Sample records for relative permeability porosity

  1. Relative permeability in dual porosity porous media

    Deghmoum, A. [SONATRACH CRD, Boumerdes (Algeria); Tiab, D. [Oklahoma Univ., Norman, OK (United States); Mazouzi, A. [SONATRACH PED (Algeria)


    One of the important factors in the field of reservoir simulation of dual-porosity systems is reliable relative permeability data. Laboratory limitations hinder measurements. The real behaviour of naturally fractures reservoirs is not reflected in the reservoir core samples, which as a rule originate from zones without induced or natural fractures. Therefore, it is commonly assumed that the relative permeability of a naturally fractured system is a straight line, which can cause errors. The authors undertook to conduct special core analyses on Berea outcrop core samples, to simulate fracture opening through the cutting of the samples to get different fracture apertures, to study the effects of dual porosity on the shape of capillary pressure curves, and to evaluate absolute and relative permeability, as they are affected by fracture opening. The correlation obtained between absolute permeability and fracture aperture was good, and capillary pressure curves permitted the observation of the effect of dual porosity. High residual oil saturation was present in the matrix, since the fractures became the easiest route for water flow, and this situation prevented the use of unsteady-state tests to measure relative permeability on the samples. Instead, the centrifuge technique was successfully used. A naturally fractured reservoir (NFR), the Tin Fouye Tabankort (TFT) reservoir in Algeria was selected to extend the findings. The site was principally selected due to the availability of naturally fractured cores and published data. Core observations, well test analysis and borehole imager tools were all TFT natural fracture indicators presented in the paper. Representative data of relative permeability was obtained by conducting a displacement test on a full diameter core to solve the laboratory limitations. The correlation between permeability and fracture opening was used to estimate the aperture of natural fractures in TFT reservoir. 17 refs., 2 tabs., 24 figs.

  2. Simultaneous estimation of relative permeability and porosity/permeability fields by history matching production data

    Eydinov, D. [Scandpower, Kjeller (Norway); Gao, G. [Chevron, San Ramon, CA (United States); Li, G.; Reynolds, A.C. [Tulsa Univ., Tulsa, OK (United States)


    Relative permeability curves are typically obtained through core flood tests. This paper provided details of a procedure that used automatic history matching of 3-phase flow production data to estimate permeability curves with grid block porosities. The method used a B-spline approximation to represent sets of permeability curves with a log transformation of parameters to ensure that curves were monotonic or convex. It was assumed that the model vector was a multivariate Gaussian distribution. The history matching problem was considered in a Bayesian framework. The method was then compared with a power law model using the same data from a synthetic reservoir model. Results showed that the B-spline model obtained more accurate permeability curves than the power law model. The randomized maximum likelihood (RML) method was used to quantify uncertainties in the model parameters. 19 refs., 17 figs.

  3. Effect of Multipoint Heterogeneity on Nonlinear Transformations for Geological Modeling: Porosity-Permeability Relations Revisited

    J A Vargas-Guzmán


    An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equationswithin those transformations need corrections via residual cumulants. A generalization of this result isthat transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.

  4. The relation among porosity, permeability, and specific surface of chalk from the Gorm field, Danish North Sea

    Jeanette, Mortensen; Engstrøm, Finn; Lind, Ida


    The origin to the difference in the relationship between permeability and porosity for Danian and Maastrichtian chalk from the Gorm field offshore Denmark has been investigated. The investigation was based on 300 sets of core data (He-expansion porosity and air permeability) from the well Gorm N-...... analytically from a simple porosity model and Poiseuilles law....

  5. Permeability-porosity relationships of subduction zone sediments

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.


    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  6. Quantifying porosity, compressibility and permeability in Shale

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...

  7. On the Relation of Porosity and Permeability in Low Porosity and Low Permeability Rock%低孔隙度低渗透率岩石孔隙度与渗透率关系研究

    邵维志; 解经宇; 迟秀荣; 李俊国; 吴淑琴; 肖斐


    The view about the higher porosity with the higher permeability has guided high porosity and high permeability reservoir production operations,but in the low porosity and low permeability reservoirs,there often appears the phenomenon contrary to this view,the capacity difference is very large in almost the same porosity reservoir.Experiment data from 250 rock samples indicate that permeability is not obviously controlled by the total porosity in the low porosity and low permeability rock,traditional porosity-permeability calculation method is no longer applicable.In the low porosity and low permeability rock,permeability is mainly controlled by pore structure,the pore with different pore sizes has different contribution to the permeability,the pore sizes and the corresponded proportion in the pores control the permeability value together.On this basis,the nuclear magnetic resonance logging is used to depict the pore size ranges,then the interval porosity is used to calculate the permeability.This method not only improves the permeability calculation accuracy in the low porosity and permeability reservoir but also develops the traditional formula,it can effectively guide the productivity evaluation of low porosity and low permeability reservoirs in the future.%孔隙度越高渗透性越好的观点一直指导中-高孔隙度渗透率储层生产作业,但在低孔隙度低渗透率储层中常出现与该观点相违背的现象,孔隙度基本一致的储层产能差异非常大.通过256块岩样实验发现,低孔隙度低渗透率岩石的渗透率受总孔隙度控制作用不明显,传统的孔隙度—渗透率计算方法已经不再适用;低孔隙度低渗透率岩石渗透率主要受控于孔隙结构,不同孔径尺寸孔隙对渗透率贡献不同,渗透率大小受孔径尺寸大小及其相对应孔隙的比例高低共同控制.提出利用核磁共振测井刻画孔径尺寸区间,根据岩石压汞实验中的孔隙分布直方图数据,参

  8. Permeability Description by Characteristic Length, Tortuosity, Constriction and Porosity

    Berg, Carl Fredrik


    In this article we investigate the permeability of a porous medium as given in Darcy's law. The permeability is described by an effective hydraulic pore radius in the porous medium, the fluctuation in local hydraulic pore radii, the length of streamlines, and the fractional volume conducting flow. The effective hydraulic pore radius is related to a characteristic hydraulic length, the fluctuation in local hydraulic radii is related to a constriction factor, the length of streamlines is characterized by a tortuosity, and the fractional volume conducting flow from inlet to outlet is described by an effective porosity. The characteristic length, the constriction factor, the tortuosity and the effective porosity are thus intrinsic descriptors of the pore structure relative to direction. We show that the combined effect of our pore structure description fully describes the permeability of a porous medium. The theory is applied to idealized porous media, where it reproduces Darcy's law for fluid flow derived from t...

  9. Recovery of Porosity and Permeability for High Plasticity Clays

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...... the clay will expand to an even higher porosity....

  10. Porosity, permeability, and their relationship in granite, basalt, and tuff


    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report.

  11. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.


    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  12. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Hubert M. Quinn


    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  13. Permeability Evolution and the Mechanisms of Porosity Change (Invited)

    Zhu, W.; Gribbin, J. L.; Tivey, M. K.


    Understanding subsurface fluid flow is of critical importance to such geological and engineering applications as faulting mechanics, hydrothermal venting and resource recovery. Mechanical, chemical and thermal loads can significantly alter microscopic pore geometry and thus affect macroscopic permeability. Recently, we measured the permeability and porosity of massive anhydrite deposits recovered from various seafloor hydrothermal vent fields. Together, these deposits comprise anhydrite samples that have undergone different stages of formation. For anhydrite samples with porosities greater than 5%, the dependence of permeability to porosity change is best characterized by a power-law relationship with an exponent n~9. At porosities less than 5%, a much gentler trend of n~1 is observed. These permeability-porosity relationships (PPRs) in anhydrite deposits are in stark contrast to those of Fontainebleau sandstone, a quartz arenite with various degrees of quartz cementation. Fontainebleau sandstone shows a power-law dependence of PPR with an exponent of n~3 for samples with porosities greater than 7%, and a much steeper trend of n~8 at low porosities [Bourbie and Zinszner, 1985]. Microstructural analysis and numerical models suggest that the significant loss in pore connectivity below 7% is responsible for the steeper PPR trend in Fontainebleau sandstone [Zhu et al., 1995]. In anhydrite deposits, petrographic analyses show evidence for both dissolution and precipitation, consistent with the observed PPRs resulting from pore-size controlled solubility. Precipitation of anhydrite takes place preferentially in large pores within the anhydrite deposits, with precipitation limited in small pores, which is proposed to be due to the change in interfacial energy of the growing crystal (e.g., as described by Emmanuel and Ague [2009]). With abundant large voids in high porosity anhydrite samples, the growth of sulfates would result in a drastic loss of pore connectivity and

  14. Investigating the Relationship between Knitted Fabric Porosity and Light Permeability

    Manoj Kumar Imrith


    Full Text Available The present paper attempts to investigate the relationship between fabric porosity and light permeability of the knitted structures, namely, rib 1 × 1, rib 2 × 1, single jersey, and plain structure. The rationale is that pores (in a fabric would allow light to pass through but at the same time provide a quantitative assessment of the UV light permeability of the knitted fabrics, an indication of the protective capacity of the fabrics against UV radiation. The porosity and corresponding light permeability of the knitted structures were measured after varying the following knitting parameters: stitch length, stitch density, and tension on the machine. Furthermore, this work has enabled the development of an apparatus that can measure the amount of light transmitted through the knitted fabrics. The results generated by the equipment were validated through the use of regression equations.

  15. Permeability, porosity and compressive strength of self-compacting concrete

    Valcuende, M.O.


    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  16. Wave propagation in double-porosity dual-permeability materials: Velocity and attenuation

    Sharma, M. D.


    This study considers the propagation of harmonic plane waves in a double-porosity solid saturated by a viscous fluid. Two different porosities are supported with different permeabilities to facilitate the wave-induced fluid-flow in this composite material. The variation of the fluid content in the pores due to the wave-induced flow is expressed in terms of the dilatation of constituent particles in the porous aggregate. This fluid-flow can be considered through the constitutive relations with modified anelastic coefficients. The modified coefficients, being frequency dependent and complex, illustrate the dispersive and anelastic behaviour of double-porosity dual-permeability materials. Relevant equations of motion are solved to explain the propagation of three longitudinal waves and one transverse wave in double-porosity dual-permeability medium. A numerical example is considered to illustrate dispersion in velocity and attenuation of the four waves. Effect of wave-induced fluid-flow is analysed with changes in wave-inhomogeneity, pore-fluid viscosity and double-porosity structure.

  17. Elastic wave propagation and attenuation in a double-porosity dual-permeability medium

    Berryman, J.G.; Wang, H.F.


    To account for large-volume low-permeability storage porosity and low-volume high-permeability fracture/crack porosity in oil and gas reservoirs, phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. The generalization from a single porosity model increases the number of independent inertial coefficients from three to six, the number of independent drag coefficients from three to six, and the number of independent stress-strain coefficients from three to six for an isotropic applied stress and assumed isotropy of the medium. The analysis leading to physical interpretations of the inertial and drag coefficients is relatively straightforward, whereas that for the stress-strain coefficients is more tedious. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most relevant for wave propagation, and in this case both matrix porosity and fractures are expected to behave in an undrained fashion, although our analysis makes no assumptions in this regard. For the very long times more relevant for reservoir drawdown, the double porosity medium behaves as an equivalent single porosity medium. At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt flow under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is

  18. Calibrating NMR measured porosity/permeability relationships using µXRCT measurements

    Mason, H. E.; Smith, M. M.; Hao, Y.; Carroll, S.


    Carbonate reservoirs have garnered interest for potential use in carbon capture and storage (CCS) activities. To be suitable for long term carbon dioxide (CO2) storage, they must possess sufficient permeability either through existing connected pore space, or due to reactivity with CO2-acidified fluids. Adequate assessment of the target formation permeability will rely on accurate downhole well-logging tools. Primary among these tools is nuclear magnetic resonance (NMR) well-logging. Application of this tool relies on our ability to relate the porosity and pore distributions measured by NMR to permeability. These methods are challenging to apply in carbonate reservoirs with complex mineralogies where pores sizes often span orders of magnitudes. We have assessed the ability of NMR methods to measure permeability using rocks from the Weyburn-Midale CO2 Monitoring and Storage Project Saskatchewan, Canada and the Arbuckle injection zone at the Wellington CO2 storage demonstration site, Kansas. Results of laboratory measured permeability values of these rocks indicate that the standard NMR methods for predicting permeability values can produce values off by orders of magnitude within the same flow units. In this presentation, we present the results of a combined NMR and micro X-ray computed tomography (μXRCT) study of these rock cores to better estimate downhole permeability values of carbonate rocks. The results of the study suggest that the dramatic differences in predicted permeability values derive from large differences in the matrix porosity, pore network tortuosities, and mineralogy of the various rock units. We will present new laboratory measurements, and methodologies aimed at producing a universal NMR calibration procedure for determining permeability in carbonate reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Porous structure of membranes of an acrylonitrile copolymer. Porosity, ^1H-NMR permeability

    Viallat, A.; Margulies, M. M.


    Nanoporous polymer membranes (porosity φ≈ 0.7) used for dialysis are studied from NMR relaxation times of water confined in the pore space. Fast interpore water diffusion is observed. Two structural parameters are evidenced: i) a reduced NMR relaxation time, tau, which reflects the width of the pore-size distribution; ii) the average polymer-grain size of the solid matrix deduced from NMR experiments performed on membranes partially filled by water. A relation is found between the ratio k/tau^2, where k is the permeability to water and the porosity. This relation is in qualitative agreement with numerical simulations reported in the literature on low-porosity systems and with experimental results obtained for sedimentary rocks and for fused glass model systems. It supports the idea that tau is the relevant structural parameter to describe convective transport in a wide class of porous systems.

  20. Evaluation of heat and water flow in porosity permeable horizons

    Pasquale, Vincenzo; Verdoya, Massimo; Chiozzi, Paolo


    temperatures contain a discernible climatic signal, explainable with an increase of ground surface temperature over the past few decades. This could have caused a positive shift in the temperature-depth data. Thus, temperature data used in this study were preliminarily treated for such a climatic noise. Our approach assumes that water volumetric heat capacity and bulk thermal conductivity of the porosity permeable horizons are constant along the section of the borehole where groundwater movement occurs. Under natural conditions, this is not always the case, and curvatures in temperature profiles can be also explained by variation of such parameters. However, for the investigated boreholes, thermal conductivity measurements show a variation not larger than ten per cent about the average, thus excluding that distortion in temperature-depth curves is due to lithological change. This implies an uncertainty on the hydrothermal parameters of the same order of magnitude. Moreover, the temperature and pressure dependence of thermal parameters can be neglected, as the investigated depth range is relatively shallow.

  1. Analysis of Porosity Effects on Unsteady Stretching Permeable Sheet

    Phool SINGH


    Full Text Available The aim of this paper is to analyze two-dimensional unsteady flow of a viscous incompressible fluid about a stagnation point on a permeable stretching sheet in presence of a time dependent free stream velocity. Fluid is considered in the porous media with radiation effect. The Rosseland approximation is used to model the radiative heat transfer. Using a time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. The numerical solutions of these equations are obtained by using the Runge-Kutta Fehlberg method with the help of shooting technique. In the present work, the effect of porosity parameter, radiation parameter and suction parameter on flow and heat transfer characteristics are discussed. The skin-friction coefficient and the Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.doi:10.14456/WJST.2014.13

  2. Porosities and permeability of Paleozoic sandstones derived from Nuclear Magnetic Resonance measurements

    Jorand, Rachel; Koch, Andreas; Mohnke, Oliver; Klitzsch, Norbert; Clauser, Christoph


    A major obstacle for an increased use of geothermal energy often lies in the high success risk for the development of geothermal reservoirs due to the unknown rock properties. In general, the ranges of porosity and permeability in existing compilations of rock properties are too large to be useful to constrain properties for specific sites. Usually, conservative assumptions are made about these properties, resulting in greater drilling depth and increased exploration cost. In this study, data from direct measurements on thirty-three sandstones from different borehole locations and depths enable to derive statistical values of the desired hydraulic properties for selected sandstones in the German subsurface. We used Nuclear Magnetic Resonance (NMR) measurements to estimate the porosity and the permeability of sandstones from North Rhine-Westphalia (Germany). Besides NMR standard poro-perm-measurements were performed on the samples to obtain independent data sets for comparison. Porosity was measured by Archimedes principle and pore-size distribution by mercury injection. Also permeability was determined by gas flow measurements taking into account the Klinkenberg effect. The porosities of the studied samples vary between 0 % and 16 %. NMR yields suitable porosity results whereas the porosities obtain by T1 relaxation measurements fit better to the Archimedes porosities than the porosities obtained by T2 relaxation measurements. For porosities up to 10 %, T2 relaxation measurements overestimate the porosity. Furthermore, we calculate the effective porosity using a cutoff time of 3 ms. This effective porosity agrees much better with Archimedes porosities, particularly for the low porosity samples. The gas permeability of studied sandstones varies between 10-21 m2 and 2.10-17 m2. A large number of empirical relationships between relaxation times and gas permeability have been published. We have applied several of these relationships to select the appropriate law for

  3. Resistivity response to the porosity and permeability of low rank coal

    Wang Gang⇑; Qin Yong; Shen Jian; Hu Yuanyuan; Liu Donghai; Zhao Long


    Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures. Specifically, we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments. The results indicated that coal resistivity decreases exponen-tially with increasing pressure. Increasing the temperature decreases the resistivity. The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher. The resistivity of dry coal samples was linearly related to/m. Increasing the temperature decreased the cementation expo-nent (m). Increasing the confining pressure exponentially decreases the porosity. Decreasing the pressure increases the resistivity and porosity for a constant temperature. Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure. Based on the Archie formula, we obtained the coupling relationship between coal resistivity and perme-ability for Laojunmiao coal samples at different temperatures and confining pressures.

  4. Image Analysis and Estimation of Porosity and Permeability of Arnager Greensand, Upper Cretaceous, Denmark

    Solymar, Mikael; Fabricius, Ida


    phases, pores and particles, and the specific surface of the solid phase was calculated. We used the Kozeny Equation to calculate the permeability. The petrophysical properties, porosity and permeability obtained from image analysis were compared to results using laboratory methods. The 150x...... magnification of the image can not resolve the microporosity within the clay fraction, so we suggest that the imaged porosity at 150x magnification is close to the effective porosity for permeability assessment. The Heporosity, however, represents the total porosity of the Arnager Greensand. For permeability......Arnager Greensand consists of unconsolidated, poorly sorted fine-grained, glauconitic quartz sand, often silty or clayey, with a few horizons of cemented coarse-grained sand. Samples from the upper part of the Arnager Greensand were used for this study to estimate permeability from microscopic...

  5. Estimating permeability of carbonate rocks from porosity and v(p)/v(s)

    Fabricius, Ida Lykke; Baechle, G.; Eberli, G.P.


    We present a method for predicting permeability from sonic and density data. The method removes the porosity effect on the ratio upsilon(p)/upsilon(s), of dry rock, and it addresses the specific surface as an indirect measure of permeability. We look at ultrasonic data, porosity......, and the permeability of 114 carbonate core plugs. In doing so, we establish an empirical relationship between the specific surface of the solid phase (as calculated by Kozeny's equation) and upsilon(p)/upsilon(s) (linearly transformed to remove the porosity effect). One must view the specific surface derived by using...... settings. We find a reasonable match between predicted and measured permeability. The match is better for samples with carbonate mud-filled depositional textures than for carbonate mud-poor depositional textures. Diagenetic factors such as vuggy porosity decrease the predictability of permeability....

  6. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou


    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately.

  7. Modeling flow in porous media with double porosity/permeability: Mathematical model, properties, and analytical solutions

    Nakshatrala, K B; Ballarini, R


    Geo-materials such as vuggy carbonates are known to exhibit multiple spatial scales. A common manifestation of spatial scales is the presence of (at least) two different scales of pores, which is commonly referred to as double porosity. To complicate things, the pore-network at each scale exhibits different permeability, and these networks are connected through fissure and conduits. Although some models are available in the literature, they lack a strong theoretical basis. This paper aims to fill this lacuna by providing the much needed theoretical foundations of the flow in porous media which exhibit double porosity/permeability. We first obtain a mathematical model for double porosity/permeability using the maximization of rate of dissipation hypothesis, and thereby providing a firm thermodynamic underpinning. We then present, along with mathematical proofs, several important mathematical properties that the solutions to the double porosity/permeability model satisfy. These properties are important in their...

  8. Steam-water relative permeability

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)


    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  9. Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios

    Beckingham, L. E.


    Mineral dissolution and precipitation reactions, such as those resulting from CO2 injection in saline aquifers, can impact flow and transport in porous media and alter porosity and permeability. While porosity, in general, increases with mineral dissolution and decreases with precipitation, permeability alterations are complex and predicative capabilities remain limited. The locations of geochemical reactions in individual pores and throats and in the greater pore network control permeability evolution. Experimental studies have observed geochemical reactions to occur uniformly or non-uniformly, controlled, for example, by pore size, PeDa, or mineral distribution. For a given change in porosity, this may result in a wide range of permeability alterations. Macroscopic relationships that predict permeability evolutions resulting from these pore-scale reactions are needed for reactive transport simulations at the core-to-field scale. Currently, empirical relationships such as the Kozney-Carman equation are widely used to predict permeability evolution. These relationships, however, are unable to predict permeability alterations resulting from non-uniform pore network structure modifications. This work will use pore network models to investigate variations in sandstone permeability resulting from a range of uniform and heterogeneous dissolution and precipitation patterns and extents and evaluate the validity of existing porosity-permeability relationships under these scenarios. This will include mineral dissolution and precipitation occurring uniformly in pores and throats in addition to pore and pore-throat size, mineral surface, and preferential flow path dependent reactions.

  10. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media

    Tan, Xiao-Hua, E-mail:; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou


    Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately.

  11. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.


    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  12. A multiple fractal model for estimating permeability of dual-porosity media

    Li, Bo; Liu, Richeng; Jiang, Yujing


    A multiple fractal model that considers the fractal properties of both porous matrices and fracture networks is proposed for the permeability of dual-porosity media embedded with randomly distributed fractures. In this model, the aperture distribution is verified to follow the fractal scaling law, and the porous matrix is assumed to comprise a bundle of tortuous capillaries that also follow the fractal scaling law. Analytical expressions for fractal aperture distribution, total flow rate, total equivalent permeability, and dimensionless permeability are established, where the dimensionless permeability is defined as the ratio of permeability of the porous matrices to that of the fracture networks. The dimensionless permeability is closely correlated to the structural parameters (i.e., α, θ, Dtf, Dtp, De, Dp, emax, λmax) of the dual-porosity media, and it is more sensitive to the fractal dimension for the size distribution of fracture aperture than to that for the size distribution of pore/capillary diameter. The maximum pore/capillary diameter has a greater impact on the dimensionless permeability than that of the maximum fracture aperture. The dimensionless permeability of fracture networks constructed by the fractal aperture distribution has close values with those of models with lognormal aperture distribution. The proposed multiple fractal model does not involve any empirical constants that do not have clear physical meanings, which could serve as a quick estimation method for assessing permeability of dual-porosity media.

  13. Permeability porosity relationships (K, Phi cut-off)

    Djettou, F.; Reda, H. [Sonatrach, Algiers (Algeria)


    Several reservoirs of Lower Devonian in Ghadames basin present porosities greater than 10 Pu, but during the test they are rather impermeable. It seems that this phenomena extends to BERKINE and Rhourd Messaoud areas. This seriously affect the estimation of recovery reserves. The best we can do is to study and try to understand reservoir problems. The method we choose is based on statistical analysis of test results and their comparison with core and log measurements. It concerns mainly cummulative curves of productive and non-productive tests (dry test). This involves about 20 wells where are can define: Siegenian with: Fine grained in BBK and ROM Coarse grained toward BRN - Emsian is rather homogeneous in the region. The sand cut-off porosity is greater than 11 Pu. However the reservoir can`t produce itself then we can not take account in reserve estimation. In conclusion, a sandy reservoir of Lower Devonian in Ghadames basin may be very porous (11-12%) and impermeable while in the other cases reservoirs can produce with porosity of 7 or 8 Po. However a HC definition based on cut-off porosity in Ghadames basin should be done before net pay an recovery reserves estimation.

  14. Relative permeability through fractures

    Diomampo, Gracel, P.


    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  15. Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test

    Ghabezloo, Siavash; Saint-Marc, Jérémie; 10.1016/j.ijrmms.2008.10.003


    A method is presented for the evaluation of the permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed to evaluate the permeability and its evolution with porosity change. The effect of creep of the sample during the test on the measured pore pressure and volume change is taken into account in the analysis. This approach permits to calibrate a power law permeability-porosity relationship for the tested hardened cement paste. The porosity sensitivity exponent of the power...

  16. 低孔隙度低渗透率岩石孔隙度与渗透率关系研究%Study on the relationship between porosity and permeability of low porosity and low permeability rocks



    Some research in order to better master rock permeability and porosity of rules. In this paper,low porosity and low permeability rock porosity and permeability relationship.%为了能够更好的掌握岩石渗透率同孔隙度间的规律,本文就低孔隙度低渗透率岩石孔隙度与渗透率关系进行一定的研究。

  17. Permeability estimation from log-derived porosity II. Via co-kriging

    Fang, Jen Ho; Pu, Zhi Wei (Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geology)


    In paper (I) (given at this meeting), the authors applied fuzzy regression to the problem of permeability estimation from porosity-log data. In this paper, they introduce another novel approach, co-kriging. Co-kriging is a multivariate geostatistical technique designed for characterizing joint spatial correlations between pairs of variables (log-derived porosity vs. core-derived permeability in the context of this paper). In other words, co-kriging yields estimates that use not only the information from direct measurements of the variables being estimated, but also the information from measurements of a second variable. Thus, co-kriging can be used to predict permeability at uncored wells. This is a powerful technique because they usually have more log data than core data. By making use of co-kriging they can make good use of the log-derived porosity data. Results of the study using the data from Chunchula field illustrate the power of this technique.

  18. Permeability, compressibility and porosity of Jurassic shale from the Norwegian-Danish Basin

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette


    . Porosity measurements obtained using helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance (NMR) techniques on the shale samples show that MICP porosity is 6-10% lower than HPMI or NMR porosity. Compressibility, from uniaxial loading......, and elastic wave velocities were measured simultaneously on saturated samples under drained conditions at room temperature. Uniaxial loading tests indicate that shale is significantly stiffer in situ than is normally assumed in geotechnical modelling. Permeability can be predicted from elastic moduli......, and from combined MICP and NMR data. The permeability predicted from Brunauer-Emmett-Teller (BET)-specific surface-area measurements using Kozeny's formulation for these shales, being rich in silt and kaolinite, falls in the same order of magnitude as permeability measured from constant rate of strain (CRS...

  19. Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks

    Morrow, C. A.; Lockner, D. A.


    Permeability, porosity, and volumetric strain measurements were conducted on granite cores obtained at depths of 0.7 to 1.6 km from the Illinois UPH 3 drillhole at effective confining pressures from 5 to 100 MPa. Initial permeabilities were in the range of 10-17 to 10-19 m2 and dropped rapidly with applied pressure to values between 10-20 and 10-24 m2 at 100 MPa, typical of other deep granite core samples. These values are several decades lower than equivalent weathered surface granites at comparable effective confining pressures, where weathering products in cracks and pores inhibit crack closure with applied pressure. Permeabilities of the Illinois cores were inversely related to sample depth, suggesting that stress relief and thermal microfractures induced during core retrieval dominated the fluid flow. Thus these samples provide an upper bound on in situ matrix permeability values. A comparison of core permeability from UPH 3 and other deep drillholes shows that stress relief damage can often dominate laboratory permeability measurements. We conclude that it may be difficult to make meaningful estimates of in situ permeability based on either borehole samples (possible damage during retrieval) or surface-derived analogs (altered by weathering). Volumetric strain determined from porosity measurements was compared with differential strain analysis (DSA) data reported by other investigators on samples from the same depths in the drillhole. Our strain measurements (0.002 to 0.005 at 100 MPa) were nearly twice as large as the DSA values, probably because of the crack-enhancing effects of fluids present in our samples that are absent in the dry DSA cores, as well as other time-dependent deformation effects. This difference in observed strain magnitudes between the two measurement methods may be an important consideration if strain and/or porosity data from deep core samples are used in models of stress, fluid circulation, and excess fluid pressure generation in the

  20. Air-Filled porosity and permeability relationships during solid-waste fermentation

    Richard, T.L.; Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.


    An experimental apparatus was constructed to measure the structural parameters of organic porous media, i.,e. mechanical strength, air-filled porosity, air permeability, and the Ergun particle size. These parameters are critical to the engineering of aerobic bioconversion systems and were measured

  1. Quantifying porosity and permeability of fractured carbonates and fault rocks in natural groundwater reservoirs

    Pirmoradi, Reza; Wolfmayr, Mariella; Bauer, Helene; Decker, Kurt


    This study presents porosity and permeability data for a suite of different carbonate rocks from two major groundwater reservoirs in eastern Austria that supply more than 60% of Vienna`s drinking water. Data includes a set of lithologically different, unfractured host rocks, fractured rocks with variable fracture intensities, and fault rocks such as dilation breccias, different cataclasites and dissolution-precipitation fault rocks. Fault rock properties are of particular importance, since fault zones play an important role in the hydrogeology of the reservoirs. The reservoir rocks are exposed at two major alpine karst plateaus in the Northern Calcareous Alps. They comprise of various Triassic calcareous strata of more than 2 km total thickness that reflect facies differentiation since Anisian times. Rocks are multiply deformed resulting in a partly dense network of fractures and faults. Faults differ in scale, fault rock content, and fault rock volumes. Methods used to quantify the porosity and permeability of samples include a standard industry procedure that uses the weight of water saturated samples under hydrostatic uplift and in air to determine the total effective (matrix and fracture) porosity of rocks, measurements on plugs with a fully automated gas porosity- and permeameter using N2 gas infiltrating plugs under a defined confining pressure (Coreval Poro 700 by Vinci technologies), and percolation tests. The latter were conducted in the field along well known fault zones in order to test the differences in fractured rock permeability in situ and on a representative volume, which is not ensured with plug measurements. To calculate hydraulic conductivity by the Darcy equation the measured elapsed time for infiltrating a standard volume of water into a small borehole has been used. In general, undisturbed host rock samples are all of low porosity (average around 1%). The open porosity of the undisturbed rocks belonging to diverse formations vary from 0

  2. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s Large Gas Provinces of low porosity and permeability


    Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity and permeability are mainly as follows: large area, low abundance, small gas pools and large gas provinces; widely distributed excellent hydrocarbon source rocks with closely contacted source-reservoir-cap association; development mainly in large continental depressions or in paralic shallow-river delta systems; many kinds of traps coexisting in large areas, dominantly para-layered lithologic, digenetic and capillary pressure traps; double fluid flow mechanisms of Darcy flow and non-Darcy flow; complicated gas and water relations; and having the resource distribution of highly productive "sweet spots", banding concentration, and macroscopically large areas integrated. The main controlling factors of large sandstone gas provinces with low porosity and permeability are stable dynamic backgrounds and gentle structural frameworks which control the extensive distribution of alternate (interbedded) sandstones and mudstones; weak hydropower of large gentle lake basins controlling the formation of discontinuous, low porosity and permeability reservoirs in shallow-water deltas; regionally differential diagenesis and no homogeneous digenetic facies controlling the development of favorable reservoirs and digenetic traps; and weak and dispersive reservoir-forming dynamic forces leading to the widely distributed small traps with low abundance. Low porosity and permeability gas provinces with different trap types have different formation mechanisms which include fluid diversion pressure difference interactive mechanism of lithologic-trap gas accumulations, separated differential collection mechanism of digenetic-trap gas accumulations, and the Non-Darcy flow mechanism of capillary-pressure gas accumulations.

  3. Geolosic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China's Large Gas Provinces of low porosity and permeability

    ZOU CaiNeng; TAO ShiZhen; ZHANG XiangXiang; HE DongBo; ZHOU ChuanMin; GAO XiaoHui


    Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity and permeability are mainly as follows: large area, low abundance, small gas pools and large gas provinces; widely distributed excellent hydrocarbon source rocks with closely contacted source-reservoir-cap association; development mainly in large continental depressions or in paralic shallow-river delta systems; many kinds of traps coexisting in large areas, dominantly para-layered lithologic, digenetic and capillary pressure traps; double fluid flow mechanisms of Darcy flow and non-Darcy flow; complicated gas and water relations; and having the resource distribution of highly productive "sweet spots", banding concentration, and macroscopically large areas integrated. The main controlling factors of large sandstone gas provinces with low porosity and permeability are stable dynamic backgrounds and gentle structural frameworks which control the extensive distribution of alternate (interbedded) sandstones and mudstones; weak hydropower of large gentle lake basins controlling the formation of discontinuous, low porosity and permeability reservoirs in shallow-water del-tas; regionally differential diagenesis and no homogeneous digenetic facies controlling the development of favorable reservoirs and digenetic traps; and weak and dispersive reservoir-forming dynamic forces leading to the widely distributed small traps with low abundance. Low porosity and permeability gas provinces with different trap types have different formation mechanisms which include fluid diversion pressure difference interactive mechanism of lithologic-trap gas accumulations, separated differential collection mechanism of digenetic-trap gas accumulations, and the Non-Darcy flow mechanism of capillary-pressure gas accumulations.

  4. Improved Porosity and Permeability Models with Coal Matrix Block Deformation Effect

    Zhou, Yinbo; Li, Zenghua; Yang, Yongliang; Zhang, Lanjun; Qi, Qiangqiang; Si, Leilei; Li, Jinhu


    Coal permeability is an important parameter in coalbed methane (CBM) exploration and greenhouse gas storage. A reasonable theoretical permeability model is helpful for analysing the influential factors of gas flowing in a coalbed. As an unconventional reservoir, the unique feature of a coal structure deformation determines the state of gas seepage. The matrix block and fracture change at the same time due to changes in the effective stress and adsorption; the porosity and permeability also change. Thus, the matrix block deformation must be ignored in the theoretical model. Based on the cubic model, we analysed the characteristics of matrix block deformation and fracture deformation. The new models were developed with the change in matrix block width a. We compared the new models with other models, such as the Palmer-Manson (P-M) model and the Shi-Durucan (S-D) model, and used a constant confining stress. By matching the experimental data, our model matches quite well and accurately predicts the evolution of permeability. The sorption-induced strain coefficient f differs between the strongly adsorbing gases and weakly adsorbing gases because the matrix block deformation is more sensitive for the weakly adsorbing gases and the coefficient f is larger. The cubic relationship between porosity and permeability overlooks the importance of the matrix block deformation. In our model, the matrix block deformation suppresses the permeability ratio growth. With a constant confining stress, the weight of the matrix block deformation for the strongly adsorbing gases is larger than that for weakly adsorbing gases. The weight values increase as the pore pressure increases. It can be concluded that the matrix block deformation is an important phenomenon for researching coal permeability and can be crucial for the prediction of CBM production due to the change in permeability.

