients with ID showed aberrant FNC among dorsal attention network (DAN), frontoparietal control network (FPC), anterior default mode network (aDMN), and posterior default mode network (pDMN) compared with healthy good sleepers (HGSs). The Pearson's correlation analysis was employed to explore whether the abnormal FNC observed in patients with ID was associated with sleep parameters, cognitive and emotional scores, and behavioral performance assessed by questionnaires and tasks. Patients with ID had worse subjective thought control ability measured by Thought Control Ability Questionnaire (TCAQ) and more negative affect than HGSs. Intriguingly, relative to HGSs, patients with ID showed a significant increase in FNC between DAN and FPC, but a significant decrease in FNC between aDMN and pDMN. Exploratory analysis in patients with ID revealed a significantly positive correlation between the DAN-FPC FNC and reaction time (RT) of psychomotor vigilance task (PVT). The current study demonstrated that even during the resting state, the task-activated and task-deactivated large-scale brain networks in insomniacs may still maintain a hyperarousal state, looking quite similar to the pattern in a task condition with external stimuli. Those results support the hyperarousal model of insomnia.

  18. Left ventricular mechanics in humans with high aerobic fitness: adaptation independent of structural remodelling, arterial haemodynamics and heart rate

    Science.gov (United States)

    Stöhr, Eric J; McDonnell, Barry; Thompson, Jane; Stone, Keeron; Bull, Tom; Houston, Rory; Cockcroft, John; Shave, Rob

    2012-01-01

    Individuals with high aerobic fitness have lower systolic left ventricular strain, rotation and twist (‘left ventricular (LV) mechanics’) at rest, suggesting a beneficial reduction in LV myofibre stress and more efficient systolic function. However, the mechanisms responsible for this functional adaptation are not known and the influence of aerobic fitness on LV mechanics during dynamic exercise has never been studied. We assessed LV mechanics, LV wall thickness and dimensions, central augmentation index (AIx), aortic pulse wave velocity (aPWV), blood pressure and heart rate in 28 males (age: 21 ± 2 years SD) with a consistent physical activity level (no change >6 months). Individuals were examined at rest and during exercise (40% peak exercise capacity) and separated post hoc into a moderate and high aerobic fitness group (: 49 ± 5 and 63 ± 7 ml kg−1 min−1, respectively, P 0.05). However, for the same AIx, the high group had significantly lower LV apical rotation (P = 0.002) and LV twist (P = 0.003) while basal rotation and strain indices did not differ between groups (P > 0.05). We conclude that young males with high aerobic fitness have lower LV apical rotation at rest and during submaximal exercise that can occur without changes in gross LV structure, arterial haemodynamics or heart rate. The findings suggest a previously unknown type of physiological adaptation of the left ventricle that may have important implications for exercise training in older individuals and patient populations in which exercise training has previously failed to show clear benefits for LV function. PMID:22431336

  19. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  20. Resting early peak diastolic filling rate: a sensitive index of myocardial dysfunction in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Polak, J.F.; Kemper, A.J.; Bianco, J.A.; Parisi, A.F.; Tow, D.E.

    1982-01-01

    Resting first-pass radionuclide angiocardiography (RNA) was used to derive left-ventricular (LV) peak diastolic filling rates (PFR) in normals (Group 1:N . 12) and in patients with coronary artery disease (CAD), both without (Group 2:N . 27) and with previous myocardial infarction (Group 3:N . 23). Resting peak filling rates were significantly depressed in both Group 2 (1.61 +/- 0.36; p less than 0.01) and Group 3 (1:35 +/- 0.26; p less than 0.001) patients when compared with Group 1, normals (2.14 +/- 0.63). Even though LV systolic function of Group 2 patients was normal and comparable to that in Group 1 (EF . 0.55 +/- 0.06 against EF 0.55 +/- 0.06 NS), diastolic dysfunction [PFR less than 1.61 end diastolic volume/sec (EDV/sec)] was present at rest in 14 of 27 (52%). Depressed PFR values was also seen in 20 of 23 Group 3 patients (87%). It appears that (a) resting PFR is a sensitive and easily obtainable parameter of the diastolic dysfunction associated with CAD; (b) abnormal PFR values are seen in almost all patients with previous myocardial damage, and (c) a significant proportion of CAD patients without any evidence of abnormal systolic function have depressed resting PFR of the LV

  1. Resting-state functional connectivity of the amygdala in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Kang, Seung-Gul; Na, Kyoung-Sae; Choi, Jae-Won; Kim, Jeong-Hee; Son, Young-Don; Lee, Yu Jin

    2017-07-03

    In this study, we investigated the difference in resting-state functional connectivity (RSFC) of the amygdala between suicide attempters and non-suicide attempters with major depressive disorder (MDD) using functional magnetic resonance imaging (fMRI). This study included 19 suicide attempters with MDD and 19 non-suicide attempters with MDD. RSFC was compared between the two groups and the regression analyses were conducted to identify the correlation between RSFC and Scale for Suicide Ideation (SSI) scores in the suicide attempt group. Statistical significance was set at p-value (uncorrected) suicide attempters, suicide attempters showed significantly increased RSFC of the left amygdala with the right insula and left superior orbitofrontal area, and increased RSFC of the right amygdala with the left middle temporal area. The regression analysis showed a significant correlation between the SSI total score and RSFC of the right amygdala with the right parahippocampal area in the suicide attempt group. The present RSFC findings provide evidence of a functional neural basis and will help reveal the pathophysiology underlying suicidality in subjects with MDD. Copyright © 2017. Published by Elsevier Inc.

  2. Blood pressure and left ventricular hypertrophy during American-style football participation.

    Science.gov (United States)

    Weiner, Rory B; Wang, Francis; Isaacs, Stephanie K; Malhotra, Rajeev; Berkstresser, Brant; Kim, Jonathan H; Hutter, Adolph M; Picard, Michael H; Wang, Thomas J; Baggish, Aaron L

    2013-07-30

    Hypertension, a strong determinant of cardiovascular disease risk, has been documented among elite, professional American-style football (ASF) players. The risk of increased blood pressure (BP) and early adulthood hypertension among the substantially larger population of collegiate ASF athletes is not known. We conducted a prospective, longitudinal study to examine BP, the incidence of hypertension, and left ventricular remodeling among collegiate ASF athletes. Resting BP and left ventricular structure were assessed before and after a single season of competitive ASF participation in 6 consecutive groups of first-year university athletes (n=113). ASF participation was associated with significant increases in systolic BP (116±8 versus 125±13 mm Hg; Phistory of hypertension were the strongest independent predictors of postseason BP. Among linemen, there was a significant increase in the prevalence of concentric left ventricular hypertrophy (2 of 64 [3%] versus 20 of 64 [31%]; P<0.001) and change in left ventricular mass correlated with intraseason change in systolic BP (R=0.46, P<0.001). Collegiate ASF athletes may be at risk for clinically relevant increases in BP and the development of hypertension. Enhanced surveillance and carefully selected interventions may represent important opportunities to improve later-life cardiovascular health outcomes in this population.

  3. Exercise thallium-201 myocardial imaging in left main coronary artery disease: sensitive but not specific

    International Nuclear Information System (INIS)

    Rehn, T.; Griffith, L.S.; Achuff, S.C.; Bailey, I.K.; Bulkley, B.H.; Burow, R.; Pitt, B.; Becker, L.C.

    1981-01-01

    To determine the usefulness of thallium-201 scintigraphy for identifying left main coronary artery disease, the results of scintigraphy at rest and during exercise were compared in 24 patients with 50 percent or greater narrowing of the left main coronary artery and 80 patients with 50 percent or greater narrowing of one or more of the major coronary arteries but without left main coronary involvement. By segmental analysis of the scintigrams, perfusion defects were assigned to the left anterior descending, left circumflex or right coronary artery, singly or in combination, and the pattern of simultaneous left anterior descending and circumflex arterial defects was used to identify left main coronary artery disease. Of the 24 patients with left main coronary artery disease, 22 (92 percent) had abnormal exercise scintigrams. Despite this high sensitivity, the pattern of perfusion defects was not specific; the ''left main pattern'' was found in 3 patients (13 percent) with left main coronary artery disease but also in 3 (33 percent) of 9 patients with combined left anterior descending and left circumflex arterial disease, 4 (19 percent) of 21 patients with three vessel disease and 3 (6 percent) of 50 patients with one or two vessel disease but excluding the group with left anterior descending plus left circumflex arterial disease. The pattern of perfusion defects in the patients with left main coronary artery disease was determined by the location and severity of narrowings in the coronary arteries downstream from the left main arterial lesion. Concomitant lesions in other arteries were found in all patients with left main coronary disease (one vessel in 1 patient, two vessels in 7 patients and three vessels in 16). For this reason, it is unlikely that even with improvements in radiopharmaceutical agents and imaging techniques, myocardial perfusion scintigraphy will be sufficiently specific for definitive identification of left main coronary artery disease

  4. Myocardial blood flow assessment with {sup 82}rubidium-PET imaging in patients with left bundle branch block

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Andrea; Chalela, William; Giorgi, Maria Clementina; Imada, Rodrigo; Soares Junior, Jose; Do Val, Renata; Oliveira, Marco Antonio; Izaki, Marisa; Kalil Filho, Roberto; Meneghetti, Jose C., E-mail: andrea.falcao@incor.usp.br [Universidade de Sao Paulo (InCor/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Instituto do Coracao

    2015-11-15

    Objectives: Perfusion abnormalities are frequently seen in Single Photon Emission Computed Tomography (SPECT) when a left bundle branch block is present. A few studies have shown decreased coronary flow reserve in the left anterior descending territory, regardless of the presence of coronary artery disease. Objective: we sought to investigate rubidium-82 ({sup 82}Rb) positron emission tomography imaging in the assessment of myocardial blood flow and coronary flow reserve in patients with left bundle branch block. Methods: thirty-eight patients with left bundle branch block (GI), median age 63.5 years, 22 (58%) female, 12 with coronary artery disease (≥70%; GI-A) and 26 with no evidence of significant coronary artery disease (GI-B), underwent rest-dipyridamole stress {sup 82}Rb-positron emission tomography with absolute quantitative flow measurements using Cedars-Sinai software (mL/min/g). The relative myocardial perfusion and left ventricular ejection fraction were assessed in 17 segments. These parameters were compared with those obtained from 30 patients with normal {sup 82}Rb-positron emission tomography studies and without left bundle branch block (GII). Results: stress myocardial blood flow and coronary flow reserve were significantly lower in GI than in GII (p>0.05). The comparison of coronary flow reserve between GI-A and GI-B showed that it was different from the global coronary flow reserve (p<0.05) and the stress flow was significantly lower in the anterior than in the septal wall for both groups. Perfusion abnormalities were more prevalent in GI-A (p=0.06) and the left ventricular ejection fraction was not different between GI-A and GI-B, whereas it was lower in GI than in GII (p<0.001). Conclusion: the data confirm that patients with left bundle branch block had decreased myocardial blood flow and coronary flow reserve and coronary flow reserve assessed by {sup 82}Rb-positron emission tomography imaging may be useful in identifying coronary artery

  5. Relation Between Pressure and Volume Unloading During Ramp Testing in Patients Supported with a Continuous-Flow Left Ventricular Assist Device

    DEFF Research Database (Denmark)

    Jung, Mette H; Hassager, Christian; Balling, Louise

    2015-01-01

    Pulmonary capillary wedge pressure (PCWP) is the key to describing left ventricular (LV) unloading, however, the relation between pressure and the echocardiography-derived surrogate of LV volume (left ventricular end-diastolic diameter (LVEDD)) as a function of pump speed (RPM) in continuous......-flow left ventricular assist device (CF-LVAD) patients is unknown. In this study the pressure-volume relationship as a function of RPM during ramp testing was investigated by simultaneously measuring PCWP by Swan-Ganz catheter and LVEDD by echocardiography. The ramp protocol started at usual pump setting...