  5. Changes in porosity, permeability and surface area during rock dissolution: effects of mineralogical heterogeneity

    Min, Ting; Chen, Li; Kang, Qinjun; Tao, Wen-Quan


    Effects of heterogeneity of mineral distribution and reaction rate on the rock dissolution process are investigated using a pore-scale reactive transport model based on the lattice Boltzmann method. Coupled fluid flow, species transport, chemical reaction and solid structure alternation due to dissolution are simulated. Effects of mineral distributions and chemical heterogeneity on the dissolution behaviors and evolutions of hydrologic properties are studied under different reactive transport conditions. Simulation results show that the coupling between advection, diffusion and reaction as well as the mineralogical heterogeneity leads to complex reactive transport behaviors and complicated temporal evolutions of hydrologic properties including porosity, permeability and reactive surface. Diverse relationships between surface area and volume are predicted, which cannot be described by simple models such as the spherical-grain model. Porosity-permeability relationships also differ under different mineral distri...

  6. Diagenesis characteristics and their influence on Porosity and Permeability of sandstone from Yingcheng Formation in Jinshan field

    ZHANG Ruiyao,GAO Fuhong; ZHANG Zhongyue


    In order to understand the diagenesis and its influence on Porosity and Permeability of sandstones from Yingcheng Formation in Jinshan field,aPPlying thin sections,casting and scanning electron microscoPe, the authors studied PetrograPhy,diagenesis,Porosity and Permeability of Yingcheng Formation sandstone reser-voir. The results show that the reservoir of Yingcheng Formation is mainly comPosed of lithic arkoses. Sand-stones exPerienced comPaction,Pressolution,cementation,metasomatism and dissolution. The Primary Pores of the sandstones are undeveloPed;most of Pores are the secondary Pores,which are mainly intragranular dissolu-tion Pores in feldsPar and debris. The comPaction and cementation reduced the Primary Pores in sandstones,the Porosity and Permeability decreased;while the dissolution formed the secondary Pores,resulting in the Porosity and Permeability increase. Due to comPaction and cementation,the Porosity and Permeability are reduced with increasing of dePth. There exists an abnormal enlargement of Porosity and Permeability within a dePth range 2 310-2 450 m. In combination with analysis of Petrology,the dissolution of feldsPar and debris is most deve-loPed in the dePth range. Therefore,comPaction,cementation and dissolution are the imPortant factors which affect the Porosity and Permeability of sandstones.

  7. Reservoir characteristics and genesis of high-porosity and high-permeability reservoirs in Tarim Basin


    Based on detailed studies, this paper proposes that in the Tarim Basin, hydrocarbon reservoirs widespread either in vertical sequences or in plane and high-porosity and high-permeability reservoirs are developed all over the basin. However, obvious difference and heterogeneity exist among different kinds of reservoirs. The lithologic characteristics, reservoir space types and reservoir properties in various strata have been probed. The result indicates that although the Paleozoic carbonates have been deeply buried for a long period, high-quality reservoirs with the porosity of up to 5%-8% (12% as the maximum) and the permeability of 10×10?3-100×10?3 ?m2 (1000×10?3 ?m2 as the maximum) can be found in certain areas. These include the area with the development of reefs and carbonate beaches, the weathered-crust buried-hill belts that have undergone the long-term exposure, weathering and leaching, the area with the development of dolomitization, and those areas that have experienced the resolution of carbonic acid and organic acid generated by the maturity of the organic matter. Finally, the genesis of the high-porosity and high-permeability reservoirs in deep-buried conditions (with the depth more than 3500 m) have been investigated thoroughly.




    Over 270 single-hole (Guzman et al., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-hole tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nominal support scale of about 1 m. The corresponding log permeability data exhibit spatial behavior characteristic of a random fractal and yield a kriged estimate of how these 1-m scale log permeabilities vary in three-dimensional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a three-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure records from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach amounts to three-dimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume

  9. Observation and analysis of a pronounced permeability and porosity scale-effect in unsaturated fractured tuff

    Illman, W. A. (Walter A.); Hyun, Y. (Yunjung); Neuman, S. P.; Di Federico, V. (Vittorio); Tartakovsky, D. M. (Daniel M.); Vesselinov, V. V. (Velimir V.)


    Over 270 single-hole (Guzman et d., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-Role tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nonind support scale of about 1 m. The corresponding log permeability data exhibit. spatial behavior characteristic of a random fractal and yield a kriged estimate (Fig. 1) of how these 1-m scale log permeabilities vary in three-dimemional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a thee-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure 1n:ccirds from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach mounts to three-tlimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock

  10. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez


    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  11. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L


    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior.

  12. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field, Tarim Basin, China

    YU BingSong; DONG HaiLiang; RUAN Zhuang


    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are collected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chemistry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are inversely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a systematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630-3695 m), and to the CaCl2 type at the greater depth (3728-3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concentration, the total inorganic carbon concentration (∑CO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2]-[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermediate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and

  13. Analysis of lithofacies, petrology/petrography, and porosity/permeability of the lower green river formation: Willow Creek

    Morris, T.H., Garner, A.


    The 849.16 meter stratigraphic section was measured during consecutive spring field seasons. This section represents the ``lower`` Green River Formation which on the southwest flank of the basin rests stratigraphically above the dominant red beds of the Colton Member of the Green River Formation. The transition from Colton rocks to Green River rocks is gradual in the study area. Petrographic classification and textural analysis has been completed on 33 thin sections. These thin sections represent the volummetric majority of rock types in the measured section as well as few less common but very interesting lithofacies. Core plugs were taken from every lithology that was petrologically analyzed. Permeabilities were analyzed using a pressure transducer in a Hassler sleeve. Porosities from the lab were compared to point count porosities. In general there was good agreement and where there is some disagreement an explanation is given in the petrologic description. It appears that the sandstone lithofacies have much greater interparticle porosity. This is important to the study because these sandstones likely have greater hydrocarbon storage capacity than do the carbonate rocks. The data from this report have not been fully interpreted. There are several items relative to deposition facies interpretations and reservoir quality studies that are not as yet accomplished.

  14. Carbonate porosity versus depth: a predictable relation for south Florida.

    Schmoker, J.W.; Halley, R.B.


    Examines the porosity of limestones and dolomites in the south Florida basin. Porosity data are derived from wire-line measurements which sample large volumes of rock, relative to petrographic methods, and can be examined at vertical scales approaching those of aquifers and hydrocarbon reservoirs. Investigation depths range from the surface to about 5500m. Curves of porosity versus depth, reflecting large-scale porosity-loss processes in the subsurface, are derived for a composite carbonate section and for carbonate strata of different ages and compositions.-from Authors

  15. Evolution of Mudstone Porosity, Permeability, and Microstructure in the Presence of Microorganisms During Vertical Compression

    Mills, T.; Reece, J. S.


    Here we investigate the influence of microbial activity on the mechanical and transport properties of mudstones during early diagenesis. Despite the proven presence of microbial communities in marine sediments to depths of >500 meters below sea floor (mbsf), little is known about the interactions between microorganisms and sediments, especially during the early stages of burial and compression. To characterize and quantify the impact of microbial activity on mudstone properties, we compare natural mudstone samples treated with iron reducing bacteria Shewanella Oneidensis MR-1 and those without bacteria. Two bulk mudstones are experimentally prepared using sediments from Integrated Ocean Drilling Program Sites U1319 and U1324 in the Gulf of Mexico. The sediments originated from 4-13 mbsf in the Brazos-Trinity Basin and from three depth intervals (3-14 mbsf, 23-32 mbsf, and 493-502 mbsf) in the Ursa Basin. The sediments are dried and ground to clay- and silt-sized particles and homogenized into two natural mudstone powders. These powders are then used to make reproducible mudstone samples through a process called resedimentation, which replicates natural deposition and burial. Changes in microstructure, porosity, compressibility, and permeability are measured while the biotic (with bacteria) and abiotic (without bacteria) mudstones are being uniaxially compressed over several weeks to a maximum stress of 100 kPa. We anticipate that biofilm growth in pore spaces will decrease porosity, compressibility, and permeability, and the resultant microstructural changes created by microorganisms will be evident in high-resolution scanning electron microscope (SEM) images. Recognition of the micro-scale processes that take place during the early stages of mudstone diagenesis, especially those mediated by microbial activity, and their long-term effects on mudstone properties can lead to better identification and more effective production of unconventional hydrocarbon reservoirs.

  16. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry


    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  17. Dynamic up-scaling of relative permeability in chalk

    Frykman, P.; Lindgaard, H.F.


    This paper describes how fine-scale geo-statistic reservoir models can be utilised for the up-scaling of two-phase flow properties, including both relative permeability and capillary pressure function. The procedure is applied to a North Sea chalk carbonate reservoir example, which is a high-porosity/low-permeability reservoir type. The study focuses on waterflooding as the main recovery scheme and for the given flow regime in the reservoir. The main purpose of the paper is to demonstrate the use of dynamic multi-step up-scaling methods in the preparation of detailed geological information for full field reservoir simulation studies. (au) EFP-96. 39 refs.

  18. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong


    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  19. Porosity and permeability evolution of vesicular basalt reservoirs with increasing depth: constraints from the Big Island of Hawai'i

    Millett, John; Haskins, Eric; Thomas, Donald; Jerram, Dougal; Planke, Sverre; Healy, Dave; Kück, Jochem; Rossetti, Lucas; Farrell, Natalie; Pierdominici, Simona


    Volcanic reservoirs are becoming increasingly important in the targeting of petroleum, geothermal and water resources globally. However, key areas of uncertainty in relation to volcanic reservoir properties during burial in different settings remain. In this contribution, we present results from borehole logging and sampling operations within two fully cored c. 1.5 km deep boreholes, PTA2 and KMA1, from the Humúula saddle region on the Big Island of Hawai'i. The boreholes were drilled as part of the Humu'ula Groundwater Research Project (HGRP) between 2013-2016 and provide unique insights into the evolution of pore structure with increasing burial in a basaltic dominated lava sequence. The boreholes encounter mixed sequences of 'a'ā, pāhoehoe and transitional lava flows along with subsidiary intrusions and sediments from the shield to post-shield phases of Mauna Kea. Borehole wireline data including sonic, spectral gamma and Televiewer imagery were collected along with density, porosity, permeability and ultrasonic velocity laboratory measurements from core samples. A range of intra-facies were sampled for analysis from various depths within the two boreholes. By comparison with core data, the potential for high resolution Televiewer imaging to reveal spectacular intra-facies features including individual vesicles, vesicle segregations, 'a'ā rubble zones, intrusive contacts, and intricate pāhoehoe lava flow lobe morphologies is demonstrated. High quality core data enables the calibration of Televiewer facies enabling improved interpretation of volcanic reservoir features in the more common exploration scenario where core is absent. Laboratory results record the ability of natural vesicular basalt samples to host very high porosity (>50%) and permeability (>10 darcies) within lava flow top facies which we demonstrate are associated with vesicle coalescence and not micro-fractures. These properties may be maintained to depths of c. 1.5 km in regions of limited

  20. Porosity and Permeability of Round Top Mountain Rhyolite (Texas, USA Favor Coarse Crush Size for Rare Earth Element Heap Leach

    Lorraine Negron


    Full Text Available Water-saturation porosity and dye-penetration permeability measurements of Round Top Mountain rhyolite confirm that a ½-inch (13-mm crush size would permit efficient acid heap leaching of yttrium and heavy rare earth elements (YHREEs hosted in yttrofluorite, a YHREE-substituted variety of fluorite. Laboratory acid leaching has extracted up to 90% of the YHREEs. The bulk insoluble gangue mineralogy of the rhyolite, 90% to 95% quartz and feldspars, assures low acid consumption. Different crush sizes were weighed, soaked in water, and reweighed over time to determine water-penetration estimated porosity. Typical porosities were 1% to 2% for gray and 3% to 8% for pink varieties of Round Top rhyolite. The same samples were re-tested after soaking in dilute sulfuric to simulate heap leaching effects. Post-leach porosity favorably increased 15% in pink and 50% in gray varieties, due to internal mineral dissolution. Next, drops of water-based writing ink were placed on rhyolite slabs up to ~10 mm thick, and monitored over time for visual dye breakthrough to the lower side. Ink penetration through 0.5 to 2.5-mm-thick slabs was rapid, with breakthrough in minutes to a few hours. Pink rhyolite breakthrough was faster than gray. Thicker slabs, 4 to 10 mm, took hours to three days for breakthrough. Porosity and permeability of the Round Top rhyolite and acid solubility of the yttrofluorite host should permit liberation of YHREEs from the bulk rock by inexpensive heap leaching at a coarse and inexpensive nominal ½-inch (13-mm crush size. The rate-limiting step in heap leach extraction would be diffusion of acid into, and back-diffusion of dissolution products out of, the crushed particles. The exceptional porosity and permeability that we document at Round Top suggest that there may be other crystalline rock deposits that economically can be exploited by a coarse-crush bulk heap leach approach.

  1. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.


    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  2. Porosity and Velocity Relations of Grosmont Formation, Alberta, Canada

    Keehm, Y.; Hu, D.


    We present results on porosty-velocity relations of Grosmont formation, Alberta, Canada, which is one of largest bitumen carbonate reservoirs. Grosmont formation is divided into four units: LG; UG-1; UG-2; and UG-3 from the bottom. Two lower units are mainly imestone, while upper units are mostly dolomite with vuggy porosity and fractures, which makes the upper units be a good reservoir. Rock physics modeling was then performed to quantify porosity-velocity relations for the four units, which enables us to predict porosity from seismic data. To incorporate the pore-scale details in the modeling, we used DEM (differential effective medium) models. Two lower units are very similar in velocity-porosity domain, thus the relations can be represented by one velocity-porosity model, which is used as our reference model. For the UG-2 unit, we found that one model cannot represent the unit since the degree of fracturing are heterogeneous from location to location. We thus suggested three different DEM models for the UG-2 unit: vuggy-dominant; mildly-fractured; and heavily-fractured. The UG-3 units can be modeled with vuggy porosity, and fractures were not very noticeable. We also investigated the spatial variation of the UG-2 unit, and found that the degree of fracturing is generally proportional to the proximity to the unconformity boundary, where the fresh water invasion can be dominant. In conclusion, we proposed velocity-porosity relations for the four units in Grosmont formation, and believe that these models can help to characterize the reservoir quality. In addition, since the proximity of reservoir to the unconformity boundary highly affects the degree of fracturing, a careful analysis of spatial variation would be essential for the successful characterization of Grosmont formation. Acknowledgement: This work was supported by the Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government

  3. Accurate determination of characteristic relative permeability curves

    Krause, Michael H.; Benson, Sally M.


    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  4. Chemical dissolution-front instability associated with water-rock reactions in groundwater hydrology: Analyses of porosity-permeability relationship effects

    Zhao, Chongbin; Hobbs, B. E.; Ord, A.


    Because dissolution of rocks may create and enhance groundwater flow channels, the chemical dissolution-front instability (CDFI) can control the quality of groundwater. This paper presents the theoretical analyses of porosity-permeability relationship effects on the CDFI in water-saturated porous rocks. Since the CDFI in a water-rock reaction system can be assessed by comparing the comprehensive dimensionless dynamic characteristic (CDDC) number with the corresponding critical CDDC number of the geochemical dissolution system, it is necessary to investigate theoretically how different porosity-permeability relationships can affect the CDDC number and critical CDDC number of a water-rock reaction system. With the commonly-used Kozeny-Carman (KC) formula taken as a reference porosity-permeability formula, the permeability variation indicator (PVI), which is defined as the ratio of the permeability obtained from any porosity-permeability formula to that obtained from the KC formula, is proposed to reflect the effect of the porosity-permeability formula on the CDFI in a water-rock reaction system. The theoretical results demonstrated that: (1) since the porosity-permeability formula with a higher PVI can result in a stronger Darcy flow velocity, it may have a significant influence on the CDFI in the water-rock reaction system. (2) With an increase in the PVI of a porosity-permeability formula, there is a decrease in the critical CDDC number of the water-rock reaction system. This means that the porous rock with a higher PVI can enable the CDFI to take place much easier in the water-rock reaction system. (3) The use of the porosity-permeability formula with a higher PVI can also cause an increase in both the dimensionless growth rate of a perturbation and the propagation speed of the chemical dissolution front in the water-rock reaction system.

  5. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field,Tarim Basin,China


    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth

  6. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO2 sequestration conditions: a numerical simulation approach

    Zhang, Liwei [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Dilmore, Robert M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)


    In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO2-saturated brine under CO2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of the lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO2 sequestration conditions.

  7. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach

    Zhang, Liwei [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA; Soong, Yee [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA; Dilmore, Robert M. [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA


    A numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO2-saturated brine under CO2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of the lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO2 sequestration conditions. 1

  8. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach

    Zhang, Liwei [National Energy Technology Lab. (NETL), Pittsburgh, OR (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, OR (United States); Dilmore, Robert M. [National Energy Technology Lab. (NETL), Pittsburgh, OR (United States)


    A numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO2-saturated brine under CO2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of the lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO2 sequestration conditions. 1

  9. Investigation on porosity and permeability change of Mount Simon sandstone (Knox County, IN, USA) under geological CO 2 sequestration conditions: a numerical simulation approach

    Zhang, Liwei [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA; Soong, Yee [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA; Dilmore, Robert M. [US Department of Energy, National Energy Technology Laboratory, Pittsburgh PA USA


    In this paper, a numerical model was developed to simulate reactive transport with porosity and permeability change of Mount Simon sandstone (samples from Knox County, IN) after 180 days of exposure to CO2-saturated brine under CO2 sequestration conditions. The model predicted formation of a high-porosity zone adjacent to the surface of the sample in contact with bulk brine, and a lower porosity zone just beyond that high-porosity zone along the path from sample/bulk brine interface to sample core. The formation of the high porosity zone was attributed to dissolution of quartz and muscovite/illite, while the formation of the lower porosity zone adjacent to the aforementioned high porosity zone was attributed to precipitation of kaolinite and feldspar. The model predicted a 40% permeability increase for the Knox sandstone sample after 180 days of exposure to CO2-saturated brine, which was consistent with laboratory-measured permeability results. Model-predicted solution chemistry results were also found to be consistent with laboratory-measured solution chemistry data. Finally, initial porosity, initial feldspar content and the exponent n value (determined by pore structure and tortuosity) used in permeability calculations were three important factors affecting permeability evolution of sandstone samples under CO2 sequestration conditions.

  10. Use of 3D Seismic Azimuthal Iso-Frequency Volumes for the Detection and Characterization of High Porosity/Permeability Zones in Carbonate Reservoirs

    Toelle, Brian E.

    Among the most important properties controlling the production from conventional oil and gas reservoirs is the distribution of porosity and permeability within the producing geologic formation. The geometry of the pore space within these reservoirs, and the permeability associated with this pore space geometry, impacts not only where production can occur and at what flow rates but can also have significant influence on many other rock properties. Zones of high matrix porosity can result in an isotropic response for certain reservoir properties whereas aligned porosity/permeability, such as open, natural fracture trends, have been shown to result in reservoirs being anisotropic in many properties. The ability to identify zones within a subsurface reservoir where porosity/permeability is significantly higher and to characterize them according to their geometries would be of great significance when planning where new boreholes, particularly horizontal boreholes, should be drilled. The detection and characterization of these high porosity/permeability zones using their isotropic and anisotropic responses may be possible through the analysis of azimuthal (also referred to as azimuth-limited) 3D seismic volumes. During this study the porosity/permeability systems of a carbonate, pinnacle reef within the northern Michigan Basin undergoing enhanced oil recovery were investigated using selected seismic attributes extracted from azimuthal 3D seismic volumes. Based on the response of these seismic attributes an interpretation of the geometry of the porosity/permeability system within the reef was made. This interpretation was supported by well data that had been obtained during the primary production phase of the field. Additionally, 4D seismic data, obtained as part of the CO2 based EOR project, supported reservoir simulation results that were based on the porosity/permeability interpretation.

  11. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    Tsai, Yih-Jin


    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  12. The effect of pulsed HIFU on the porosity and permeability of collagen gels: An in vitro study

    Vipulanandan, Geethanjali; O'Neill, Brian E.


    Pulsed HIFU is hypothesized to alter permeability of the extracellular matrix by altering the collagen network. In this study, the ability of HIFU to disrupt the extracellular matrix, particularly Type I collagen, in vitro, was investigated in order to enhance the drug delivery to highly collagenous tumors. This was tested in vitro in two ways, first using dye penetration, and second, by confocal reflection microscopy. Based on the analyses, it was concluded that there was at least a three-fold increase in porosity of the collagen gels after HIFU treatment.

  13. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    Wright, Heather M.; Cashman, Katharine V.


    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  14. Relations Between Permeability and Structure of Wood

    Bao Fucheng; Zhao Youke; Lü Jianxiong


    The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.

  15. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences


    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  16. Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks

    Cao, P.; Karpyn, Z.; Li, L.


    CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine

  17. Process, mechanism and impacts of scale formation in alkaline flooding by a variable porosity and permeability model

    Zhen Zhang; Jiachun Li


    In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation consider-ably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mecha-nisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chem-ical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reser-voir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.

  18. Matrix diffusion coefficients in volcanic rocks at the Nevada test site: Influence of matrix porosity, matrix permeability, and fracture coating minerals

    Reimus, Paul W.; Callahan, Timothy J.; Ware, S. Doug; Haga, Marc J.; Counce, Dale A.


    Diffusion cell experiments were conducted to measure nonsorbing solute matrix diffusion coefficients in forty-seven different volcanic rock matrix samples from eight different locations (with multiple depth intervals represented at several locations) at the Nevada Test Site. The solutes used in the experiments included bromide, iodide, pentafluorobenzoate (PFBA), and tritiated water ( 3HHO). The porosity and saturated permeability of most of the diffusion cell samples were measured to evaluate the correlation of these two variables with tracer matrix diffusion coefficients divided by the free-water diffusion coefficient ( Dm/ D*). To investigate the influence of fracture coating minerals on matrix diffusion, ten of the diffusion cells represented paired samples from the same depth interval in which one sample contained a fracture surface with mineral coatings and the other sample consisted of only pure matrix. The log of ( Dm/ D*) was found to be positively correlated with both the matrix porosity and the log of matrix permeability. A multiple linear regression analysis indicated that both parameters contributed significantly to the regression at the 95% confidence level. However, the log of the matrix diffusion coefficient was more highly-correlated with the log of matrix permeability than with matrix porosity, which suggests that matrix diffusion coefficients, like matrix permeabilities, have a greater dependence on the interconnectedness of matrix porosity than on the matrix porosity itself. The regression equation for the volcanic rocks was found to provide satisfactory predictions of log( Dm/ D*) for other types of rocks with similar ranges of matrix porosity and permeability as the volcanic rocks, but it did a poorer job predicting log( Dm/ D*) for rocks with lower porosities and/or permeabilities. The presence of mineral coatings on fracture walls did not appear to have a significant effect on matrix diffusion in the ten paired diffusion cell experiments.

  19. Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method

    Sheikh, Bahman; Pak, Ali


    Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the fluid-solid interface leading to viscosity-independent permeabilities and better computational stability due to separation of the relaxations of various kinetic models. GPU-CPU parallel processing has been employed to reduce the computational time associated with three-dimensional simulations. Soil samples have been prepared using the discrete element method. The obtained results have demonstrated the importance of employing the concept of effective porosity instead of total porosity in permeability relationships. The results also show that a threshold porosity exists below which the connectivity of the pores vanishes and the permeability of the soils reduces drastically.

  20. Application of a new NMR well logging porosity/permeability calibration to the Arbuckle injection zone of the Wellington CO2 demonstration site

    Mason, H. E.; Smith, M. M.; Hao, Y.; Carroll, S.


    Carbonate reservoirs hold significant potential for carbon capture and storage (CCS) projects. Target formations for carbon dioxide (CO2) storage must have suitable porosity and permeability properties to ensure adequate long term storage. Of these, permeability can be difficult to estimate in carbonate reservoirs due to the orders of magnitude differences in pore sizes, and the complex geometry of existing pore networks or those developed due to reactive CO2 acidified fluids. One of the primary methods for assessing porosity and permeability of reservoirs is down well nuclear magnetic resonance (NMR) logging tools. Our work has been focused on constraining new porosity/permeability relationships in carbonate rocks using micro X-ray computed tomography (µXRCT) to characterize the pore networks to inform on the observed NMR relaxation behavior. This effort has shown that standard NMR methodologies can produce permeability estimates for carbonate rocks that differ by several orders of magnitude from directly measured values. Our new calibrations have rectified these discrepancies by identifying and accounting for the main properties of these rocks that contribute the measured NMR relaxation properties. Properties such as mineralogy, Fe and Mn content, pore geometry, and pore network tortuosity all contribute to the relaxation behavior observed by NMR and are now accomodated in this new calibration procedure. This work has led to new understanding of the properties of these rock types that control the permeability measured by NMR well logging. In this presentation, we apply the results of a lab measured calibration of porosity and permeability to a high resolution NMR well log produced for the Arbucke injection zone of the Wellington CO2 demonstration sites. This application illustrates the applicability of this new calibration method for carbonate reservoirs and helps advance our understanding of the permeability and porosity relationships in these complex rock

  1. Computer model for determining fracture porosity and permeability in the Conasauga Group, Oak Ridge National Laboratory, Tennessee

    Sledz, J.J.; Huff, D.D.


    Joint orientations for the shale and siltstone beds of the Conasauga Group were measured from outcrop exposures on the Oak Ridge National Laboratory Reservation. The data collected from two strike belts (structural trends) were analyzed with the use of the computer and subdivided into individual joint sets. The joint set patterns in the Northern outcrop belt were too complex for orientation prediction; joint formation is believed to be influenced by polyphase deformation. The Southern Conasauga Belt contains an orthogonal joint set consisting of strike and a-c joints in all outcrops measured. These are believed to be tension joints formed during thrust sheet emplacement. Joint length and spacing, measured in the field, were found to be extremely variable within each exposure and highly dependent upon surficial weathering. The measurements from all locations were combined for detailed analysis and trend prediction. Results showed that the joint length and spacing increased with increasing bed thickness in the siltstone, while the bed thickness variations in the shale had little effect on the joints. A computer model was developed by combining the joint orientation, joint spacing, and joint length data collected in the field with subsurface drill core information for the purpose of calculating the fracture porosity and permeability of the rocks. The joint gap width was measured from both outcrop and subsurface samples with ranges from 0.1 mm to 0.7 mm in the siltstones and less than 0.2 mm in the shales. The value for the joint gap width was found to be the major factor in the fracture porosity and permeability calculation.

  2. High Resolution ground penetrating radar (GPR) measurements at the laboratory scale to model porosity and permeability in the Miami Limestone in South Florida.

    Mount, G. J.; Comas, X.


    Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.

  3. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    Maloney, D.; Doggett, K.; Brinkmeyer, A.


    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74{degrees}F laboratory temperature. Additional tests are planned at 150{degrees}F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  4. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    Maloney, D.; Doggett, K.; Brinkmeyer, A.


    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74[degrees]F laboratory temperature. Additional tests are planned at 150[degrees]F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  5. Porosity and Permeability Development of the Deep-Water Late-Oligocene Carbonate Debris Reservoir in the Surroundings of the Paternoster Platform, South Makassar Basin, Indonesia

    Gadjah E. Pireno


    Full Text Available The discovery of gas within the carbonate debris reservoir of the late Oligocene Berai formation near the Paternoster Platform, South Makassar Basin, is a new exploration play in Indonesia. The carbonate was deposited in a deep-water environment and is a good example of a less well known carbonate play type. The carbonate debris reservoir in this area consists of re-deposited carbonate, originally located on a large carbonate platform that has been eroded, abraded and transported to the deep-water sub-basin. The limestone clasts range from pebble-size to boulders within a matrix of micrite and fine abraded bioclasts. This carbonate debris can be divided into clast-supported facies and matrix-supported facies. The matrix-supported facies have much better porosity and permeability than the clast-supported facies. Porosity in both the transported clasts and the matrix is generally mouldic and vuggy, resulting mostly from dissolution of foraminifera and other bioclastics after transportation. In the matrix intercrystal porosity has developed. The porosity and permeability development of this deep-water carbonate debris was controlled by a deep-burial diagenetic process contributed by the bathyal shales de-watering from the Lower Berai shales beneath the carbonate reservoir and the Lower Warukin shales above the carbonate reservoir during the burial process.

  6. Reactive Flow Experiments to Characterize Porosity and Permeability Evolution during CO2 Transport in Weyburn-Midale Carbonate Rocks

    Smith, M. M.; Sholokhova, Y.; Hao, Y.; Carroll, S.


    We investigated the relative effects of CO2-induced disequilibrium and pre-existing mineralogy and void space heterogeneity on permeability development in carbonate core samples from the Weyburn-Midale hydrocarbon reservoir (Canada). The aim of our work was to use detailed pre- and post-experimental x-ray computed tomography (XCMT) imaging, as well as geochemical data, to constrain reactive transport models that predict the evolution of pore space and permeability for geologic storage of CO2 in enhanced oil recovery (EOR) fields. A total of nine core-flooding experiments were completed, using three distinct rock types (tight limestone, porous dolostone, and evaporite caprock) to represent the range of natural reservoir physical and chemical heterogeneity. Experiments were conducted under 25 MPa confining pressure, 60C temperature, and elevated salinity conditions, with pCO2 levels from 0.5-3 MPa. The coupling of intensive characterization with pressure/permeability and solution chemistry measurements provided powerful tools for interpreting and correlating mineral reactions and stability with pre-existing features and heterogeneities. We observed increased carbonate mass transfer rates, stable dissolution fronts, and greater volumes of dissolved minerals for cores with relatively homogeneous pore networks. Samples with more heterogeneous pore size distributions responded with variable mass transfer rates and development of fast transport pathways in regions with preexisting fractures. We infer that the breakthrough of these preferential fluid pathways leads to reductions in available reactive surface area, allowing undersaturated fluids to be transported through the cores despite relatively fast carbonate dissolution kinetics.

  7. 韩城地区煤储层孔渗应力敏感性及其差异%Stress sensitivity and difference of porosity and permeability in coal reservoirs in Hangcheng CBM block

    吕玉民; 汤达祯; 许浩


    In order to discuss the relationships between the physical properties of coal reservoir and the stress, the stress sensitivity experiments of the porosity and permeability of the coal samples from No.3, No.5 and No.11 coal seams in Hancheng coalbed methane (CBM) block were carried out under various pressure and the corresponding mathematical models were established. The results showed that the porosity and permeability of the samples de-crease as the confining stress increases and the stress damage for permeability is much larger than that for porosity. However, the stress damage is different for different coal seams. When the confining stress increased from 4.14 MPa (600 psi) to 12.42 MPa (1800 psi), the stress damage of the sample from No.11 coal seam was highest in the samples from three coal seams, with the porosity damage of 76.5% and permeability damage of 93.3%, that from No.3 coal seam was lowest with the porosity damage of 38.5% and permeability damage of 77.9%, and that from No.5 coal seam is relative high with the porosity damage of about 45%and permeability damage of 83.9%. It was suggested that the occurrence of the fractures in coal is resulted mainly from the stress damage difference among the coal seams. Additionally, the power function is more accurate than exponential function for fitting the measured value of porosity and permeability in the range of test stress.%以韩城煤层气区块3号、5号和11号煤层为例,进行不同围压条件下的煤心孔渗实验,探讨了该区煤储层物性与应力之间的耦合关系,建立了相应的数学模型。结果表明,煤心孔渗随围压的增加而不断下降,渗透率应力伤害远强于孔隙度应力伤害,但各煤层的应力敏感性各不相同:在实验围压从4.14 MPa(600 psi)增加到12.42 MPa(1800 psi)条件下,11号煤层孔渗应力敏感性最强,孔隙度应力伤害达76.5%,渗透率应力伤害达93.3%;3号煤层孔渗应力敏感性

  8. 储层孔隙度-渗透率关系曲线中的截止孔隙度与储层质量%Porosity cutoff of porosity-permeability curve and the reservoir quality

    黄思静; 郎咸国; 兰叶芳; 魏文文


    The porosity cutoff is critical porosity for a required permeability which is commonly obtained from a porosity-permeability plot. It also indicates the sedimentary and diagenetic factors characters, such as reservoir rocks structure(the content of matrix or mud, particle size and sorting), composition of authigenic mineral (such as the content of authigenic minerals as the pore-lining presence), dolomite content and reservoir pore structure (interparticle, intercrystalline, intraparticle, moldic, macropores, mesopores and micropores, etc.) and so on. The porosity cutoff of different oil layers of the Triassic Yanchang Formation in eastern Gansu of Ordos Basin changes between 7% to 12% at 0. 1×10-3 μm2 permeability, which is mainly controlled by the meteoric action and secondary porosity formation in the interval of Indosinian exposure. If 0. 1μ 10-3 μm2 permeability is used as the lower limit of sandstone, that of the corresponding porosity changes generally between 7%~12%, which will obviously affect the calculation of hydrocarbon reserves of different oil formations. The authigenic minerals mainly presenting in the form of pore-lining cement can protect porosity space of buried sandstones, but the increasing content of these cements will lead to porosity cutoff increasing, the reservoir quality is worse than that with similar porosity but lack of pore-lining cement. Porosity cutoffs show significant variability among the different pore types of carbonate reservoirs, ranging from 5.4% to 31.3% at 1 μ 10-3 μm2 permeability. The carbonate reservoir mainly consist of intercrystalline and intraparticle pores has minimum porosity cutoff and better reservoir quality. The carbonate reservoir mainly consists of mudstone micropores has maximum porosity cutoff and worst reservoir quality. The carbonate reservoir mainly consists of intraparticle and moldic has medium porosity cutoff and reservoir quality.%截止孔隙度可从储层孔隙度-渗透率关系曲线获

  9. Well Test Analysis of Naturally Fractured Vuggy Reservoirs with an Analytical Triple Porosity – Double Permeability Model and a Global Optimization Method

    Gómez Susana


    Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.