  6. Regional homogeneity within the default mode network in bipolar depression: a resting-state functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Chun-Hong Liu

    Full Text Available AIM: We sought to use a regional homogeneity (ReHo approach as an index in resting-state functional magnetic resonance imaging (fMRI to investigate the features of spontaneous brain activity within the default mode network (DMN in patients suffering from bipolar depression (BD. METHODS: Twenty-six patients with BD and 26 gender-, age-, and education-matched healthy subjects participated in the resting-state fMRI scans. We compared the differences in ReHo between the two groups within the DMN and investigated the relationships between sex, age, years of education, disease duration, the Hamilton Rating Scale for Depression (HAMD total score, and ReHo in regions with significant group differences. RESULTS: Our results revealed that bipolar depressed patients had increased ReHo in the left medial frontal gyrus and left inferior parietal lobe compared to healthy controls. No correlations were found between regional ReHo values and sex, age, and clinical features within the BD group. CONCLUSIONS: Our findings indicate that abnormal brain activity is mainly distributed within prefrontal-limbic circuits, which are believed to be involved in the pathophysiological mechanisms underlying bipolar depression.

  7. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.

    Science.gov (United States)

    Fresiello, Libera; Rademakers, Frank; Claus, Piet; Ferrari, Gianfranco; Di Molfetta, Arianna; Meyns, Bart

    2017-01-01

    Patients with a Ventricular Assist Device (VAD) are hemodynamically stable but show an impaired exercise capacity. Aim of this work is to identify and to describe the limiting factors of exercise physiology with a VAD. We searched for data concerning exercise in heart failure condition and after VAD implantation from the literature. Data were analyzed by using a cardiorespiratory simulator that worked as a collector of inputs coming from different papers. As a preliminary step the simulator was used to reproduce the evolution of hemodynamics from rest to peak exercise (ergometer cycling) in heart failure condition. Results evidence an increase of cardiac output of +2.8 l/min and a heart rate increase to 67% of the expected value. Then, we simulated the effect of a continuous-flow VAD at both rest and exercise. Total cardiac output increases of +3.0 l/min (+0.9 l/min due to the VAD and +2.1 l/min to the native ventricle). Since the left ventricle works in a non-linear portion of the diastolic stiffness line, we observed a consistent increase of pulmonary capillary wedge pressure (from 14 to 20 mmHg) for a relatively small increase of end-diastolic volume (from 182 to 189 cm3). We finally increased VAD speed during exercise to the maximum possible value and we observed a reduction of wedge pressure (-4.5 mmHg), a slight improvement of cardiac output (8.0 l/min) and a complete unloading of the native ventricle. The VAD can assure a proper hemodynamics at rest, but provides an insufficient unloading of the left ventricle and does not prevent wedge pressure from rising during exercise. Neither the VAD provides major benefits during exercise in terms of total cardiac output, which increases to a similar extend to an unassisted heart failure condition. VAD speed modulation can contribute to better unload the ventricle but the maximal flow reachable with the current devices is below the cardiac output observed in a healthy heart.

  8. Sex differences in associations of arginine vasopressin and oxytocin with resting-state functional brain connectivity.

    Science.gov (United States)

    Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A

    2017-01-02

    Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. A compact and realistic cerebral cortical layout derived from prewhitened resting-state fMRI time series: Cherniak's adjacency rule, size law, and metamodule grouping upheld.

    Science.gov (United States)

    Lewis, Scott M; Christova, Peka; Jerde, Trenton A; Georgopoulos, Apostolos P

    2012-01-01

    We used hierarchical tree clustering to derive a functional organizational chart of 52 human cortical areas (26 per hemisphere) from zero-lag correlations calculated between single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special "resting-state networks" were identified. There were four major features in the resulting tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters. Third, the arrangement of the areas revealed a layout that closely resembled the actual layout of the cerebral cortex, namely an orderly progression from anterior to posterior. And fourth, the layout of the cortical areas in the tree conformed to principles of efficient, compact layout of components proposed by Cherniak. Since the tree was derived on the basis of the strength of neural correlations, these results document an orderly relation between functional interactions and layout, i.e., between structure and function.

  10. A compact and realistic cerebral cortical layout derived from prewhitened resting-state fMRI time series: Cherniak's adjacency rule, size law, and metamodule grouping upheld

    Science.gov (United States)

    Lewis, Scott M.; Christova, Peka; Jerde, Trenton A.; Georgopoulos, Apostolos P.

    2012-01-01

    We used hierarchical tree clustering to derive a functional organizational chart of 52 human cortical areas (26 per hemisphere) from zero-lag correlations calculated between single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special “resting-state networks” were identified. There were four major features in the resulting tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters. Third, the arrangement of the areas revealed a layout that closely resembled the actual layout of the cerebral cortex, namely an orderly progression from anterior to posterior. And fourth, the layout of the cortical areas in the tree conformed to principles of efficient, compact layout of components proposed by Cherniak. Since the tree was derived on the basis of the strength of neural correlations, these results document an orderly relation between functional interactions and layout, i.e., between structure and function. PMID:22973198

  11. Aberrant development of functional connectivity among resting state-related functional networks in medication-naïve ADHD children.

    Directory of Open Access Journals (Sweden)

    Jeewook Choi

    Full Text Available OBJECTIVE: The aim of this study was to investigate the compromised developmental trajectory of the functional connectivity among resting-state-related functional networks (RSFNs in medication-naïve children with attention-deficit/hyperactivity disorder (ADHD. SUBJECTS AND METHODS: Using both independent component analysis and dual regression, subject-specific time courses of 12 RSFNs were extracted from both 20 medication-naïve children with ADHD, and 20 age and gender-matched control children showing typical development (TDC. Both partial correlation coefficients among the 12 RSFNs and a resting-state resource allocation index (rsRAI of the salience network (SN were entered into multiple linear regression analysis to investigate the compromised, age-related change in medication-naïve ADHD children. Finally, correlation analyses were performed between the compromised RSFN connections showing significant group-by-age interaction and rsRAI of SN or clinical variables. RESULTS: Medication-naïve ADHD subjects failed to show age-related increment of functional connectivity in both rsRAI of SN and two RSFN connections, SN-Sensory/motor and posterior default mode/precuneus network (pDMN/prec--anterior DMN. Lower SN-Sensory/motor connectivity was related with higher scores on the ADHD Rating Scale, and with poor scores on the continuous performance test. The pDMN/prec-aDMN connectivity was positively related with rsRAI of SN. CONCLUSIONS: Our results suggest that medication-naïve ADHD subjects may have delayed maturation of the two functional connections, SN-Sensory/Motor and aDMN-pDMN/prec. Interventions that enhance the functional connectivity of these two connections may merit attention as potential therapeutic or preventive options in both ADHD and TDC.

  12. Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study

    NARCIS (Netherlands)

    Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J.

    2011-01-01

    Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving

  13. Superior colliculus resting state networks in post-traumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Olivé, Isadora; Densmore, Maria; Harricharan, Sherain; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth

    2018-01-01

    The innate alarm system (IAS) models the neurocircuitry involved in threat processing in posttraumatic stress disorder (PTSD). Here, we investigate a primary subcortical structure of the IAS model, the superior colliculus (SC), where the SC is thought to contribute to the mechanisms underlying threat-detection in PTSD. Critically, the functional connectivity between the SC and other nodes of the IAS remains unexplored. We conducted a resting-state fMRI study to investigate the functional architecture of the IAS, focusing on connectivity of the SC in PTSD (n = 67), its dissociative subtype (n = 41), and healthy controls (n = 50) using region-of-interest seed-based analysis. We observed group-specific resting state functional connectivity between the SC for both PTSD and its dissociative subtype, indicative of dedicated IAS collicular pathways in each group of patients. When comparing PTSD to its dissociative subtype, we observed increased resting state functional connectivity between the left SC and the right dorsolateral prefrontal cortex (DLPFC) in PTSD. The DLPFC is involved in modulation of emotional processes associated with active defensive responses characterising PTSD. Moreover, when comparing PTSD to its dissociative subtype, increased resting state functional connectivity was observed between the right SC and the right temporoparietal junction in the dissociative subtype. The temporoparietal junction is involved in depersonalization responses associated with passive defensive responses typical of the dissociative subtype. Our findings suggest that unique resting state functional connectivity of the SC parallels the unique symptom profile and defensive responses observed in PTSD and its dissociative subtype. Hum Brain Mapp 39:563-574, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. [Dysfunctional resting-state connectivity of default mode network in adolescent patients with first-episode drug-naive major depressive disorder].

    Science.gov (United States)

    Li, S Y; Zhu, Y; Wang, Y L; Lü, P P; Zuo, W B; Li, F Y

    2017-12-05

    Objective: To study resting-state functional connectivity (FC) of default mode network (DMN) in adolescent patients with first-episode drug-naive major depressive disorder (MDD). Methods: We enrolled thirty first-episode and drug-naive adolescent MDD patients and twenty-nine adolescent healthy control (HC) participants in the First Affiliated Hospital of Zhengzhou University. There were no differences in age, sex, and education between the MDD and HC group. Resting-state functional magnetic resonance images (fMRI) was performed. We selected posterior cingulate cortex (PCC) and medial prefrontal cortex (MPFC) of DMN as regions of interests (ROI). The differences of these regions from the whole brain functional connectivity were analyzed. The relations between abnormalities in FCs of DMN and clinical variables were further investigated. Results: Compared to the HCs, the MDD patients had congruently reduced FCs between the PCC and cerebellum, temporal cortices, occipital cortices, fusiform, dorsolateral prefrontal cortex. MPFC not only had reduced FCs with fusiform, temporal cortices, anterior cingulate cortex, but also had enhanced FCs with occipital cortices, parietal cortices, and precentral gyrus. In addition, the increased FC between the right MPFC and right precentral gyrus was positive correlated with Hamilton Rating Scale for Depression (HAMD) scores ( r =0.38, P =0.04). The reduced FC between the left middle temporal gyrus and left PCC as well as the enhanced FC between the right middle cingulum and right MPFC were positive correlated with the duration of depression since onset ( r =0.39, P =0.03; r =0.38, P =0.04). Conclusions: These findings show dysfunctional DMN connectivity of adolescent MDD patients. Neurodevelopmental abnormalities in DMN may present in adolescent MDD.

  15. Usefulness of {sup 201}Tl myocardial perfusion SPECT in prediction of left ventricular remodeling following an acute myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Nam; Park, C. H.; Hwang, Kyung Hoon [Ajou Univ. College of Medicine, Suwon (Korea, Republic of)

    2000-02-01

    We investigated the role of myocardial perfusion SPECT in prediction of ventricular dilatation and the role of revascularization including thrombolytic therapy and PTCA in prevention of ventricular dilatation after an acute myocardial linfarction (AMI). We performed dipyridamole stress, 4 hour redistribution, and 24 hour reinjection Tl-201 SPECT in 6 patients with AMI two to nine days after attack. Perfusion and wall motion abnormalities were quantified by perfusion index(PI) and wall motion index (WMI). Left ventricular ejection fraction (LVEF), WMI and ventricular volume were measured within 1 week of AMI and after average of 6 months. According to serial changes of left ventricular end-diastolic volume (LVEDV), patients were divided into two groups. We compared WMI, PI and LVEF between the two groups. Relationships among degree of volume, stress-rest PI, WMI, CKMB,Q wave, LVEF and revascularization were analysed using multivariate analysis. Only initial rest perfusion index was significantly different between the two groups (p<0.05). While initial LVEF, stress PI, CKMB, trial of revascularization procedure, presence of Q wave and WMI were not significantly different between the two groups. Eight of 16 patients (50%) showed LV dilatation on follow-up echocardiography. Three of 3 patients (100%) who did not undergo revascualrization procedure documented LV dilatation. And only 5 (38%) of the remaining 13 patients who underwent revascularization revealed LV dilatation. There was no difference in infarct location between the two groups. By multivariate linear regression analysis in patients only undergoing revascularization, rest perfusion index was the only significant factor. Myocardial perfusion SPECT performed prior to revascularization was useful in prediction of LV dilatation after an AMI. Rest perfusion index on myocardial perfusion plays as a significant predictor of left ventricular dilatation after AMI. And revascularization appears to be a valuable

  16. Are resting state spectral power measures related to executive functions in healthy young adults?

    Science.gov (United States)

    Gordon, Shirley; Todder, Doron; Deutsch, Inbal; Garbi, Dror; Getter, Nir; Meiran, Nachshon

    2018-01-08

    Resting-state electroencephalogram (rsEEG) has been found to be associated with psychopathology, intelligence, problem solving, academic performance and is sometimes used as a supportive physiological indicator of enhancement in cognitive training interventions (e.g. neurofeedback, working memory training). In the current study, we measured rsEEG spectral power measures (relative power, between-band ratios and asymmetry) in one hundred sixty five young adults who were also tested on a battery of executive function (EF). We specifically focused on upper Alpha, Theta and Beta frequency bands given their putative role in EF. Our indices enabled finding correlations since they had decent-to-excellent internal and retest reliability and very little range restriction relative to a nation-wide representative large sample. Nonetheless, Bayesian statistical inference indicated support for the null hypothesis concerning lack of monotonic correlation between EF and rsEEG spectral power measures. Therefore, we conclude that, contrary to the quite common interpretation, these rsEEG spectral power measures do not indicate individual differences in the measured EF abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rest Among African American Women: The Current State of the Science.

    Science.gov (United States)

    Herbert Harris, Eboni T; Hillfinger Messias, DeAnne K; Timmons, Shirley M; Felder, Tisha M; Estrada, Robin Dawson

    Effective health promotion among African American women requires knowledge and understanding of cultural influences and practices. This scoping review focused on rest, related concepts, and cultural perspectives and practices. We found a lack of conceptual distinction between fatigue and sleep and limited research on cultural meanings and practices of rest.

  18. Left truncation results in substantial bias of the relation between time-dependent exposures and adverse events

    NARCIS (Netherlands)

    Hazelbag, Christijan M; Klungel, Olaf H; van Staa, Tjeerd P; de Boer, Anthonius; Groenwold, Rolf H H

    PURPOSE: To assess the impact of random left truncation of data on the estimation of time-dependent exposure effects. METHODS: A simulation study was conducted in which the relation between exposure and outcome was based on an immediate exposure effect, a first-time exposure effect, or a cumulative

  19. Left truncation results in substantial bias of the relation between time-dependent exposures and adverse events

    NARCIS (Netherlands)

    Hazelbag, Christijan M.; Klungel, Olaf H.; van Staa, Tjeerd P.; de Boer, Anthonius; Groenwold, Rolf H H

    2015-01-01

    PURPOSE: To assess the impact of random left truncation of data on the estimation of time-dependent exposure effects. METHODS: A simulation study was conducted in which the relation between exposure and outcome was based on an immediate exposure effect, a first-time exposure effect, or a cumulative

  20. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Huan [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Gao, Zhangfeng [Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410008 (China); Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China); Li, Zhi, E-mail: lizhi489@163.com [Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008 (China); Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078 (China)

    2015-08-07

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST.

  1. Expression of REST4 in human gliomas in vivo and influence of pioglitazone on REST in vitro

    International Nuclear Information System (INIS)

    Ren, Huan; Gao, Zhangfeng; Wu, Nayiyuan; Zeng, Liu; Tang, Xinyue; Chen, Xiaoping; Liu, Zhaoqian; Zhang, Wei; Wang, Liansheng; Li, Zhi

    2015-01-01

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) has an irreplaceable role during the differentiation of neurons. REST has multiple splice variants which link to various types of cancer. Previous work had highlighted the role of REST in glioma, where the expression of REST is enhanced. But whether alternative splicing of REST is expressed in glioma has not been described. Here, we show that a specific isoform REST4 is expressed in glioma specimens, and will influence the mRNA level of REST in vivo. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have a role of antineoplastic in various tumor cells, which including glioma cells. Moreover, study indicated that PPARγ agonist pioglitazone can promote alternative splicing of REST pre-mRNA. In this study, we selected pioglitazone as a tool drug to explore whether the role of pioglitazone in anti-glioma is mediated by regulating REST expression or promoting alternative splicing of REST in glioma cells. Results show that pioglitazone can inhibit proliferation and induce apoptosis of glioma cell in vitro, which may be mediated by down-regulating REST mRNA level but not by inducing alternative splicing of REST pre-mRNA. Our study firstly reports the expression of REST4 in glioma tissue samples. And we recommend that pioglitazone, which can reduce the expression level of REST, represents a promising drug for therapy of glioma. - Highlights: • A specific isoform REST4 is expressed in glioma specimens in vivo. • REST4 will influence the mRNA level of REST in vivo. • Pioglitazone can inhibit proliferation and induce apoptosis of glioma cells. • The role of pioglitazone in anti-glioma may be mediated by down-regulating REST

  2. Anatomic relationship between left coronary artery and left atrium in patients undergoing atrial fibrillation ablation.

    Science.gov (United States)

    Anselmino, Matteo; Torri, Federica; Ferraris, Federico; Calò, Leonardo; Castagno, Davide; Gili, Sebastiano; Rovera, Chiara; Giustetto, Carla; Gaita, Fiorenzo

    2017-07-01

    Atrial fibrillation transcatheter ablation (TCA) is, within available atrial fibrillation rhythm control strategies, one of the most effective. To potentially improve ablation outcome in case of recurrent atrial fibrillation after a first procedure or in presence of structural myocardial disease, isolation of the pulmonary veins may be associated with extensive lesions within the left atrium. To avoid rare, but potentially life-threatening, complications, thorough knowledge and assessment of left atrium anatomy and its relation to structures in close proximity are, therefore, mandatory. Aim of the present study is to describe, by cardiac computed tomography, the anatomic relationship between aortic root, left coronary artery and left atrium in patients undergoing atrial fibrillation TCA. The cardiac computed tomography scan of 21 patients affected by atrial fibrillation was elaborated to segment left atrium, aortic root and left coronary artery from the surrounding structures and the following distances measured: left atrium and aortic root; left atrium roof and aortic root; left main coronary artery and left atrium; circumflex artery and left atrium appendage; and circumflex artery and mitral valve annulus. Above all, the median distance between left atrium and aortic root (1.9, 1.5-2.1 mm), and between circumflex artery and left atrium appendage ostium (3.0, 2.1-3.4 mm) were minimal (≤3 mm). None of measured distances significantly varied between patients presenting paroxysmal versus persistent atrial fibrillation. The anatomic relationship between left atrium and coronary arteries is extremely relevant when performing atrial fibrillation TCA by extensive lesions. Therefore, at least in the latter case, preablation imaging should be recommended to avoid rare, but potentially life-threatening, complications with the aim of an as well tolerated as possible procedure.

  3. Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus.

    Science.gov (United States)

    Maruyama, Tsukasa; Takeuchi, Hikaru; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Nouchi, Rui; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta

    2018-01-01

    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.

  4. Change in functional connectivity in tinnitus and its relation with tinnitus laterality

    Energy Technology Data Exchange (ETDEWEB)

    Song, Eun Jee; Kim, Eui Jong; Choi, Woo Suk [Dept. of Radiology, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Chang Woo; Jahang, Geon Ho; Park, Moon Suh; Byun, Jae Yong; Park, Soon Chan [Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2016-12-15

    To identify potential differences in resting-state networks according to laterality of tinnitus using resting-state functional MRI (fMRI). A total of 83 age-matched subjects consisting of 19 patients with right-sided tinnitus (Rt-T), 22 patients with left-sided tinnitus (Lt-T), 22 patients with bilateral tinnitus (Bil-T), and 20 healthy controls underwent resting-state blood oxygenation-level dependent fMRI scans. Independent component analysis was used to obtain the functional connectivities in the auditory network (AN) and the default mode network (DMN), which were compared between each group using the voxel-wise one-way ANOVA. In addition, lateralization of the auditory cortex was assessed within each group using a region of interest (ROI). Comparisons between tinnitus groups showed unusual clusters with different functional connectivities in the AN and the DMN. The Rt-T group had large clusters with higher functional connectivity in the right middle temporal gyrus and temporopolar area compared with the Lt-/Bil-T and control groups. ROI analysis showed that the Rt-/Lt-T groups had dominant functional connectivity in the right auditory cortex and the Bil-T and control groups had left-dominant auditory connectivity. These results suggest that chronic tinnitus is related to aberrant laterality of the auditory cortex. These findings help clarify the neural mechanism of tinnitus and specify the targets for localization of treatment.

  5. Change in functional connectivity in tinnitus and its relation with tinnitus laterality

    International Nuclear Information System (INIS)

    Song, Eun Jee; Kim, Eui Jong; Choi, Woo Suk; Ryu, Chang Woo; Jahang, Geon Ho; Park, Moon Suh; Byun, Jae Yong; Park, Soon Chan

    2016-01-01

    To identify potential differences in resting-state networks according to laterality of tinnitus using resting-state functional MRI (fMRI). A total of 83 age-matched subjects consisting of 19 patients with right-sided tinnitus (Rt-T), 22 patients with left-sided tinnitus (Lt-T), 22 patients with bilateral tinnitus (Bil-T), and 20 healthy controls underwent resting-state blood oxygenation-level dependent fMRI scans. Independent component analysis was used to obtain the functional connectivities in the auditory network (AN) and the default mode network (DMN), which were compared between each group using the voxel-wise one-way ANOVA. In addition, lateralization of the auditory cortex was assessed within each group using a region of interest (ROI). Comparisons between tinnitus groups showed unusual clusters with different functional connectivities in the AN and the DMN. The Rt-T group had large clusters with higher functional connectivity in the right middle temporal gyrus and temporopolar area compared with the Lt-/Bil-T and control groups. ROI analysis showed that the Rt-/Lt-T groups had dominant functional connectivity in the right auditory cortex and the Bil-T and control groups had left-dominant auditory connectivity. These results suggest that chronic tinnitus is related to aberrant laterality of the auditory cortex. These findings help clarify the neural mechanism of tinnitus and specify the targets for localization of treatment

  6. Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study.

    Science.gov (United States)

    Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan

    2011-10-17

    Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. [Automated Assessment for Bone Age of Left Wrist Joint in Uyghur Teenagers by Deep Learning].

    Science.gov (United States)

    Hu, T H; Huo, Z; Liu, T A; Wang, F; Wan, L; Wang, M W; Chen, T; Wang, Y H

    2018-02-01

    To realize the automated bone age assessment by applying deep learning to digital radiography (DR) image recognition of left wrist joint in Uyghur teenagers, and explore its practical application value in forensic medicine bone age assessment. The X-ray films of left wrist joint after pretreatment, which were taken from 245 male and 227 female Uyghur nationality teenagers in Uygur Autonomous Region aged from 13.0 to 19.0 years old, were chosen as subjects. And AlexNet was as a regression model of image recognition. From the total samples above, 60% of male and female DR images of left wrist joint were selected as net train set, and 10% of samples were selected as validation set. As test set, the rest 30% were used to obtain the image recognition accuracy with an error range in ±1.0 and ±0.7 age respectively, compared to the real age. The modelling results of deep learning algorithm showed that when the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the net train set was 81.4% and 75.6% in male, and 80.5% and 74.8% in female, respectively. When the error range was in ±1.0 and ±0.7 age respectively, the accuracy of the test set was 79.5% and 71.2% in male, and 79.4% and 66.2% in female, respectively. The combination of bone age research on teenagers' left wrist joint and deep learning, which has high accuracy and good feasibility, can be the research basis of bone age automatic assessment system for the rest joints of body. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  8. On left (θ,ϕ-derivations in BCI-algebras

    Directory of Open Access Journals (Sweden)

    G. Muhiuddin

    2014-07-01

    Full Text Available The notion of (regular left (θ,ϕ-derivations of a BCI-algebra is introduced, some useful examples are discussed, and related properties are investigated. Conditions for a left (θ,ϕ-derivation to be regular are provided. The concepts of a d(θ,ϕ-invariant left (θ,ϕ-derivation and θ-ideal are introduced, and their relations are discussed. Furthermore, some more interesting results are established.