  10. Compact rock material gas permeability properties

    Wang, Huanling, E-mail: [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)


    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  11. Two-phase relative permeability models in reservoir engineering calculations

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.


    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  12. A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs☆

    Yulei Ge; Shurong Li; Kexin Qu


    In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability res-ervoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The param-eters of the new empirical equation are optimized with the hybrid RNA genetic algorithm (HRGA) based on the ex-perimental data. The data is obtained from a typical low permeability reservoir wel 54 core 27-1 in GuDong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified.

  13. Extracting porosity and modelling permeability from μCT and FIB-SEM data of fractured dolomites from a hydrocarbon reservoir

    Voorn, M. H.; Rath, A.; Exner, U.


    Currently oil and gas in the Vienna Basin are produced partly from the Upper Triassic Hauptdolomit formation. Various drill-cores were retrieved from densely fractured dolomites from depths between 3000 and 5300 m. Porosity and permeability assessment in specimen from such fractured rocks proves to be difficult by common laboratory methods, and also 2D sample analysis alone is insufficient to this end. In our study, X-ray micro-Computed Tomography (µCT) is used to visualise the inside of core samples of fractured Hauptdolomit. The biggest advantage of µCT is that it provides a 3D view of the fractures and other porosity, without destroying the sample. Core sample descriptions, 2D thin section analysis and standard laboratory measurements are used for extended analysis and cross-calibration of the results. In addition, 3D porosity visualisations at the micro- to nano-scale are obtained from Focussed Ion Beam - Scanning Electron Microscopy (FIB-SEM) on thin sections. The narrow fractures encountered in the Hauptdolomit samples require sufficient resolution µCT scans (i.e. better than ca. 25 µm). Full 10 cm diameter cores of sample prove to be too thick and dense, so that the fracture network cannot be recorded properly. 3 cm sized plugs on the other hand do provide workable results. After obtaining good datasets, the fractures need to be segmented (separated) from the full dataset for further analysis. A large amount of different segmentation routines is available from literature, but very little are applicable for segmenting narrow fractures, especially not in geological literature. Our current best results stem from applying the so-called "Frangi filter" used in segmentation routines in the medical sciences for segmenting blood vessels. After this segmentation, the fracture patterns can be extracted, and quantitative analysis of the bulk porosity and porosity distribution, fracture aperture and length can be performed. The data obtained by FIB-SEM is treated in

  14. Measurement of relative permeability of fuel cell diffusion media

    Hussaini, I.S.


    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  15. Image-based relative permeability upscaling from the pore scale

    Norouzi Apourvari, Saeid; Arns, Christoph H.


    High resolution images acquired from X-ray μ-CT are able to map the internal structure of porous media on which multiphase flow properties can be computed. While the resolution of a few micrometers may be sufficient for capturing the pore space of many sandstones, most carbonates exhibit a large amount of microporosity; pores which are below the image resolution and are not resolved at specific resolution. Neglecting the effect of micropores on fluid flow and transport properties of these rocks can cause erroneous results in particular at partial saturations. Current image-based pore scale models typically only consider macropores for simulating fluid flow. In this paper, we quantify the effect of microporosity on the effective permeability of the wetting phase for heterogeneous model structures with varying amount of micro-to-macro porosity. A multi-scale numerical approach is proposed to couple an average effect of micropores with an explicit representation of macropores. The Brinkman equation is solved using a lattice Boltzmann formulation to facilitate the coupling of Darcy and Stokes equations in micropores and macropores, respectively. The results show good agreement between the fine scale solution and the results of the upscaled models in which microporous regions are homogenised. The paper analyses in particular the choice of the momentum sink parameter at low wetting phase saturations. It is shown that this parameter can be found using either a flux-based calculation of permeability of microporous regions or chosen purely on the basis of the effective permeability of these regions.

  16. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    Lee, Bum Han; Lee, Sung Keun


    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  17. Characteristics of porosity and permeability layer of fossil Halimeda reef mineral rock of Miocene in the Xisha Islands and its genetic model

    XU Hong; WEI Kai; CUI Ruyong; ZHU Yurui; EBERLI G P; LUO Wei; ZHAO Xinwei; CAI Ying; LIU Xinyu; YAN Guijing; ZHANG Bolin


    Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reef-building algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentation-diagenetic-evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen-1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda;fossil Halimeda are buried in superposition;it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present;and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones, and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas;in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments;therefore, a pore space network system

  18. [The porosity, microhardness, roughness and internal stresses of PMMA base materials in relation to their isolation. 1. Porosity and microhardness].

    Lockowandt, P; Loges, H; Wagner, I V


    Selected material properties of hot and cold polymerized denture basic materials (polymethylmethacrylate) were investigated after different methods of isolation: alginate, tin foil and silicone. Both tin foil and silicone isolation the handling of which is much easier result in a decreased portion of porosities and an increased microhardness in the PMMA.

  19. DE-SC0004118 (Wong & Lindquist). Final Report: Changes of Porosity, Permeability and Mechanical Strength Induced by Carbon Dioxide Sequestration.

    WONG, TENG-FONG; Lindquist, Brent


    In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.

  20. Impact Of Three-Phase Relative Permeability and Hysteresis Models On Forecasts of Storage Associated with CO2-EOR

    Jia, W.; Pan, F.; McPherson, B. J. O. L.


    Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.

  1. Model-Assisted Control of Flow Front in Resin Transfer Molding Based on Real-Time Estimation of Permeability/Porosity Ratio

    Bai-Jian Wei


    Full Text Available Resin transfer molding (RTM is a popular manufacturing technique that produces fiber reinforced polymer (FRP composites. In this paper, a model-assisted flow front control system is developed based on real-time estimation of permeability/porosity ratio using the information acquired by a visualization system. In the proposed control system, a radial basis function (RBF network meta-model is utilized to predict the position of the future flow front by inputting the injection pressure, the current position of flow front, and the estimated ratio. By conducting optimization based on the meta-model, the value of injection pressure to be implemented at each step is obtained. Moreover, a cascade control structure is established to further improve the control performance. Experiments show that the developed system successfully enhances the performance of flow front control in RTM. Especially, the cascade structure makes the control system robust to model mismatch.

  2. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)


    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  3. Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea

    Li Chuan-Hui; Zhao Qian; Xu Hong-Jun; Feng Kai; Liu Xue-Wei


    Nuclear magnetic resonance measurements in hydrate-bearing sandstone samples from the Shenhu area, South China Sea were used to study the effect of gas hydrates on the sandstone permeability. The hydrate-bearing samples contain pore-fi lling hydrates. The data show that the pore-fi lling hydrates greatly affect the formation permeability while depending on many factors that also bear on permeability; furthermore, with increasing hydrate saturation, the formation permeability decreases. We used the Masuda model and an exponent N = 7.9718 to formulate the empirical equation that describes the relation between relative permeability and hydrate saturation for the Shenhu area samples.

  4. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.


    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  5. Research of porosity and permeability affect factors of porous concrete%透水混凝土孔隙率和渗透系数影响因素研究

    白晓辉; 刘肖凡; 李继祥; 王展展


    In this paper , we researched various factors influencing porosity and permeability by combination of theo-retical and experimental methods , and obtained curve fitting of porosity and permeability variation based on the test data.The strength of porous concrete was mostly affected by porosity , however, porosity and permeability were af-fected by aggregate size , production process , binder and admixture .%对透水混凝土孔隙率和渗透系数各个影响因素的分析和研究,并根据试验数据进行曲线拟合得出孔隙率和透水系数之间的变化规律。影响透水混凝土强度的主要因素为透水混凝土的孔隙率,影响孔隙率和渗透系数的主要因素为骨料粒径、制作工艺、粘结剂掺量和外加剂掺量等。

  6. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery

    Meier, D. B.; Waber, H. N.; Gimmi, T.; Eichinger, F.; Diamond, L. W.


    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and

  7. Reconstruction of in-situ porosity and porewater compositions of low-permeability crystalline rocks: Magnitude of artefacts induced by drilling and sample recovery.

    Meier, D B; Waber, H N; Gimmi, T; Eichinger, F; Diamond, L W


    Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12-20 cm long, 5 cm diameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium-iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2-6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, in which iodide enrichment was up to 180 mg/kg water, compared to 0.5 mg/kg water in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site

  8. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken


    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  9. Variability of permeability with diameter of conduit

    J A Adegoke; J A Olowofela


    An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.

  10. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 3 of 3: Appendices C, D, E, and F

    Howarth, S.M.; Christian-Frear, T.


    This volume contains the mineralogy, porosity, and permeability results from the Marker Bed 139 anhydrite specimens evaluated by TerraTek, Inc. for the Waste Isolation Pilot Plant. This volume also documents the brine recipe used by RE/SPEC, Inc., the parameter package submitted to Performance Assessment based on all the data, and a memo on the mixed Brooks and Corey two-phase characteristic curves.

  11. Calculation of relative permeability in reservoir engineering using an interacting triangular tube bundle model

    Jinxun Wang; Mingzhe Dong; Jun Yao


    Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model.Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented.Model parameters affecting the trend of relative permeability curves are discussed.Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples.By adjusting model parameters to match the history of oil production and pressure drop,the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples.

  12. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto


    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  13. The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil

    Liyuan Cao


    Full Text Available Wax deposition has always been a problem for the production of waxy crude oil. When the reservoir temperature is below the wax appearance temperature (WAT, wax would precipitate in the oil phase as wax crystals, which could increase the oil viscosity and decrease the permeability of the rock. In this study, a series of core flooding experiments under 5 different temperatures and using two groups of core samples with permeability liein300 md and 1000 md respectively were carried out to investigate the effect of temperature and rock permeability on waxy crude oil-water relative permeability curves under reservoir condition. The results revealed that temperature has a significant influence on relative permeability, especially when the temperature is below the WAT (70℃ in this study. The initial water decreased by 40% and the residual oil saturation increased to about 2.5 times when temperature decreased from 85℃ to 50℃ for experiments of both two groups in this study. Oil recovery decreased as the temperature dropped. There was not much difference between the oil recovery of cores with permeability of 1000 md and that with permeability of 300 md until the temperature dropped to 70℃, and the difference increased to 8% when temperature decreased to 50℃, which implies that reservoir with lower permeability is easier to be damaged by wax deposition only when the temperature drops to below WAT. According to this work, it is suggested that reservoir temperature should be better maintained higher than theWAT when extracting waxy crude oil of this reservoir, or at least above 60℃.

  14. Desorption of phosphate from iron oxides in relation to equilibrium pH and porosity

    Cabrera, F.; de Arambarri, P.; Madrid, L.; Toca, C.G. (Centro de Edafologia y Biologia Aplicada del Cuarto, Sevilla (Spain))


    Reactions of phosphated lepidocrocites and goethites with 0.1 M NaCl, 0.1 M NaOH and 0.5 M NH/sub 4/F solutions have been studied. Solutions of indifferent electrolyte (0.1 M NaCl) at the same pH as used during adsorption of P were used to desorb P so that new apparent equilibria were reached, but a slow readsorption was also observed. Strongly alkaline solutions seemed to cause some breakdown of the solid surface and part of the adsorbed P became occluded. Desorption and isotopic exchange data have been related to porosity of the two oxides, and presence of a component of the exchangeable P released very slowly, has been attributed to P adsorbed on surfaces of micropores.

  15. Effects of phase transformation of steam-water relative permeabilities

    Verma, A.K.


    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  16. Clogging in permeable concrete: A review.

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R


    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Porosity Prediction of Plain Weft Knitted Fabrics

    Muhammad Owais Raza Siddiqui


    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  18. Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: a poroelastic C5-C6 finite element model study.

    Hussain, Mozammil; Natarajan, Raghu N; Chaudhary, Gulafsha; An, Howard S; Andersson, Gunnar B J


    Disc swelling pressure (P(swell)) facilitated by fixed charged density (FCD) of proteoglycans (P(fcd)) and strain-dependent permeability (P(strain)) are of critical significance in the physiological functioning of discs. FCD of proteoglycans prevents any excessive matrix deformation by tissue stiffening, whereas strain-dependent permeability limits the rate of stress transfer from fluid to solid skeleton. To date, studies involving the modeling of FCD of proteoglycans and strain-dependent permeability have not been reported for the cervical discs. The current study objective is to compare the relative contributions of strain-dependent permeability and FCD of proteoglycans in predicting cervical disc biomechanics. Three-dimensional finite element models of a C5-C6 segment with three different disc compositions were analyzed: an SPFP model (strain-dependent permeability and FCD of proteoglycans), an SP model (strain-dependent permeability alone), and an FP model (FCD of proteoglycans alone). The outcomes of the current study suggest that the relative contributions of strain-dependent permeability and FCD of proteoglycans were almost comparable in predicting the physiological behavior of the cervical discs under moment loads. However, under compression, strain-dependent permeability better predicted the in vivo disc response than that of the FCD of proteoglycans. Unlike the FP model (least stiff) in compression, motion behavior of the three models did not vary much from each other and agreed well within the standard deviations of the corresponding in vivo published data. Flexion was recorded with maximum P(fcd) and P(strain), whereas minimum values were found in extension. The study data enhance the understanding of the roles played by the FCD of proteoglycans and strain-dependent permeability and porosity in determining disc tissue swelling behavior. Degenerative changes involving strain-dependent permeability and/or loss of FCD of proteoglycans can further be

  19. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken


    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  20. Experimental investigation the effect of nanoparticles on the oil-water relative permeability

    Amedi, Hamidreza; Ahmadi, Mohammad-Ali


    This paper presents the effects of the nanosilica particles on the water and oil relative permeability curves at reservoir conditions. Real reservoir crude oil sample was employed as an oil phase in relative permeability measurements. In addition, real carbonate reservoir rock samples were employed as a porous media in core displacement experiments. To determine relative permeability curves, the unsteady-state approach was employed in which Toth et al. method was applied to the recovery data points. By increasing the nanosilica content of the aqueous phase the oil relative permeability increased while the residual oil saturation decreased; however, by increasing the nanosilica concentration in the aqueous solution the water relative permeability decreased. The outcomes of this paper can provide a better understanding regarding chemically enhanced oil recovery (EOR) by nanoparticles. Moreover, relative permeability curves help us in the history matching section of reservoir simulation for any further EOR scenarios.

  1. Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects

    Wang Jiulong


    Full Text Available This paper presents a theoretical method to simulate gas-water relative permeability for nanoscale porous media utilizing fractal theory. The comparison between the calculation results and experimental data was performed to validate the present model. The result shows that the gas-water relative permeability would be underestimated significantly without interfacial effects. The thinner the liquid film thickness, the greater the liquid-phase relative permeability. In addition, both liquid surface diffusion and gas diffusion coefficient can promote gas-liquid two-phase flow. Increase of liquid surface diffusion prefer to increase liquid-phase permeability obviously as similar as increase of gas diffusion coefficient to increase gas-phase permeability. Moreover, the pore structure will become complicated with the increase of fractal dimension, which would reduce the gas-water relative permeability. This study has provided new insights for development of gas reservoirs with nanoscale pores such as shale.

  2. 核磁共振岩心实验分析在低孔渗储层评价中的应用%Application of NMR core experimental analysis in evaluation of low-porosity and low-permeability sandstone reservoirs

    王振华; 陈刚; 李书恒; 章辉若; 黄得顺; 杨甫; 雷盼盼; 刘小伸


    Nuclear magnetic resonance ( NMR) core experimental analysis is a new developing technique in experi⁃mental geology. Based on the principles and methods of NMR core experimental analysis, as well as some improved parametric models, a series of reservoir parameters of Chang6 low⁃porosity and low⁃permeability oil⁃bearing sand⁃stone core samples from well 3062 in the ZC Oil Field in the eastern Ordos Basin were systematically measured by NMR. Additionally, the accuracy and relative error of the NMR analysis were calculated and discussed by means of recognized exact method of conventional core experimental analysis as control group. It is revealed that the Chang6 oil⁃bearing sandstones are typical low⁃porosity and low⁃permeability reservoirs, with porosity ranging from 8.6% to 13.0%, and permeability from 0.07×10-3 to 1.27×10-3μm2 . NMR core experimental analysis has advantages of con⁃venience, high efficiency and accepted accuracy with a smaller relative error for testing the low⁃porosity and low⁃permeability reservoir parameters of porosity, microscopic pore structure and irreducible water saturation. However, compared with the results of conventional core analysis, there is a larger relative error in NMR prediction for the permeability parameters, which is most probably due to some uncertainty of the reservoir permeability predictive models.%根据核磁共振( NMR)岩心实验分析的基本原理、方法和相关参数模型的研究进展,对鄂尔多斯盆地东部ZC油田3062井延长组长6油层组低孔渗砂岩样品进行了储层物性、孔隙结构和束缚水饱和度等参数的NMR岩心实验分析,并将其与常规岩心测试参数进行了分析与对比,探讨了低孔渗储层NMR岩心实验分析的精度及其应用效果。结果表明,3062井长6油层组砂岩属于典型的低孔渗储层,孔隙度在8.6%~13.0%,渗透率在(0.07~1.27)×10-3μm2;低孔渗砂岩样品NMR岩

  3. Comparative assessment of three-phase oil relative permeability models

    Ranaee, Ehsan; Riva, Monica; Porta, Giovanni M.; Guadagnini, Alberto


    We assess the ability of 11 models to reproduce three-phase oil relative permeability (kro) laboratory data obtained in a water-wet sandstone sample. We do so by considering model performance when (i) solely two-phase data are employed to render predictions of kro and (ii) two and three-phase data are jointly used for model calibration. In the latter case, a Maximum Likelihood (ML) approach is used to estimate model parameters. The tested models are selected among (i) classical models routinely employed in practical applications and implemented in commercial reservoir software and (ii) relatively recent models which are considered to allow overcoming some drawbacks of the classical formulations. Among others, the latter set of models includes the formulation recently proposed by Ranaee et al., which has been shown to embed the critical effects of hysteresis, including the reproduction of oil remobilization induced by gas injection in water-wet media. We employ formal model discrimination criteria to rank models according to their skill to reproduce the observed data and use ML Bayesian model averaging to provide model-averaged estimates (and associated uncertainty bounds) of kro by taking advantage of the diverse interpretive abilities of all models analyzed. The occurrence of elliptic regions is also analyzed for selected models in the framework of the classical fractional flow theory of displacement. Our study confirms that model outcomes based on channel flow theory and classical saturation-weighted interpolation models do not generally yield accurate reproduction of kro data, especially in the regime associated with low oil saturations, where water alternating gas injection (WAG) techniques are usually employed for enhanced oil recovery. This negative feature is not observed in the model of Ranaee et al. (2015) due to its ability to embed key effects of pore-scale phase distributions, such as hysteresis effects and cycle dependency, for modeling kro observed

  4. Compositional effects on relative permeability and hysteresis for enhanced oil recovery

    Khorsandi, S.; Li, L.; Johns, R. T.


    There are enormous efforts to develop relative permeability models that interpret pore scale flow mechanism into continuum scale observations. Relative permeabilities are complex functions of phase saturations, fluid compositions, pore structure, pore size distribution, interfacial properties, and distribution of phases. The current compositional reservoir simulators, however, are limited to use tuned correlations for relative permeabilities calculations. These correlations cannot quantify the more complex hysteresis, film drainage, capillary trapping or wettability alteration. Such processes are captured by adjusting the coefficients of relative permeability models based on capillary number, maximum non-wetting saturation, or phase compositions. Since the relative permeability models are not physical-based, the adjustments can result in inconsistency. The labeling of phases is another challenge for compositional floods, where phase properties can vary significantly such that phase inversion can happen. Therefore, common phase labeling techniques based on density or component tracking can fail. We proposed a novel compositional-dependent relative permeability model which calculates the phase flow rates based on pore structure, phase compositions, and phase distributions. This model can quantify many processes such as hysteresis, capillary trapping and film drainage, and does not require phase labeling. The effects of dissolution, vaporization and wettability alteration on relative permeabilities are also captured by the developed physical relative permeability model.

  5. Reservoir condition special core analyses and relative permeability measurements on Almond formation and Fontainebleu sandstone rocks

    Maloney, D.


    This report describes the results from special core analyses and relative permeability measurements conducted on Almond formation and Fontainebleu sandstone plugs. Almond formation plug tests were performed to evaluate multiphase, steady-state,reservoir-condition relative permeability measurement techniques and to examine the effect of temperature on relative permeability characteristics. Some conclusions from this project are as follows: An increase in temperature appeared to cause an increase in brine relative permeability results for an Almond formation plug compared to room temperature results. The plug was tested using steady-state oil/brine methods. The oil was a low-viscosity, isoparaffinic refined oil. Fontainebleu sandstone rock and fluid flow characteristics were measured and are reported. Most of the relative permeability versus saturation results could be represented by one of two trends -- either a k{sub rx} versus S{sub x} or k{sub rx} versus Sy trend where x and y are fluid phases (gas, oil, or brine). An oil/surfactant-brine steady-state relative permeability test was performed to examine changes in oil/brine relative permeability characteristics from changes in fluid IFTS. It appeared that, while low interfacial tension increased the aqueous phase relative permeability, it had no effect on the oil relative permeability. The BOAST simulator was modified for coreflood simulation. The simulator was useful for examining effects of variations in relative permeability and capillary pressure functions. Coreflood production monitoring and separator interface level measurement techniques were developed using X-ray absorption, weight methods, and RF admittance technologies. The three types of separators should be useful for routine and specialized core analysis applications.

  6. Study on the Relation between Individual Layer and Multi-layered Nonwoven Geotextile Permeability

    刘丽芳; 储才元


    Water permeability is an important property of nonwoven geotextiles used in drainage field, and usually it is obtained by testing individual layer or multi-layered nonwoven geotextiles. However, the permeability coefficient tested by using different layers would be different for the same nonwoven geotextile. In this paper, the relation between them is studied based on Darcy's law. The study shows that vertical permeability coefficients are theoretically invariable no matter how many layers are tested; but experimental results show that vertical permeability coefficients decrease with the increase of nonwoven geotextile layers number.

  7. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.


    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Characterization of the porosity in TRISO coated fuel particles and its effect on the relative thermal diffusivity

    Bari, Klaudio, E-mail: [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Pariser Building, Manchester M60 1QD (United Kingdom); Osarinmwian, Charles [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe, Coahuila 25900 (Mexico); Abram, Timothy J. [School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, Pariser Building, Manchester M60 1QD (United Kingdom)


    Highlights: • Identification of the porosity in 3D using Image Based Modelling (IBM). • The porosity volume fractions are varied 15.2–25.9 vol% in TRISO particles. • Comparison of IBM results with mercury intrusion and helium pycnometry. • The porosity in TRISO reduces the thermal diffusivity by factor 79–88%. • Open and closed pores can be identified using IBM. - Abstract: A heat transfer model for a Tri-structural Isotropic (TRISO) coated fuel particle was developed using Image Based Modelling (IBM). Computed X-ray tomography at a resolution of 0.7 μm was used to quantify the porosity of each layer. In order to study the thermal diffusivity of these coatings, an internal heat pulse was simulated in the kernel and the temperature, as a function of time, was measured from the surface of the Outer Pyrolitic Carbon (OPyC). Consequently, the half rise time of the temperature increase was found. The novel idea behind this technique is that once a heat pulse propagates through the particle layers, the half rise time of the temperature can be obtained from different spots on the OPyC surface. The article presents a correlation between the pore size distribution (measured by X-ray tomography) and the relative thermal diffusivity. The average porosities in OPyC (relative to the volume of the ceramic coating) measured using helium pycnometry, mercury intrusion porosimetry and X-ray tomography were 12.3 vol%, 9.0 vol% and 11.1 vol%, respectively.

  9. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    Susanto, A.; Koleva, D.A.; Van Breugel, K.


    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  10. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    Susanto, A.; Koleva, D.A.; Van Breugel, K.


    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  11. Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing

    B.M. Freifeild


    Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter

  12. Damage - Permeability relation for concrete. Applications to structural computations; Relation endommagement permeabilite pour les betons

    Jason, L


    The relation between damage and permeability is of great importance to evaluate the consequences of a mechanical loading on the hydraulic integrity of sensitive concrete structures like containment buildings of nuclear power plants. An elastic plastic damage constitutive law for the mechanical behaviour is first developed. The model is validated on elementary and structural applications with a special focus on the efficiency of the numerical tools (tangent matrices). A relation between water saturation (drying), damage and permeability is then proposed, based on theoretical and experimental observations. Finally, a Representative Structural Volume of a containment vessel is studied to highlight the influence of hygro - mechanical loading on the hydraulic behaviour (distribution of gas pressure). (author)

  13. Effect of Temperature and Age of Concrete on Strength – Porosity Relation

    T. Zadražil


    Full Text Available The compressive strengths of unsealed samples of concrete at the age of 180 days and have been measured at temperatures 20 °C, 300 °C, 600 °C and 900 °C. All of tests were performed for cold material. We compared our results with those obtained in [10] for the same type of concrete (age 28, resp. 90 days and measured at temperature ranging from 20 °C to 280 °C. Dependencies of compressive strength and porosity were correlated together and compared for the samples of age 28, 90 and 180 days. Behaviour of concrete of the age 90, resp. 180 days confirms generally accepted hypothesis that with increasing porosity strength of the concrete decreases. It has to be stressed out, howerer, that concrete samples of the age 28 days exhibit totally opposite dependency. 

  14. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)


    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  15. Risk factor(s) related to high membrane permeability in peritoneal dialysis.

    Unal, Aydin; Sipahioglu, Murat Hayri; Kocyigit, Ismail; Tunca, Onur; Tokgoz, Bulent; Oymak, Oktay


    Peritoneal dialysis (PD) patients have different peritoneal membrane permeability (transport) characteristics. High peritoneal membrane permeability is associated with increased mortality risk in the patient population. In this study, we aimed to investigate possible risk factor(s) related to high peritoneal membrane permeability. The study included 475 PD patients (46.1 ± 14.5 years of mean age; 198 female and 277 male). The patients were divided two groups according to peritoneal equilibration test (PET) result: high-permeability group (high and high-average) and low- permeability group (low-average and low). In both the univariate and multivariate logistic regression analyses, it was found that diabetes mellitus and hypoalbuminemia was significantly associated with high peritoneal membrane permeability [relative risk (RR): 1.90, 95% confidence interval (CI): 1.26-2.86, p: 0.002 and RR: 2.14, 95% CI: 1.44-3.18, ppermeability. Diabetic patients had 1.9 times the likelihood of having high permeability. However, the relationship between hypoalbuminemia and high peritoneal permeability appears to be a result rather than cause.

  16. The relationship between reservoir permeability and porosity,throat radius%储层孔隙度、喉道半径与渗透率之间的关系研究



    根据碳酸盐岩储层非均质性强、孔隙结构差异较大的特点,利用毛细管压力曲线特征参数对研究样品进行了分类,针对不同孔隙结构的样品分别研究上述三者之间的关系,避免了把所有样品放在一起研究而掩盖掉非均质性影响的情况.%The samples studied in this article are classified by capillary pressure curve characteristic parameters with respect to the differences in pore structure and strong heterogeneity of carbonate reservoir. The samples with different pore structure are studied in terms of permeability and porosity,and throat radius respectively to avoid all samples from mixing together and affecting the heterogeneity.

  17. “三低”油藏提高固井质量的技术研究%Studies on improving cementing quality in reservoirs of low porosity, permeability, formation pressure



    The factors that influence cementing quality in reservoirs of low porosity, permeability and formation pressure are discussed in this paper which are important in compartment between casing and oil, gas and water formations and suggestions are provided as well.%固井工作是钻井作业中的一个重要环节,高质量固井对油气井内套管、油、气、水等地层的封隔起到重要保护作用。本文通过分析油藏固井质量影响因素,对“三低”油藏如何提高固井质量提出建议。

  18. Thermal behavior of human eye in relation with change in blood perfusion, porosity, evaporation and ambient temperature.

    Rafiq, Aasma; Khanday, M A


    Extreme environmental and physiological conditions present challenges for thermal processes in body tissues including multi-layered human eye. A mathematical model has been formulated in this direction to study the thermal behavior of the human eye in relation with the change in blood perfusion, porosity, evaporation and environmental temperatures. In this study, a comprehensive thermal analysis has been performed on the multi-layered eye using Pennes' bio-heat equation with appropriate boundary and interface conditions. The variational finite element method and MATLAB software were used for the solution purpose and simulation of the results. The thermoregulatory effect due to blood perfusion rate, porosity, ambient temperature and evaporation at various regions of human eye was illustrated mathematically and graphically. The main applications of this model are associated with the medical sciences while performing laser therapy and other thermoregulatory investigation on human eye.

  19. 基于储层分类的低孔隙度低渗透率储层产能预测方法研究%On Productivity Prediction of Low Porosity and Permeability Reservoirs Based on Reservoirs Classification

    张占松; 张超谟; 郭海敏


    利用研究区内22块压汞样品及4440块有效物性分析样品,建立起低孔隙度低渗透率储层的分类标准,为基于测井数据进行储层分类提供参考依据与标准.依据标准对253个储层进行了类别划分,优选了用于储层类别划分的测井特征参数,建立了3类储层特征参数分布范围及均值.借助自适应BP神经网络技术建立了适合研究区长63段的储层分类判别模型,并将其判别结果与综合判别结果对比,吻合程度较高.通过储层指数与产能关系分析,储层指数与储层产能之间具有较好的相关性.利用储层指数建立的产能预测模型具有较好的应用效果.%Based on 22 mercury injection samples and 4 440 effective physical properties analysis samples, established is a classification standard of low porosity and permeability reservoirs. This is the classification standard based on log data. According to this classification standard, the 253 reservoirs are classified, the log characteristic parameters of reservoirs classification are selected, the range and the average value of the parameters on 3 types of reservoirs are established. Meanwhile self-adapted neural networks technology is used to establish reservoir classification model in Chang 63 block, and its results are close to the comprehensive analysis results. Through analyzing the relation between the reservoirs index and productivity of hydrocarbon reservoirs, there is a well correlation between the reservoirs index and the productivity. This model of productivity prediction based on reservoirs classification has been successfully applied to Chang 63 block, Baibao area.

  20. Compositional and Relative Permeability Hysteresis Effects on Near-Miscible WAG

    Christensen, Jes Reimer; Stenby, Erling Halfdan; Skauge, Arne


    injection gases. Result obtained shows the WAG injection gives improved recovery compared to water injection, due to better sweep and lower residual oil saturation. Simulations with and without relative permeability hysteresis (two-phase model) were compared. The effect of trapped gas on oil recovery does...... not seem significant with the compositional model. The WAG process has been optimized with respect to slug size and the water-gas ratio. A black-oil-model was generated tuned to fit the results from the compositional simulations. A WAG three-phase relative permeability hysteresis model using cycle...... dependent relative permeabilities for both wetting and non-wetting phases, have been compared to the standard two-phase Killough and Carlson hysteresis models. The results show significant lower gas ratio and a higher oil recovery for the WAG injection when using cycle dependent relative permeabilities...

  1. Direct measurement of relative permeability in rocks from unsteady-state saturation profiles

    Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.


    We develop a method to measure liquid relative permeability in rocks directly from transient in situ saturation profiles during gravity drainage experiments. Previously, similar methods have been used for sandpacks; here, this method is extended to rocks by applying a slight overpressure of gas at the inlet. Relative permeabilities are obtained in a 60 cm long vertical Berea sandstone core during gravity drainage, directly from the measured unsteady-state in situ saturations along the core at different times. It is shown that for obtaining relative permeability using this method, if certain criteria are met, the capillary pressure of the rock can be neglected. However, it is essential to use a correct gas pressure gradient along the core. This involves incorporating the pressure drop at the outlet of the core due to capillary discontinuity effects. The method developed in this work obtains relative permeabilities in unsteady-state fashion over a wide range of saturations quickly and accurately.

  2. Permeability prediction in chalks

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika


    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches...... to enhance permeability prediction fromKozeny’s equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The Sg concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability...

  3. More general capillary pressure and relative permeability models from fractal geometry.

    Li, Kewen


    More general capillary pressure and relative permeability models were derived theoretically from fractal modeling of a porous medium. It was found that the new capillary pressure model could be reduced to the frequently-used Brooks-Corey capillary pressure model and the Li-Horne imbibition model when the fractal dimension of a porous medium takes specific values. This also demonstrates that the Brooks-Corey model and the Li-Horne model have a further confirmed theoretical basis. Capillary pressure data measured using mercury intrusion techinque were used to verify the model. The results demonstrated that the new capillary pressure model could represent the capillary pressure curves in those rocks with fracures or with great heterogeneity while the existing models cannot. The new relative permeability models can be reduced to the Brooks-Corey relative permeability model in a specific case. It has been proved theoretically that the relative permeability of each phase in a smooth fracture is only a linear function of its own saturation. Relative permeability data were calculated using the new models and the model results were compared with experimental data measured using a steady-state technique. The comparison demonstrated that the relative permeability models and experimental results were consistent with each other.

  4. Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability.