  9. RESTful Web Services Cookbook

    CERN Document Server

    Allamaraju, Subbu

    2010-01-01

    While the REST design philosophy has captured the imagination of web and enterprise developers alike, using this approach to develop real web services is no picnic. This cookbook includes more than 100 recipes to help you take advantage of REST, HTTP, and the infrastructure of the Web. You'll learn ways to design RESTful web services for client and server applications that meet performance, scalability, reliability, and security goals, no matter what programming language and development framework you use. Each recipe includes one or two problem statements, with easy-to-follow, step-by-step i

  10. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder.

    Science.gov (United States)

    Wei, Shengnan; Geng, Haiyang; Jiang, Xiaowei; Zhou, Qian; Chang, Miao; Zhou, Yifang; Xu, Ke; Tang, Yanqing; Wang, Fei

    2017-02-22

    Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (pamygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (pamygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis of end-systolic pressure-volume relation by gated radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Adachi, Haruhiko; Sugihara, Horoki; Katsume, Hiroshi; Ijichi, Hamao; Miyanaga, Hajime

    1982-01-01

    Left ventricular end-systolic pressure-volume relation has been proved experimentally to b e an useful index of left ventricular contractility relatively independent of preload or afterload. But less clinical application has been reported because of its invasive nature, and we evaluated this relationship non-invasively using gated radionuclide angiocardiography as volume determination and cuff sphyngomanometer in the arm as pressure measurement. Gated equilibrium blood pool scintigrams were obtained at rest and during intravenous infusion of angiotensin or nitrate. Ventricular volumes were derived from ventricular activity and peripheral blood volume and activity. The peak systolic pressure (PSP) by cuff method to end-systolic volume index (ESVI) relations showed good linearity (r gt .930 in 84% of consecutive 50 cases) and were gentler in the groups with more impaired left ventricular function. Emax was related exponentially to ejection fraction (EF) and hyperbolically to end-diastolic volume index. The dead volume (VoI) was unfixed and fell into positive or negative value, and was not related to EF under control condition. PSP/ESVI in each loading condition was less variable with the alteration of blood pressure than EF. The linear relation was found between PSP/ESVI under control condition and Emax (PSP/ESVI = 0.651.Emax + 0.958, r = 0.841, p lt .001). Thus in measuring ventricular volume, gated radionuclide angiocardiography is a non-invasive method less affected by the geometry of the left ventricle. Non-invasive determination of end-systolic pressure-volume relation using the volume by radionuclide and the blood pressure by cuff method is clinically useful in the assessment of left ventricular contractility. (author)

  12. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Di, Xin; Biswal, Bharat B

    2014-02-01

    The default mode network is part of the brain structure that shows higher neural activity and energy consumption when one is at rest. The key regions in the default mode network are highly interconnected as conveyed by both the white matter fiber tracing and the synchrony of resting-state functional magnetic resonance imaging signals. However, the causal information flow within the default mode network is still poorly understood. The current study used the dynamic causal modeling on a resting-state fMRI data set to identify the network structure underlying the default mode network. The endogenous brain fluctuations were explicitly modeled by Fourier series at the low frequency band of 0.01-0.08Hz, and those Fourier series were set as driving inputs of the DCM models. Model comparison procedures favored a model wherein the MPFC sends information to the PCC and the bilateral inferior parietal lobule sends information to both the PCC and MPFC. Further analyses provide evidence that the endogenous connectivity might be higher in the right hemisphere than in the left hemisphere. These data provided insight into the functions of each node in the DMN, and also validate the usage of DCM on resting-state fMRI data. © 2013.

  13. Pre-surgical evaluation of the cerebral tumor in the left language related areas by functional MRI

    International Nuclear Information System (INIS)

    Zou Zhitong; Ma Lin; Weng Xuchu

    2010-01-01

    Objective: To evaluate the application of combination of BOLD-fMRI and diffusion tensor tractography (DTT) in pre-operative evaluation of cerebral tumors located at the left language related areas. Methods: A non-vocal button pressing semantic judging paradigm was developed and validated in 10 right-handed volunteers at 3 T. After validation, this protocol combined with DTI were applied to 15 patients with left cerebral tumor prior to surgical resection, and 3 of them had aphasia. fMRI data analysis was on subject-specific basis by one-sampled t-test. The distance from the tumor to Broca area and pre-central 'hand-knot' area were measured separately. Functional language laterality index (LI) was calculated by taking out Broca area and Wernicke area. Three dimensional architecture of frontal lobe white matter fibers, especially arcuate fasciculus, were visualized using diffusion tensor tractography on Volume-one software. The images demonstrating relationship among tumor, language activation areas and white matter fibers were reviewed by neurosurgeons as part of pre-operative planning. One year after the operation, patients were followed up with MRI and language function test. Results: The non-vocal semantic judging paradigm successfully detect Broca area, Wernicke area and pre-central 'hand-knot' area. In 12 of 15 patients, the relationship of Broca area and pre-central motor area to the left brain tumor in language related areas was identified, which make the pre-operative neurosurgical plan applicable to minimize the disruption of language and motor. 8 patients had the left language dominant hemisphere, 3 patients with the right language dominant hemisphere and 1 patient with bilateral dominance. The other 3 patients' fMRI data were corrupted by patients' motion. Diffusion tensor images were corrupted by motion in 1 patient but demonstrated the impact of tumor on left accouter fasciculus in 14 patients. Diffusion tensor tractography showed disruption of left

  14. [Follow-up of resting-state brain function with magnetic resonance imaging in patients with type 2 diabetes mellitus].

    Science.gov (United States)

    Qi, N; Cui, Y; Liu, J C; Yu, M; Teng, G J

    2017-10-24

    Objective: To investigate the changes of resting brain function with time in patients with type 2 diabetes mellitus (T2DM) by using regional homogeneity (ReHo) with resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Multidimensional cognitive function tests and rs-fMRI scans were performed in 21 T2DM patients and 12 healthy controls in 2012 and 2015 respectively.The differences in clinical variables and the ReHo values before and after were measured by paired sample t test, and the correlation between the change of ReHo value and the change of clinical variables was measured by Pearson correlation analysis based on voxel. Results: The delayed score (14±6) of the T2DM patients in 2015 was significantly lower than that in 2012 (18±6) ( t =-2.88, P =0.009); while the value of ReHo in the bilateral occipital lobe and right middle frontal gyrus was significantly lower than that in 2012 ( P left occipital lobe was significantly correlated with the change of complex figure test (CFT) delay score and the trail making test-B (TMT-B)( r =0.52, -0.46, both P function tests in the healthy control group was found between the two years, ReHo value in right cuneus decreased significantly ( P right cuneus and right superior frontal gyrus and the changes of cognitive function scores was found in the healthy controls. Conclusions: The visual memory is significantly declined in T2DM patients within 3 years.The reduced neural activity areas in T2DM patients are in the bilateral occipitai lobes and the right middle frontal lobe. Decreased neural activity in the left occipital area is related to visual impairment, information processing speed and attention drops.

  15. Real-time scintillation probe measurement of left ventricular function

    International Nuclear Information System (INIS)

    Green, M.V.; Ostrow, H.G.; Bacharach, S.L.; Allen, S.I.; Bonow, R.O.; Johnston, G.S.

    1981-01-01

    The micro-processor based system described in this report was designed for maximum flexibility and utility. While the principle function of the system is to acquire, create, analyze and display (in real-time) left ventricular time activity (or volume) curves, provision is also made to acquire additional physiologic signals (e.g., ECG, flowmeter, etc.) and to calculate and display relationships between these various data. The system was designed for interactive use so that the system user can alter the course of a series of measurements based on previous results. These general capabilities are illustrated with several examples. In the first, LV function was measured continuously in a subject from (supine) rest through exercise and recovery. The second example illustrates the use of the system in acquiring (LV) pressure-volume loops. Several technical problems, such as correction for LV background radiation, appear at present to limit the probes applicability. Even now, however, probe systems are demonstrably useful in the study of global left ventricular function when this function is changing rapidly with time in response to various interventions. (orig.) [de

  16. Comparison of stress-rest and rest-stress one day myocardial perfusion scintigraphies in detecting coronary artery diseases

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Song, Ho Cheon; Kim, Ji Yeul

    1997-01-01

    It has been shown that both rest and stress myocardial perfusion imaging with technetium agents can be performed on the same day using two different doses injected within few hours. The purpose of this study was to compare the two protocols (stress-rest and rest-stress) in detecting coronary artery diseases. One hundred and sixty patients (101 males, 59 females, mean age 57±9 years) and 120 patients (79 males, 41 females, mean age 59±10 years) underwent stress-rest myocardial perfusion SPECT and rest-stress myocardial perfusion SPECT, respectively. All of them underwent both myocardial perfusion SPECT and coronary angiography within 1 month. A coronary stenosis was considered significant when it compromised the luminal diameter by ≥50%. The chi square test was used to compare differences in sensitivity, specificity and accuracy between the two groups. The overall sensitivity, specificity and accuracy of stress-rest protocol were 99%, 35% and 68%, respectively. Those of rest-stress protocol were 96%, 47% and 78%, respectively. There was no difference between the two protocols in identifying individual diseased coronary artery branches. Therefore, one day stress-rest and rest-stress myocardial SPECT using 99m Tc agents were comparable and were very sensitive tests in detecting coronary artery diseases

  17. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography

    International Nuclear Information System (INIS)

    Acampa, Wanda; Liuzzi, Raffaele; De Luca, Serena; Capasso, Enza; Luongo, Luca; Cuocolo, Alberto; Caprio, Maria Grazia; Nicolai, Emanuele; Petretta, Mario

    2010-01-01

    We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients. Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest 99m Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest. In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress. In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography. (orig.)

  19. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T

    2014-05-01

    Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.

  20. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 14 CFR 91.1057 - Flight, duty and rest time requirements: All crewmembers.

    Science.gov (United States)

    2010-01-01

    ... RULES Fractional Ownership Operations Program Management § 91.1057 Flight, duty and rest time... cabin-safety-related responsibilities. Multi-time zone flight means an easterly or westerly flight or... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight, duty and rest time requirements...

  2. Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Chi Wah Wong

    Full Text Available In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment.

  3. Outcomes in Asymptomatic Severe Aortic Stenosis With Preserved Ejection Fraction Undergoing Rest and Treadmill Stress Echocardiography.

    Science.gov (United States)

    Huded, Chetan P; Masri, Ahmad; Kusunose, Kenya; Goodman, Andrew L; Grimm, Richard A; Gillinov, A Marc; Johnston, Douglas R; Rodriguez, L Leonardo; Popovic, Zoran B; Svensson, Lars G; Griffin, Brian P; Desai, Milind Y

    2018-04-12

    In asymptomatic patients with severe aortic stenosis and preserved left ventricular ejection fraction, we sought to assess the incremental prognostic value of resting valvuloarterial impedence (Zva) and left ventricular global longitudinal strain (LV-GLS) to treadmill stress echocardiography. We studied 504 such patients (66±12 years, 78% men, 32% with coronary artery disease who underwent treadmill stress echocardiography between 2001 and 2012. Clinical and exercise variables (% of age-sex predicted metabolic equivalents [%AGP-METs]) were recorded. Resting Zva ([systolic arterial pressure+mean aortic valve gradient]/[LV-stroke volume index]) and LV-GLS (measured offline using Velocity Vector Imaging, Siemens) were obtained from the baseline resting echocardiogram. Death was the primary outcome. There were no major adverse cardiac events during treadmill stress echocardiography. Indexed aortic valve area, Zva, and LV-GLS were 0.46±0.1 cm 2 /m 2 , 4.5±0.9 mm Hg/mL per m 2 and -16±4%, respectively; only 50% achieved >100% AGP-METs. Sixty-four percent underwent aortic valve replacement. Death occurred in 164 (33%) patients over 8.9±3.6 years (2 within 30 days of aortic valve replacement). On multivariable Cox survival analysis, higher Society of Thoracic Surgeons score (hazard ratio or HR 1.06), lower % AGP-METS (HR 1.16), higher Zva (HR 1.25) and lower LV-GLS (HR 1.12) were associated with higher longer-term mortality, while aortic valve replacement (HR 0.45) was associated with improved survival (all P statistic from 0.65 to 0.69 and 0.75, respectively, both P stress echocardiography, LV-GLS and ZVa offer incremental prognostic value. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution

    International Nuclear Information System (INIS)

    Lind, Pehr A.; Pagnanelli, Robert; Marks, Lawrence B.; Borges-Neto, Salvador; Hu, Caroline; Zhou, S.-M.; Light, Kim; Hardenbergh, Patricia H.

    2003-01-01

    Purpose: To evaluate postradiation regional heart perfusion changes with single photon emission tomography (SPECT) myocardial perfusion imaging in 69 patients treated with tangential photon beams radiation therapy (RT) for left-sided breast cancer. To correlate SPECT changes with percent irradiated left ventricle (LV) volume and risk factors for coronary artery disease (CAD). Methods and Materials: Rest SPECT of the LV was acquired pre-RT and at 6-month intervals post-RT. The extent of defects (%) with a severity > 1.5 standard deviations below the mean was quantitatively analyzed for the distributions of the left anterior descending (LAD) artery, left circumflex (LCX) artery, and right coronary artery (RCA) based on computer assisted polar map reconstruction (i.e., bull's-eye-view). Changes in perfusion were correlated with percent irradiated LV receiving > 25 Gy (range 0-32%). Data on patient- and treatment-related factors were collected prospectively (e.g., cardiac premorbidity, risk factors for CAD, chemotherapy, and hormonal treatment). Results: In the LAD distribution, there were increased perfusion defects at 6 months (median 11%; interquartile range 2-23) compared with baseline (median 5%; interquartile range 1-14) (p<0.001). There were no increases in perfusion defects in the LCX or RCA distributions. In multivariate analysis, the SPECT perfusion changes in the LAD distribution at 6 months were independently associated with percent irradiated LV (p<0.001), hormonal therapy (p=0.005), and pre-RT hypercholesterolemia (p=0.006). The SPECT defects in the LAD distribution at 12 and 18 months were not statistically different from those at 6 months. The perfusion defects in the LAD distribution were limited essentially to the regions of irradiated myocardium. Conclusion: Tangential photon beam RT in patients with left-sided breast cancer was associated with short-term SPECT defects in the vascular distribution corresponding to the radiation portals. Factors

  5. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  6. N-13 ammonia positron tomography at rest and during exercise for evaluation of coronary artery disease

    International Nuclear Information System (INIS)

    Tamaki, N.; Yonekura, Y.; Senda, M.

    1985-01-01

    To assess the value of positron computed tomography (PCT) for evaluation of coronary artery disease (CAD), N-13 ammonia myocardial PCT was performed at rest and during exercise in 23 cases. PCT imaging was taken with a wholebody multislice PCT device 3 minutes after intravenous injection of 20-20 mCi of N-13 ammonia. The tracer distribution was homogenous in the left ventricular myocardium at rest and during exercise in all 4 normal cases. Among 19 cases with CAD, regional hypoperfusion was observed in 24 cases (74%) at rest and 18 cases (95%) during exercise. Furthermore, 12 cases had regional perfusion abnormalities in stress images not present at rest. Segmental analysis of myocardial perfusion identified 30 of the 34 stenosed vessels (88%) with only one false positive finding (specificity: 97%). In 11 patients who underwent both thallium-201 and N-13 ammonia imaging, PCT detected stenosed vessels more (87%) than the thallium-201 imaging (63%: p<0.05), especially in those with multivessel disease (87% vs 63%: p 0.05). For quantitative analysis of myocardial perfusion by PCT, % change in tracer concentration from resting to stress state was calculated. It was mildly increased (14.4+- 5.8%: p<0.001) in normal segments, whereas in CAD, it was significantly decreased (-18.0+- 18.3%: p<0.02) in segments with stenosed vessels. The authors conclude that N-13 ammonia PCT during exercise is a sensitive and effective method for detecting CAD and identifying stenosed vessels, and it permits quantitative assessment of coronary reserve function

  7. Clinical correlations, lactate extraction, coronary venous bloodflow and Thallium-201 myocardial imaging in patients with isolated left anterior descending muscle brigdes: Normal variant or obstruction

    International Nuclear Information System (INIS)

    Voss, H.; Kupper, W.; Hanrath, P.; Mathey, D.; Montz, R.; Buecking, J.; Hamburg Univ.; Hamburg Univ.

    1980-01-01

    In 848 coronary arteriograms performed in a two-years period 21 patients (2.5%) showed a myocardial bridging of the left anterior descending artery. Resting- and/or stress-ECG were abnormal in half of the patients. Regional lactate-metabolism measured in the great cardiac vein at rest and during maximal atrial pacing was normal (29 +- 12 resp. 24 +- 9%). Thermodilution of great cardiac vein bloodflow at rest and during atrial pacing also demonstrated normal values (94 +- 33 resp. 138 +- 30 ml/min). Biphasic 201-Thallium myocardial imaging revealed no case of reversible perfusion defect, but surprisingly frequent (5 of 16 patients) clearly irreversible defects limited to the interventricular septum. We conclude that muscle bridges do not cause myocardial ischemia at rest or during exercice. (orig.) [de

  8. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  9. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  10. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  11. Dopamine D4 Receptor Gene Associated with the Frontal-Striatal-Cerebellar Loop in Children with ADHD: A Resting-State fMRI Study.

    Science.gov (United States)

    Qian, Andan; Wang, Xin; Liu, Huiru; Tao, Jiejie; Zhou, Jiejie; Ye, Qiong; Li, Jiance; Yang, Chuang; Cheng, Jingliang; Zhao, Ke; Wang, Meihao

    2018-03-21

    Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.

  12. Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig R; Sørensen, Per Soelberg

    2013-01-01

    controls underwent a 20-minute resting-state fMRI session at 3 Tesla. Independent component analysis was applied to the fMRI data to identify disease-related changes in motor resting-state connectivity. RESULTS: Patients with MS showed a spatial expansion of motor resting-state connectivity in deep...

  13. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  14. Assessment of left ventricular function using 201Tl electrocardiogram-gated myocardial single photon emission computed tomography

    International Nuclear Information System (INIS)

    Nishikubo, Naotsugu; Tamai, Hiroyuki

    2013-01-01

    Advances in computed tomography (CT) technology make it possible to obtain left ventricular wall motion using 3D reconstruction. In this study, we compared the images obtained from CT and 201 Tl electrocardiogram (ECG) gated single photon emission computed tomography (SPECT). In 20 patients with ischemic heart disease, we performed 201 Tl ECG gated SPECT (GE Healthcare Millennium VG) and ECG gated CT (Philips Medical Systems Brilliance iCT) to evaluate of left ventricular wall motion during the resting phase. In SPECT, left ventricular images were reconstructed using quantitative gated SPECT (QGS) software. In CT, the images were reconstructed using Virtual Place (AZE Software). The left ventricle was classified into five regions (anterior, lateral, inferior, septal, and apical). The amplitude of the wall motion was classified into five grades according to AHA classification. The values of the wall motion were separately checked by two radiographers. Assessment of left ventricular function myocardial wall movement using the three-dimensional movie display with ECG gated myocardial SPECT data was in agreement with the evaluation by cardiac CT inspection, and corresponded with wall motion in 88 of all 100 segments. SPECT analysis has the same quantity as that of obtained from CT for evaluation of left ventricular wall motion. (author)

  15. Regional Cerebral Blood Flow during Wakeful Rest in Older Subjects with Mild to Severe Obstructive Sleep Apnea.

    Science.gov (United States)

    Baril, Andrée-Ann; Gagnon, Katia; Arbour, Caroline; Soucy, Jean-Paul; Montplaisir, Jacques; Gagnon, Jean-François; Gosselin, Nadia

    2015-09-01

    To evaluate changes in regional cerebral blood flow (rCBF) during wakeful rest in older subjects with mild to severe obstructive sleep apnea (OSA) and healthy controls, and to identify markers of OSA severity that predict altered rCBF. High-resolution (99m)Tc-HMPAO SPECT imaging during wakeful rest. Research sleep laboratory affiliated with a University hospital. Fifty untreated OSA patients aged between 55 and 85 years, divided into mild, moderate, and severe OSA, and 20 age-matched healthy controls. N/A. Using statistical parametric mapping, rCBF was compared between groups and correlated with clinical, respiratory, and sleep variables. Whereas no rCBF change was observed in mild and moderate groups, participants with severe OSA had reduced rCBF compared to controls in the left parietal lobules, left precentral gyrus, bilateral postcentral gyri, and right precuneus. Reduced rCBF in these regions and in areas of the bilateral frontal and left temporal cortex was associated with more hypopneas, snoring, hypoxemia, and sleepiness. Higher apnea, microarousal, and body mass indexes were correlated to increased rCBF in the basal ganglia, insula, and limbic system. While older individuals with severe obstructive sleep apnea (OSA) had hypoperfusion in the sensorimotor and parietal areas, respiratory variables and subjective sleepiness were correlated with extended regions of hypoperfusion in the lateral cortex. Interestingly, OSA severity, sleep fragmentation, and obesity correlated with increased perfusion in subcortical and medial cortical regions. Anomalies with such a distribution could result in cognitive deficits and reflect impaired vascular regulation, altered neuronal integrity, and/or undergoing neurodegenerative processes. © 2015 Associated Professional Sleep Societies, LLC.

  16. Spatial heterogeneity of the relation between resting-state connectivity and blood flow: an important consideration for pharmacological studies.

    Science.gov (United States)

    Khalili-Mahani, Najmeh; van Osch, Matthias J; de Rooij, Mark; Beckmann, Christian F; van Buchem, Mark A; Dahan, Albert; van Gerven, Johannes M; Rombouts, Serge A R B

    2014-03-01

    Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs. Copyright © 2012 Wiley Periodicals, Inc.

  17. Resting-state beta and gamma activity in Internet addiction.

    Science.gov (United States)

    Choi, Jung-Seok; Park, Su Mi; Lee, Jaewon; Hwang, Jae Yeon; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Oh, Sohee; Lee, Jun-Young

    2013-09-01

    Internet addiction is the inability to control one's use of the Internet and is related to impulsivity. Although a few studies have examined neurophysiological activity as individuals with Internet addiction engage in cognitive processing, no information on spontaneous EEG activity in the eyes-closed resting-state is available. We investigated resting-state EEG activities in beta and gamma bands and examined their relationships with impulsivity among individuals with Internet addiction and healthy controls. Twenty-one drug-naïve patients with Internet addiction (age: 23.33 ± 3.50 years) and 20 age-, sex-, and IQ-matched healthy controls (age: 22.40 ± 2.33 years) were enrolled in this study. Severity of Internet addiction was identified by the total score on Young's Internet Addiction Test. Impulsivity was measured with the Barratt Impulsiveness Scale-11 and a stop-signal task. Resting-state EEG during eyes closed was recorded, and the absolute/relative power of beta and gamma bands was analyzed. The Internet addiction group showed high impulsivity and impaired inhibitory control. The generalized estimating equation showed that the Internet-addiction group showed lower absolute power on the beta band than did the control group (estimate = -3.370, p Internet-addiction group showed higher absolute power on the gamma band than did the control group (estimate = 0.434, p Internet addiction as well as with the extent of impulsivity. The present study suggests that resting-state fast-wave brain activity is related to the impulsivity characterizing Internet addiction. These differences may be neurobiological markers for the pathophysiology of Internet addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Temporal organization of rest defined by actigraphy data in healthy and childhood chronic fatigue syndrome children.