    Sallard, Sébastien; Schröder, Michael; Boissière, Cédric; Dunkel, Christian; Etienne, Mathieu; Walcarius, Alain; Oekermann, Torsten; Wark, Michael; Smarsly, Bernd M


    In the present paper, we report the synthesis of bimodal mesoporous anatase TiO2 films by the EISA (Evaporation-Induced Self-Assembly) method using sol-gel chemistry combining two porogen agents, a low molecular weight ionic template and a neutral block copolymer. The surfactant template (C16mimCl) generates non-oriented worm-like pores (8 to 10 nm) which connect the regularly packed ellipsoidal mesopores (15 to 20 nm diameter) formed by an amphiphilic block copolymer of the type poly(isobutylene)-b-poly(ethylene oxide) (PIB-PEO). The surfactant template can also significantly influence the size and packing of the ellipsoidal mesopores. The mesostructural organization and mesoporosity of the films are studied by Environmental Ellipsometry-Porosimetry (EEP), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) and electron microscopy techniques. Electrochemical characterization is performed to study the permeability of the films to liquid solutions, using two types of probe moieties (K3Fe(III)(CN)6 and Ru(bpy)3(2+)) by the wall-jet technique. An optimum ratio of C16mimCl/PIB-PEO provides anatase films with a continuous bimodal mesopore structure, possessing a permeability up to two times higher than that of the mesoporous films templated by PIB-PEO only (with partially isolated mesopores). When C16mimCl is used in large quantities, up to 20% weight vs. PIB-PEO, large overall porous volume and surface area are obtained, but the mesostructure is increasingly disrupted, leading to a severe loss of permeability of the bimodal films. A dye-sensitized solar cell set-up is used with anatase films as the photoelectrode. The photosensitizer loading and the total energy conversion efficiency of the solar cells using the mesoporous films templated by an optimal ratio of the two porogen agents C16mimCl and PIB-PEO can be substantially increased in comparison with the solar cells using mesoporous films templated by PIB-PEO only.

  5. 基于三水模型的储层分类方法评价低孔隙度低渗透率储层%Reservoir Classification Method Based on Three Water Model to Evaluate Low Porosity and Low Permeability Reservoir

    张丽华; 潘保芝; 李宁; 张冰; 边会媛; 韩雪


    Due to the various pore types and complex pore configurations, it is difficult to evaluate low porosity and low permeability reservoir. Slight variation range of porosity often causes large variation range of permeability. According to the shapes of capillary pressure curves of core samples, firstly, the surveyed reservoirs are classified into four types; then calculated are free porosity, micro-porosity and clay porosity in the light of pore radius size; then cast is the percent of each porosity in the total porosities into triangular diagram of porosity classifications to achieve the place of each reservoir on the triangular diagram; the relationships between porosity and permeability in each reservoir are established on the basis of petrophysical data of the core samples;in the end, three types of porosities are obtained from the three water model and are cast into the triangular diagram, from which continual reservoir classification can be gained; then corresponding permeability equations are chosen to compute permeabilities and evaluate reservoir comprehensively. The method is satisfactory in log application.%低孔隙度低渗透率储层由于孔隙类型多样,结构复杂,往往孔隙度变化范围不大,而渗透率变化范围却很大.测井评价这类储层一直是难点.根据毛细管压力曲线形态,将研究区的储层分为4类,依据孔隙半径大小,计算出对应各类储层的自由孔隙度、微孔隙度和黏土孔隙度,把这3种孔隙度按各自占总孔隙的百分比投到孔隙分类三角图上,得到各类储层在三角图上的位置,根据岩心物性分析资料,分别建立孔渗关系.根据三水模型计算出各种孔隙度的大小,投到分类三角图上,得到各井连续的储层分类,选择相应类别的渗透率公式对储层进行综合评价.该方法在研究区应用中取得了满意的效果.

  6. A laboratory investigation of the pseudo relative permeability characteristics of unstable immiscible displacement

    Sarma, H.K.; Maini, B.B.; Purves, R.W. (Petroleum Recovery Inst., Calgary, AB (Canada)); Jha, K.N. (Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada))


    Enhanced oil recovery operations often involve immiscible displacement of the more viscous oil by a less viscous fluid. This often leads to an unstable and inefficient displacement process because of fingering of the more mobile displacement fluid through the more viscous oil. Conventional practice to predict displacement stability has been to use a Buckley-Leverett type analysis. A more direct approach to acccount for the presence of viscous instability is to use pseudo-relative permeabilities which are modified true relative permeability curves. A study was carried out to determine whether the conventional Buckley-Leverett model with modified relative permeability curves can be used to describe the recovery and pressure drop performance of unstable displacements. Several unstable immiscible displacement experiments were carried out in a rectangular model, examining the effects of different parameters on oil recovery and generating pseudo-relative permeability curves for each set of conditions. It was found that the Buckley-Leverett frontal advance theory in conjunction with pseudo-relative permeability curves can be used to describe the macroscopic behaviour of immiscible displacements involving viscous fingering provided one is aware of the degree of viscous instability. Effect of such factors as displacement rate and viscosity of the oil on the relative permeability curve for water was more pronounced than on the relative permeability for oil. The wettability number proposed by Peters and Flock is not constant for a particular rock-fluid system but may be a function of the flood rate as well. 12 refs., 22 figs., 4 tabs.

  7. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh


    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  8. Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity

    Lu, Ping; Xia, Younan


    This article presents a simple and reliable method for generating polystyrene (PS) yarns composed of bundles of nanofibrils by using a proper combination of solvent and relative humidity. We elucidated the mechanism responsible for the formation of this new morphology by systematically investigating the molecular interactions among the polymer, solvent(s), and water vapor. We demonstrated that vapor-induced phase separation played a pivotal role in generating the yarns with a unique structure. Furthermore, we discovered that the low vapor pressure of N,N-dimethylformamide (DMF) was critical to the evolution of pores in the interiors. On the contrary, the relatively high vapor pressure of tetrahydrofuran (THF) hindered the formation of interior pores but excelled in creating a rough surface. In all cases, our results clearly indicate that the formation of either internal porosity or surface roughness required the presence of water vapor, a nonsolvent of the polymer, at a proper level of relative humidity. The exact morphology or pore structure was dependent on the speed of evaporation for the solvent(s) (DMF, THF, and their mixtures), as well as the inter-diffusion and penetration of the nonsolvent (water) and solvent(s). Our findings can serve as guidelines for the preparation of fibers with desired porosity both internally and externally through electrospinning. PMID:23530752

  9. Numerical-Simulation-Based Determination of Relative Permeability in Laminated Rocks

    Sedaghat, Mohammad H.; Gerke, Kirill; Azizmohammadi, Siroos; Matthai, Stephan


    Reservoir simulation using the extended Darcy's law approach requires relative permeability curves derived either via analytic saturation functions (Corey models etc.) or from special core analysis (SCAL). Since such experimental exploration of the space of influential parameters (pore geometry and wettability) is costly and time consuming, establishing ways to extract ensemble relative permeability from numerical simulation, kri, over the entire range of water saturation is highly desirable. Recent work has highlighted that the shape of relative permeability strongly depends on the balance between viscous, gravitational, and capillary forces. Our work focuses on finding accurate ways to compute ensemble kri(sw) for layered rocks when both capillary and viscous forces are strong. Two methods are proposed: an unsteady state saturation variation (USSV) method and a steady state saturation variation (SSSV) technique. To evaluate these approaches, SCAL data was extracted numerically from a real mm-scale layered sample. Results obtained with a Finite Element-Centered Finite Volume (FECFM) simulator, suggest that either of the approaches work significantly better than conventional unsteady state and JBN (Johnson-Bossler-Naumann) methods. Also, investigating saturation and velocity profiles within the sample indicates that bed-by-bed variations in wettability influence the flow pattern along/across interfaces making equipermeable layers behave like zones with different flow velocity. This dramatically challenges conventional relative permeability models and is addressed in terms of a new variable called relative permeability index.


    钟淑敏; 刘传平; 章华兵


    大庆长垣扶余油层为砂泥岩低孔、特低渗储层,孔隙结构极为复杂.孔隙结构是控制岩性油气藏流体分布和有效渗流能力的重要因素,对储层的测井电性特征、产能性质和产能有重要影响.利用毛管压力曲线开展储层微观孔隙结构分类评价,应用储层微观特征参数刻度岩心分析资料得到了储层品质指数并建立其储层分类标准;通过岩心刻度测井技术研制了常规测井资料储层分类标准并实现了单井逐层分类解释,为储层流体识别和建立精细储量参数模型奠定了基础.%Fuyu Reservoir of Daqing Placanticline is the sand shale reservoirs with low-porosity and low-permeability. This reservoir is characterized by low porosity and permeability with extremely complex pore structures. Since pore structure is the significant factor that controls the fluid distribution and effective seepage flow capacity of lithol-ogic hydrocarbon reservoirs, therefore, it has significant influence on the logging electric property, deliverability property and deliverability of reservoirs. The classification and evaluation of the microscopic pore structure of reservoirs is conducted through the application of capillary pressure curves. A reservoir quantity index and the reservoir classification criteria are established by calibrating the core analysis data through the application of reservoir microscopic characteristic parameter. The reservoir classification criterion by conventional well logging data is developed by the core calibrating logging technology, and the classification interpretation of individual layer per well is realized. It lays the foundation for reservoir fluid identification and the establishment of fine reservoir parameter model.

  11. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    Hussaini, Irfan


    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  12. Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments

    Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.


    Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.

  13. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E. [Lawrence Berkeley National Laboratory, CA (United States); Barr, D. [Office of Repository Development, DOE (United States)


    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  14. A study of relative permeability parameters on rock cores using a two-phase flow test

    Chung-Hui Chiao


    Full Text Available To ensure sequestration safety, confirming the injectivity of the reservoir rock formation is of critical importance, requiring studies of the rock permeability to uncover the fluid migration scenarios within the porous reservoir rock. Two-phase (super-critical CO2-brine flow behavior following the post CO2 injection is believed to be a dominating factor; its flooding behavior within the porous rock media needs to be further clarified prior to confirming the feasibility of domestic CO2 geo-sequestration. This study aims to determine the relative permeability of rock cores obtained from field outcropping. A test facility was established to determine the relative permeability during drainage and imbibition processes using a core-flooding test characterized by displacement method. The test facility was assembled locally and is regarded as a pioneering attempt. By relevant data interpretation, the parameters of relative permeability for predicting the movement of super-critical CO2 after injection can be modeled. More reliable parameters can be obtained using history matching processes wherein time-elapsed data calibration is used in conjunction with a computer code, TOUGH2. The test results were iteratively calibrated using numerical simulation by conducting a history matching process. The K-S curves derived from best-fit parameters are believed to be the most relevant relative permeability for the reservoir rock. Through this preliminary study, a better understanding of some of the problems and limitations associated with the determination of the rock relative permeability using two-phase flow test is achieved, but more advanced research is required.

  15. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.


    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes. The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.

  16. Permittivity and permeability measurements methods for particle accelerator related materials

    Vollinger, C; Jensen, E


    For the special requirements related to particle accelerators, knowledge of the different material parameters of dielectrics and other materials are needed in order to carry out simulations during the design process of accelerator components. This includes also properties of magnetically biased ferrites of which usually little information is available about material characteristics, especially in magnetic bias fields. Several methods of measurement are discussed and compared of which some require delicate sample preparation whereas others can work with unmodified material shapes that makes those methods also suited for acceptance checks on incoming materials delivered by industry. Applications include characterization of different materials, as absorbers in which dielectric losses play an increasing role, as well as low frequency measurements on ferrites that are used for tunable cavities. We present results obtained from both broadband and resonant measurements on different materials determined in the same s...

  17. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Um, W.; Rod, K. A.; Strickland, C. E.


    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  18. Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids

    Keller, Arturo A.; Chen, Mingjie


    Three-phase flow conditions are encountered regularly, for example, during migration of released NAPL through the vadose zone, certain stages of soil vapor extraction, bioslurping, or generation of gases by microbes. To model three-phase flow, a common approach is to construct three-phase relative permeabilities based on a combination of two-phase relative permeabilities. Although this circumvents a lack of experimental data, it can lead to serious underprediction or overprediction of residual NAPL saturation. This can mislead decision makers that need to predict whether a particular spill will reach the water table or predict the speed of a NAPL front or conduct an assessment of the performance of remediation actions. Experimental data to estimate three-phase relative permeabilities is sparse. A study by [2000a] generated significant experimental information. Their analysis focused on the high NAPL saturation region, given their emphasis on oil reservoir engineering. For environmental applications the low saturation region is of more interest. Using this data set, we derived a set of empirical relations that relate NAPL three-phase relative permeability krn to NAPL saturation Sn and spreading coefficient Cs for Sn less than about 0.1, such that krn = ? where A1 = 0.012 exp (-1.3Cs) and A2 = 2.1 - 0.60Cs + 0.036Cs2. At higher Sn, krn ≈ Sn4, independent of Cs. We present a pore-scale conceptual model that provides a phenomenological basis for the use of Cs as a predictor of krn at low Sn. We then present a number of simulated case studies that highlight the effect of these three-phase relative permeabilities on risk assessment or remediation design.

  19. A New Method for the Analysis of Relative Permeability in Porous Media

    许友生; 吴锋民


    By combining three-dimensional digital microtomography techniques with the lattice Boltzmann method, a newmethodology is used to analyse the relative permeability of multiphase flow in porous media. The results indicate that the two coupling coefficients K12 and K21 have the same magnitude, therefore the Onsager reciprocity still holds. The results also agree well with the results of pipe flow numerical experiments.

  20. Simultaneous estimation of absolute and relative permeability by automatic history matching of three-phase flow production data

    Reynolds, A.C.; Li, R.; Oliver, D.S. [Tulsa Univ., Tulsa, OK (United States)


    A study was conducted in petroleum engineering to determine the feasibility of estimating absolute permeability fields and parameters that define relative permeability functions by automatic history matching of production data obtained under multiphase flow conditions. A prior model is used to assume irreducible water saturation, critical gas saturation and residual oil saturations. The three-phase oil relative permeability curve was calculated from the two sets of two-phase curves using Stone's Model II. The study considered data regarding pressure, gas-oil-ratio or water-oil ratio. It was concluded that when the parameters that characterize the relative permeability functions of a reservoir are known, then it is possible to estimate the relative permeability curves and log-permeability fields by history matching production data derived under three-phase flow conditions. 30 refs., 5 tabs., 14 figs.

  1. Relative water and gas permeability for gas production from hydrate-bearing sediments

    Mahabadi, Nariman; Jang, Jaewon


    water and gas permeability equations are important for estimating gas and water production from hydrate-bearing sediments. However, experimental or numerical study to determine fitting parameters of those equations is not available in the literature. In this study, a pore-network model is developed to simulate gas expansion and calculate relative water and gas permeability. Based on the simulation results, fitting parameters for modified Stone equation are suggested for a distributed hydrate system where initial hydrate saturations range from Sh = 0.1 to 0.6. The suggested fitting parameter for relative water permeability is nw ≈ 2.4 regardless of initial hydrate saturation while the suggested fitting parameter for relative gas permeability is increased from ng = 1.8 for Sh = 0.1 to ng = 3.5 for Sh = 0.6. Results are relevant to other systems that experience gas exsolution such as pockmark formation due to sea level change, CO2 gas formation during geological CO2 sequestration, and gas bubble accumulation near the downstream of dams.

  2. Analytical 1-D dual-porosity equivalent solutions to 3-D discrete single-continuum models. Application to karstic spring hydrograph modelling

    Cornaton, F


    One dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems - such as karstic aquifers - using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented 1-D dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3-D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1-D analytical dual-porosity model on reference hydraulic responses confirms the dependence of ...

  3. Porosity destruction in carbonate

    Ehrenberg, S.N. [Statoil, Stavanger (Norway)


    The important thing to understand about carbonate diagenesis is not how porosity is created, but how it is destroyed. Detailed core observations from two deeply-buried carbonate platform successions (the Finnmark platform, offshore north Norway; and the Khuff Formation, offshore Iran) show that in both cases most vertical porosity variation can be accounted for by only two or three factors, namely: (1) stylolite frequency, (2) proportion of argillaceous beds, and (3) anhydrite cement. The spatial distribution of these factors is determined by the depositional distribution of clay minerals (important for localizing chemical compaction) and the occurrence of hypersaline depositional conditions and associated brine reflux (important for localizing anhydrite precipitation and dolomitisation). However, the intensity of chemical compaction and consequent porosity loss in adjacent beds by carbonate cementation also depend upon thermal exposure (temperature as a function of time). Evidence from the Finnmark platform and other examples indicate that the stratigraphic distribution of early-formed dolomite is also important for porosity preservation during burial, but this factor is not apparent in the Khuff dataset. Insofar as the Finnmark and Khuff platforms can be regarded as representative of carbonate reservoirs in general, recognition of the above porosity-controlling factors may provide the basis for general models predicting carbonate reservoir potential both locally (reservoir-model scale) and regionally (exploration-scale). Distributions of clay, anhydrite, and dolomitization should be predictable from stratigraphic architecture, whereas variations in thermal exposure can be mapped from basin analysis. In the present examples at least, factors that do not need to be considered include eogenetic carbonate cementation and dissolution, depositional facies (other than aspects related to clay and anhydrite content), and mesogenetic leaching to create late secondary

  4. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail:; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)


    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  5. Relative permeability experiments of carbon dioxide displacing brine and their implications for carbon sequestration.

    Levine, Jonathan S; Goldberg, David S; Lackner, Klaus S; Matter, Juerg M; Supp, Michael G; Ramakrishnan, T S


    To mitigate anthropogenically induced climate change and ocean acidification, net carbon dioxide emissions to the atmosphere must be reduced. One proposed option is underground CO2 disposal. Large-scale injection of CO2 into the Earth's crust requires an understanding of the multiphase flow properties of high-pressure CO2 displacing brine. We present laboratory-scale core flooding experiments designed to measure CO2 endpoint relative permeability for CO2 displacing brine at in situ pressures, salinities, and temperatures. Endpoint drainage CO2 relative permeabilities for liquid and supercritical CO2 were found to be clustered around 0.4 for both the synthetic and natural media studied. These values indicate that relative to CO2, water may not be strongly wetting the solid surface. Based on these results, CO2 injectivity will be reduced and pressure-limited reservoirs will have reduced disposal capacity, though area-limited reservoirs may have increased capacity. Future reservoir-scale modeling efforts should incorporate sensitivity to relative permeability. Assuming applicability of the experimental results to other lithologies and that the majority of reservoirs are pressure limited, geologic carbon sequestration would require approximately twice the number of wells for the same injectivity.

  6. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E. [Lawrence Berkeley National Laboratory, CA (United States); Barr, D. [Office of Repository Development, DOE (United States)


    The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. Three multi-year project stages of DECOVALEX have been completed in the past decade, mainly focusing on coupled thermal-hydrological-mechanical processes. Currently, a fourth three-year project stage of DECOVALEX is under way, referred to as DECOVALEX-THMC. THMC stands for Thermal, Hydrological, Mechanical, and Chemical processes. The new project stage aims at expanding the traditional geomechanical scope of the previous DECOVALEX project stages by incorporating geochemical processes important for repository performance. The U.S. Department of Energy (DOE) leads Task D of the new DECOVALEX phase, entitled 'Long-term Permeability/Porosity Changes in the EDZ and Near Field due to THC and THM Processes for Volcanic and Crystalline-Bentonite Systems.' In its leadership role for Task D, DOE coordinates and sets the direction for the cooperative research activities of the international research teams engaged in Task D. The research program developed for Task D of DECOVALEX-THMC involves geomechanical and geochemical research areas. THM and THC processes may lead to changes in hydrological properties that are important for performance because the flow processes in the vicinity of emplacement tunnels will be altered from their initial state. Some of these changes can be permanent (irreversible), in which case they persist after the thermal conditions have returned to ambient; i.e., they will affect the entire regulatory compliance period. Geochemical processes also affect the water and gas chemistry close to the waste packages, which are relevant for waste package corrosion, buffer stability, and radionuclide transport. Research teams participating in Task D evaluate long-term THM and THC processes in two generic geologic

  7. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    Christiansen, R.L.; Kalbus, J.S. [Colorado School of Mines, Golden, CO (United States). Petroleum Engineering Dept.; Howarth, S.M. [Sandia National Labs., Albuquerque, NM (United States)


    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.

  8. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Daigle, H.; Rice, M. A.


    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  9. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    Daigle, Hugh [University of Texas at Austin; Rice, Mary Anna [North Carolina State University; Daigle, Hugh


    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  10. Modelling Structured Societies: a Multi-relational Approach to Context Permeability

    Nunes, Davide


    The structure of social relations is fundamental for the construction of plausible simulation scenarios. It shapes the way actors interact and create their identity within overlapping social contexts. Each actor interacts in multiple contexts within different types of social relations that constitute their social space. In this article, we present an approach to model structured agent societies with multiple coexisting social networks. We study the notion of context permeability, using a game in which agents try to achieve global consensus. We design and analyse two different models of permeability. In the first model, agents interact concurrently in multiple social networks. In the second, we introduce a context switching mechanism which adds a dynamic temporal component to agent interaction in the model. Agents switch between the different networks spending more or less time in each one. We compare these models and analyse the influence of different social networks regarding the speed of convergence to cons...

  11. Modeling for Hydraulic Permeability and Kozeny-Carman Constant of Porous Nanofibers Using a Fractal Approach

    Xiao, Boqi; Tu, Xing; Ren, Wen; Wang, Zongchi


    In this study, the analytical expressions for the hydraulic permeability and Kozeny-Carman (KC) constant of porous nanofibers are derived based on fractal theory. In the present approach, the permeability is explicitly related to the porosity and the area fractal dimensions of porous nanofibers. The proposed fractal models for KC constant is also found to be a function of the microstructural parameters (porosity, area fractal dimensions). Besides, the present model clearly indicates that KC constant is not a constant and increases with porosity. However, KC constant is close to a constant value which is 18 for ϕ > 0.8. Every parameter of the proposed formulas of calculating permeability and KC constant has clear physical meaning. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different porosities.

  12. Relation of transverse air permeability with physical properties in different compositions of sugarcane bagasse particleboards

    Lina Bufalino


    Full Text Available Studies concerning the production of particleboards with sugarcane bagasse as an alternative fibrous material have been carried out as an attempt to provide a sustainable and viable destination for this residue. This work aimed to evaluate the influence of several processing variables related to the microstructure of sugarcane bagasse particleboards (mat type, adhesive type and adhesive content on their permeability and water sorption properties. Air permeability data was collected by the rotameter method. Superficial air permeability (kg, Darcian constant (k1 and non-Darcian constant (k2 were measured. kg was related to sorption behavior of the particleboards. 1-layer particleboards presented significantly higher kg values than the 3-layer particleboards. In general, adhesive type, position and content did not influence kg of particleboards. However, these processing variables influenced interactions between fluid and material and tortuosity of the porous media. Particleboards produced with urea-formaldehyde with high kg presented higher water absorption and thickness swelling after 24 hours. Such relations were not observed in particleboards produced with melamine-urea-formaldehyde.

  13. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand


    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  14. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    Lee, S. H.; Efendiev, Y.


    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  15. On the permeability of fractal tube bundles

    Zinovik, I


    The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability-porosity relationships represented by the Kozeny-Carman equations and Archie's law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The goal of this paper is an evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the two-dimensional foams generated by finite iterations of the corresponding geometric fractals can be used to model poro...

  16. Determining CO2-brine relative permeability and capillary pressure simultaneously: an insight to capillary entrance and end effects

    Chen, X.; Kianinejad, A.; DiCarlo, D. A.


    CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches

  17. Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs

    Ronny Pini; Sally M Benson


      Capillary pressure and relative permeability drainage curves are simultaneously measured on a single Berea Sandstone core by using three different fluid pairs, namely g CO 2/water, g N 2/water and s c CO 2/brine...

  18. Verification of capillary pressure functions and relative permeability equations for gas production

    Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)


    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  19. Diagenesis and diagenetic facies of low porosity and permeability sandstone in Member 8 of the Yanchang Formation in Daijiaping area, Ordos Basin%鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相

    周翔; 何生; 陈召佑; 王芙蓉; 周思宾; 刘萍


    上三叠统延长组长8段砂岩是鄂尔多斯盆地代家坪地区重要的勘探目的层,以长石岩屑细砂岩和岩屑长石细砂岩为主,目前处于中成岩A期,属典型低孔特低渗储层.强烈的成岩作用是储层致密化的主要原因,其中压实作用和碳酸盐岩胶结作用造成储层原生孔隙大量丧失,绿泥石胶结和长石溶蚀对储层物性改善起到了积极作用,碱-酸-碱交替的成岩介质环境变化控制了粘土矿物形成、碳酸盐胶结物沉淀以及长石溶蚀作用.综合多项定性和定量参数,将长8段砂岩划分为5种成岩相类型,定量计算不同成岩相埋藏过程中孔隙演化表明,由沉积作用形成的不同成岩相中砂岩原始组分差异是导致胶结类型和溶蚀程度差异的物质基础,不同成岩相中成岩作用类型及强度是造成砂岩孔隙演化及物性差异的主要原因.优质砂岩储层分布与成岩相密切相关,其中分布于水下分流河道砂体中的弱压实绿泥石胶结相和中压实次生溶蚀相砂岩物性最好,是研究区长8段砂岩储层中最有利的成岩相带.%Member 8 sandstone of the Upper Triassic Yanchang Formation is the major exploration target in Daijiaping area , Ordos Basin .Member 8 sandstone of the Yanchang Formation mainly consists of feldspathic litharenite and lithic arkose , currently is at the A phase of middle diagenesis stage ,and is categorized into low-porosity and extremely low-permeability reservoir .The intensive diagenesis is main cause of reservoir densification .Compaction and carbonate cementation largely reduce the primary porosity ,while chlorite cementation and feldspar dissolution improve the reservoir quality ,and the alka-line-acidic-alkaline change of digenetic environment control the formation of clay mineral ,the precipitation of carbonate ce-ments,and the dissolution of feldspar .Five types of diagenetic facies are identified in the Member 8 sandstone of the Yan

  20. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon


    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  1. Hard magnetization direction and its relation with magnetic permeability of highly grain-oriented electrical steel

    Hao Wang; Chang-sheng Li; Tao Zhu


    The magnetic properties of highly grain-oriented electrical steel vary along different directions. In order to investigate these prop-erties, standard Epstein samples were cut at different angles to the rolling direction. The hard magnetization direction was found at an angle of 60° to the rolling direction. To compare the measured and fitting curves, when the magnetic field intensity is higher than 7000 A/m, it is appropriate to simulate the relation of magnetic permeability and magnetization angle using the conventional elliptical model. When the magnetic field intensity is less than 3000 A/m, parabolic fitting models should be used; but when the magnetic field intensity is between 3000 and 7000 A/m, hybrid models with high accuracy, as proposed in this paper, should be applied. Piecewise relation models of magnetic per-meability and magnetization angle are significant for improving the accuracy of electromagnetic engineering calculations of electrical steel, and these new models could be applied in further industrial applications.

  2. 碳酸盐岩储集层复杂孔渗关系及影响因素--以滨里海盆地台地相为例%Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors:A case of platform facies in Pre-Caspian Basin

    何伶; 赵伦; 李建新; 马纪; 刘瑞林; 王淑琴; 赵文琪


    Based on a large amount of core analysis data in eastern Pre-Caspian Basin, the relationship between permeability and porosity and its influencing factors are studied. The sedimentary environments of the Carboniferous System in eastern Pre-Caspian Basin include open platform, restricted platform and evaporate platform. For dolomite reservoirs there are three main combination patterns of pores, namely, inter-crystalline and solution pores, inter-crystalline micro-pores, inter-crystalline micro-pores and intra-crystalline pores, among which the first combination are highest in porosity and permeability. For limestone reservoirs, the main combinations of pores are inter-particle pores, inter-particle and intra-particle pores and moldic pores. Lacking connecting pore throats, moldic pores are poor in permeability. In the dolomite reservoirs, fractures and vugs are well-developed and increase the permeability significantly. Under similar porosity, the permeability is obviously determined by the size of pore throat and the percentage of middle to large size throats in different type of reservoirs. In limestone reservoirs, fractures are principally micro-fractures, percentage of connecting pores to total pores is positively correlated with permeability; while in dolomite reservoirs, there is not such an obvious relationship between the connected pore percentage and permeability. Sedimentary environment controlling the distribution features of reservoir types, is the cause of the complex relationship between permeability and porosity.%以滨里海盆地东缘石炭系碳酸盐岩为例,在大量岩心分析资料基础上,研究碳酸盐岩储集层孔隙度、渗透率之间的复杂关系及其影响因素。滨里海盆地东缘石炭纪为开阔台地、局限台地、蒸发台地相碳酸盐岩沉积环境。白云岩储集层孔隙组合类型主要为:晶间孔-溶蚀孔、晶间微孔、晶间微孔-晶内孔,以晶间孔-溶蚀孔组合类型物性最好

  3. Effect and mechanism of stresses on rock permeability at different scales

    YIN; Shangxian; WANG; Shangxu


    The effect of geo-stress fields on macroscopic hydro-geological conditions or microcosmic permeability of water-bearing media should follow some laws or principles. Cases study and tests show that: (1) At macro-geologic large scale, deformed and crashed rocks which were induced by geo-stress fields changing provided space for groundwater storage and flow. Groundwater adjusts water-bearing space and dilatants fractures by flowing and press transferring. Coupling of liquid and solid can be implemented for rocks and groundwater. Although tectonic fields witness several times of change and build-up in geological time, stress fields forming regional tectonic framework are coherent with seepage fields, orientation of the maximum horizontal stress demonstrates main seepage directions. (2) At macro-geologic middle scale, zones of stresses changing sharply, quite low stresses,stress or shear concentration can be used to show locations and types of main fractures, zones of geo-stresses changing equably can be acted as normal base media zones of tri-porosity media. (3) At micro-geologic small scale, tri-porosity media include fractured rocks, porous rocks and capillary rocks. Investigations indicate that porosity or permeability is functions of effective stresses, and porosity or permeability changing rules of porous rocks with variation of effective stresses can be described as the index model, the model of power exponent functions is suitable for those of fractured rocks, the model of the second power parabola for capillary rocks. The porosity and permeability loss in fractured rocks, which are greater than that in porous rocks, are shown by calculation of effective compressive coefficient and closing pressure in cracks. The calculations can also explain themechanism why porosity changes are always larger than permeability changes. It is proved by the thick wall cylinder theory that the second power parabola relation between porosity or permeability loss and effective

  4. Breaking Down the Barriers: The Gut Microbiome, Intestinal Permeability and Stress-related Psychiatric Disorders

    John R Kelly


    Full Text Available The emerging links between our gut microbiome and the central nervous system are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting pre-clinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behaviour by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a leaky gut may facilitate communication between the microbiota and these key signalling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the central nervous system (CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.

  5. Evaluating the relative air permeability of porous media from their water retention curves

    Assouline, S.; Tuli, A.; Hopmans, J. W.


    Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.

  6. Dispersion controlled by permeable surfaces: surface properties and scaling

    Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia


    Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.

  7. Numerical Aspects Related to the Dynamic Update of Anisotropic Permeability Field During the Transport of Nanoparticles in the Subsurface

    Chen, Meng-Huo


    Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.

  8. Sensitivity Analysis of Interfacial Tension on Saturation and Relative Permeability Model Predictions

    Abdallah, Wael


    Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.

  9. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik


    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  10. Numerical modelling of thermal convection related to fracture permeability in Dinantian carbonate platform, Luttelgeest, the Netherlands

    Lipsey, Lindsay; Pluymaekers, Maarten; van Wees, Jan-Diederik; Limberger, Jon; Cloetingh, Sierd


    The presence of convective fluid flow in permeable layers can create zones of anomalously high temperature which can be exploited for geothermal energy. Temperature measurements from the Luttelgeest-01 (LTG-01) well in the northern onshore region of the Netherlands indicate variations in the thermal regime that could be indicative of convection. This thermal anomaly coincides with a 600 m interval (4600 - 5200 m) of Dinantian carbonates showing signs of increased fracture permeability of ~60 mD. For the purpose of geothermal energy exploration, it is of interest to know whether or not convection can occur in a particular reservoir, where convection cells are likely to develop and the temperature enhancements in convective upwellings. Three-dimensional numerical simulations provide insight on possible flow and thermal structures within the fractured carbonate interval. The development and number of convection cells is very much a time dependent process. First longitudinal rolls fill the domain, increasing in width until ultimately transforming into a more complex polyhedral structure. The model relaxes into a steady-state five-cell convection pattern. Furthermore, geometric aspects of the carbonate platform itself likely control the shape and location of upwellings. Convective upwellings can create significant temperature enhancements relative to the conductive profile and in agreement with the observations in the Luttelgeest carbonate platform. This enhancement is critically dependent on the aquifer thickness and geothermal gradient. Given a gradient of 39 °C/km and an aquifer thickness of 600 m, a temperature of 203 °C can be obtained at a depth of 4600 m directly above upwelling zones. Contrarily, downwelling zones result in a temperature of 185 °C at the same depth. This demonstrates the strong spatial variability of thermal anomalies in convective fractures aquifers at large depth, which can have a strong effect on exploration opportunity and risk of

  11. Fracture distribution and porosity in a fault-bound hydrothermal system (Grimsel Pass, Swiss Alps)

    Egli, Daniel; Küng, Sulamith; Baumann, Rahel; Berger, Alfons; Baron, Ludovic; Herwegh, Marco


    The spatial distribution, orientation and continuity of brittle and ductile structures strongly control fluid pathways in a rock mass by joining existing pores and creating new pore space (fractures, joints) but can also act as seals to fluid flow (e.g. ductile shear zones, clay-rich fault gouges). In long-lived hydrothermal systems, permeability and the related fluid flow paths are therefore dynamic in space and time. Understanding the evolution and behaviour of naturally porous and permeable rock masses is critical for the successful exploration and sustainable exploitation of hydrothermal systems and can advance methods for planning and implementation of enhanced geothermal systems. This study focuses on an active fault-bound hydrothermal system in the crystalline basement of the Aar Massif (hydrothermal field Grimsel Pass, Swiss Alps) that has been exhumed from few kilometres depth and which documents at least 3 Ma of hydrothermal activity. The explored rock unit of the Aar massif is part of the External Crystalline Massifs that hosts a multitude of thermal springs on its southern border in the Swiss Rhône valley and furthermore represents the exhumed equivalent of potentially exploitable geothermal reservoirs in the deep crystalline subsurface of the northern Alpine foreland basin. This study combines structural data collected from a 125 m long drillhole across the hydrothermal zone, the corresponding drill core and surface mapping. Different methods are applied to estimate the porosity and the structural evolution with regard to porosity, permeability and fracture distribution. Analyses are carried out from the micrometre to decametre scale with main focus on the flow path evolution with time. This includes a large variety of porosity-types including fracture-porosity with up to cm-sized aperture down to grain-scale porosity. Main rock types are granitoid host rocks, mylonites, paleo-breccia and recent breccias. The porosity of the host rock as well as the

  12. Experimental Studies of the Effect of Permeability on Seismoelectric Conversion Coefficients in Natural and Synthetic Sandstones

    Zhu, Z.; Toksoz, M. N.