    Science.gov (United States)

    Kawabata, Minako; Ueno, Taro; Tomita, Jun; Kawatani, Junko; Tomoda, Akemi; Kume, Shoen; Kume, Kazuhiko

    2013-11-04

    Accumulating evidence has shown a universality in the temporal organization of activity and rest among animals ranging from mammals to insects. Previous reports in both humans and mice showed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bouts followed exponential distributions. We confirmed similar results in the fruit fly, Drosophila melanogaster. Conversely, another report showed that the awakening bout durations, which were defined by polysomnography in bed, followed power-law distributions, while sleeping periods, which may correspond to rest, followed exponential distributions. This apparent discrepancy has been left to be resolved. Actigraphy data from healthy and disordered children were analyzed separately for two periods: time out of bed (UP period) and time in bed (DOWN period). When data over a period of 24 h were analyzed as a whole, rest bouts showed a power law distribution as previously reported. However, when UP and DOWN period data were analyzed separately, neither showed power law properties. Using a newly developed strict method, only 30% of individuals satisfied the power law criteria, even when the 24 h data were analyzed. The human results were in contrast to the Drosophila results, which revealed clear power-law distributions for both day time and night time rest through the use of a strict method. In addition, we analyzed the actigraphy data from patients with childhood type chronic fatigue syndrome (CCFS), and found that they showed differences from healthy controls when their UP and DOWN data were analyzed separately. These results suggested that the DOWN sleep, the bout distribution of which showed exponential properties, contributes to the production of long-tail distributions in human rest periods. We propose that separate analysis of UP and DOWN period data is important for understanding the temporal organization of activity.

  19. Phylogenetic placement of two species known only from resting spores

    DEFF Research Database (Denmark)

    Hajek, Ann E; Gryganskyi, Andrii; Bittner, Tonya

    2016-01-01

    resting spores, Zoophthora independentia, infecting Tipula (Lunatipula) submaculata in New York State, is now described as a new species and Tarichium porteri, described in 1942, which infects Tipula (Triplicitipula) colei in Tennessee, is transferred to the genus Zoophthora. We have shown that use......Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from...... of molecular methods can assist with determination of the phylogenetic relations of specimens within the form-genus Tarichium for an already described species and a new species for which only resting spores are available....

  20. AgNOR Count in Resting Cells (Resting NOR Is a New Prognostic Marker in Invasive Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Mitsuro Tomobe

    2001-01-01

    Full Text Available Purpose: We have previously demonstrated that the AgNOR count in proliferating cells is a predictor of tumor recurrence in superficial bladder tumor (J. Urol. 162 (1999, 63–68. In the present study, we evaluate the type of AgNOR associated with cell cycles as a prognostic factor in invasive bladder tumor using a double staining technique employing both AgNOR and MIB-1 labelling. Materials and methods: Forty-four paraffin sections of invasive bladder tumors were stained simultaneously with AgNOR and MIB-1. The number of AgNORs in proliferating (MIB-1 positive or resting (MIB-1 negative cells were counted from a total of 100 nuclei. Correlations between MIB-1 associated AgNOR count and clinicopathological parameters were statistically analyzed. Results: The AgNOR count in proliferating cells (proliferating NOR was significantly higher than that in resting cells (resting NOR (p < 0.01. The resting NOR in tumors with distant metastases was significantly higher than that in tumors without metastases (p < 0.05. Patients with a low resting NOR tumor had a better prognosis than those with a high resting NOR tumor, whereas the proliferating NOR was not associated with survival. Survival analysis revealed that the resting NOR was the most powerful prognostic marker in patients with invasive bladder tumor (p < 0.05. Conclusions: Resting NOR had a predictive value in the prognosis of patients with invasive bladder tumor. Keywords: Transitional cell carcinoma, invasive, resting cell, AgNORs, MIB-1

  1. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    Science.gov (United States)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  2. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  3. Changes in the structural and functional characteristics of fisher (Pekania pennanti) rest structures over time

    Science.gov (United States)

    Bill Zielinski; Fredrick V. Schlexer

    2015-01-01

    Resting habitat used by fishers (Pekania pennanti) has been relatively well studied but information on the persistence of their resting structures over time is unknown. We selected for reexamination 73 of 195 resting structures used by by fishers in northwestern California and compared their condition on the date they were found with their...

  4. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.

    Science.gov (United States)

    Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These

  5. Greater repertoire and temporal variability of cross-frequency coupling (CFC modes in resting-state neuromagnetic recordings among children with reading difficulties

    Directory of Open Access Journals (Sweden)

    Stavros I Dimitriadis

    2016-04-01

    Full Text Available AbstractCross-frequency, phase-to-amplitude coupling (PAC between neuronal oscillations at rest may serve as the substrate that supports information exchange between functionally specialized neuronal populations both within and between cortical regions. The study utilizes novel algorithms to identify prominent instantaneous modes of cross-frequency coupling and their temporal stability in resting state magnetoencephalography (MEG data from 23 students experiencing severe reading difficulties (RD and 27 age-matched non-impaired readers (NI.Phase coherence estimates were computed in order to identify the prominent mode of PAC interaction for each sensor, sensor pair, and pair of frequency bands (from δ to γ at successive temporal segments of the continuous MEG record. The degree of variability in the characteristic frequency-pair PACf1-f2 modes over time was also estimated. Results revealed a wider repertoire of prominent PAC interactions in RD as compared to NI students, suggesting an altered functional substrate for information exchange between neuronal assemblies in the former group. Moreover, RD students showed significant variability in PAC modes over time. This temporal instability of PAC values was particularly prominent: (a within and between right hemisphere temporal and occipitotemporal sensors and, (b between left hemisphere frontal, temporal, and occipitotemporal sensors and corresponding right hemisphere sites. Altered modes of neuronal population coupling may help account for extant data revealing reduced, task-related neurophysiological and hemodynamic activation in left hemisphere regions involved in the reading network in RD. Moreover, the spatial distribution of pronounced instability of cross-frequency coupling modes in this group may provide an explanation for previous reports suggesting the presence of inefficient compensatory mechanisms to support reading.

  6. Left regular bands of groups of left quotients

    International Nuclear Information System (INIS)

    El-Qallali, A.

    1988-10-01

    A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs

  7. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Relation of N-Terminal Pro-B-Type Natriuretic Peptide and Left Ventricular Diastolic Function to Exercise Tolerance in Patients With Significant Valvular Heart Disease and Normal Left Ventricular Systolic Function.

    Science.gov (United States)

    Hwang, Ji-Won; Park, Sung-Ji; Cho, Eun Jeong; Kim, Eun Kyoung; Lee, Ga Yeon; Chang, Sung-A; Choi, Jin-Oh; Lee, Sang-Chol; Park, Seung Woo

    2017-06-01

    An association between N-terminal prohormone brain natriuretic peptide (NT-proBNP) and exercise tolerance in patients with valvular heart disease (VHD) has been suggested; however, there are few data available regarding this relation. The aim of this study is to evaluate the correlation between exercise tolerance and NT-proBNP in patients with asymptomatic or mildly symptomatic significant VHD and normal left ventricular ejection fraction (LV EF). A total of 96 patients with asymptomatic or mildly symptomatic VHD and normal LV EF (≥50%) underwent cardiopulmonary exercise echocardiography. NT-proBNP levels were determined at baseline and after exercise in 3 hours. Patients were divided in 2 groups based on lower (left atrial volume index before exercise, right ventricular systolic pressure before exercise, E velocity after exercise, and E/e' ratio after exercise varied significantly. In addition, peak VO 2 was inversely related to NT-proBNP before (r = -0.352, p left atrial volume index, E/e' ratio, and right ventricular systolic pressure before and after exercise. NT-proBNP after exercise was also directly related to the same parameters. NT-proBNP levels both before and after exercise were higher in the group with lower exercise tolerance. In conclusion, through the correlation among exercise tolerance, NT-proBNP, and parameters of diastolic dysfunction, we demonstrated that diastolic dysfunction and NT-proBNP could predict exercise tolerance in patients with significant VHD and normal LV EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Resting state brain dynamics and its transients: a combined TMS-EEG study.

    Science.gov (United States)

    Bonnard, Mireille; Chen, Sophie; Gaychet, Jérôme; Carrere, Marcel; Woodman, Marmaduke; Giusiano, Bernard; Jirsa, Viktor

    2016-08-04

    The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.

  10. Modulation of blood pressure response to exercise by physical activity and relationship with resting blood pressure during pregnancy.

    Science.gov (United States)

    Bisson, Michèle; Rhéaume, Caroline; Bujold, Emmanuel; Tremblay, Angelo; Marc, Isabelle

    2014-07-01

    To determine whether physical activity and blood pressure (BP) response to exercise in early pregnancy are related to resting BP at the end of pregnancy. Understanding physiological BP responses to exercise during pregnancy will help in improving BP profile and guiding exercise recommendations in pregnant women. Maternal physical activity, cardiorespiratory fitness (VO2peak) and BP (systolic and diastolic) at rest and during exercise (submaximal and relative response) were assessed at 16 weeks of gestation in 61 normotensive pregnant women. BP at 36 weeks of gestation and obstetrical outcomes were collected from maternal charts. Related to resting DBP at 16 weeks (r =  -0.28, P = 0.028), total energy expenditure spend at any physical activity in early pregnancy was also associated with resting SBP at 36 weeks (r =  -0.27, P = 0.038). On the contrary, although related to VO2peak (r =  -0.57, P sports and exercise (r =  -0.29, P = 0.024), the relative SBP response to exercise at 16 weeks was not associated with resting BP at 36 weeks. Strongly associated with resting BP at 16 weeks and also with total energy expenditure, submaximal BP response to exercise at 16 weeks was related to resting SBP and DBP at 36 weeks (r = 0.41, P = 0.001 and r = 0.26, P = 0.051, respectively). In normotensive women, physical activity performed in early pregnancy appears to slightly modulate resting BP in early and late pregnancy. However, further investigations are needed to determine which physical activity-related parameter in response to exercise best predicts BP variations during pregnancy.

  11. Altered Cortico-Striatal Connectivity in Offspring of Schizophrenia Patients Relative to Offspring of Bipolar Patients and Controls.

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    Full Text Available Schizophrenia (SZ and bipolar disorder (BD share clinical features, genetic risk factors and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state networks in patients with SZ and BD and their unaffected relatives. Resting state networks are known to undergo reorganization during youth coinciding with the period of increased incidence for both disorders. We therefore focused on characterizing resting state network connectivity in youth at familial risk for SZ or BD to identify alterations arising during this period. We measured resting-state functional connectivity in a sample of 106 youth, aged 7-19 years, comprising offspring of patients with SZ (N = 27, offspring of patients with BD (N = 39 and offspring of community control parents (N = 40. We used Independent Component Analysis to assess functional connectivity within the default mode, executive control, salience and basal ganglia networks and define their relationship to grey matter volume, clinical and cognitive measures. There was no difference in connectivity within any of the networks examined between offspring of patients with BD and offspring of community controls. In contrast, offspring of patients with SZ showed reduced connectivity within the left basal ganglia network compared to control offspring, and they showed a positive correlation between connectivity in this network and grey matter volume in the left caudate. Our findings suggest that dysconnectivity in the basal ganglia network is a robust correlate of familial risk for SZ and can be detected during childhood and adolescence.

  12. The neural correlates of risk propensity in males and females using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-01-01

    Full Text Available Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity.