    Theoretical calculation of seismoelectric conversion coefficients is difficult because it requires a large number of parameters that are hard to obtain. Much laboratory data are needed to validate the theoretical results. The most critical issue is determining independently the effect of porosity and permeability on seismoelectric coefficients. In general, when the rock porosity increases, the permeability increases too, and vice versa. In this study, we make measurements on both synthetic sandstone and two Berea (500 and 100) samples. We built a man-made "sandstone" sample with round cracks which are distributed in a horizontal plane. Thus the small cube (1.7 cm^3 ) only has one value of porosity and different permeabilities in the three directions. It is a sample with anisotropy in permeability. Laboratory experiments in a water tank show that the seismoelectric conversion coefficient is related to permeabilities in the three directions. The seismoelectric coefficient is highest in the direction of maximum permeability and lowest in the direction of minimum permeability. The measurements with the isotropic Berea samples show that seismoelectric coefficient increases with both porosity and permeability. Application of the result to borehole logging measurements requires analysis of the data from P, S, and Stoneley waves. P and Stoneley waves give large seismoelectric signals in the presence of fractures or high permeability zones. Shear waves, that do not induce fluid flow, provide very small seismoelectric signals. If the fracture strike in the formation is along the borehole axis, the P-wave induces stronger seismoelectric signal. Seismoelectric well logging might prove help for exploring the fractures or micro fractures in a borehole wall.

  13. Laboratory measurements of the relative permeability of cataclastic fault rocks: An important consideration for production simulation modelling

    Al-Hinai, Suleiman; Fisher, Quentin J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Al-Busafi, Bader [Petroleum Development of Oman, MAF, Sultanate of Oman, Muscat (Oman); Guise, Phillip; Grattoni, Carlos A. [Rock Deformation Research Limited, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)


    It is becoming increasingly common practice to model the impact of faults on fluid flow within petroleum reservoirs by applying transmissibility multipliers, calculated from the single-phase permeability of fault rocks, to the grid-blocks adjacent to faults in production simulations. The multi-phase flow properties (e.g. relative permeability and capillary pressure) of fault rocks are not considered because special core analysis has never previously been conducted on fault rock samples. Here, we partially fill this knowledge gap by presenting data from the first experiments that have measured the gas relative permeability (k{sub rg}) of cataclastic fault rocks. The cataclastic faults were collected from an outcrop of Permo-Triassic sandstone in the Moray Firth, Scotland; the fault rocks are similar to those found within Rotliegend gas reservoirs in the UK southern North Sea. The relative permeability measurements were made using a gas pulse-decay technique on samples whose water saturation was varied using vapour chambers. The measurements indicate that if the same fault rocks were present in gas reservoirs from the southern Permian Basin they would have k{sub rg} values of <0.02. Failure to take into account relative permeability effects could therefore lead to an overestimation of the transmissibility of faults within gas reservoirs by several orders of magnitude. Incorporation of these new results into a simplified production simulation model can explain the pressure evolution from a compartmentalised Rotliegend gas reservoir from the southern North Sea, offshore Netherlands, which could not easily be explained using only single-phase permeability data from fault rocks. (author)

  14. High=porosity Cenozoic carbonate rocks of South Florida: progressive loss of porosity with depth

    Halley, Robert B.; Schmoker, James W.


    Porosity measurements by borehole gravity meter in subsurface Cenozoic carbonates of South Florida reveal an extremely porous mass of limestone and dolomite which is transitional in total pore volume between typical porosity values for modern carbonate sediments and ancient carbonate rocks. A persistent decrease of porosity with depth, similar to that of chalks of the Gulf Coast, occurs in these rocks. Carbonate strata with less than 20% porosity are absent from the rocks studied here. Aquifers and aquicludes cannot be distinguished on the basis of porosity. Aquifers are not exceptionally porous when compared to other Tertiary carbonate rocks in South Florida. Permeability in these strata is governed more by the spacial distribution of pore space and matrix than by total volume of porosity present. Dolomite is as porous as, or slightly less porous than, limestones in these rocks. This observation places limits on any model proposed for dolomitization and suggests that dolomitization does not take place by a simple ion-for-ion replacement of magnesium for calcium. Dolomitization may be selective for less porous limestone, or it may involve the incorporation of significant amounts of carbonate as well as magnesium into the rock. The great volume of pore space in these rocks serves to highlight the inefficiency of early diagenesis in reducing carbonate porosity and to emphasize the importance of later porosity reduction which occurs during the burial or late near-surface history of limestones and dolomites.

  15. Development of a laboratory data interpretation software for determination of relative permeability curves by a parameter estimation method

    Hurtado, Fernando S.V.; Maliska, Clovis R.; Silva, Antonio F.C. da; Ambrus, Jaime; Contessi, Bruno A.; Cordazzo, Jonas [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Simulacao Numerica em Mecanica dos Fluidos e Transferencia de Calor (SINMEC)


    It is unquestionable the significant role that reservoir simulation has gained in the petroleum industry today. Nevertheless, the accuracy of this prediction toll is frequently degraded not only by inherent uncertainty in the reservoir characterization, but also by usually deficient estimation of relative permeability curves, which are the key elements for macroscopic description of multiphase flow in porous media. In practice, these flow functions should be estimated from data collected in displacement experiments. Although numerous methods for estimating relative permeabilities from these experimental data have been developed over the years, their practical application have been suffered from many problems mainly arisen on the oversimplified mathematical models on which those methods were based. In recent years, parameter estimation techniques are being increasingly applied to estimate relative permeabilities, mostly because they allow employing a flow model as accurate as necessary to represent all influencing factors on the fluid displacement. The present work describes the main characteristics and potentialities of an application software developed as a supporting toll for the task of estimation of reliable relative permeability curves by a parameter estimation method. Special emphasis was given to the implementation of a numerical flow model including relevant physical factors, such as rock heterogeneity, capillary pressure, gravity effects, and fluid compressibility. (author)

  16. The hydrogen permeability of Pd-Cu based thin film membranes in relation to their structure : A combinatorial approach

    Westerwaal, R. J.; Bouman, E. A.; Haije, W. G.; Schreuders, H.; Dutta, S.; Wu, M. Y.; Boelsma, C.; Ngene, P.|info:eu-repo/dai/nl/314121684; Basak, S.; Dam, B.


    Pd-Cu is a well-known alloy for H-2 separation membranes. Using a new optical combinatorial method we determined the H-2 permeability of Pd-Cu alloys at room temperature in relation to their crystal structure and microstructure. Compositional gradient samples allow us to determine the intrinsic perm

  17. Estimation of three-phase relative permeability by simulating fluid dynamics directly on rock-microstructure images

    Jiang, F.; Tsuji, T.


    Given the world's growing demand for energy, a combination of geological CO2 sequestration and enhanced oil recovery (EOR) technologies is currently regarded as a promising solution, as it would provide a means of reducing carbon emissions into the atmosphere while also leading to the economic benefit of simultaneously recovering oil. The optimization of injection strategies to maximize CO2 storage and increase the oil recovery factors requires complicated pore-scale flow information within a reservoir system consisting of coexisting oil, water, and CO2 phases. In this study, an immiscible three-phase lattice-Boltzmann (LB) model was developed to investigate the complicated flow state with interaction between water, oil, and CO2 systems in porous media. The two main mechanisms of oil remobilization, namely, double-drainage and film flow, can be captured by our model. The estimation of three-phase relative permeability is proposed using the digital rock physics (DRP) simulations. The results indicate that the relative permeability of CO2 as calculated using our steady state method is not sensitive to the initial oil fraction if the oil distribution is originally uniform. Baker's (1988) empirical model was tested and found to be able to provide a good prediction of the three-phase relative permeability data. Our numerical method provides a new tool for accurately predicting three-phase relative permeability data directly based on micro-CT rock images.

  18. Evaluation of different toxicity assays applied to proliferating cells and to stratified epithelium in relation to permeability enhancement with glycocholate

    Eirheim, Heidi Ugelstad; Bundgaard, Christoffer; Nielsen, Hanne Mørck


    exposed to different GC concentrations for 4 h. The MTS/PMS assay and neutral red (NR) retention were performed along with quantitation of ATP, lactate dehydrogenase (LDH) and extracellular protein. The toxicity was calculated as the IC50 value relative to the control. Increase in 3H-mannitol permeability...

  19. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

    Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.


    In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.

  20. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Chung Hae ePARK


    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  1. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Park, Chung Hae; Krawczak, Patricia


    In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  2. Graded-porosity heat-pipe wicks

    Eninger, J. E.


    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  3. Perm-Fit: a new program to estimate permeability at high P-T conditions

    Moulas, Evangelos; Madonna, Claudio


    Several geological processes are controlled by porous fluid flow. The circulation of porous fluids influences many physical phenomena and in turn it depends on the rock permeability. The permeability of rocks is a physical property that needs to be measured since it depends on many factors such as secondary porosity (fractures etc). We present a numerical approach to estimate permeability using the transient step method (Brace et al., 1968). When a non-reacting, compressible fluid is considered in a relative incompressible solid matrix, the only unknown parameter in the equations of porous flow is permeability. Porosity is assumed to be known and the physical properties of the fluid (compressibility, density, viscosity) are taken from the NIST database. Forward numerical calculations for different values of permeability are used and the results are compared to experimental measurements. The extracted permeability value is the one that minimizes the misfit between experimental and numerical results. The uncertainty on the value of permeability is estimated using a Monte Carlo method. REFERENCES Brace, W.F., Walsh J.B., & Frangos, W.T. 1968: Permeability of Granite under High Pressure, Journal of Geophysical Research, 73, 6, 2225-2236

  4. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger


    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  5. Permeability and effective thermal conductivity of bisized porous media

    Dias, Ricardo P. [Departamento de Tecnologia Quimica, Escola Superior de Tecnologia e de Gestao, Instituto Politecnico de Braganca, Campus de Santa Apolonia, Apartado 134, 5301-857 Braganca (Portugal); Fernandes, Carla S. [Departamento de Matematica, Escola Superior de Tecnologia e de Gestao, Instituto Politecnico de Braganca, Campus de Santa Apolonia, Apartado 134, 5301-857 Braganca (Portugal); Mota, Manuel; Teixeira, Jose A.; Yelshin, Alexander [Centro de Eng. Biologica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)


    In the region of minimum porosity of particulate binary mixtures, heat exchange and permeability were found to be higher than the ones obtained with a mono-size packing built with the same small size particles used in the binary packing. This effect was noticed in the range of the particles size ratio 0.1-1.0. The obtained improvement on thermal performance is related to the increase of effective thermal conductivity (ETC) in the binary packing and to the increase in transversal thermal dispersion due to the porosity decrease and tortuosity increase. Permeability can increase by a factor of two, if the size ratio between small and large spheres of a loose packing stays in the range 0.3-0.5. (author)

  6. Porosity variation in chalk

    Lind, Ida; Grøn, Peter


    Vertical porosity variations in chalk are generally assumed to result from either a vaguely defined combination of primary sedimentary and diagenetic processes or solely to diagenetic processes. In this study, image analysis of backscatter electron images of polished samples and geochemical...... microprobe mapping were applied to measure the porosity variation in a limited number of chalk samples. Microscope data indicate that in all cases the chalk has been subjected to diagenetic processes, but our data suggest that the variations in porosity originate in primary sedimentary differences....



    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the




    The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the lactulose/mannit

  9. Literature review and recommendation of methods for measuring relative permeability of anhydrite from the Salado Formation at the Waste Isolation Pilot Plant

    Christiansen, R.L. [Colorado School of Mines, Golden, CO (United States). Dept. of Petroleum Engineering; Howarth, S.M. [Sandia National Labs., Albuquerque, NM (United States)


    This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations.

  10. Evidence for the development of permeability anisotropy in lava domes and volcanic conduits

    Farquharson, Jamie I.; Heap, Michael J.; Lavallée, Yan; Varley, Nick R.; Baud, Patrick


    The ease at which exsolving volatiles can migrate though magma and outgas influences the explosivity of a volcanic eruption. Volcanic rocks often contain discrete discontinuities, providing snapshots of strain localisation processes that occur during magma ascent and extrusion. Whether these features comprise pathways for or barriers to fluid flow is thus of relevance for volcanic eruption and gas emission modelling. We report here on nine discontinuity-bearing andesite blocks collected from Volcán de Colima, Mexico. We present a systematic porosity and permeability study of fifty cores obtained from the blocks collected, and interpret the genetic processes of the discontinuities through detailed microstructural examination. Bands in pumiceous blocks were inferred to be relicts of inhomogeneous bubble expansion which, despite significantly increasing porosity, do not markedly affect permeability. Other discontinuities in our blocks are interpreted to be shear strain-induced flow banding, cavitation porosity, and/or variably healed fractures. In each of these cases, an increase in permeability (up to around three orders of magnitude) was measured relative to the host material. A final sample contained a band of lower porosity than the host rock, characterised by variably infilled pores. In this case, the band was an order of magnitude less permeable than the host rock, highlighting the complex interplay between dilatant and densifying processes in magma. We therefore present evidence for significant permeability anisotropy within the conduit and/or dome of a volcanic system. We suggest that the abundance and distribution of strain localisation features will influence the escape or entrapment of volatiles and therefore the evolution of pore pressure within active volcanic systems. Using a simple upscaling model, we illustrate the relative importance of permeable structures over different lengthscales. Strain localisation processes resulting in permeability

  11. Role of sulfhydryls in mucosal injury caused by ethanol: relation to microvascular permeability, gastric motility and cytoprotection

    Takeuchi, K.; Okada, M.; Niida, H.; Okabe, S.


    The relationship between gastric mucosal glutathione (GSH) levels, vascular permeability, gastric motility and mucosal injury caused by ethanol was investigated in rats. Oral administration of 50% ethanol (1 ml) produced elongated reddish bands of lesions in the mucosa with a significant reduction of GSH levels and increase of microvascular permeability. These lesions were significantly inhibited by pretreatment with s.c. administered diethylmaleate (DEM: 1 ml/kg), cysteamine (100 mg/kg) and 16, 16-dimethyl prostaglandin E2 (dmPGE2, 10 micrograms/kg) but worsened markedly by N-ethylmaleimide (NEM: 10 mg/kg). Irrespective of whether the animals were treated with 50% ethanol or not, the mucosal GSH levels were significantly decreased or increased, respectively, by DEM or cysteamine, and were not affected by both NEM and dmPGE2. NEM significantly enhanced the vascular permeability in the absence or presence of ethanol (greater than 10%), whereas other agents significantly inhibited only the increased vascular permeability caused by ethanol. On the other hand, gastric motility was potently and persistently inhibited by either DEM, cysteamine or dmPGE2 at the doses which prevented ethanol-induced mucosal injury, whereas NEM had no effect on the motility. These results suggest that 1) the mucosal GSH levels do not relate directly to either development or prevention of ethanol-induced gastric injury, 2) potentiation by NEM of the mucosal injury may be accounted for by its enhancement of the vascular permeability and 3) inhibition of gastric motility may be associated with prevention of mucosal lesions.

  12. A FORTRAN program for interpretation of relative permeability from unsteady-state displacements with capillary pressure included

    Udegbunam, E.O.


    This paper presents a FORTRAN program for the determination of two-phase relative permeabilities from unsteady-state displacement data with capillary pressure terms included. The interpretative model employed in this program combines the simultaneous solution of a variant of the fractional flow equation which includes a capillary pressure term and an integro-differential equation derived from Darcy's law without assuming the simplified Buckley-Leverett flow. The incorporation of capillary pressure in the governing equations dispenses with the high flowrate experimental requirements normally employed to overcome capillarity effects. An illustrative example is presented herein which implements this program for the determination of oil/water relative permeabilities from a sandstone core sample. Results obtained compares favorably with results previously given in the literature. ?? 1991.

  13. The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano-tubes suspended in oil (MWCNT/Oil nano-fluid) in a microchannel filled with a porous medium

    Nojoomizadeh, Mehdi; Karimipour, Arash


    The forced convection heat transfer and laminar flow in a two-dimensional microchannel filled with a porous medium is numerically investigated. The nano-particles which have been used are multi walled carbon nano-tubes (MWCNT) suspended in oil as the based fluid. The assumption of no-slip condition between the base fluid and nano-particles as well as the thermal equilibrium between them allows us to study the nanofluid in a single phase. The nanofluid flow through the microchannel has been modeled using the Darcy-Forchheimer equation. It is also assumed that there is a thermal equilibrium between the solid phase and the nanofluid for energy transfer. The walls of the microchannel are under the influence of a fluctuating heat flux. Also, the slip velocity boundary condition has been assumed along the walls. The effects of Darcy number, porosity and slip coefficients and Reynolds number on the velocity and temperature profiles and Nusselt number will be studied in this research.

  14. Water pulse migration through semi-infinite vertical unsaturated porous column with special relative-permeability functions: Exact solutions

    Hayek, Mohamed


    The paper presents certain exact solutions describing the vertical movement of a water pulse through a semi-infinite unsaturated porous column. The saturation-based form of the Richards' equation is used with special power law relative-permeability functions. Both capillary and gravity effects are taken into account. Three exact solutions are derived corresponding to three relative-permeability functions, linear, quadratic and cubic. The Richards' equation is nonlinear for the three cases. The solutions are obtained by applying a general similarity transformation. They are explicit in space and time variables and do not contain any approximation. They describe the evolution of the water saturation in the vertical column and they can be used to predict the post-infiltration movement of a finite quantity of water. Exact expressions of the masses of water leaving a given depth are also derived for the three cases. We analyze the effect of relative-permeability and capillary pressure. The proposed solutions are also useful for checking numerical schemes. One of the exact solutions is used to validate numerical solution obtained from an arbitrary initial condition. Results show that the numerical solution converges to the exact solution for large times.

  15. Development and Comparison of Techniques for Generating Permeability Maps using Independent Experimental Approaches

    Hingerl, Ferdinand; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally


    We have developed and evaluated methods for creating voxel-based 3D permeability maps of a heterogeneous sandstone sample using independent experimental data from single phase flow (Magnetic Resonance Imaging, MRI) and two-phase flow (X-ray Computed Tomography, CT) measurements. Fluid velocities computed from the generated permeability maps using computational fluid dynamics simulations fit measured velocities very well and significantly outperform empirical porosity-permeability relations, such as the Kozeny-Carman equation. Acquiring images on the meso-scale from porous rocks using MRI has till recently been a great challenge, due to short spin relaxation times and large field gradients within the sample. The combination of the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme with three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE) - a technique recently developed at the UNB MRI Center - can overcome these challenges and enables obtaining quantitative 3 dimensional maps of porosities and fluid velocities. Using porosity and (single-phase) velocity maps from MRI and (multi-phase) saturation maps from CT measurements, we employed three different techniques to obtain permeability maps. In the first approach, we applied the Kozeny-Carman relationship to porosities measured using MRI. In the second approach, we computed permeabilities using a J-Leverett scaling method, which is based on saturation maps obtained from N2-H2O multi-phase experiments. The third set of permeabilities was generated using a new inverse iterative-updating technique, which is based on porosities and measured velocities obtained in single-phase flow experiments. The resulting three permeability maps provided then input for computational fluid dynamics simulations - employing the Stanford CFD code AD-GPRS - to generate velocity maps, which were compared to velocity maps measured by MRI. The J-Leveret scaling method and the iterative-updating method

  16. Relationship between tensile strength and porosity for high porosity metals

    刘培生; 付超; 李铁藩; 师昌绪


    An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.

  17. Gas permeability of lanthanum oxycarbide targets for the SPES project

    Biasetto, L., E-mail: [Università di Padova-Department DTG, Stradella San Nicola 3, I-36100 Vicenza (Italy); Laboratori Nazionali di Legnaro-INFN, V.le dell’Università 2, I-35020 Legnaro (PD) (Italy); Innocentini, M.D.M.; Chacon, W.S. [Curso de Engenharia Química, Universidade de Ribeirão Preto, 14096-900 Ribeirão Preto, SP (Brazil); Corradetti, S.; Carturan, S. [Laboratori Nazionali di Legnaro-INFN, V.le dell’Università 2, I-35020 Legnaro (PD) (Italy); Colombo, P. [Università di Padova, Department DII, via Marzolo 9, I-35131 Padova (Italy); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Andrighetto, A. [Laboratori Nazionali di Legnaro-INFN, V.le dell’Università 2, I-35020 Legnaro (PD) (Italy)


    The creation of a porous matrix made of interconnected and permeable paths is a key step for the processing of optimized metal carbide targets in the SPES (Selective Production of Exotic Species) project. Unlike close or non-connected open pores, permeable pores link more efficiently the interior and the surface of target disks, and therefore facilitate the effusion and convection transport mechanisms for a faster extraction of exotic nuclei with short decay times. This work describes the analysis of the interconnected porosity of lanthanum oxycarbide targets through the evaluation of permeability coefficients obtained in argon flow experiments at room and high temperature. Samples were produced by the sacrificial template method using phenolic resin (PR) as source of carbon for the carbothermal reaction of lanthanum oxide, and different amounts of polymethilmetacrylate (PMMA) microbeads as template for the production of porosity. Results showed that conventional targets prepared without sacrificial templates displayed relatively high total porosity (45.6%), but very low permeability coefficients (k{sub 1} = 4.21 × 10{sup −17} m{sup 2} and k{sub 2} = 1.90 × 10{sup −15} m), comparable to other dense ceramic materials. The linear increase in total porosity from 64.8% to 88.9% achieved by the gradual increase of PMMA from 30% to 80 wt.% resulted in a remarkable increase of five orders of magnitude for k{sub 1} (2.36 × 10{sup −12} m{sup 2}) and eight orders for k{sub 2} (7.48 × 10{sup −7} m{sup 2}). The addition of sacrificial fillers was found to be much more efficient to create interconnected and permeable paths in the structure than the carbothermal reduction itself. Preliminary tests with argon flow up to 450 °C revealed that the porous matrix also became more permeable with the increase in the gas temperature due to thermal expansion effects, but the extent of this gain depended on the initial porosity level of the sample.

  18. Modeling and interpretation of Q logs in carbonate rock using a double porosity model and well logs

    Parra, Jorge O.; Hackert, Chris L.


    Attenuation data extracted from full waveform sonic logs is sensitive to vuggy and matrix porosities in a carbonate aquifer. This is consistent with the synthetic attenuation (1 / Q) as a function of depth at the borehole-sonic source-peak frequency of 10 kHz. We use velocity and densities versus porosity relationships based on core and well log data to determine the matrix, secondary, and effective bulk moduli. The attenuation model requires the bulk modulus of the primary and secondary porosities. We use a double porosity model that allows us to investigate attenuation at the mesoscopic scale. Thus, the secondary and primary porosities in the aquifer should respond with different changes in fluid pressure. The results show a high permeability region with a Q that varies from 25 to 50 and correlates with the stiffer part of the carbonate formation. This pore structure permits water to flow between the interconnected vugs and the matrix. In this region the double porosity model predicts a decrease in the attenuation at lower frequencies that is associated with fluid flowing from the more compliant high-pressure regions (interconnected vug space) to the relatively stiff, low-pressure regions (matrix). The chalky limestone with a low Q of 17 is formed by a muddy porous matrix with soft pores. This low permeability region correlates with the low matrix bulk modulus. A low Q of 18 characterizes the soft sandy carbonate rock above the vuggy carbonate. This paper demonstrates the use of attenuation logs for discriminating between lithology and provides information on the pore structure when integrated with cores and other well logs. In addition, the paper demonstrates the practical application of a new double porosity model to interpret the attenuation at sonic frequencies by achieving a good match between measured and modeled attenuation.

  19. Porosity in hybrid materials

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)


    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  20. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    Madkour, Tarek M.


    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the

  1. Measurement of choroid plexus perfusion using dynamic susceptibility MR imaging: capillary permeability and age-related changes

    Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)


    The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)

  2. Porosity of porous Al alloys


    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  3. Estimation of relative permeability curves using an improved Levenberg-Marquardt method with simultaneous perturbation Jacobian approximation

    Zhou, Kang; Hou, Jian; Fu, Hongfei; Wei, Bei; Liu, Yongge


    Relative permeability controls the flow of multiphase fluids in porous media. The estimation of relative permeability is generally solved by Levenberg-Marquardt method with finite difference Jacobian approximation (LM-FD). However, the method can hardly be used in large-scale reservoirs because of unbearably huge computational cost. To eliminate this problem, the paper introduces the idea of simultaneous perturbation to simplify the generation of the Jacobian matrix needed in the Levenberg-Marquardt procedure and denotes the improved method as LM-SP. It is verified by numerical experiments and then applied to laboratory experiments and a real commercial oilfield. Numerical experiment indicates that LM-SP uses only 16.1% computational cost to obtain similar estimation of relative permeability and prediction of production performance compared with LM-FD. Laboratory experiment also shows the LM-SP has a 60.4% decrease in simulation cost while a 68.5% increase in estimation accuracy compared with the earlier published results. This is mainly because LM-FD needs 2n (n is the number of controlling knots) simulations to approximate Jacobian in each iteration, while only 2 simulations are enough in basic LM-SP. The convergence rate and estimation accuracy of LM-SP can be improved by averaging several simultaneous perturbation Jacobian approximations but the computational cost of each iteration may be increased. Considering the estimation accuracy and computational cost, averaging two Jacobian approximations is recommended in this paper. As the number of unknown controlling knots increases from 7 to 15, the saved simulation runs by LM-SP than LM-FD increases from 114 to 1164. This indicates LM-SP is more suitable than LM-FD for multivariate problems. Field application further proves the applicability of LM-SP on large real field as well as small laboratory problems.

  4. The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability.

    Blau, Christoph W; Cowley, Thelma R; O'Sullivan, Joan; Grehan, Belinda; Browne, Tara C; Kelly, Laura; Birch, Amy; Murphy, Niamh; Kelly, Aine M; Kerskens, Christian M; Lynch, Marina A


    In view of the increase in the aging population and the unavoidable parallel increase in the incidence of age-related neurodegenerative diseases, a key challenge in neuroscience is the identification of clinical signatures which change with age and impact on neuronal and cognitive function. Early diagnosis offers the possibility of early therapeutic intervention, thus magnetic resonance imaging (MRI) is potentially a powerful diagnostic tool. We evaluated age-related changes in relaxometry, blood flow, and blood-brain barrier (BBB) permeability in the rat by magnetic resonance imaging and assessed these changes in the context of the age-related decrease in synaptic plasticity. We report that T2 relaxation time was decreased with age; this was coupled with a decrease in gray matter perfusion, suggesting that the observed microglial activation, as identified by increased expression of CD11b, MHCII, and CD68 by immunohistochemistry, flow cytometry, or polymerase chain reaction (PCR), might be a downstream consequence of these changes. Increased permeability of the blood-brain barrier was observed in the perivascular area and the hippocampus of aged, compared with young, rats. Similarly there was an age-related increase in CD45-positive cells by flow cytometry, which are most likely infiltrating macrophages, with a parallel increase in the messenger mRNA expression of chemokines IP-10 and MCP-1. These combined changes may contribute to the deficit in long-term potentiation (LTP) in perforant path-granule cell synapses of aged animals.

  5. Porosity Log Prediction Using Artificial Neural Network

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier


    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  6. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq


    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  7. Causality study and numerical response of the magnetic permeability as a function of the frequency of ferrites using Kramers-Kronig relations

    Fano, Walter G. [Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063EHA Buenos Aires (Argentina); Instituto Tecnologico de Buenos Aires, Av. Eduardo Madero 399, C11106ACD Buenos Aires (Argentina)], E-mail:; Boggi, Silvina; Razzitte, Adrian C. [Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063EHA Buenos Aires (Argentina)


    In this paper, the numerical treatment of magnetic loss of NiZn, MnZn, Ni{sub 2}Y, and NiZnCu ferrite and their composites, by using Krameres-Kronig relations, is investigated. The complex magnetic permeability spectra for ferromagnetic materials have been studied. Due to the principle of causality and time independence in the relation between magnetic induction B and magnetic field H, the real and the imaginary part of the complex magnetic permeability are mutually dependent, and the correlation is given by the Krameres-Kronig equations. Through them, it is possible to measure the real component of the complex magnetic permeability, assuming the real component is given, and by the Hilbert transform, the imaginary part of the magnetic permeability can be calculated. Magnetic circuit model has been studied theoretically, focusing on the model's poles in the complex plane to verify the principle of causality and the temporary independence.

  8. Relationship between elongation and porosity for high porosity metal materials


    A simplified model was proposed targeting at the isotropic high porosity metal materials with well-distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.

  9. Ground uplift related to permeability enhancement following the 2011 Tohoku earthquake in the Kanto Plain, Japan

    Ishitsuka, Kazuya; Matsuoka, Toshifumi; Nishimura, Takuya; Tsuji, Takeshi; ElGharbawi, Tamer


    We investigated the post-seismic surface displacement of the 2011 Tohoku earthquake around the Kanto Plain (including the capital area of Japan), which is located approximately 400 km from the epicenter, using a global positioning system network during 2005-2015 and persistent scatterer interferometry of TerraSAR-X data from March 2011 to November 2012. Uniform uplift owing to viscoelastic relaxation and afterslip on the plain has been reported previously. In addition to the general trend, we identified areas where the surface displacement velocity was faster than the surrounding areas, as much as 7 mm/year for 3 years after the earthquake and with a velocity decay over time. Local uplift areas were 30 × 50 km2 and showed a complex spatial distribution with an irregular shape. Based on an observed groundwater level increase, we deduce that the local ground uplift was induced by a permeability enhancement and a pore pressure increase in the aquifer system, which is attributable to mainshock vibration.[Figure not available: see fulltext.

  10. Porosity evolution of upper Miocene reefs, Almeria Province, southern Spain

    Armstrong, A.K.; Snavely, P.D.; Addicott, W.O.


    Sea cliffs 40 km east of Almeria, southeastern Spain, expose upper Miocene reefs and patch reefs of the Plomo formation. These reefs are formed of scleractinian corals, calcareous algae, and mollusks. The reef cores are as much as 65 m thick and several hundred meters wide. Fore-reef talus beds extend 1,300 m across and are 40 m thick. The reefs and reef breccias are composed of calcific dolomite. They lie on volcanic rocks that have a K-Ar date of 11.5 m.y. and in turn are overlain by the upper Miocene Vicar Formation. In the reef cores and fore-reef breccia beds, porosity is both primary and postdepositional. Primary porosity is of three types: (a) boring clam holes in the scleractinian coral heads, cemented reef rocks, and breccias; (b) intraparticle porosity within the corals, Halimeda plates, and vermetid worm tubes; and (c) interparticle porosity between bioclastic fragments and in the reef breccia. Postdepositional moldic porosity was formed by the solution of aragonitic material such as molluscan and coral fragments. The Plomo reef carbonate rocks have high porosity and permeability, and retain a great amount of depositional porosity. Pores range in size from a few micrometers to 30 cm. The extensive intercrystalline porosity and high permeability resulted from dolomitization of micritic matrix. Dolomite rhombs are between 10 and 30 μ across. More moldic porosity was formed by the dissolution of the calclte bioclasts. Some porosity reduction has occurred by incomplete and partial sparry calcite infilling of interparticular, moldic, and intercrystalline voids. The high porosity and permeability of these reefs make them important targets for petroleum exploration in the western Mediterranean off southern Spain. In these offshore areas in the subsurface the volcanic ridge and the Plomo reef complex are locally onlapped or overlapped by 350 m or more of Miocene(?) and Pliocene fine-grained sedimentary rocks. The possibility exists that the buried Plomo reef

  11. Theoretical studies of permeability inversion from seismoelectric logs

    Hu, H.; Guan, W.; Zhao, W.


    Permeability is one of the most important parameters for evaluating the level of difficulty in oil and gas exploitation. A quick, continuous and accurate in-situ estimate of reservoir permeability is highly significant. Stoneley wave logs have been used to determine formation permeability (Tang and Cheng, 1996). However, the inversion errors of this method are too big in low-permeability formations, especially in high-porosity and low-permeability formations resulting from the high clay content in pores. In this study, we propose to invert permeability by using the full waveforms of seismoelectric logs with low frequencies. This method is based on the relationship of permeability with the ratio of the electric excitation intensity to the pressure field's (REP) with respect to the Stoneley wave in seismoelectric logs. By solving the governing equations for electrokinetic coupled wavefields in homogeneous fluid-saturated porous media (Pride, 1994), we calculate the full waveforms of the borehole seismoelectric wavefields excited by a point pressure source and investigate frequency-dependent excitation intensities of the mode waves and excitation intensities of the real branch points in seismoelectric logs. It is found that the REP's phase, which reflects the phase discrepancy between the Stoneley-wave-induced electric field and the acoustic pressure, is sensitive to formation permeability. To check the relation between permeability and REP's phase qualitatively, an approximate expression of the tangent of the REP's argument is derived theoretically as tan(θEP) ≈-ωc/ω = -φη/ (2πfα ∞ρfκ0), where θEPdenotes the arguments of the REP and their principal value is the REP's phase,ω is the angular frequency,ωc is a critical angular frequency that separates the low-frequency viscous flow from the high-frequency inertial flow, φ is the porosity, α∞ is the tortuosity, κ0 is the Darcy permeability, ρf and η are the density and the viscosity of the pore

  12. Notional Permeability

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.


    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  13. Investigation of parameter estimation and impact of injection rate on relative permeability measurements for supercritical CO2 and water by unsteady-state method

    Hiratsuka, Y.; Yamamoto, H.


    CCS (Carbon dioxide Capture and Storage) is a promising option for mitigating climate changes. To predict the behavior of injected CO2 in a deep reservoir, relative permeability of supercritical CO2 and water of the reservoir rock is one of the most fundamental and influential properties. For determining the relative permeability, we employed the unsteady state method, in which the relative permeability is determined based on history matching of transient monitoring data with a multi-phase flow model. The unsteady-state method is relatively simple and short, but obviously its accuracy strongly depends on the flow model assumed in the history matching. In this study, we conducted relative permeability measurements of supercritical CO2-water system for Berea sandstone with the unsteady-state method under a reservoir condition at a 1km depth (P= 9.5MPa, T = 44˚C). Automatic history matching was performed with an inversion simulator iTOUGH2/ECO2N for multi-phase flow system of supercritical CO2, NaCl, and water. A sensitivity analysis of relative permeability parameters for CO2 and water was carried out to better understand the uniqueness and the uncertainty of the optimum solution estimated by the history matching. Among the parameters of the Corey-type curve employed in this study, while the end-point permeability could be optimized in a limited range, the other parameters were correlated and their combinations were not unique. However it was found that any combination of these parameters results in nearly identical shapes of the curve in the range of CO2 saturation in this study (0 to 60%). The optimally estimated curve from the unsteady-method was well comparable with those from the steady-state method acquired in the previous studies. Our experiment also focuses on the impact of injection rate on the estimates of relative permeability, as it is known that the injection rate could have a significant effect on fluid distribution such as viscous fingering with

  14. Hydrofacies In Sandstones. Evidence For Feedback Between Sandstone Lithofacies and Permeability Development

    Bloomfield, J. P.; Newell, A.; Moreau, M.

    In order to enhance our ability to develop effective numerical models of flow and con- taminant transport in the Permo-Triassic sandstone aquifer of the UK, relationships between lithofacies, rock mass characteristics (such as porosity and pore-throat size distribution), and permeability have been investigated through a series of case studies. Flow in the Permo-Triassic sandstones is primarily through the matrix. Permeability distribution is principally a function of the pore-throat size distribution and there is a relatively weak correlation with primary sedimentary lithofacies. It is observed that matrix permeability data broadly fall into two, discontinuous, sub-populations above and below about 1 mD. It is proposed that modification of primary sedimentary litho- facies by circulation of groundwater is the main control on the development of these two permeability sub-populations or hydrofacies. Identification of these two hydrofa- cies has significant implications for numerical modelling of the sandstones.

  15. Well-test analysis for solution-gas-drive reservoirs: Part 1; Determination of relative and absolute permeabilities

    Serra, K.V.; Peres, A.M.M. (PETROBRAS, Rio de Janeiro, RJ (Brazil)); Reynolds, A.C. (Tulsa Univ., OK (USA))


    For transient radial flow to a well producing a solution-gas-drive reservoir, it is shown that estimates of effective phase permeabilities as functions of pressure can be obtained directly from the measured flowing wellbore pressure and the flow rates. Rough estimates of effective permeabilities as functions of oil saturation also can be obtained. It is also shown that a semilog plot of pressure squared vs. time can be used to estimate effective permeabilities and the skin factor.

  16. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry

    Na Zhang; Manchao He; Bo Zhang; Fengchao Qiao; Hailong Sheng; Qinhong Hu


    Pore structure characteristics of rock are a great concern for researchers and practitio-ners in rock mechanics and rock engineering fields. In this study, mercury intrusion porosimetry (MIP) was used to measure pore size distribution, as well as several important index parameters of pore structure, for seven common types of deep sedimentary rocks with a total of fifty rock samples. Results show a similar pore size distribution pattern of the rock samples in the same lithological group, but remarkable differences among different lithological groups. Among seven investigated rock types, mudstone has the smallest porosity of 3.37%, while conglomerate has the largest value of 18.8%. It is also found that the porosity of rock types with finer grain size is lower than those with coarser grain size. Meanwhile, a comparison of frequency distribution at ten intervals of pore-throat diameter among seven types of sedimentary rocks reveals that different rock types have different dominant pore-size ranges. Furthermore, permeability of the investigated sedimentary rock samples was derived based on MIP data using reported theoretical equations. Among seven rock types, mudstone has the lowest averaged permeability (3.64×10-6mD) while conglomerate has the highest one (8.59×10-4 mD). From mudstone to conglomerate, rock permeability increases with an increase of grain size, with only an exception of siltstone which has a relatively larger porosity value. Finally, regression analysis show that there is a good fitting (R2=0.95) between permeability and porosity which could be easily used to derive reliable permeability values of similar kinds of engineering rocks.

  17. Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes

    Bjørnetun Haugen, Astri; Kothanda Ramachandran, Dhavanesan; Gurauskis, Jonas

    deformation during debinding. The influence of the amount of pore formers (relative to the amount of ceramic and thermoplastics) on the microstructure of sintered samples, as well as the extrudability and ease of debinding of the feedstock, has been studied. Ceramics with 1-20 μm pores, open porosities......Pure oxygen gas supplied by ceramic oxygen transport membranes can facilitate reduced CO2 emissions through more efficient gasification processes and CO2 capture and storage. Tubular membranes have some advantages compared to planar membranes, such as better resistance to thermal gradients and more...... exceeding 55 % and gas permeabilities close to 10-14 m2 could be produced, demonstrating that thermoplastic extrusion is suitable for fabrication of porous and permeable tubes....

  18. Double Porosity Models For the Description of Water Infiltration In Wood

    Kristian, Krabbenhøft; Damkilde, Lars


    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy...... by a double permeability model....

  19. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    Oláh G


    Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease

  20. Modeling Relations Among Relative Permeabilities, Fluid Saturations, and Capillary Pressures in Mixed-Wet Porous Media: Model Testing and Application to Oil-Water Systems

    Oostrom, Mart (BATTELLE (PACIFIC NW LAB)); Lenhard, Robert J.(INEEL); Delshad, M; Robertson, S D.(Spirit 76, Midland, TX); M.Th. van Genuchten, F.J. Leij and L. Wu


    A critical component of all multiphase flow codes is how relationships among relative permeabilities, fluid saturations, and capillary pressures (i.e., k-S-P relations) are described. Models that are able to mimic fundamental fluid-flow processes to predict k S-P relations are preferable than extrapolating measured data points to estimate k-S-P relations because they may have greater utility and may be more consistent. Furthermore, different saturation-path histories may be simulated with a computer code than those measured in the k-S-P experiments. Because the geometry of the pore spaces in natural porous media is very complex and will likely never be precisely known to predict k-S-P behavior from fundamental relationships, k-S-P models are largely empirical. In this paper, an empirical model based on theoretical considerations is developed to predict hysteretic k-S-P relations in porous media in which the smaller pores are water-wet and the larger pores are oil-wet, i.e., mixed-w et. At high oil-water capillary pressures, the water saturation is modeled to approach the residual water saturation. At low oil-water capillary pressures (i.e., negative), the oil saturation is modeled to approach the residual oil saturation. Relative permeabilities are predicted using parameters that describe main-drainage S-P relations and accounting for the distribution of water and oil in the pore spaces of mixed-wet porous media. The proposed algebraic expressions are easy to implement in multiphase flow codes and can be used to predict k-S-P relations for any saturation-path history. In addition, the model is relatively easy to calibrate to porous media.

  1. Plant fibre composites - porosity and stiffness

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans


    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition of the co......Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  2. Porosity, Dispersivity, and Contaminant Transport in Groundwater

    MOIWO Juana P.


    Porosity (n) and Dispersivity (D) were modeled in relation to Solute Transport Time (t) in a saturated, homogeneous, isotropic, unconfined aquifer using the MOC model. It was noted that n and D have an important influence on solute transport time t in groundwater, with a consistently strong and direct relationship between n, D, and t. In the case of porosity, the relationship was found to be directly related to t when other aquifer properties remained unchanged. This was also mathematically argued using a form of the flow equation put forward by Henry Darcy (1856). Dispersivity on the other hand had somehow the same relationship with solute transport time t as porosity, but with much less effect. That is, higher dispersions lead to longer solute transport time within the aquifer system. This was because as the individual solute particles set off from the average seepage velocity, they traversed through longer distances due to tortuosity, mechanical mixing, diffusion, and microscopic heterogeneity latent in the porous media. Also when n and D were co- treated over t, n was noted to be dominant over D with regard t. This follows that the effect of porosity on solute transport time far out shadowed that of dispersivity. Stated in other words, the dispersivity of a substance in any porous medium is to a large extent a function of the porosity of that medium.

  3. Cyclic activity at silicic volcanoes: A response to dynamic permeability variations

    Lamur, Anthony; Lavallée, Yan; Kendrick, Jackie; Eggertsson, Gudjon; Ashworth, James; Wall, Richard


    Silicic volcanoes exhibit cyclic eruptive activity characterised by effusive (dome growth) to quiescent periods punctuated by short explosive episodes. The latter, characterised by fast emissions of gas and ash into the atmosphere, results from stress release through fracturing and causes significant hazards to the surrounding environment. Understanding the formation, development and closure of fractures as well as their impact on the volcanic system is hence vital for better constraining current models. Here, we present the results of two sets of experiments designed to understand first, the development of permeability through fracturing and second, the timescale over which these fractures can persist in magmas. To characterise the influence of a macro-fracture, the permeability of intact volcanic rocks with a wide porosity range (1-41%) was measured at varying effective pressures (-0.001-30 MPa). We then fractured each sample using the Brazilian disc method to induce a tensile macro-fracture, before measuring the permeability under the same conditions. While our results for intact samples are consistent with previous studies, the results for fractured samples display a distinct permeability-porosity relationship. We show that low porosity samples (18%) that show a less than 1 order of magnitude increase. This suggests that a macro-fracture has the ability to efficiently localise the flow in low porosity rocks by becoming the prevailing structure in a previously micro-fracture-dominated porous network, whereas at higher porosities fluid flow remains controlled by pore connectivity, irrespective of the presence of a fracture. To assess the longevity of fractures in magmas we developed a novel experimental set-up, in which two glass rods were placed in contact for different timescales at high temperatures before being pulled apart to test the tensile strength recovery of the fracture. We show that fracture healing starts within timescales 50-100 times longer than

  4. Surface tension driven processes densify and retain permeability in magma and lava

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.


    We offer new insights into how an explosive eruption can transition into an effusive eruption. Magma containing >0.2 wt% dissolved water has the potential to vesiculate to a porosity in excess of 80 vol.% at atmospheric pressure. Thus all magmas contain volatiles at depth sufficient to form foams and explosively fragment. Yet gas is often lost passively and effusive eruptions ensue. Magmatic foams are permeable and understanding permeability in magma is crucial for models that predict eruptive style. Permeability also governs magma compaction models. Those models generally imply that a reduction in magma porosity and permeability generates an increased propensity for explosivity. Here, our experimental results show that surface tension stresses drive densification without creating an impermeable 'plug', offering an additional explanation of why dense magmas can avoid explosive eruption. In both an open furnace and a closed autoclave, we subject pumice samples with initial porosity of ∼70 vol.% to a range of isostatic pressures (0.1-11 MPa) and temperatures (350-950 °C) relevant to shallow volcanic environments. Our experimental data and models constrain the viscosity, permeability, timescales, and length scales over which densification by pore-scale surface tension stresses competes with density-driven compaction. Where surface tension dominates the dynamics, densification halts at a plateau connected porosity of ∼25 vol.% for our samples. SEM, pycnometry and micro-tomography show that in this process (1) microporous networks are destroyed, (2) the relative pore network surface area decreases, and (3) a remaining crystal framework enhances the longevity of macro-pore connectivity and permeability critical for sustained outgassing. We propose that these observations are a consequence of a surface tension-driven retraction of viscous pore walls at areas of high bubble curvature (micro-vesicular network terminations), and that this process drives bulk

  5. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles


    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.


    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R


    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast ({approx}15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For

  7. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.


    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  8. Preparation and investigation of dc conductivity and relative permeability of epoxy/Li–Ni–Zn ferrite composites

    Darwish, M.A., E-mail: [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Saafan, S.A.; El- Kony, D. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Salahuddin, N.A. [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)


    Ferrite nanoparticles – having the compositions Li{sub (x/2)}(Ni{sub 0.5}Zn{sub 0.5}){sub (1−x)}Fe{sub (2+x/2)}O{sub 4} (x=0, 0.2, 0.3) – have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li{sub 0.15}(Ni{sub 0.5}Zn{sub 0.5}){sub 0.7} Fe{sub 2.15}O{sub 4} sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li{sub 0.15}(Ni{sub 0.5}Zn{sub 0.5}){sub 0.7} Fe{sub 2.15}O{sub 4} composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications. - Highlights: • Li–Ni–Zn ferrites have been prepared by the chemical co-precipitation method. • Epoxy-ferrite composites have been prepared too. • Structural and magnetic properties of all prepared samples were investigated. • Results indicate that these composites may be promising for useful applications.

  9. Model building for Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field

    SONG Fan; HOU Jia-gen; SU Ni-na


    In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field, we studied sedlimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reser-voir. By doing so, we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial dis-tribution of various kinds of sandstone bodies. By taking advantage of many coring wells and high quality logging data, we used regression analysis for a single well with geological conditions as constraints, to build the interpretation model for logging data and to calculate attribute parameters for a single well, which ensured accuracy of the 1-D vertical model. On this basis, we built a litho-facies model to replace the sedimentary facies model. In addition, we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint. In the end, we built a permeability model by using Markov-Bayes simula-tion, with the porosity attribute as the covariate. The results show that the permeability model reflects very well the relative differ-ences between low permeability values, which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.

  10. A review of porosity-generating mechanisms in crustal shear zones

    Fusseis, F.; Regenauer-Lieb, K.; Revets, S.


    Knowledge of the spatiotemporal characteristics of permeability is critical for the understanding of fluid migration in rocks. In diagenetic and metamorphic rocks different porosity-generating mechanisms contribute to permeability and so influence fluid migration and fluid/rock interaction. However, little is known about their relative contributions to the porosity architecture of a rock in a tectono-metamorphic environment. This presentation reviews porosity-generating mechanisms that affect fluid migration in shear zones, the most important crustal fluid conduits, in the context of the tectonometamorphic evolution of rocks. Mechanisms that generate porosity can be classified in a) those that involve the direct action of a fluid, b) processes in which a fluid partakes or that are supported by a fluid or c) mechanism that do not involve a fluid. a) Hydraulic fracturing, where it happens through the formation of tensile fractures, occurs where pore fluid pressures equalize the combined lithostatic pressure and strength of the rock (Etheridge et al., 1984, Cox & Etheridge, 1989, Oliver, 1996). Here an internally released (devolatilisation reactions, e.g., Rumble, 1994, Hacker, 1997, Yardley, 1997 and references therein) or externally derived (infiltrating from metamorphic, magmatic or meteoric sources, Baumgartner et al., 1997, Jamtveit et al., 1997, Thompson, 1997, Gleeson et al., 2003) fluid directly causes the mechanical failure of a rock. Where a fluid is in chemical disequilibrium with a rock (undersaturated with regard to a chemical species) minerals will be dissolved, generating dissolution porosity. Rocks ‘leached' by the removal of chemical components by vast amounts of fluid are reported to lose up to 60% of their original volume (e.g., Kerrich et al., 1984, McCaig 1988). Dissolution porosity is probably an underrated porosity-generating mechanism. It can be expected along the entire metamorphic evolution, including diagenesis (Higgs et al., 2007) and

  11. 煤田火区塌陷区渗透系数分布研究%Study on the Distribution of Subsidence Permeability Coefficient for Coalfield Fire Area

    王文才; 王鑫宙; 赵婧雯


    通过分析煤田火区地表下沉量和破碎岩块孔隙率的关系,对地表下沉量进行测量,分析计算得到火区破碎岩块孔隙率的分布方程。在实验室中测量不同孔隙率破碎岩块的渗透系数,拟合建立渗透系数和孔隙率的关系方程,利用求得的关系方程和通过地表下沉量测量法得到的孔隙率分布方程,求得煤田火区塌陷区破碎岩块的渗透系数分布方程。%This paper analyzes the relation between the surface subsidence and broken rock porosity of coalfield fire area ,to measure the surface subsidence and find out the distribution equation of broken rock porosity in fire area .ln the laboratory measurement ,the permeability coefficient of broken rock with different porosity is measured ,to fit and set up the relationship equation between the permeability coefficient and porosity and the distribution equation of subsidence permeability coefficient of broken rock in coalfild fire area is found out by using the obtained relationship equation and porosity distribution equation from surface subsidence measurement .

  12. Notional Permeability

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; van der Meer, J W


    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath the armour layer has the ability to dissipate more wave energy and therefore requires less weight of the armour layer. The influence of this parameter is thus very important in economic sense. Up u...

  13. Examining the role of Microcracks in Modelling the Permeability Evolution of Crustal Rocks at Elevated Hydrostatic Pressure.

    Benson, P. M.; Schubnel, A.; Meredith, P. G.; Young, P.


    A key consequence of the presence of void space within rock is its significant influence upon fluid transport properties. This observation is fundamental to our understanding of crustal evolution and energy resource management, for example the efficient recovery of hydrocarbon and water resources, and the safe disposal of hazardous waste. However, the processes responsible for porosity formation are diverse, ranging from depositional processes such as sedimentary sorting and grain alignment, through diagenetic processes such as compaction and cementation, to deformational processes such as microcracking. The porosity that evolves from the superposition of these processes over time may therefore have a complex geometry or fabric. In addition, many of these processes have an inherent directionality which may lead to anisotropy of the void space, and all have been shown to play important roles in influencing the fluid transport properties of rock. The measurement of permeability at elevated pressures and the calculation of permeability from other data (such as elastic wave velocity) remains non-trivial. In particular, in order to test models that predict such relations, ideally both elastic wave velocity and permeability should be measured simultaneously. In this study, we use a novel apparatus in order to measure elastic wave velocities (P and S) contemporaneously with permeability and porosity for three rock types, a high porosity sandstone (Bentheim), a tight sandstone (Crab Orchard), and a microcracked granite (Takidani). This laboratory data is then used with permeability models of Gueguen and Dienes and Kozeny-Carman to investigate the role that void space of differing apertures imparts on the measured permeability of different rock types. Using the Kachanov non-interactive effective medium theory, measured elastic wave velocities are inverted using a least square fit, permitting the recovery of crack density evolution with increasing hydrostatic pressure. This

  14. Thermoelectric materials having porosity

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred


    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  15. A new unsteady-state method of determining two-phase relative permeability illustrated by CO2-brine primary drainage in berea sandstone

    Chen, Xiongyu; DiCarlo, David A.


    This study presents a new unsteady-state method for measuring two-phase relative permeability by obtaining local values of the three key parameters (saturation, pressure drop, and phase flux) versus time during a displacement. These three parameters can be substituted to two-phase Darcy Buckingham equation to directly determine relative permeability. To obtain the first two, we use a medical X-ray Computed Tomography (CT) scanner to monitor saturation in time and space, and six differential pressure transducers to measure the overall pressure drop and the pressure drops of five individual sections (divided by four pressure taps on the core) continuously. At each scanning time, the local phase flux is obtained by spatially integrating the saturation profile and converting this to the flux using a fractional flow framework. One advantage of this local method over most previous methods is that the capillary end effect is experimentally avoided; this improvement is crucial for experiments using low viscosity fluids such as supercritical and gas phases. To illustrate the new method, we conduct five CO2-brine primary drainage experiments in a 60.8 cm long and 116 mD Berea sandstone core at 20 °C and 1500 psi. In return, we obtain hundreds of unsteady-state CO2 and brine relative permeability data points that are consistent with steady-state relative permeability data from the same experiments. Due to the large amount of relative permeability data obtained by the new unsteady-state method, the uncertainties of the exponents in the Corey-type fits decrease by up to 90% compared with the steady-state method.

  16. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Dolberg, David M.


    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  17. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong


    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of t...

  18. Experimental Study on the Porosity Creep Properties of Broken Limestone

    Li Shun-cai


    Full Text Available In the underground engineering, the long-term stability of the surrounding rocks (especially the broken rocks containing water and the ground settlement resulted from the seepage-creep coupling above goaf have been the important research subjects concerning the deep mining. For the broken rock, its porosity is an important structural parameter determining its creep properties, and the porosity change rate is more superior to describe the creep characteristics compared with the strain change rate at a certain direction. In this paper, MTS815.02 Rock Mechanics Test System is used to carry out the creep experiments on water-saturated broken limestone, and then the time curves of porosity and of the porosity change rate are obtained. By regression, we have got the relation equation between the porosity change rate with the instant porosity and the stress level during the creep. The study indicates that when the stress retains a constant level, the relation between the porosity change rate and the instant porosity can be fitted with a cubical polynomial. The obtained creep relation equation between the porosity change rate and the instant porosity and the instant stress provides a necessary state equation for studying the coupling between the seepage and the creep of the broken rock. Furthermore, the seepage in the broken rock has been verified to satisfy the Forchheimer’s non-Darcy flow according to our previous studies, and its seepage properties, k, β and ca can all be expressed respectively as the polynomial of the porosity, so, by combining with these three state equations we have obtained the four essential state equations for solving the coupling problems of the seepage and the creep for the broken rocks.

  19. Gas Permeability of Porous Plasma-Sprayed Coatings

    Wittmann-Ténèze, K.; Caron, N.; Alexandre, S.


    For different applications, such as solid oxide fuel cells, there is an interest in understanding the relationship between the microstructure and the gas permeability of plasma-sprayed coatings. Nevertheless, plasma spraying processes allow to elaborate coatings with singular microstructures, depending strongly on the initial material and plasma operating conditions. And so, the evolution of permeability is not directly linked to the porosity. In this work, coatings were manufactured using different initial feedstock and spray parameters to obtain various microporous structures. Measurements of their permeation with the pressure drop method and their open porosity just as the observation of the morphology and the structure by optical microscopy were achieved. The different data show that the evolution of the gas permeability with the open porosity follows the Kozeny-Carman equation. This result correlated with the microstructural observation highlights the relationship between the permeability and the physical properties of porous plasma-sprayed layers.

  20. 3D thermo-hydro-mechanical-migratory coupling model and FEM analyses for dual-porosity medium


    One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and the concentration field are double,and the influences of sets,spaces,angles,continuity ratios,stiffness of fractures on the constitutive relationship of the medium can be considered.The relative three-dimensional program of finite element method was also developed.By comparing with the existing computation example,reliability of the model and the program were verified.Taking a hypothetical nuclear waste repository as a calculation example,the radioactive nuclide leak was simulated numerically with both the rock mass and the buffer being unsaturated media,and the temperatures,negative pore pressures,flow velocities,nuclide concentrations and normal stresses in the rock mass were investigated.The results showed that the temperatures,negative pore pressures and nuclide concentrations in the buffer all present nonlinear changes and distributions that even though the saturation degree in porosity is only about 1/9 of that in fracture,the flow velocity of underground water in fracture is about 6 times of that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity,and that the regions of stress concentration occur at the vicinity of two sides of the boundary between buffer and disposal pit wall.

  1. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    Lee, Myung W.


    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  2. Porosity and Health: Perspective of Traditional Persian Medicine

    Tafazoli, Vahid; Nimrouzi, Majid; Daneshfard, Babak


    Background: The authors of this manuscript aimed to show the importance of porosity and condensation in health according to traditional Persian medicine (TPM) with consideration of new evidence in conventional medicine. Methods: Cardinal traditional medical and pharmacological texts were searched for the traditional terms of takhalkhol (porosity) and takassof (condensity) focused on preventive methods. The findings were classified and compared with new medical findings. Results: According to traditional Persian medicine, porosity and condensity are the two crucial items that contribute to human health. Somatotype is a taxonomy based on embryonic development, which may be considered in parallel with porosity and condensation. However, these terms are not completely the same. There are many causes for acquired porosity comprising hot weather, too much intercourse, rage, starvation, and heavy exercises. In general, porosity increases the risk of diseases as it makes the body organs vulnerable to external hot and cold weather. On the other hand, the porose organs are more susceptible to accumulation of morbid matters because the cellular wastes cannot be evacuated in the normal way. There are some common points between traditional and conventional medicine in the context of porosity and condensity. The relation between diet and somatotype is an example. Conclusion: Condensity and porosity are the two basic items cited in the TPM resources and contribute to health maintenance and disease prevention of body organs. Creating a balance between these two states in different body organs, strongly contributes to disease prevention, treatment and diminishing chronic diseases period. Choosing proper modality including diet, drug therapy, and manual therapy depends on the amount porosity and stiffness of the considered organ and the preferred porosity of the affected organ keeping in a normal healthy state. PMID:27840513

  3. Analysis of the Porosity Changing after Moisture Absorption in Functional Knitted Fabrics

    DU Yan-feng; SHEN Wei; FENG Xun-wei


    The paper analyses the effect of stitch geometricalmodality changing after moisture absorption on the porosityof knitted fabrics, and educes the formulas between porosityand stitch parameters. Regarding as the cell stitch, theincreasing of yam diameter brings the porosity decreasingand the fabric shrinking in the wale direction. While thediameter keeps invariability, the yarn elongating brings thefabric humping up as well as the increasing porosity. Theair-permeability experiments have been conducted to validatethe theoretical analysis, and there is reasonable agreementbetween the theories and experiments.

  4. A lattice Boltzmann study on the impact of the geometrical properties of porous media on the steady state relative permeabilities on two-phase immiscible flows

    Zhang, Duo; Papadikis, K.; Gu, Sai


    In the current paper, the effect of the geometrical characteristics of 2-D porous media on the relative permeability in immiscible two-phase flows is studied. The generation of the different artificial porous media is performed using a Boolean model based on a random distribution of overlapping circles/ellipses, the size and shape of which are chosen to satisfy the specific Minkowski functionals (i.e. volume fraction, solid line contour length, connectivity). The study aims to identify how each different Minkowski functional affects the relative permeability of each phase at various saturations of the non-wetting phase. A 2-D multi-relaxation time (MRT) lattice Boltzmann model (LBM) that can handle high density ratios is employed in the simulation. The relationship between the driving forces G and the relative permeabilities of the two phases for every artificial structure is quantified. It is found that for high non-wetting phase saturations (fully connected flow), a non-linear relationship exists between the non-wetting phase flow rate and the driving force, whilst this relationship becomes linear at higher magnitudes of the latter. The force magnitude required to approach the linear region is highly influenced by the pore size distribution and the connectivity of the solid phase. For lower non-wetting phase saturation values, its relative permeability in the linear regime decreases as the fraction of small pores in the structure increases and the non-wetting phase flow becomes disconnected. A strong influence of the solid phase connectivity is also observed.

  5. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    Kong, X.


    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  6. Non-Darcian flow in low-permeability media: key issues related to geological disposal of high-level nuclear waste in shale formations

    Liu, Hui-Hai


    In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.

  7. Mechanistic Effects of Porosity on Structural Composite Materials

    Siver, Andrew

    As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.

  8. Air filled porosity in composting processes

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.


    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  9. Double porosity models for the description of water infiltration in wood

    Krabbenhøft, Kristian; Damkilde, Lars


    In this paper some of the possibilities of applying double porosity and permeability models to the problem of water infiltration in wood are explored. It is shown that the double porosity model can capture a number of commonly reported anomalies including two-stage infiltration....../sorption and apparent sample length dependent transfer parameters. Starting with the double porosity model, several extensions are discussed and the type of principal behaviour possible with the models is elaborated on. Finally, a set of highly anomalous experimental results is fitted to within a reasonable accuracy bv...

  10. A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam: A Preliminary Study

    Li, Shizhao; Spangenberg, Jon; Hattel, Jesper Henri


    studies on modeling the infiltration process are mainly based on a porous media/permeability approach. This approach focuses on the global porosity of ASF rather than local unintended porosity, since it does not include the infiltration pattern around the individual spherical particles. This paper reports...... calculates the pressure, velocity and free surface of the aluminum. The results of the numerical model illustrate that this method has great potential of predicting unintended porosities in ASF and thereby optimizing the parameters involved in the infiltration process....

  11. Spatially resolved measurement of rock core porosity.

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J


    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media.

  12. Data Qualification Report: Calculated Porosity and Porosity-Derived Values for Lithostratigraphic Units for use on the Yucca Mountain Project

    P. Sanchez


    report uses technical assessment and corroboration to evaluate the original subject DTN. Rael (1999) provides many technical details of the technical assessment and corroboration methods and partially satisfies the intent of the qualification plan for this analysis. Rael presents a modified method based on Nelson (1996) to recompute porosity and porosity-derived values and uses some of the same inputs. Rael's (1999) intended purpose was to document porosity output relatively free of biases introduced by differing computational methods or parameter selections used for different boreholes. The qualification report necessarily evaluates the soundness of the pre-Process Validation and Re-engineering (PVAR) analyses and methodology, as reported in Rael (1999).

  13. Survival and relaxation time, pore size distribution moments, and viscous permeability in random unidirectional fiber structures

    Tomadakis, Manolis M.; Robertson, Teri J.


    Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially

  14. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Sanford, Ward E.


    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  15. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Sanford, Ward E.


    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  16. Liquid Permeability of Ceramic Foam Filters

    Zhang, Kexu


    This project is in support of the PhD project: ‘Removal of Inclusions from Liquid Aluminium using Electromagnetically Modified Filtration’. The purpose of this project was to measure the tortuosity, and permeability of ~50mm thick: 30, 40, 50 and 80 pores per inch (ppi) commercial alumina ceramic foam filters (CFFs). Measurements have been taken of: cell (pore), window and strut sizes, porosity, tortuosity and liquid permeability. Water velocity from ~0.015-0.77 m/s have been used ...


    Harbour, J; Tommy Edwards, T; Vickie Williams, V


    MCU based mixes leads to high total and capillary porosities. These two conditions generally lead to higher permeabilities as has been well documented in the literature for typical cementitious pastes in water. Therefore, it is not unexpected that the hydraulic conductivities of these Saltstone mixes are relatively high.

  18. A statistical mechanical model for drug release: Investigations on size and porosity dependence

    Gomes Filho, Márcio Sampaio; Oliveira, Fernando Albuquerque; Barbosa, Marco Aurélio Alves


    A lattice gas model is proposed for investigating the release of drug molecules in capsules covered with semi-permeable membranes. Release patterns in one and two dimensional systems are obtained with Monte Carlo simulations and adjusted to the semi-empirical Weibull distribution function. An analytical solution to the diffusion equation is used to complement and guide simulations in one dimension. Size and porosity dependence analysis was made on the two semi-empirical parameters of the Weibull function, which are related to characteristic time and release mechanism, and our results indicate that a simple scaling law occurs only for systems with almost impermeable membranes, represented in our model by capsules with a single leaking site.

  19. Porosity and liquid absorption of cement paste

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.


    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  20. Permeability Estimation of Grosmont Formation, Alberta, Canada by Statistically Combining Well-logs and Core Measurements

    Choi, J.; Keehm, Y.


    Permeability estimation in carbonate reservoirs is quite challenging since they are very heterogeneous. Moreover, the amount of core measurement data is commonly limited. In this paper, we present permeability maps for Grosmont formation in Canada with very limited permeability data, using bi-variated probability density function (porosity and permeability) conditioned to geological information. Grosmont formation consists of four units: Lower Grosmont (LG); Upper Grosmont (UG1); Upper Grosmont 2 (UG2); and Upper Grosmont 3 (UG3). From the previous studies, UG2 and UG3 are more promising reservoir units since they have larger porosity and permeability with vuggy pores and fractures by diagenesis (dolomitization and karstification). Thus, we applied our method to these two units. We first investigated core measurement data (porosity and permeability) and compared them to local geological aspects, such as the degree of diagenesis and vicinity of unconformity. Then we could divide the study area into 6 groups, and we established a bivariated probability density function (pdf) for each group and each unit (total of 12 pdfs) with core measurements of porosity and permeability. In the next step, we created porosity maps using well-log data for UG2 and UG3. The final step is to generate permeability maps for UG2 and UG3 by drawing a permeability value from the bivariated pdf conditioned to porosity. The final results show more realistic permeability maps for Grosmont formation when compared to conventional kriging results. Moreover, the strengths of this approach is (1) that it can use geological information and (2) that it can handle the variability of permeability, which can be naturally occurred in carbonate reservoirs. Acknowledgement: This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2008RER11P0430302009).

  1. Effect of glutamine on change in early postoperative intestinal permeability and its relation to systemic inflammatory response

    Zhu-Fu Quan; Chong Yang; Ning Li; Jie-Shou Li


    AIM: To study the effects of glutamine (Gln) on the change of intestinal permeability and its relationship to systemic inflammatory response in early abdominal postoperative patients.METHODS: A prospective, randomized, double-blind and controlled trial was taken. Twenty patients undergoing abdominal surgery were randomized into Gln group (oral administration of glutamine, 30 g/d, for 7 d, n=10) and placebo group (oral administration of placebo, 30 g/d, for 7 d, n=10). Temperatures and heart rates of all patients were daily recorded. White blood cell counts(WBC) and biochemical variables were measured before operation and 4 and 7 d after drug administration. Serum concentrations of glutamine, endotoxin, diamine oxidase and malondialdehyde and urine lactulose/mannito (L/M) ratio were measured before and 7 d after drug administration.RESULTS: The patients in the 2 groups were comparable prior to drug administration. Serum Gln concentration was significantly decreased in the placebo group and increased in the Gln group 7 d after drug administration. Urine L/M ratio was significantly increased in the placebo group and decreased in the Gln group. The serum concentration of endotoxin, diamine oxidase and malondialdehyde was significantly decreased in the Gln group compared with those in the placebo group. Temperatures, heart rates and WBC counts were significantly lower in the Gln group than those in the placebo group.CONCLUSION: Gut is one of the sources of systemic inflammatory response in abdominal postoperative patients and glutamine can decrease intestinal permeability, maintain intestinal barrier and attenuate systemic inflammatory response in early postoperative patients.

  2. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent


    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  3. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  4. Permeability and selectivity of reverse osmosis membranes: correlation to swelling revisited.

    Dražević, Emil; Košutić, Krešimir; Freger, Viatcheslav


    Membrane swelling governs both rejection of solutes and permeability of polymeric membranes, however very few data have been available on swelling in water of salt-rejecting reverse osmosis (RO) membranes. This study assesses swelling, thickness and their relation to water permeability for four commercial polyamide (PA) RO membranes (SWC4+, ESPA1, XLE and BW30) using atomic force microscopy (AFM) and attenuated total reflection Fourier transform IR spectroscopy (ATR-FTIR). ATR-FTIR offered a significantly improved estimate of the actual barrier thickness of PA, given AFM is biased by porosity ("fluffy parts") or wiggling of the active layer or presence of a coating layer. Thus obtained intrinsic permeability (permeability times thickness) and selectivity of aromatic polyamides plotted versus swelling falls well on a general trend, along with previously reported data on several common materials showing RO and NF selectivity. The observed general trend may be rationalized by viewing the polymers as a random composite medium containing molecularly small pores. The results suggest that the combination of a rigid low dielectric matrix, limiting the pore size, with multiple hydrophilic H-bonding sites may be a common feature of RO/NF membranes, allowing both high permeability and selectivity.