  13. Assessment of synchronous neural activities revealed by regional homogeneity in individuals with acute eye pain: a resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Tang L

    2018-04-01

    Full Text Available Li-Yuan Tang,1,* Hai-Jun Li,2,* Xin Huang,1 Jing Bao,1 Zubin Sethi,3 Lei Ye,1 Qing Yuan,1 Pei-Wen Zhu,1 Nan Jiang,1 Gui-Ping Gao,1 Yi Shao1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; 2Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; 3The Department of Medicine, University of Miami, Coral Gables, FL, USA *These authors contributed equally to this work Objective: Previous neuroimaging studies have demonstrated that pain-related diseases are associated with brain function and anatomical abnormalities, whereas altered synchronous neural activity in acute eye pain (EP patients has not been investigated. The purpose of this study was to explore whether or not synchronous neural activity changes were measured with the regional homogeneity (ReHo method in acute EP patients.Methods: A total of 20 patients (15 males and 5 females with EP and 20 healthy controls (HCs consisting of 15 and 5 age-, sex-, and education-matched males and females, respectively, underwent resting-state functional magnetic resonance imaging. The ReHo method was applied to assess synchronous neural activity changes.Results: Compared with HCs, acute EP patients had significantly lower ReHo values in the left precentral/postcentral gyrus (Brodmann area [BA]3/4, right precentral/postcentral gyrus (BA3/4, and left middle frontal gyrus (BA6. In contrast, higher ReHo values in acute EP patients were observed in the left superior frontal gyrus (BA11, right inferior parietal lobule (BA39/40, and left precuneus (BA7. However, no relationship was found between the mean ReHo signal values of the different areas and clinical manifestations, which included both the duration and degree of pain in EP patients.Conclusion: Our study highlighted that acute EP patients showed altered synchronous neural activities in many brain regions, including somatosensory regions. These

  14. Psychological effects of acute physical inactivty during microgravitiy simulated by bed rest

    Directory of Open Access Journals (Sweden)

    Petra Dolenc

    2009-05-01

    Full Text Available Long-duration weightlessness simulated by bed rest represents an important model to study the consequences of physical inactivity and sedentarism on the human body. This study evaluated changes of mood status, psychological well-being, coping strategies and physical self in ten healthy young male subjects during a 35-day horizontal bed rest. Participants were asked to complete psychometrical inventories before and after the bed rest experiment. The preceived satisfaction with life and the physical self-concept did not change during bed rest period and mood states were relatively stable during the experiment according to the Emotional States Questionnaire. The neurotic level was enhanced during the bed rest period according to the Slovenian version of the General Health Questionnaire. However, even after the period of physical immobilization, the expression of these symptoms remains relatively low and does not represent a risk to the mental health of the subjects. The results from Coping Resources Inventory indicated a tendency toward an increase of emotion focused coping and a decrease of problem focused coping strategies. The importance of this research was to provide evidence that the provision of favourable habitability countermeasures can prevent deterioration in the psychological state under conditions of physical immobilisation. Our findings have applied value in the field of health prevention and rehabilitaion.

  15. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    Science.gov (United States)

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  16. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Natalia Chechko

    2018-05-01

    Full Text Available In schizophrenia (SCZ, dysfunction of the dorsolateral prefrontal cortex (DLPFC has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI scans were obtained from 120 patients and 172 healthy controls (HC at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.

  17. Effect of chronic right ventricular apical pacing on left ventricular function.

    Science.gov (United States)

    O'Keefe, James H; Abuissa, Hussam; Jones, Philip G; Thompson, Randall C; Bateman, Timothy M; McGhie, A Iain; Ramza, Brian M; Steinhaus, David M

    2005-03-15

    The determinants of change in left ventricular (LV) ejection fraction (EF) over time in patients with impaired LV function at baseline have not been clearly established. Using a nuclear database to assess changes in LV function over time, we included patients with a baseline LVEF of 25% to 40% on a gated single-photon emission computed tomographic study at rest and only if second-gated photon emission computed tomography performed approximately 18 months after the initial study showed an improvement in LVEF at rest of > or =10 points or a decrease in LVEF at rest of > or =7 points. In all, 148 patients qualified for the EF increase group and 59 patients for the EF decrease group. LVEF on average increased from 33 +/- 4% to 51 +/- 8% in the EF increase group and decreased from 35 +/- 4% to 25 +/- 5% in the EF decrease group. The strongest multivariable predictor of improvement of LVEF was beta-blocker therapy (odds ratio 3.9, p = 0.002). The strongest independent predictor of LVEF decrease was the presence of a permanent right ventricular apical pacemaker (odds ratio 6.6, p = 0.002). Thus, this study identified beta-blocker therapy as the major independent predictor for improvement in LVEF of > or =10 points, whereas a permanent pacemaker (right ventricular apical pacing) was the strongest predictor of a LVEF decrease of > or =7 points.

  18. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    Science.gov (United States)

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Social aspects of left-handedness

    Directory of Open Access Journals (Sweden)

    Belojević Goran

    2010-01-01

    Full Text Available Throughout human history left-handedness has been considered as sinful. It has been associated with the devil, weakness, female gender, unhealthiness, evil, something that has to be turned to a “good” - right side by force. Left-handedness is being more and more acceptable at rational level, but in everyday life it is still considered to be unusual if someone writes with the left hand. Lessening of the number of lefthanders is associated with ageing. There are about 13% lefthanders among people in twenties and less than 1% lefthanders among those in eighties. This finding may be explaned with more pronounced socio-cultural pressure on left-handed people in the past, compared to nowadays. On the other hand, this may also support the hypothesis about a reduced life span of lefthanded people. With cross-exercising of left-handedness, certain typical characteristics and behavioral patterns appear in these people. This was a sort of provoked behavior and an attack on the integrity of an emotional attitude toward oneself. Stuttering may also appear as a consequence of unsuccessful cross-exercising of left-handedness. The hypothesis about left-handedness as an advantage is supported with the reports about relatively more lefthanders in some specific groups such as: mathematicians, sculptors, architects, painters, musicians, actors, tennis players, as well as famous army commanders and rulers.

  20. Testicular Adrenal Rest Tumors (TARTS With Unusual Histological Features in Congenital Adrenal Hyperplasia (CAH

    Directory of Open Access Journals (Sweden)

    Valeri Marianovsky

    2015-07-01

    Full Text Available Congenital adrenal hyperplasia (CAH patients with testicular adrenal rest tumors (TARTs with testicular enlargement present a serious diagnostic challenge. According to the data TARTs are usually benign. They are rare, resulting in paucity in the medical literature regarding their pathological features. We report a case of bilateral synchronous mass-forming TARTs with marked cytological and nuclear atypia misinterpreted as malignant testicular tumors in a 40-years-old man with CAH and CT and MRI data for pheochromocytoma of the right adrenal gland and paraaortal and paracaval lymphadenomegaly. He was previously diagnosed with adrenal cortical carcinoma of the left adrenal gland.

  1. Radionuclide assessment of left ventricular function in patients requiring intraoperative balloon pump assistance

    International Nuclear Information System (INIS)

    Davies, R.A.; Laks, H.; Wackers, F.J.; Berger, H.J.; Williams, B.; Hammond, G.L.; Geha, A.S.; Gottschalk, A.; Zaret, B.L.

    1982-01-01

    Twenty-three surviving patients who were weaned from cardiopulmonary bypass with intraaortic balloon pump assistance returned for follow-up radionuclide left ventricular (LV) function and thallium 201 perfusion studies at a mean of 23 +/- 3 months following operation. It was found that despite profound intraoperative myocardial depression requiring intraaortic balloon assistance, 13 patients had no change (within 10%) in the resting LV ejection fraction compared with the preoperative measurement. Among all 23 patients, there was no difference between mean (+/- standard error of the mean) preoperative and postoperative resting LV ejection fraction (48 +/- 4 vs 46 +/- 4%, p . not significant [NS]). Only 11 patients had perioperative myocardial infarction documented by new Q waves in the electrocardiogram, by elevation of creatine kinase-MB fraction, or by defects on thallium 201 imaging not explained by documented myocardial infarction before operation. Overall, postoperative resting LV ejection fraction was not different from the preoperative value in patients with perioperative myocardial infarction (44 +/- 7 vs 47 +/- 5%, p . NS). Postoperative resting LV ejection fraction rose by greater than 10% compared with preoperative values in 4 patients (3 with aortic valve replacement), remained within the 10% limit in 9 patients, and fell by greater than 10% in 10 patients (7 with perioperative myocardial infarction). Only 4 out of 16 patients studied at follow-up with exercise radionuclide studies demonstrated a normal LV response to exercise (greater than 5% increase in LV ejection fraction). Thus, among survivors requiring intraaortic balloon pump assistance for weaning from cardiopulmonary bypass, LV performance at rest is frequently preserved. In addition, 11 of the 23 patients had evidence of perioperative myocardial infarction, indicating a component of reversible intraoperative LV dysfunction

  2. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome.

    Science.gov (United States)

    Fournier, Sara B; Reger, Brian L; Donley, David A; Bonner, Daniel E; Warden, Bradford E; Gharib, Wissam; Failinger, Conard F; Olfert, Melissa D; Frisbee, Jefferson C; Olfert, I Mark; Chantler, Paul D

    2014-01-01

    Metabolic syndrome (MetS) is the manifestation of a cluster of cardiovascular risk factors and is associated with a threefold increase in the risk of cardiovascular morbidity and mortality, which is suggested to be mediated, in part, by resting left ventricular (LV) systolic dysfunction. However, to what extent resting LV systolic function is impaired in MetS is controversial, and there are no data indicating whether LV systolic function is impaired during exercise. Accordingly, the objective of this study was to examine comprehensively the LV and arterial responses to exercise in individuals with MetS without diabetes and/or overt cardiovascular disease in comparison to a healthy control population. Cardiovascular function was characterized using Doppler echocardiography and gas exchange in individuals with MetS (n = 27) versus healthy control subjects (n = 20) at rest and during peak exercise. At rest, individuals with MetS displayed normal LV systolic function but reduced LV diastolic function compared with healthy control subjects. During peak exercise, individuals with MetS had impaired contractility, pump performance and vasodilator reserve capacity versus control subjects. A blunted contractile reserve response resulted in diminished arterial-ventricular coupling reserve and limited aerobic capacity in individuals with MetS versus control subjects. These findings are of clinical importance, because they provide insight into the pathophysiological changes in MetS that may predispose this population of individuals to an increased risk of cardiovascular morbidity and mortality.

  3. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    Science.gov (United States)

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  4. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Huang X

    2016-11-01

    Full Text Available Xin Huang,1,2,* Fu-Qing Zhou,3,* Yu-Xiang Hu,1 Xiao-Xuan Xu,1 Xiong Zhou,4 Yu-Lin Zhong,1 Jun Wang,4 Xiao-Rong Wu1 1Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 2Department of Ophthalmology, The First People’s Hospital of Jiujiang City, Jiujiang, 3Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, 4Second Department of Respiratory Disease, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, People’s Republic of China *These authors contributed equally to this work Objective: Many previous reports have demonstrated significant neural anatomy changes in the brain of high myopic (HM patients, whereas the spontaneous brain activity changes in the HM patients at rest are not well studied. Our objective was to use amplitude of low-frequency fluctuation (ALFF method to investigate the changes in spontaneous brain activity in HM patients and their relationships with clinical features. Methods: A total of 38 patients with HM (17 males and 21 females and 38 healthy controls (HCs (17 males and 21 females closely matched in age, sex, and education underwent resting-state functional magnetic resonance imaging scans. The ALFF method was used to assess local features of spontaneous brain activity. The relationship between the mean ALFF signal values in many brain regions and the clinical features in HM patients was calculated by correlation analysis. Results: Compared with HCs, the HM patients had significantly lower ALFF in the right inferior and middle temporal gyrus, left middle temporal gyrus, left inferior frontal gyrus/putamen, right inferior frontal gyrus/putamen/insula, right middle frontal gyrus, and right inferior parietal lobule and higher ALFF values in the bilateral midcingulate cortex, left postcentral gyrus, and left precuneus/inferior parietal lobule. However, no relationship was found between the mean ALFF

  5. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  6. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  7. Usefulness of left ventricular wall thickness-to-diameter ratio in thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Manno, B.; Hakki, A.H.; Kane, S.A.; Iskandrian, A.S.