  5. Timescales for permeability reduction and strength recovery in densifying magma

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.


    Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the "changepoint" porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will



    The current study is the first step in a systematic experimental research on the erosion behaviour of sand-mud mixtures. It concerns the effect of a varying sand content and clay mineralogy on the porosity, structure, strength and permeability of artificially generated sediment mixtures. The permeability of a sediment mixture is an especially significant parameter concerning the type of erosion that occurs. It determines ifthe erosion of the bed is either a drained or an undrained process,respectively indicating surface erosion or mass erosion. Measurements on various mixtures concerning the consolidation coefficient and the permeability have been executed. Results show a distinct transition of behaviour between a sand-silt dominated network structure and a clay-water matrix. The occurrence of these two types of structures appears to depend on the porosity of the volume fraction of sand related to silt, which is, therefore, an important parameter concerning the type of erosion. Finally, the study provides a valuable data set that can be used as a reference for following stages of this research on the erosion behaviour of natural cohesive sediments.

  7. Effect of Viscous Instability on Unsteady-State Relative Permeability Effet de l'instabilité visqueuse sur la perméabilité relative en régime irrégulier

    Sarma H. K.; Maini B. B.; Allen. G


    This paper presents the results of an experimental investigation into the relationship between the extent of viscous instability involved in a laboratory displacement and the relative permeability inferred from measured displacement data. Oil displacement experiments were conducted in a triaxially confined silica sand pack. The extent of viscous instability was varied by using mineral oils of different viscosities and by conducting the displacement runs at different flow rates. Relative perme...

  8. 4D porosity evolution during solid-solid replacement reaction in mineral system (KBr, KCl)

    Beaudoin, Nicolas; Hamilton, Andrea; Koehn, Daniel; Shipton, Zoe


    An extensive understanding of the controlling mechanisms of phase transformation is key in geosciences to better predicting the evolution of the physical parameters of rocks (porosity, permeability, and rheology) from centimetre-scale (e.g. fingering in siltstones) to kilometer-scale (e.g. Dolostone geobodies), in both the diagenetic and metamorphic domains. This contribution reports the 4D monitoring of a KBr crystal at different time steps during an experimental, fluid-mediated replacement reaction with KCl. Volumes are reconstructed based on density contrast using non-destructive X-ray Computed Tomography (XCT) at a resolution of 3 microns. A sample of KBr was immersed in a static bath of saturated KCl at room temperature and pressure. 5 scans were performed during the reaction at 5, 10, 20, 35 and 55 minutes, until 50% of the original crystal was replaced. As a control experiment, two samples reacted continuously for 15 and 55 minutes, respectively. Each 3D dataset was reconstructed to visualize and quantify the different mineral phases, the porosity distribution and connectivity, along with the reaction front morphology. In the case of successive baths, results show that the front morphology evolves from rough with small fingers to flat and thick during the reaction, suggesting a switch between advection and diffusion controlled reactant distribution through time. This switch is also reflected in the mass evolution and the rate of propagation of the replaced zone, being rapid in the first 20 minutes before reaching steady state. The porosity develops perpendicular to the crystal wall, suggesting a self-organization process governed by advection, before connecting laterally. While the reaction changes from advection controlled to diffusion controlled, the direction of the connected pores becomes parallel to the crystal walls. This phenomenon is not observed when the crystal is reacting discontinuously for 55 minutes. In the latter case, self

  9. Experimental Study and Numerical Simulation of the Development of the Microstructure and Permeability of Cementitious Materials

    YE, Guang


    The aim of this thesis was to investigate and to simulate the development of the microstructure, porosity and permeability in hardening cement-based materials. Based on experimental information and the cement hydration model HYMOSTRUC, the microstructural details including porosity, connectivity of

  10. Upscaling conductivity and porosity in three-dimensional heterogeneous porous media

    ZHANG Yong


    An empirical formula is presented to upscale the conductivity of 3-dimensional heterogeneous porous media, in which the distribution of local-scale conductivity is non-Gaussian with a high variance. The upscaled conductivity is determined as a function of the volumetric proportion, the spatial connectivity and the statistical geometric length of high-permeable inclusions, and the arithmetic mean of conductivities of all hydrofacies. A systematic comparison to other traditional upscaling methods indicates that this empirical formula provides a better estimation of the equivalent conductivity. In the second part of this study, numerical experiments of solute migration reveal that porosity also needs to be upscaled to capture the transport of contaminants in a heterogeneous medium using an effective or upscaled homogeneous medium. This is due to the tendency of contaminants to be preferrentially transported by 3-dimensional pathways composed of high-permeable materials in heterogeneous aquifer systems. The apparent difference between the actual transport velocity of contaminants and the upscaled velocity, based on the equivalent conductivity, forces upscaling of porosity. Further systematic analyses demonstrate that the upscaled porosity follows a non-linear trend as the content of high-permeable sediments decreases. Resultant upscaled porosity, with values varying between 0.004 and 1.5, is beyond the definition of the traditional porosity on the representative elementary volume (REV) scale. When the content of high-permeable materials is less than 30%, the upscaling of porosity is critical in the simulation of the contaminant transport in a heterogeneous medium using an upscaled, homogeneous counterpart.

  11. Determination of the Surface and Volume Porosity, on the Basis of the Main Fraction of the Polifractional Matrix of Moulding and Core Sands

    Dańko R.


    Full Text Available The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.

  12. Permeability in Rotliegend gas sandstones to gas and brine as predicted from NMR, mercury injection and image analysis

    Rosenbrand, Esther; Fabricius, Ida Lykke; Fisher, Quentin


    Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas...... and mercury injection data. To estimate which pores control permeability to gas, gas permeability was calculated for each pore size increment by using the Kozeny equation. Permeability to brine is modelled by assuming a bound water layer on the mineral pore interface. The measured brine permeabilities...

  13. Gyroid Nanoporous Membranes with Tunable Permeability

    Li, Li; Schulte, Lars; Clausen, Lydia D.


    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  14. Magnetohydrodynamic Flow Past a Permeable Bed

    R. Venugopal


    Full Text Available The paper evaluates mass flow velocity heat transfer rates and velocity/temperature distributions in the viscous, incompressible and slightly conducting fluid past a permeable bed in three different configurations namely (1 Couette flow (2 Poiseuille flow and (3 free surface flow, under the influence of a uniform transverse magnetic field. To discuss the solution, the flow region is divided into two zones : Zone 1 (from the impermeable upper rigid plate to the permeable bed in which the flow is laminar and governed by Navier-Stokes equations, and Zone 2 (the permeable bed below the nominal surface in which the flow is governed by Darcy law. The paper also investigates the effects of magnetic field, porosity and Biot number on the physical quantities mentioned above.

  15. Longhi Games, Internal Reservoirs, and Cumulate Porosity

    Morse, S. A.


    Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for

  16. Porosity prediction of calcium phosphate cements based on chemical composition.

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan


    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  17. A tool for computing time-dependent permeability reduction of fractured volcanic conduit margins.

    Farquharson, Jamie; Wadsworth, Fabian; Heap, Michael; Baud, Patrick


    Laterally-oriented fractures within volcanic conduit margins are thought to play an important role in tempering eruption explosivity by allowing magmatic volatiles to outgas. The permeability of a fractured conduit margin - the equivalent permeability - can be modelled as the sum of permeability contributions of the edifice host rock and the fracture(s) within it. We present here a flexible MATLAB® tool which computes the time-dependent equivalent permeability of a volcanic conduit margin containing ash-filled fractures. The tool is designed so that the end-user can define a wide range of input parameters to yield equivalent permeability estimates for their application. The time-dependence of the equivalent permeability is incorporated by considering permeability decrease as a function of porosity loss in the ash-filled fractures due to viscous sintering (after Russell and Quane, 2005), which is in turn dependent on the depth and temperature of each fracture and the crystal-content of the magma (all user-defined variables). The initial viscosity of the granular material filling the fracture is dependent on the water content (Hess and Dingwell, 1996), which is computed assuming equilibrium depth-dependent water content (Liu et al., 2005). Crystallinity is subsequently accounted for by employing the particle-suspension rheological model of Mueller et al. (2010). The user then defines the number of fractures, their widths, and their depths, and the lengthscale of interest (e.g. the length of the conduit). Using these data, the combined influence of transient fractures on the equivalent permeability of the conduit margin is then calculated by adapting a parallel-plate flow model (developed by Baud et al., 2012 for porous sandstones), for host rock permeabilities from 10-11 to 10-22 m2. The calculated values of porosity and equivalent permeability with time for each host rock permeability is then output in text and worksheet file formats. We introduce two dimensionless

  18. Gradient-Hierarchic-Aligned Porosity SiOC Ceramics

    Vakifahmetoglu, Cekdar; Zeydanli, Damla; Innocentini, Murilo Daniel de Mello; Ribeiro, Fernanda dos Santos; Lasso, Paulo Renato Orlandi; Soraru, Gian Domenico


    This work describes a simple technique to produce porous ceramics with aligned porosity having very high permeability and specific surface area. SiOC-based compositions were processed from blends of three types of preceramic polymer and a catalyst, followed by curing and pyrolysis. The heating applied from the bottom of molds promoted the nucleation, expansion and rising of gas bubbles, and the creation of a ceramic matrix with axially oriented channels interconnected by small round pores. The samples were analyzed by SEM, tomography, BET, water immersion porosimetry and permeation to gas flow. The resulting bodies presented levels of open porosity (69.9–83.4%), average channel diameter (0.59–1.25 mm) and permeability (0.56–3.83 × 10−9 m2) comparable to those of ceramic foams and honeycomb monoliths, but with specific surface area (4.8–121.9 m2/g) typical adsorbents, enabling these lotus-type ceramics to be advantageously used as catalytic supports and adsorption components in several environmental control applications. PMID:28106140

  19. Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast

    Navarre-Sitchler, A.; Steefel, C.I.; Yang, L.; Tomutsa, L.; Brantley, S.L.


    Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography ({mu}CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The {mu}CT data indicate that below a critical value of {approx}9%, the porosity is largely unconnected in the basalt clast. The {mu}CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast.

  20. Prevention of Porosity Formation and Other Effects of Gaseous Elements in Iron Castings

    Albany Research Center


    Iron foundries have observed porosity primarily as interdendritic porosity in large freezing range alloys such as Ni-Hard I and hypoeutectic high Cr alloys or pinholes and fissure defects in gray and ductile irons. For most iron foundries, porosity problems occur sporadically, but even occasional outbreaks can be costly since even a very small amount of porosity can significantly reduce the mechanical properties of the castings. As a result when porosity is detected, the castings are scrapped and remelted, or when the porosity is undetected, defective parts are shipped to the consumer. Neither case is desirable. This project was designed to examine various factors contributing to the porosity formation in iron castings. Factors such as solubility of gases in liquid and solid iron alloys, surface tension of liquid iron alloys, and permeability of dendritic structures were investigated in terms of their effect on the porosity formation. A method was developed to predict how much nitrogen the molten alloy picks up from air after a given amount of holding time for a given melting practice. It was shown that small batches of iron melts in an induction furnace can end up with very high concentration of nitrogen (near solubility limit). Surface tension of liquid iron alloys was measured as a function of temperature. Effect of minor additions of S, Ti, and Al on the surface tension of liquid iron alloys was investigated. Up to 18% change in surface tension was detected by minor element additions. This translates to the same amount of change in gas pressure required in a bubble of a given size to keep the bubble stable. A new method was developed to measure the permeability of dendritic structures in situ. The innovative aspect of these experiments, with respect to previous interdendritic permeability measurements, was the fact that the dendritic structure was allowed to form in situ and was not cooled and re-heated for permeability tests. A permeability model was developed

  1. Quantification of trapped gas redistribution in dual-porosity media with continuous and discontinuous domains

    Snehota, Michal; Sacha, Jan; Jelinkova, Vladimira; Cislerova, Milena; Vontobel, Peter


    Nonwetting phase (residual air) is trapped in the porous media at water contents close to the saturation. Trapped gas phase resides in pores in form of bubbles, blobs or cluster forming residual gas saturation. In homogeneous soil media trapped gas is relatively stable until it is released upon porous media drainage. If porous media remain saturated, trapped gas can slowly dissolve in response to changed air solubility of surrounding water. In heterogeneous media, relatively rapid change in the trapped gas distribution can be observed soon after the gas is initially trapped during infiltration. It has been recently shown that the mass transfer of gas is directed from regions of fine porosity to regions of coarse porosity. The mass transfer was quantified by means of neutron tomography for the case of dual porosity sample under steady state flow. However the underlying mechanism of the gas mass transfer is still not clear. Based on the robust experience of visualization of the flow within heterogeneous samples, it seems that due to the huge local (microscopic) pressure gradients between contrasting pore radii the portion of faster flowing water becomes attracted into small pores of high capillary pressure. The process depends on the initial distribution of entrapped air which has to be considered as random in dependence on the history and circumstances of wetting/drying. In this study, the redistribution of trapped gas was quantitatively studied by 3D neutron imaging on samples composed of fine porous ceramic and coarse sand. The redistribution of water was studied under no-flow and steady state flow conditions. Two different inner geometries of the samples were developed. In the first case the low permeability regions (ceramics) were disconnected, while in the second structure, the fine porosity material was continuous from the top to the bottom of the sample. Quantitative 3D neutron tomography imaging revealed similar redistribution process in both cases of

  2. Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia)

    Kushnir, Alexandra R. L.; Martel, Caroline; Bourdier, Jean-Louis; Heap, Michael J.; Reuschlé, Thierry; Erdmann, Saskia; Komorowski, Jean-Christophe; Cholik, Noer


    Low permeability dome rocks may contribute to conduit overpressure development in volcanic systems, indirectly abetting explosive activity. The permeability of dome-forming rocks is primarily controlled by the volume, type (vesicles and/or microcracks), and connectivity of the void space present. Here we investigate the permeability-porosity relationship of dome-forming rocks and pumice clasts from Merapi's 1888 to 2013 eruptions and assess their possible role in eruptive processes, with particular emphasis on the 2010 paroxysmal eruption. Rocks are divided into three simple field classifications common to all eruptions: Type 1 samples have low bulk density and are pumiceous in texture; Type 2 samples, ubiquitous to the 2010 eruption, are dark grey to black in hand sample and vary greatly in vesicularity; and Type 3 samples are weakly vesicular, light grey in hand sample, and are the only samples that contain cristobalite. Type 2 and Type 3 rocks are present in all eruptions and their permeability and porosity data define similar power law relationships, whereas data for Type 1 samples are clearly discontinuous from these trends. A compilation of permeability and porosity data for andesites and basaltic andesites with published values highlights two microstructural transitions that exert control on permeability, confirmed by modified Bayesian Information Criterion (BIC) analysis. Permeability is microcrack- and diktytaxitic-controlled at connected porosities, φc, 31 vol.%. Type 3 basaltic andesites, the least permeable of the measured samples and therefore the most likely to have originated in the uppermost low-permeability dome, are identified as relicts of terminal domes (the last dome extruded prior to quiescence). Cristobalite commonly found in the voids of Type 3 blocks may not contribute significantly to the reduction of the permeability of these samples, mainly because it is associated with an extensive microporous, diktytaxitic texture. Indeed, the low

  3. Linear vs. nonlinear porosity estimation of NMR oil reservoir data

    Mohsen Abdou Abou Mandour


    Full Text Available Nuclear magnetic resonance is widely used to assess oil reservoir properties especially those that can not be evaluated using conventional techniques. In this regard, porosity determination and the related estimation of the oil present play a very important role in assessing the eco1nomic value of the oil wells. Nuclear Magnetic Resonance data is usually fit to the sum of decaying exponentials. The resulting distribution; i.e. T2 distribution; is directly related to porosity determination. In this work, three reservoir core samples (Tight Sandstone and two Carbonate samples were analyzed. Linear Least Square method (LLS and non-linear least square fitting using Levenberg-Marquardt method were used to calculate the T2 distribution and the resulting incremental porosity. Parametric analysis for the two methods was performed to evaluate the impact of number of exponentials, and effect of the regularization parameter (? on the smoothing of the solution. Effect of the type of solution on porosity determination was carried out. It was found that 12 exponentials is the optimum number of exponentials for both the linear and nonlinear solutions. In the mean time, it was shown that the linear solution begins to be smooth at α = 0.5 which corresponds to the standard industrial value for the regularization parameter. The order of magnitude of time needed for the linear solution is in the range of few minutes while it is in the range of few hours for the nonlinear solution. Regardless of the fact that small differences exist between the linear and nonlinear solutions, these small values make an appreciable difference in porosity. The nonlinear solution predicts 12% less porosity for the tight sandstone sample and 4.5 % and 13 % more porosity in the two carbonate samples respectively.

  4. Resolution effect in X-ray microcomputed tomography imaging and small pore's contribution to permeability for a Berea sandstone

    Peng, Sheng; Marone, Federica; Dultz, Stefan


    Resolution selection when using X-ray microcomputed tomography should be made based on the compromise between accuracy and representativeness. The question is then how accurate is accurate enough, that is, how small a pore is small enough to be ignored without generating misleading results on pore representation and subsequent flow properties such as permeability. In this study, synchrotron X-ray microcomputed tomographic scans of a Berea sandstone sample were acquired for two resolutions (with 1.85 and 5.92 μm pixel width). Higher resolution images resolve more small pores, and have similar large pores as the lower resolution images. Pore characterization and permeability estimation were conducted based on these two sets of images. The pore parameters and permeability were also measured for another larger sample from the same rock fragment through laboratory experiments. The comparison between the different resolution image analyses and the laboratory measurement indicates that small pores contribute to larger porosity, smaller tortuosity, and larger surface area, but do not influence permeability significantly. Therefore, relatively low resolution (pixel width up to 5.92 μm) can be used for Berea sandstone when permeability is the focus. However, use of even lower resolution needs to be careful since lower resolution not only excludes more small pores, but also has the potential to overestimate the pore size and thereby the permeability. Kozeny-Carman equation was used to estimate the permeability with geometric and diffusional tortuosity. The results indicate that the latter tortuosity can serve better for the permeability estimation than the former.

  5. Experimental Research on Permeability of Airbag Fabrics at High Pressure Differential

    WANG Xin-hou


    The air permeability of airbag fabrics was measured at high pressure differential up to 200kPa. It was found that permeability varied with pressure differential nonlinearly. The relationship between air permeability and the pressure differential was fitted well with power law curve. The study revealed that the coefficient c and exponent b in the power law equation had a strong correlation with porosity, which was chosen to characterize the airbag fabrics.


    Liu Jian-jun


    During the development of low permeability reservoirs. the interaction between fluid flow and rock-mass deformation is obvious. On the basis of fluid mechanics in porous media and elasto-plastic theory. the author presents an equivalent continuum model to simulate fluid flow in fractured low-permeability oil reservoir coupled with geo-stress. The model not only reflects the porosity change of matrix, but also the permeability change due to the opening and closing of fracture. By analyzing of simulation results, the changes in porosity and permeability and their effect on oil development are studied.


    Knox, A.; Paller, M.; Dixon, K.


    The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

  8. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    with air permeability and 5% arrival time. Even in the same field high variability in air permeability, ranging from 4.66 to 78.10 µm2, and 5% arrival time of tracer (0.07 to 2.36 h) were observed between the samples. Both air permeability and 5% arrival time of tracer were strongly correlated with macro-porosity...... (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical...

  9. Optimization of permeability for quality improvement by using factorial design

    Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad


    Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.

  10. Chalk porosity and sonic velocity versus burial depth

    Fabricius, Ida Lykke; Gommesen, Lars; Krogsbøll, Anette Susanne


    that porosity and sonic velocity follow the most consistent depth trends when fluid pressure and pore-volume compressibility are considered. Quartz content up to 10% has no marked effect, but more than 5% clay causes lower porosity and velocity. The mineralogical effect differs between P-wave and shear velocity...... for fluid pressure because the cementing ions originate from stylolites, which are mechanically similar to fractures. We find that cementation occurs over a relatively short depth interval.......Seventy chalk samples from four formations in the overpressured Danish central North Sea have been analyzed to investigate how correlations of porosity and sonic velocity with burial depth are affected by varying mineralogy, fluid pressure, and early introduction of petroleum. The results show...



    Based on the simplified structure model of high porosity materials, the formulas for approximately evaluating the tensile strength of these materials have been derived from the corresponding deductions taken by means of the relative theories about geometry and mechanics. The results show that, the tensile strength of these materials not only associates with the material sort and production method, but do further have a direct value relationship with the porosity, θ. This value relationship can be specifically expressed by the power of the item (1-θ), and it makes the tensile strength variation display a complicated nonlinear law with the porosity. In addition, the application of those formulas has been investigated with the corresponding experiment on a nickel foam.

  12. Estimation of soil permeability

    Amr F. Elhakim


    Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.

  13. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son


    This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

  14. Kozeny-Carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets.

    Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir


    This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability kperm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The kperm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants kd. Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI95%) revealed significant differences between kd values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f2) test. The final relationship between kd and kperm was found to be hyperbolic, signifying the initial effect of kperm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between kd and kperm. The later being relatable with porosity and specific surface area can be determined by nondestructive tests.

  15. Permeability of Electrospun Superhydrophobic Nanofiber Mats

    Sarfaraz U. Patel


    Full Text Available This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.

  16. The effect of shear on permeability in a volcanic conduit: a case study at Unzen volcano, Japan

    Ashworth, James; Lavallée, Yan; Wallace, Paul; Lamur, Anthony; Kendrick, Jackie; Miwa, Takahiro


    The efficiency of outgassing at volcanoes is a function of permeability, and exerts a major influence on the type of eruptive behaviour exhibited. Understanding how shear affects the permeability profile across volcanic conduits is therefore a key part of understanding volcanic processes and the associated hazards. During the final months of the 1990-1995 eruption of Unzen volcano in southern Japan, extrusion of a dacite spine followed a period of endogenous dome growth. Many of the resulting formations are relatively accessible, allowing for the study of a variety of associated deformation phenomena. One of these formations, a ~6 m wide block, is a section of the extruded spine, that forms the basis for this study on shallow conduit processes. It displays a textural gradation from highly sheared rock to rock with negligible deformation, and is bounded at the high shear end by an agglutinated block of gouge that is thought to represent the conduit margin. A multi-faceted approach was taken to investigate the variation of permeability across the spine and its implications for processes occurring within the conduit. The permeability was measured at several points along the exposed surface of the spine transect using a field permeameter. Sample blocks from four of these locations were collected and tested in the lab using a hydrostatic pressure vessel water-flow permeameter and categorized as: gouge; highest shear; moderate shear; negligible shear. Each block was tested in three orthogonal axes: one perpendicular to observed shear; and two in the plane of shear. For each of these rocks, permeability and porosity measurements were made at a wide range of effective pressures (5 to 100 MPa), using a controlled upstream/downstream pore pressure gradient of 0.5 MPa (at an average pore pressure of 1.25 MPa). Thin sections of each sample were also taken prepared and analysed to describe the primary microstructures controlling the permeability of the rock. Textural analysis

  17. Influence of the porosity on the

    Jong, P. de; Dijk, W. van; Rooij, M. de


    The composition of 23 concrete mixtures was varied in five separate series to evaluate the influence of porosity on the 222Rn exhalation rate. In each series, a range in porosities is obtained by varying (1) the amount of cement, (2) type of cement (Portland or blast furnace slag cement),

  18. Gravity filtration of suspensions: permeability effects

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas


    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  19. Scientific Opinion on the substantiation of a health claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability pursuant to Article 13(5 of Regulation (EC No 1924/2006

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA


    Full Text Available Following an application from Omikron Italia S.r.l., submitted pursuant to Article 13.5 of Regulation (EC No 1924/2006 via the Competent Authority of Italy, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability. The food that is a subject of the health claim, a combination of diosmin, troxerutin and hesperidin, is sufficiently characterised. The claimed effect, maintenance of normal venous-capillary permeability, is a beneficial physiological effect. No human intervention studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of a combination of diosmin, troxerutin and hesperidin and the maintenance of normal venous-capillary permeability.

  20. A multiscale model of distributed fracture and permeability in solids in all-round compression

    De Bellis, Maria Laura; Ortiz, Michael; Pandolfi, Anna


    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of a tensile or shear resistance in the undamaged material. Secondary faults may form in a hierarchical orga- nization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the dam- aged material. The approach is particularly appealing as a means of modeling low permeability oil and gas reservoirs stimulated by hydraulic fracturing.

  1. Turbulent boundary layer measurements over high-porosity surfaces

    Efstathiou, Christoph; Luhar, Mitul


    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  2. Why would cement porosity reduction be clinically irrelevant, while experimental data show the contrary.

    Janssen, D.; Stolk, J.; Verdonschot, N.J.J.


    Laboratory bench tests have shown that porosity reduction increases the fatigue life of bone cement specimens. Clinically, however, the effect porosity reduction is subject to debate. We hypothesized that the discrepancy between clinical and experimental findings is related to differences in the str

  3. Effect Of Hot Water Injection On Sandstone Permeability

    Rosenbrand, Esther; Fabricius, Ida Lykke


    The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...... of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  4. Permeability and permeability anisotropy in Crab Orchard sandstone: Experimental insights into spatio-temporal effects

    Gehne, Stephan; Benson, Philip M.


    Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the ;seasoning; process often used in dynamic reservoir extraction.

  5. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement

    Brunetti, Giuseppe; Šimůnek, Jiří; Piro, Patrizia


    The increasing frequency of flooding events in urban catchments related to an increase in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID) techniques have proven to be a viable and effective alternative by reducing stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate modeling tools represents a barrier in designing and constructing such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of permeable pavement installed at the University of Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the calibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were validated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence between measured and modeled hydrographs confirmed the reliability of the

  6. 平行水平裂缝系统油水相对渗透率计算新模型%The New Calculation Model of the Oil-water Relative Permeability in Parallel Horizontal Fracture System

    唐勇; 杨小莹; 宋道万; 张世明; 董亚娟; 何志雄


    根据基本流体运动方程,结合达西定律和黏度牛顿定律,利用油藏岩石渗透率合成法则,建立了平行水平裂缝系统油水相对渗透率的计算新模型。结果表明:每条裂缝含水饱和度相等时,平行水平裂缝系统相对渗透率与单条水平裂缝相同,并且与裂缝高度无关;水的相对渗透率随着水油黏度比增加而逐渐增加;油的相对渗透率随着水油黏度比增加而逐渐减少。%Considering the basic equation of fluid motion, together with the Darcy′s law and the Newton′s law of vis-cosity, this paper aims to present the new calculation model of oil-water relative permeability of the parallel horizon-tal fracture system by using the theory of permeability synthesis method of reservoirs.The results show that when water saturation of each fracture is equal, there is equivalence relationship of oil-water relative permeability between the parallel horizontal fracture system and the single one′s, and it also can be determined that the result has no relationship with the height of fracture;with the increasing of water-oil viscosity ratio, the relative permeability of water increased and the relative permeability of oil decreased.

  7. 4D synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid

    Kiss, A. M.; Bargar, J.; Kohli, A. H.; Harrison, A. L.; Jew, A. D.; Lim, J. H.; Liu, Y.; Maher, K.; Zoback, M. D.; Brown, G. E.


    Unconventional (shale) reservoirs have emerged as the most important source of petroleum resources in the United States and represent a two-fold decrease in greenhouse gas emissions compared to coal. Despite recent progress, hydraulic fracturing operations present substantial technical, economic, and environmental challenges, including inefficient recovery, wastewater production and disposal, contaminant and greenhouse gas pollution, and induced seismicity. A relatively unexplored facet of hydraulic fracturing operations is the fluid-rock interface, where hydraulic fracturing fluid (HFF) contacts shale along faults and fractures. Widely used, water-based fracturing fluids contain oxidants and acid, which react strongly with shale minerals. Consequently, fluid injection and soaking induces a host of fluid-rock interactions, most notably the dissolution of carbonates and sulfides, producing enhanced or "secondary" porosity networks, as well as mineral precipitation. The competition between these mechanisms determines how HFF affects reactive surface area and permeability of the shale matrix. The resultant microstructural and chemical changes may also create capillary barriers that can trap hydrocarbons and water. A mechanistic understanding of the microstructure and chemistry of the shale-HFF interface is needed to design new methodologies and fracturing fluids. Shales were imaged using synchrotron micro-X-ray computed tomography before, during, and after exposure to HFF to characterize changes to the initial 3D structure. CT reconstructions reveal how the secondary porosity networks advance into the shale matrix. Shale samples span a range of lithologies from siliceous to calcareous to organic-rich. By testing shales of different lithologies, we have obtained insights into the mineralogic controls on secondary pore network development and the morphologies at the shale-HFF interface and the ultimate composition of produced water from different facies. These results

  8. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea

    Røgen, Birte; Fabricius, Ida Lykke


    The permeability and capillary entry pressure of chalk reservoirs are controlled by their porosity and specific surface area. Measured permeabilities are in the range 0.025-5.3 mD and are successfully predicted by use of the Kozeny equation. In this paper we focus on the factors that control...

  9. Review on Absolute Permeability Model%渗透率模型研究进展

    孙建孟; 闫国亮


    Introduced is current permeability model about single porosity media and dual porosity media. There exist some problems in permeability model, such as lacking theoretical researches, no uniform model and model of dual porosity media also needs urgently developing. Permeability and porosity of single porosity media have good correlation, but porosity is not the only parameter which is crucial to the accurate permeability .model, and therefore other parameters of rock structure and pore structure should be considered. Permeability model about dual porosity media can be divided into matrix permeability and fracture permeability, and the coupling of them is critical for permeability model. The application of fractal theory and imaging well logging may improve the accuracy of dual porosity media modeling. Beside this, the application of 3D digital core technology and induced polarization method are the importance in permeability model construction.%讨论单重孔隙介质和双重孔隙介质渗透率模型的发展,分析渗透率建模面临的问题:建模理论研究缺乏,至今没有提出统一的模型,双重孔隙介质渗透率模型亟待发展.单重孔隙介质渗透率与孔隙度相关性较好,但仅有孔隙度不能建立精确的渗透率模型,还需考虑岩石结构和孔隙结构参数.双重孔隙介质渗透率可分为基质渗透率和裂缝渗透率2个方面研究,它们之间的耦合是渗透率建模重点考虑的问题.提出应用分形理论和成像测井有望提高双重孔隙介质渗透率模型的建模精度.渗透率建模发展方向是三维数字岩心技术和激发极化法的应用.

  10. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Pyrak-Nolte, Laura J. [Purdue University


    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in


    Indarapu Rajendra Prasad


    Full Text Available In the present study, attempts were made to develop and evaluate the controlled porosity osmotic pump (CPOP based drug delivery system of sparingly water soluble drug Baclofen. Formulation variables, such as, levels of solubility enhancer, ratio of drug to osmogents, coat thickness of semi permeable membrane (SPM and level of pore former were found to affect the drug release from the developed formulations. Cellulose acetate was used as the semi permeable membrane. Drug release was directly proportional to the level of the solubility enhancer, osmotic pressure generated by osmotic agent and level of pore former; however, was inversely proportional to the coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensities of release media. Burst strength of the exhausted shells decreased with increase in the level of pore former. This system was found to deliver Baclofen at a zero-order rate. The optimized formulations were subjected to stability studies as per ICH guidelines, and formulations were found to be stable after 45days study.

  12. An integrated approach to permeability modeling using micro-models

    Hosseini, A.H.; Leuangthong, O.; Deutsch, C.V. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)


    An important factor in predicting the performance of steam assisted gravity drainage (SAGD) well pairs is the spatial distribution of permeability. Complications that make the inference of a reliable porosity-permeability relationship impossible include the presence of short-scale variability in sand/shale sequences; preferential sampling of core data; and uncertainty in upscaling parameters. Micro-modelling is a simple and effective method for overcoming these complications. This paper proposed a micro-modeling approach to account for sampling bias, small laminated features with high permeability contrast, and uncertainty in upscaling parameters. The paper described the steps and challenges of micro-modeling and discussed the construction of binary mixture geo-blocks; flow simulation and upscaling; extended power law formalism (EPLF); and the application of micro-modeling and EPLF. An extended power-law formalism to account for changes in clean sand permeability as a function of macroscopic shale content was also proposed and tested against flow simulation results. There was close agreement between the model and simulation results. The proposed methodology was also applied to build the porosity-permeability relationship for laminated and brecciated facies of McMurray oil sands. Experimental data was in good agreement with the experimental data. 8 refs., 17 figs.

  13. Analytic Model for Predicting the Permeability of Foam-type Wick

    Ngo, Ich-Long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)


    Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman’s equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

  14. Laboratory photometry of regolith analogues: Effect of porosity

    Kar, A.; Sen, A. K.; Gupta, R.


    New Laboratory phase curves are presented, to examine the effect of porosity on reflectance as a function of phase angle for grain size having dimension about half, twice and those larger than the illuminating wavelength. The experimental setup used for generating reflectance data is a goniometric device developed at the Department of Physics, Assam University, Silchar, India. Some of the well-documented samples having different sizes were chosen; alumina, olivine, basalt, rutile, chromite and iron. The sample surfaces were prepared with different porosities, in order to simulate natural regolith surface as much as possible. The wavelength of observation is 632.8 nm. A model based on the Radiative Transfer Equation is presented here to analyze and model the laboratory data. In the present modelling work, the empirical relation of Hapke, Mie theory and Henyey-Greenstein phase function are used. For particles having dimension about half, twice to the wavelength, Mie theory is used to calculate single scattering albedo. Although the Mie theory is insufficient for describing the scattering properties of particles larger than the wavelength, for such large particle single scattering albedo (SSA) is estimated through method of best fit. It has been found that, the porosity has a distinguishable effect on reflectance. Also the contribution of multiple scattering function for different porosity is examined. Further the results presented in the current work, demonstrates the light scattering properties of a diverse collections of regolith like samples.

  15. 3D porosity prediction from seismic inversion and neural networks

    Leite, Emilson Pereira; Vidal, Alexandre Campane


    In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.