    1983-01-01

    The ratio of left ventricular wall thickness to the cavity dimension, as seen on thallium-201 images, was used in this study to predict left ventricular ejection fraction and volume. We obtained rest thallium-201 images in 50 patients with symptomatic coronary artery disease. The thickness of a normal-appearing segment of the left ventricular wall and the transverse diameter of the cavity were measured in the left anterior oblique projection. The left ventricular ejection fraction and volume in these patients were determined by radionuclide ventriculography. There was a good correlation between thickness-to-diameter ratio and ejection fraction and end-systolic volume. In 18 patients with a thickness-to-diameter ratio less than 0.70, the ejection fraction was lower than in the 16 patients with thickness-to-diameter ratio greater than or equal to 1.0. Similarly, in patients with a thickness-to-diameter ratio less than 0.70, the end-diastolic and end-systolic volume were higher than in the remaining patients with higher thickness-to-diameter ratios. All 18 patients with a thickness-to-diameter ratio less than 0.70 had ejection fractions less than 40%; 14 of 15 patients with a thickness-to-diameter ratio greater than or equal to 1.0 had an ejection fraction greater than 40%. The remaining 16 patients with a thickness-to-diameter ratio of 0.7-0.99 had intermediate ejection fractions and volumes.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Bupropion Administration Increases Resting-State Functional Connectivity in Dorso-Medial Prefrontal Cortex.

    Science.gov (United States)

    Rzepa, Ewelina; Dean, Zola; McCabe, Ciara

    2017-06-01

    Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  9. Influence of body position on cortical pain-related somatosensory processing: an ERP study.

    Directory of Open Access Journals (Sweden)

    Chiara Spironelli

    Full Text Available BACKGROUND: Despite the consistent information available on the physiological changes induced by head down bed rest, a condition which simulates space microgravity, our knowledge on the possible perceptual-cortical alterations is still poor. The present study investigated the effects of 2-h head-down bed rest on subjective and cortical responses elicited by electrical, pain-related somatosensory stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Twenty male subjects were randomly assigned to two groups, head-down bed rest (BR or sitting control condition. Starting from individual electrical thresholds, Somatosensory Evoked Potentials were elicited by electrical stimuli administered randomly to the left wrist and divided into four conditions: control painless condition, electrical pain threshold, 30% above pain threshold, 30% below pain threshold. Subjective pain ratings collected during the EEG session showed significantly reduced pain perception in BR compared to Control group. Statistical analysis on four electrode clusters and sLORETA source analysis revealed, in sitting controls, a P1 component (40-50 ms in the right somatosensory cortex, whereas it was bilateral and differently located in BR group. Controls' N1 (80-90 ms had widespread right hemisphere activation, involving also anterior cingulate, whereas BR group showed primary somatosensory cortex activation. The P2 (190-220 ms was larger in left-central locations of Controls compared with BR group. CONCLUSIONS/SIGNIFICANCE: Head-down bed rest was associated to an overall decrease of pain sensitivity and an altered pain network also outside the primary somatosensory cortex. Results have implications not only for astronauts' health and spaceflight risks, but also for the clinical aspects of pain detection in bedridden patients at risk of fatal undetected complications.

  10. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: a {sup 13}NH{sub 3} gated PET study

    Energy Technology Data Exchange (ETDEWEB)

    Sciagra, Roberto; Calabretta, Raffaella; Passeri, Alessandro; Castello, Angelo; Pupi, Alberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences ' ' Mario Serio' ' , Florence (Italy); Cipollini, Fabrizio [University of Florence, Department of Statistics, Florence (Italy); Cecchi, Franco; Olivotto, Iacopo [Careggi University Hospital, Referral Centre for Myocardial Diseases, Florence (Italy)

    2017-05-15

    Ischemia in hypertrophic cardiomyopathy (HCM) is caused by coronary microvascular dysfunction (CMD), which is detected by measuring myocardial blood flow (MBF) with PET. Whether CMD may be associated with ischemic left ventricular (LV) dysfunction is unclear. We therefore assessed LV ejection fraction (EF) reserve in HCM patients undergoing dipyridamole (Dip) PET. Resting and stress {sup 13}NH{sub 3} dynamic as well as gated PET were performed in 34 HCM patients. Segmental MBF and transmural perfusion gradient (TPG = subendocardial / subepicardial MBF) were assessed. LVEF reserve was considered abnormal if Dip LVEF decreased more than 5 units as compared to rest. Eighteen patients had preserved (group A) and 16 abnormal LVEF reserve (group B; range -7 to -32). Group B patients had greater wall thickness than group A, but resting volumes, LVEF, resting and Dip MBF, and myocardial flow reserve were similar. Group B had slightly higher summed stress score and summed difference score in visual analysis than group A, and a significantly higher summed stress wall motion score. In group B, resting TPG was slightly lower (1.31 ± 0.29 vs. 1.37 ± 0.34, p <0.05), and further decreased after Dip, whilst in group A it increased (B = 1.20 ± 0.39, p < 0.0001 vs. rest and vs. A = 1.40 ± 0.43). The number of segments per patient with TPG <1 was higher than in group A (p < 0.001) and was a significant predictor of impaired LVEF reserve (OR 1.86, p < 0.02), together with wall thickness (OR 1.3, p < 0.02). Abnormal LVEF response is common in HCM patients following Dip, and is related to abnormal TPG, suggesting that subendocardial ischemia might occur under Dip and cause transient LV dysfunction. Although in vivo this effect may be hindered by the adrenergic drive associated with effort, these findings may have relevance in understanding exercise limitation and heart failure symptoms in HCM. (orig.)

  11. Experimental evaluation of the influence of various rests on task performance

    International Nuclear Information System (INIS)

    Nagasaka, Akihiko; Hirose, Ayako

    2000-01-01

    This report deals with the result of the experiment that 8 subjects had executed adding task and search task. They executed each task in 80 minutes under 5 conditions: (1) with no rest, and with 4 kinds of 20 minutes rests, in which they (2) opened eyes, (3) closed eyes, (4) closed eyes with listening classic music and (5) closed eyes with feet massage, in the middle of the task. The results of analysis of variance with the task performance in the latter half, there were significant differences between each condition with every subject in adding task, and with 6 subjects in search task. However, the orders of the task performance with each condition were not the same by each subject. It was suggested that transition of the arousal levels under the rest was related to the effects of the rest rather than the subjects' taste in rests. In the rest, the percentage of α wave of electroencephalogram and the coefficient of variation of R-R interval (time interval of heart beats) were increased than in executing task. The mean Kendall's rank correlation of coefficient with the order of increase rate of α/β wave and the task performance in the latter half was slightly negative in adding task, but was about 0.4 in search task. From these results, about six requirements for 'an effective rest' were able to be mentioned, for example, 'the devices that raises the arousal levels is carried out just before a rest end'. (author)

  12. Experimental evaluation of the influence of various rests on task performance

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Akihiko; Hirose, Ayako [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2000-01-01

    This report deals with the result of the experiment that 8 subjects had executed adding task and search task. They executed each task in 80 minutes under 5 conditions: (1) with no rest, and with 4 kinds of 20 minutes rests, in which they (2) opened eyes, (3) closed eyes, (4) closed eyes with listening classic music and (5) closed eyes with feet massage, in the middle of the task. The results of analysis of variance with the task performance in the latter half, there were significant differences between each condition with every subject in adding task, and with 6 subjects in search task. However, the orders of the task performance with each condition were not the same by each subject. It was suggested that transition of the arousal levels under the rest was related to the effects of the rest rather than the subjects' taste in rests. In the rest, the percentage of {alpha} wave of electroencephalogram and the coefficient of variation of R-R interval (time interval of heart beats) were increased than in executing task. The mean Kendall's rank correlation of coefficient with the order of increase rate of {alpha}/{beta} wave and the task performance in the latter half was slightly negative in adding task, but was about 0.4 in search task. From these results, about six requirements for 'an effective rest' were able to be mentioned, for example, 'the devices that raises the arousal levels is carried out just before a rest end'. (author)

  13. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain.

    Science.gov (United States)

    Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett

    2016-08-01

    Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.

  14. Altered resting-state network connectivity in stroke patients with and without apraxia of speech.

    Science.gov (United States)

    New, Anneliese B; Robin, Donald A; Parkinson, Amy L; Duffy, Joseph R; McNeil, Malcom R; Piguet, Olivier; Hornberger, Michael; Price, Cathy J; Eickhoff, Simon B; Ballard, Kirrie J

    2015-01-01

    Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.

  15. Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    Directory of Open Access Journals (Sweden)

    Anneliese B. New

    2015-01-01

    Full Text Available Motor speech disorders, including apraxia of speech (AOS, account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS, inferior frontal gyrus (IFG, and ventral premotor cortex (PM in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.

  16. End-systolic stress-velocity relation and circumferential fiber velocity shortening for analysing left ventricular function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fayssoil, A. [Cardiologie, Hopital europeen Georges Pompidou, 20, rue le blanc, Paris (France)], E-mail: fayssoil2000@yahoo.fr; Renault, G. [CNRS UMR 8104, Inserm, U567, Institut Cochin, Universite Paris Descartes, Paris (France); Fougerousse, F. [Genethon, RD, Evry (France)

    2009-08-15

    Traditionally, analysing left ventricular (LV) performance relies on echocardiography by evaluating shortening fraction (SF) in mice. SF is influenced by load conditions. End-systolic stress-velocity (ESSV) relation and circumferential fiber velocity (VcF) shortening are more relevant parameters for evaluating systolic function regardless load conditions particularly in mice's models of heart failure.

  17. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  18. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  19. Comparison of rest and adenosine stress quantitative and semi-quantitative myocardial perfusion using magnetic resonance in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Qayyum, Abbas A; Qayyum, Faiza; Larsson, Henrik B W

    2017-01-01

    software. Linear regression analysis demonstrated that absolute quantitative data correlated stronger to maxSI (rest: r=0.296, p=.193; stress: r=0.583, p=0.011; myocardial perfusion reserve (MPR): r=0.789, pr=0.683, p=0.004) than to upslope (rest: r=0.420, p=0.......058; stress: r=0.096, p=0.704; MPR: r=0.682, p=0.004; and Δ MBF: r=0.055, p=0.804). Absolute quantified MP was able to distinguish between ischemic and non-ischemic territories at rest (left anterior descending artery (LAD): 103.1±11.3mL/100g/min vs. 206.3±98.5mL/100g/min; p=0.001, right coronary artery (RCA......: 206.6±105.1mL/100g/min vs. 273.8±78.0mL/100g/min; p=0.186). The correlation between global maxSI and positron emission tomography data was non-significant at rest and borderline significant at stress (r=0.265, p=0.382 and r=0.601, p=0.050, respectively). Quantified MP may be useful in patients...

  20. Quantitative angiography of the left anterior descending coronary artery: correlations with pressure gradient and exercise thallium scintigraphy

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Serruys, P.W.; Slager, C.J.; Erasmus Univ., Rotterdam

    1986-01-01

    In order to evaluate during cardiac catheterization what constitutes a physiologically significant obstruction to blood flow in the human coronary system, computer based quantitative analysis of coronary angiograms was performed in 31 patients with isolated proximal left anterior descending coronary artery disease. The angiographic severity of the stenosis was compared with the transstenotic pressure gradient measured with the dilatation catheter during angioplasty and the results of exercise thallium scintigraphy. A curvilinear relation was found between the pressure gradient across the stenosis (normalized for the mean aortic pressure) and the residual minimal obstruction area (after subtracting the area of the angioplasty catheter). This relation was best fitted by the equation: normalized mean pressure gradient = a + b · log [obstruction area], r = 0.74. The measurements of the percent area stenosis (cut-off 80%) and of the transstenotic pressure gradient (cut-off 0.30) obtained at rest, correctly predicted the occurrence of thallium perfusion defects induced by exercise in 83% of the patients. (Auth.)