  16. Monitoring of NMR porosity changes in the full-size core salvage through the drying process

    Fattakhov, Artur; Kosarev, Victor; Doroginitskii, Mikhail; Skirda, Vladimir


    Currently the principle of nuclear magnetic resonance (NMR) is one of the most popular technologies in the field of borehole geophysics and core analysis. Results of NMR studies allow to calculate the values of the porosity and permeability of sedimentary rocks with sufficient reliability. All standard tools for the study of core salvage on the basis of NMR have significant limitations: there is considered only long relaxation times corresponding to the mobile formation fluid. Current trends in energy obligate to move away from conventional oil to various alternative sources of energy. One of these sources are deposits of bitumen and high-viscosity oil. In Kazan (Volga Region) Federal University (Russia) there was developed a mobile unit for the study of the full-length core salvage by the NMR method ("NMR-Core") together with specialists of "TNG-Group" (a company providing maintenance services to oil companies). This unit is designed for the study of core material directly on the well, after removing it from the core receiver. The maximum diameter of the core sample may be up to 116 mm, its length (or length of the set of samples) may be up to 1000 mm. Positional precision of the core sample relative to the measurement system is 1 mm, and the spatial resolution along the axis of the core is 10 mm. Acquisition time of the 1 m core salvage varies depending on the mode of research and is at least 20 minutes. Furthermore, there is implemented a special investigation mode of the core samples with super small relaxation times (for example, heavy oil) is in the tool. The aim of this work is tracking of the NMR porosity changes in the full-size core salvage in time. There was used a water-saturated core salvage from the shallow educational well as a sample. The diameter of the studied core samples is 93 mm. There was selected several sections length of 1m from the 200-meter coring interval. The studied core samples are being measured several times. The time interval

  17. Magnetic anisotropy and porosity of Antarctic chondrites



    Magnetic susceptibility anisotropy and porosity were measured in eleven Antarctic meteorites. These meteorites are ordinary chondrites (H and L type) in various metamorphic stages. Large magnetic anisotropy has been observed in most of the chondrites. The foliation type of the anisotropy, inferred from the shape of the susceptibility ellipsoid indicates that a uniaxial compressional type deformation is responsible for the anisotropy. The degree of the anisotropy and the porosity do not correl...

  18. Fabrication of dual porosity electrode structure

    Smith, J.L.; Kucera, E.H.


    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  19. Analysis of porosity distribution of large-scale porous media and their reconstruction by Langevin equation.

    Jafari, G Reza; Sahimi, Muhammad; Rasaei, M Reza; Tabar, M Reza Rahimi


    Several methods have been developed in the past for analyzing the porosity and other types of well logs for large-scale porous media, such as oil reservoirs, as well as their permeability distributions. We developed a method for analyzing the porosity logs ϕ(h) (where h is the depth) and similar data that are often nonstationary stochastic series. In this method one first generates a new stationary series based on the original data, and then analyzes the resulting series. It is shown that the series based on the successive increments of the log y(h)=ϕ(h+δh)-ϕ(h) is a stationary and Markov process, characterized by a Markov length scale h(M). The coefficients of the Kramers-Moyal expansion for the conditional probability density function (PDF) P(y,h|y(0),h(0)) are then computed. The resulting PDFs satisfy a Fokker-Planck (FP) equation, which is equivalent to a Langevin equation for y(h) that provides probabilistic predictions for the porosity logs. We also show that the Hurst exponent H of the self-affine distributions, which have been used in the past to describe the porosity logs, is directly linked to the drift and diffusion coefficients that we compute for the FP equation. Also computed are the level-crossing probabilities that provide insight into identifying the high or low values of the porosity beyond the depth interval in which the data have been measured.

  20. Combined effect of permeability and crystallization on the explosive eruption of basaltic magma

    Moitra, P.; Gonnermann, H. M.; Houghton, B. F.; Crozier, J.


    Plinian eruptions are the most dangerous style of eruptive activity of basaltic magma. In this study, we focus on the two best studied Plinian eruptions of basaltic magma at Mt. Tarawera, New Zealand (1886 CE) and Mt. Etna, Italy (122 BCE). We measured and analyzed the porosity-permeability relationships of the pyroclasts from both eruptions. We then used numerical modeling to assess the relative importance of two competing processes during eruptive magma ascent, which are the syneruptive crystallization that increases viscosity, potentially increasing bubble overpressure, and the open-system degassing of the permeable magma that allows the pressurized gas to escape, potentially reducing bubble overpressure. We find that the onset of crystallization is likely to have occurred prior to the onset of magma percolation. The orders of magnitude increase in magma viscosity due to the nucleation and growth of microlites had the combined effect of rapidly increasing the decompression rate, due to viscous pressure losses associated with magma flow within the volcanic conduit, and decreasing the rates of bubble growth, thus building up large overpressures inside bubbles. Although measured permeabilities of the studied pyroclasts are 1-2 orders of magnitude higher than their silicic counterpart, our model results show that crystallization and subsequent increase in viscosity are likely to surpass the effect of open-system gas loss, thus increasing bubble overpressure, required for explosive magma fragmentation.

  1. Experimental observation of permeability changes in dolomite at CO2 sequestration conditions.

    Tutolo, Benjamin M; Luhmann, Andrew J; Kong, Xiang-Zhao; Saar, Martin O; Seyfried, William E


    Injection of cool CO2 into geothermally warm carbonate reservoirs for storage or geothermal energy production may lower near-well temperature and lead to mass transfer along flow paths leading away from the well. To investigate this process, a dolomite core was subjected to a 650 h, high pressure, CO2 saturated, flow-through experiment. Permeability increased from 10(-15.9) to 10(-15.2) m(2) over the initial 216 h at 21 °C, decreased to 10(-16.2) m(2) over 289 h at 50 °C, largely due to thermally driven CO2 exsolution, and reached a final value of 10(-16.4) m(2) after 145 h at 100 °C due to continued exsolution and the onset of dolomite precipitation. Theoretical calculations show that CO2 exsolution results in a maximum pore space CO2 saturation of 0.5, and steady state relative permeabilities of CO2 and water on the order of 0.0065 and 0.1, respectively. Post-experiment imagery reveals matrix dissolution at low temperatures, and subsequent filling-in of flow passages at elevated temperature. Geochemical calculations indicate that reservoir fluids subjected to a thermal gradient may exsolve and precipitate up to 200 cm(3) CO2 and 1.5 cm(3) dolomite per kg of water, respectively, resulting in substantial porosity and permeability redistribution.

  2. Model and method of permeability evaluation based on mud invasion effects

    Zhou, Feng; Hu, Xiang-Yun; Meng, Qing-Xin; Hu, Xu-Dong; Liu, Zhi-Yuan


    The evaluation of permeability in reservoir assessment is a complex problem. Thus, it is difficult to perform direct evaluation permeability with conventional well-logging methods. Considering that reservoir permeability significantly affects mud invasion during drilling, we derive a mathematical model to assess the reservoir permeability based on mud invasion. A numerical model is first used to simulate the process of mud invasion and mud cake growth. Then, based on Darcy's law, an approximation is derived to associate the depth of mud invasion with reservoir permeability. A mathematical model is constructed to evaluate the reservoir permeability as a function of the mud invasion depth in time-lapse logging. Sensitivity analyses of the reservoir porosity, permeability, and water saturation are performed, and the results suggest that the proposed model and method are well suited for oil layers or oil-water layers of low porosity and low permeability. Numerical simulations using field logging and coring data suggest that the evaluated and assumed permeability data agree, validating the proposed model and method.

  3. Modeling of the permeability of a sandstone reservoir of the North Sea using a combination of image processing data and capillary pressure curves; Modelisation de la permeabilite d'un reservoir greseux de Mer du Nord par combinaison de donnees d'analyse d'images et de courbes de pression capillaire

    Belin, S.; Fritz, B. [Centre de Geochimie de la Surface, UMR 7517, 67 - Strasbourg (France); Anguy, Y.; Bernard, D. [Lab. Energetique et Phenomenes de transfert, UMR 8508, 33 - Talence (France)


    This study deals with the relation between the micro-geometry and the permeability in a series of samples from a sandstone reservoir of the Alwyn area (North Sea). The samples have various petro-physical properties with porosities comprised between 13 and 26% and permeabilities ranging from 0.1 to 3000 mD. Five different types of pores were identified using micro-graphic images of the porosity. The spatial organization of pores and the 3-D connectivity between adjacent pores is deduced from the image processing data and the petrophysical data combined using multi-linear regression models. This approach has permitted to demonstrate a relation between the type of pores and size of the access radius. (J.S.)

  4. Gas and Water Permeability of Concrete

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.


    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  5. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Y. Luna-Galiano


    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  6. Permeability Measurements On Hot Rock Samples

    Mueller, S.; Spieler, O.; Scheu, B.; Dingwell, D. B.

    Gas permeability is an important issue with regards to the explosive behaviour of Si- rich volcanoes. It directly affects the gas pressure within the volcano which influences the eruptive behaviour of the volcano. To date permeability measurements have only been performed on cold porous rocks (e.g. Eichelberger et al. 1986, Klug &Cashman 1996), because measurements with higher temperatures are not possible with common gas permeameters. Investigating the permeability of volcanic rocks in a hot state (up to 850 C) provides a better insight into the degassing processes under natural condi- tions. Therefore, any new experimental setup is expected to yield information about the temperature dependency of permeability in volcanic rocks. The present experi- ments have been performed on samples with a wide range of porosities. The samples were collected from block-and-ash flows on Merapi (Indonesia), Unzen (Japan) and pumices on Lipari Island (Italy). Permeabiltiy was measured using a modified setup of the fragmentation apparatus. A cylindrical rock sample (Æ = 25mm, l = 60 mm), glued gas tight in a sample container, was placed in a steel autoclave. Below the sample was a defined volume of argon gas at a known pressure. After the rupture of a diaphragm, the pressure above the sample drops rapidly to atmospheric conditions and the pres- surized gas flows through the porous rock sample until the pressure is equalized. The length of time from the beginning of the pressure drop to equilization delivers the basis for the calculation of the gas flow rate. The measurements we have performed at room temperature and at 850C to study the temperature dependency of the permeability.

  7. The referential grain size and effective porosity in the Kozeny-Carman model

    Urumović, Kosta; Urumović, Kosta, Sr.


    In this paper, the results of permeability and specific surface area analyses as functions of granulometric composition of various sediments (from silty clays to very well graded gravels) are presented. The effective porosity and the referential grain size are presented as fundamental granulometric parameters expressing an effect of the forces operating on fluid movement through the saturated porous media. This paper suggests procedures for calculating referential grain size and determining effective (flow) porosity, which result in parameters that reliably determine the specific surface area and permeability. These procedures ensure the successful application of the Kozeny-Carman model up to the limits of validity of Darcy's law. The value of effective porosity in the referential mean grain size function was calibrated within the range of 1.5 µm to 6.0 mm. The reliability of the parameters applied in the KC model was confirmed by a very high correlation between the predicted and tested hydraulic conductivity values (R2 = 0.99 for sandy and gravelly materials; R2 = 0.70 for clayey-silty materials). The group representation of hydraulic conductivity (ranging from 10-12 m s-1 up to 10-2 m s-1) presents a coefficient of correlation of R2 = 0.97 for a total of 175 samples of various deposits. These results present new developments in the research of the effective porosity, the permeability and the specific surface area distributions of porous materials. This is important because these three parameters are critical conditions for successful groundwater flow modeling and contaminant transport. Additionally, from a practical viewpoint, it is very important to identify these parameters swiftly and very accurately.

  8. Production of a Porosity Map by Kriging in Sandstone Reservoirs, Case Study from the Sava Depression

    Tomislav Malvić


    Full Text Available Variogram analyses and usages of geostatistical interpolations have been standard analytical tools in Croatian geology in the last five years. Such analyses have especially been applied in the mapping of petroleum geological data. In this paper, spatial modelling of porosity data and, consequently, kriging mapping are described for a relatively large dataset obtained at an oil field located in the Croatian part of Pannonian basin (Sava depression. Analyzed datasets included porosity values measured in a sandstone reservoir of Pannonian age. The original dataset can be considered as a rare extensive porosity set available for Croatian hydrocarbon reservoirs. It made possible very reliable semivariogram modelling and kriging interpolation of porosity. The obtained results point out kriging as the most appropriate interpolation approach for porosity, but also for other geological data in sandstone reservoirs of Miocene age.

  9. How burial diagenesis of chalk sediments controls sonic velocity and porosity

    Fabricius, Ida Lykke


    to the progress of burial diagenesis of chalk, which is revised as follows: Newly deposited carbonate ooze and mixed sediments range in porosity from 60 to 80%, depending on the prevalence of hollow microfossils. Despite the high porosity, these sediments are not in suspension, as reflected in IFs of 0.......1 or higher. Upon burial, the sediments lose porosity by mechanical compaction, and concurrently, the calcite particles recrystallize into progressively more equant shapes. High compaction rates may keep the particles in relative motion, whereas low compaction rates allow the formation of contact cement......, whereby IF increases and chalk forms. Rock mechanical tests show that when compaction requires more than in-situ stress, porosity reduction is arrested. During subsequent burial, crystals and pores grow in size as a consequence of the continuing recrystallization. ne lack of porosity loss during...

  10. Whisker Formation in Porosity in Al Alloys

    Griffiths, William David; Elsayed, Ahmed; El-Sayed, Mahmoud Ahmed


    An examination of the fracture surfaces of tensile test bars from Al alloy castings held in the liquid state for up to 20 minutes revealed porosity which in some cases contained whisker-like features. Energy-dispersive X-ray analysis in a SEM suggested that these might be oxide whiskers forming in an oxide-related pore or double oxide film defect. Such entrainment defects (also known as bifilms) may entrap a small amount of the local atmosphere when they form and become incorporated into the liquid metal. This atmosphere may be predominantly air, which then subsequently reacts with the surrounding melt, firstly by reaction with oxygen and secondly by reaction with nitrogen. A CFD model of the heat distribution associated with the reactions between the interior atmosphere of a double oxide film defect and the surrounding liquid alloy suggested that highly localized increases in temperature, up to about 2000 K to 5000 K (1727 °C to 4727 °C), could occur, over a scale of a few hundred micrometers. Such localized increases in temperature might lead to the evaporation or disassociation of oxide within the pore, followed by condensation, to form the whisker structures observed. Hydrogen might also be expected to diffuse into the bifilm and may play a role in the chemical reactions associated with the development of the bifilm.

  11. Porosity effects during a severe accident

    Cazares R, R. I. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Posgrado en Energia y Medio Ambiente, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Espinosa P, G.; Vazquez R, A., E-mail: [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, San Rafael Atlixco 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)


    The aim of this work is to study the behaviour of porosity effects on the temporal evolution of the distributions of hydrogen concentration and temperature profiles in a fuel assembly where a stream of steam is flowing. The analysis considers the fuel element without mitigation effects. The mass transfer phenomenon considers that the hydrogen generated diffuses in the steam by convection and diffusion. Oxidation of the cladding, rods and other components in the core constructed in zirconium base alloy by steam is a critical issue in LWR accident producing severe core damage. The oxygen consumed by the zirconium is supplied by the up flow of steam from the water pool below the uncovered core, supplemented in the case of PWR by gas recirculation from the cooler outer regions of the core to hotter zones. Fuel rod cladding oxidation is then one of the key phenomena influencing the core behavior under high-temperature accident conditions. The chemical reaction of oxidation is highly exothermic, which determines the hydrogen rate generation and the cladding brittleness and degradation. The heat transfer process in the fuel assembly is considered with a reduced order model. The Boussinesq approximation was applied in the momentum equations for multicomponent flow analysis that considers natural convection due to buoyancy forces, which is related with thermal and hydrogen concentration effects. The numerical simulation was carried out in an averaging channel that represents a core reactor with the fuel rod with its gap and cladding and cooling steam of a BWR. (Author)

  12. Effect of porosity on the tensile properties of low ductility aluminum alloys

    Gustavo Waldemar Mugica


    Full Text Available The literature contains reports of several studies correlating the porosity and mechanical properties of aluminum alloys. Most of these studies determine this correlation based on the parameter of global volumetric porosity. These reports, however, fail to separate the effects of microstructural features and porosity on alloys, though recognizing the influence of the latter on their mechanical properties. Thus, when the decrease in tensile strength due to the porosity effect is taken into account, the findings are highly contradictory. An analysis was made of the correlation between mechanical properties and global volumetric porosity and volumetric porosity in the fracture, as well as of the beta-Al5FeSi phase present in 380 aluminum alloy. Our findings indicate that mechanical properties in tension relating to global volumetric porosity lead to overestimations of the porosity effect in detriment to the mechanical properties. Moreover, the proposed models that take into account the effects of particles, both Si and beta-Al5FeSi, are unapplicable to low ductility alloys.

  13. Effect of Inter Yarn Fabric Porosity on Dye Uptake of Reactive Dyed cotton Woven Fabric

    Salam Farooq


    Full Text Available Fabric Porosity is an important property in determining the functional properties of a fabric. It relates to the count of a yarn as well as to the type of weave. Twill and satin cotton woven fabrics in three different weft densities (warp density kept constant were used to investigate the effect of porosity on the dyeuptake within one weave. The effects of change in weave type, keeping yarn densities the same, on the porosity were also investigated. Objective determination of porosity was carried out using an image analysis technique while, colour yield was determined using K/S values. Higher the weft density in a satin fabric low will be the porosity of that fabric. Porosity values varied from 6.85-10.98% for S1 and S3 respectively. However, for the twill fabric no substantial change in porosity have been observed as the porosity values varied from 6.4-5.3% for T1 and T3 respectively. Colour strengths for S1 and T1 are lower than S3 and T3 respectively for all the primary colours at 0.25, 1.00 and 2.00% depth levels. It is observed that the change in colour strength is more prominent at 2% depth level as compared to 0.25% depth level

  14. Calculated Porosity of Volcanic Reservoir in Wangjiatun of the Northern Songliao Basin, NE China

    Xuanlong Shan; Chuanbiao Wa; Rihui Cheng; Wanzhu Liu


    In Wangjiatun area of the Northern Songliao Basin, reservoir space can be divided into three types: primary pore, secondary pore and fissure according to their origins,which can be subdivided into eight subtypes: macro-vesicule,shrank primary vesicule, alteration pore, groundmass corrosive pore, normal structural crack, corrosive structural crack,filled structural crack and groundmass shrank crack according to texture and origin of the pore space. It has characteristic of double pore medium. Volcanic porosities of small diameter samples (with diameter of ca. 2.5 cm) and large diameter samples (with diameter of ca. 21.5 cm) were tested in accordance with the characteristic of volcanic reservoir space. Volcanic porosities for small diameter samples correspond with matrix porosities and those of large diameter samples correspond with total porosities including matrix and fractured porosities. Models of the calculated porosity by acoustic wave or density of volcanic reservoir are established in view of those measured data. Comparison of calculated and measuredporosities shows that precision of calculated porosities is lower for rhyolite and tuffites, and higher for basaltand andesite.Relative errors of calculated porosities by model of large diameter samples are lower than those of small diameter samples, i. e. precision of the former is higher than that of the later.

  15. Development of Acidizing Techniques for Low-permeability Carbonate Reservoirs

    Liu Tongbin


    @@ Geological Background In accordance with gas reservoir occurrence, reserve type and trap type, the discovered and developed carbonate reservoirs in Sichuan Basin can be classified into the following three types: the first type is the layered porous gas reservoir (including porous and fractured porous gas reservoir), mainly distributed in East Sichuan area; the second is the block vug bottom water drive gas reservoir; the third is the irregular gas reservoir with fracture system, mainly distributed in the areas of South Sichuan and Southwest Sichuan. The reservoirs of these gas pools are mainly of carbonatite. The matrix porosity and permeability of carbonatite are very low, the porosity being below 1% - 3% and the permeability, 0.1×10-3-8× 10-3 μm2. Also the throat capillary resistance force is considerable with the mid-value width of the throat (γ50)of 0.1 - 4 μm, most below 2 μm. Owing to the low permeability and porosity as well as the serious heterogeneity of the reservoir, the productivi ty of gas wells changes greatly.

  16. How reaction and permeability develop in dehydrating systems

    Leclère, H. J.; Faulkner, D. R.; Wheeler, J.; Bedford, J. D.


    The triggering of earthquakes at intermediate-depth along subduction zones is often explained by dehydration reactions, releasing free-water and allowing pore-fluid pressure build-up. During dehydration reactions, pore-fluid pressure is increased when permeability is low enough to prevent fluid escape. Permeability is not constant during dehydration reactions but is rather changed by porosity changes (i.e. solid volume reduction or pore compaction). The evolution of permeability during dehydration reactions will thus dictate the pore-fluid pressure evolution that will affect rock strength and earthquake triggering. However, our understanding on the coupling between permeability, pore-fluid pressure, microstructures, deformation and reaction rate is incomplete. In some cases, the development of reactions is distributed uniformly and permeability increases steadily throughout the reaction progress. In other cases, reactions will not proceed uniformly and nature along with previous experiments indicate that "reaction fronts" develop. On the large scale, reaction rate and fluid pressure evolution depend on the movement of these fronts. Experimental results are presented on permeability and reaction front evolution during gypsum dehydration - an analogue for silicate dehydration. Triaxial experiments were conducted using polycrystalline gypsum cores with very low initial porosity. Pore-fluid pressure is controlled at one end of the sample and monitored at the other in order to measure permeability. Gypsum cores were dehydrated at a constant temperature of 115°C. Two parameter spaces were explored: the pore-fluid pressure (20, 40 or 60 MPa) that influences reaction rate, and effective confining pressure (60 or 110 MPa) that influences pore-compaction. The evolution of permeability, porosity, reaction rate and pore-fluid pressure are measured throughout the reaction. SEM observations of post-mortem samples collected at three key stages during the reaction shows how the

  17. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.


    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  18. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.


    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  19. Effect of Viscous Instability on Unsteady-State Relative Permeability Effet de l'instabilité visqueuse sur la perméabilité relative en régime irrégulier

    Sarma H. K.


    Full Text Available This paper presents the results of an experimental investigation into the relationship between the extent of viscous instability involved in a laboratory displacement and the relative permeability inferred from measured displacement data. Oil displacement experiments were conducted in a triaxially confined silica sand pack. The extent of viscous instability was varied by using mineral oils of different viscosities and by conducting the displacement runs at different flow rates. Relative permeabilities were calculated using both a history matching technique developed by R. M. Sigmund and F. G. McCaffery (8 and an explicit technique suggested by H. K. Sarma and R. G. Bentsen (14. Although, in principle, this explicit technique is similar to the JBN method (11, it is simpler to use in that, it does not require graphical or numerical differentiation of the experimental data. The technique uses two monotonic functional equations, which satisfy all physical conditions that can be imposed on the system, to smooth cumulative oil production and pressure drop histories. Furthermore, these functional equations can also be utilized to predict end-point displacement parameters, such as : Sor and kwor, for displacement experiments which are terminated before reaching the actual end-point. The results show that the two techniques for calculating relative permeabilities from unsteady-state displacement data provide essentially similar results, and that viscous instability significantly affects the relative permeability measurements. The breakthrough recovery, residual oil saturation and the end-point water permeability were all affected by the extent of viscous instability present during the displacement. It was found that these parameters show a systematic dependence on the extent of viscous instability as characterized by the instability number (Isr of E. J. Peters and D. L. Flock (19. Also, the results suggest that the relative permeability curves approach a

  20. Considering Shear-thinning, Static Adsorption and Dynamic Retention on Polymer Flooding Relative Permeability%考虑剪切变稀和吸附滞留的聚合物驱相对渗透率研究

    张红杰; 蔡振华; 李春; 李芳芳


    通过Blake-Kozeny方程推导了聚、油两相渗流时聚合物有效粘度计算公式,并通过兰格缪尔方程引入了相对渗透率下降因子。将有效粘度及渗透率下降因子代入广义达西公式获得了考虑剪切变稀和吸附滞留的稳态法聚合物驱相对渗透率计算公式。室内通过物理实验对比了新方法与传统稳态法聚合物驱相渗曲线区别,以及水驱和聚合物驱相渗曲线的区别。研究结果表明:与传统稳态法相比,受不可及体积和吸附滞留的影响,新方法计算的油相和聚合物相相对渗透率值均较低,其中油相相对渗透率主要受吸附滞留的影响,较传统稳态法下降了12%,聚合物相相对渗透率受不可及体积和吸附滞留的共同影响,较传统稳态法下降了44%。由于新方法不仅考虑了聚合物剪切变稀的非牛顿流体特性,还考虑了聚合物不可及体积和吸附滞留引起的渗透率下降,结果更为准确可靠。%Through Blake-Kozeny equation the effective viscosity of polymer was derived, and with Langmiur isotherm equation the effect of static adsorption and dynamic retention on oil/polymer relative permeability was con-sidered by introducing relative permeability reduction ratio.With polymer effective viscosity, relative permeability and broader Darcy’ s law, the relative permeability of polymer flooding in steady state could be obtained by consid-ering shear-thinning, static adsorption and dynamic retention effect.Then, laboratory experiments were conducted to compare the relative permeability of polymer flooding obtained by new method with that of old method and water flooding.The results showed that both oil phase and polymer phase relative permeabilities obtained by new method are much lower than old method due to the effect of inaccessible pore volume, static adsorption and dynamic reten-tion.Because of static adsorption, oil phase relative permeability reduced by 12

  1. The influence of structural parameters on the permeability of ceramic foams

    E. A. Moreira


    Full Text Available Ceramic foams are a new structural material, characterized by a high porosity and a large surface area and made of megapores interconnected by filaments. This results in a structure with low resistance to fluid flow, making them appropriate for use as a filter. This work studies the influence of several structural parameters, such as porosity, tortuosity, surface area and pore diameter, in predicting the permeability of ceramic foams. Foams with different pore densities were used as porous media. Permeability was measured utilizing water as the flowing fluid. The results show that the predicted permeability scatters widely with the parameters under study. Pore diameter was the structural parameter that best represented the media. An Ergun-type correlation was fitted to the data and represented very well the permeability of the media in all foams under the experimental conditions studied.

  2. Permeability of rapid prototyped artificial bone scaffold structures.

    Lipowiecki, Marcin; Ryvolová, Markéta; Töttösi, Ákos; Kolmer, Niels; Naher, Sumsun; Brennan, Stephen A; Vázquez, Mercedes; Brabazon, Dermot


    In this work, various three-dimensional (3D) scaffolds were produced via micro-stereolithography (µ-SLA) and 3D printing (3DP) techniques. This work demonstrates the advantages and disadvantages of these two different rapid prototyping methods for production of bone scaffolds. Compared to 3DP, SLA provides for smaller feature production with better dimensional resolution and accuracy. The permeability of these structures was evaluated experimentally and via numerical simulation utilizing a newly derived Kozeny-Carman based equation for intrinsic permeability. Both experimental and simulation studies took account of porosity percentage, pore size, and pore geometry. Porosity content was varied from 30% to 70%, pore size from 0.34 mm to 3 mm, and pore geometries of cubic and hexagonal closed packed were examined. Two different fluid viscosity levels of 1 mPa · s and 3.6 mPa · s were used. The experimental and theoretical results indicated that permeability increased when larger pore size, increased fluid viscosity, and higher percentage porosity were utilized, with highest to lowest degree of significance following the same order. Higher viscosity was found to result in permeabilities 2.2 to 3.3 times higher than for water. This latter result was found to be independent of pore morphology type. As well as demonstrating method for determining design parameters most beneficial for scaffold structure design, the results also illustrate how the variations in patient's blood viscosity can be extremely important in allowing for permeability through the bone and scaffold structures.

  3. Lunar electrical conductivity and magnetic permeability

    Dyal, P.; Parkin, C. W.; Daily, W. D.


    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  4. Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration.

    Park, Pyung-Kyu; Lee, Chung-Hak; Lee, Sangho


    We have investigated, theoretically, the physical properties of cake layers formed from aggregates to obtain a better understanding of membrane systems used in conjunction with coagulation/flocculation pretreatment. We developed a model based on fractal theory and incorporated a cake collapse effect to predict the porosity and permeability of the cake layers. The floc size, fractal dimension, and transmembrane pressure were main parameters that we used in these model calculations. We performed experiments using a batch cell device and a confocal laser-scanning microscope to verify the predicted specific cake resistances and porosities under various conditions. Based on the results of the model, the reduction in inter-aggregate porosity is more important than that in intra-aggregate porosity during the cake collapsing process. The specific cake resistance decreases upon increasing the aggregate size and decreasing the fractal dimensions. The modeled porosities and specific cake resistances of the collapsed cake layer agreed reasonably well with those obtained experimentally.

  5. Permeability of edible coatings.

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A


    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  6. Permeability of edible coatings

    B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.


    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/ (6% beeswax) to 758.0 g/ (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...

  7. Soils - Mean Permeability

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  8. Permeable pavement study (Edison)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  9. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    Dunn, T.L.


    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  10. Measurement and evaluation of the relationships between capillary pressure, relative permeability, and saturation for surrogate fluids for laboratory study of geological carbon sequestration

    Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.


    Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This

  11. A Negative Permeability Material at Red Light

    Yuan, Hsiao-Kuan; Chettiar, Uday K.; Cai, Wenshan;


    A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square...... roughness of 7 nm, while Sample B is made of thicker strips with 3-nm roughness. The real part of permeability, μ ′ , is −1 at a wavelength of 770 nm in Sample A and −1.7 at 725 nm in Sample B. Relative to prototypes simulated with ideal strips, larger strip roughness acts to decrease μ ′ by a factor of 7...

  12. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability pursuant to Article 13(5) of Regulation

    Tetens, Inge

    claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability. The food that is a subject of the health claim, a combination of diosmin, troxerutin and hesperidin, is sufficiently characterised. The claimed effect, maintenance of normal...... the consumption of a combination of diosmin, troxerutin and hesperidin and the maintenance of normal venous-capillary permeability....

  13. Packing Bunker and Pile Silos to Minimize Porosity

    This article discusses the issue of porosity (i.e., the portion of volume filled with gas) in silages. As porosity increases, the silage is subject to greater losses. Porosity can be reduced by adequately packing the crop at ensiling. To keep porosity below 40% a minimum bulk density of 44 lbs./cu. ...

  14. Changes in porosity of foamed aluminum during solidification


    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  15. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments

    Fabricius, Ida Lykke; Borre, Mai K.


    Comparison of chalk on the Ontong Java Plateau and chalk in the Central North Sea indicates that, whereas pressure dissolution is controlled by effective burial stress, pore-filling cementation is controlled by temperature. Effective burial stress is caused by the weight of all overlying water...... and sediments as counteracted by the pressure in the pore fluid, so the regional overpressure in the Central North Sea is one reason why the two localities have different relationships between temperature and effective burial stress. In the chalk of the Ontong Java Plateau the onset of calcite-silicate pressure...... dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca...

  16. Evolution of permeability and microstructure of tight carbonates due to numerical simulation of calcite dissolution

    Miller, Kevin; Vanorio, Tiziana; Keehm, Youngseuk


    The current study concerns fundamental controls on fluid flow in tight carbonate rocks undergoing CO2 injection. Tight carbonates exposed to weak carbonic acid exhibit order of magnitude changes in permeability while maintaining a nearly constant porosity with respect to the porosity of the unreacted sample. This study aims to determine—if not porosity—what are the microstructural changes that control permeability evolution in these rocks? Given the pore-scale nature of chemical reactions, we took a digital rock physics approach. Tight carbonate mudstone was imaged using X-ray microcomputed tomography. We simulated calcite dissolution using a phenomenological numerical model that stands from experimental and microstructural observations under transport-limited reaction conditions. Fluid flow was simulated using the lattice-Boltzmann method, and the pore wall was adaptively eroded at a rate determined by the local surface area and velocity magnitude, which we use in place of solvent flux. We identified preexisting, high-conductivity fluid pathways imprinted in the initial microstructure. Though these pathways comprise a subset of the total connected porosity, they accommodated 80 to 99% of the volumetric flux through the digital sample and localized dissolution. Porosity-permeability evolution exhibited two stages: selective widening of narrow pore throats that comprised preferential pathways and development and widening of channels. We quantitatively monitored attributes of the pore geometry, namely, porosity, specific surface area, tortuosity, and average hydraulic diameter, which we qualitatively linked to permeability. This study gives a pore-scale perspective on the microstructural origins of laboratory permeability-porosity trends of tight carbonates undergoing transport-limited reaction with CO2-rich fluid.

  17. Numerical modeling of porosity waves in the Nankai accretionary wedge décollement, Japan: implications for aseismic slip

    Joshi, Ajit; Appold, Martin S.


    Seismic and hydrologic observations of the Nankai accretionary wedge décollement, Japan, show that overpressures at depths greater than ˜2 km beneath the seafloor could have increased to near lithostatic values due to sediment compaction and diagenesis, clay dehydration, and shearing. The resultant high overpressures are hypothesized then to have migrated in rapid surges or pulses called `porosity waves' up the dip of the décollement. Such high velocities—much higher than expected Darcy fluxes—are possible for porosity waves if the porous media through which the waves travel are deformable enough for porosity and permeability to increase strongly with increasing fluid pressure. The present study aimed to test the hypothesis that porosity waves can travel at rates (kilometers per day) fast enough to cause aseismic slip in the Nankai décollement. The hypothesis was tested using a one-dimensional numerical solution to the fluid mass conservation equation for elastic porous media. Results show that porosity waves generated at depths of ˜2 km from overpressures in excess of lithostatic pressure can propagate at rates sufficient to account for aseismic slip along the décollement over a wide range of hydrogeological conditions. Sensitivity analysis showed porosity wave velocity to be strongly dependent on specific storage, fluid viscosity, and the permeability-depth gradient. Overpressure slightly less than lithostatic pressure could also produce porosity waves capable of traveling at velocities sufficient to cause aseismic slip, provided that hydrogeologic properties of the décollement are near the limits of their geologically reasonable ranges.


    刘丽芳; 王卫章; 储才元; 迟景魁


    在过滤排水系统中,孔径及其分布是非织造土工布的重要指标,它与非织造土工布的渗透性能直接相关.利用Poisson Polyhedron理论,在前人研究的基础上分析了非织造土工布的理论孔径分布及其最大孔径,并根据Hagen-Poisseuille定律探讨了非织造土工布的孔径分布与其渗透性能间的关系,理论计算的垂直渗透与实测结果有较好的一致性.%In the field of filtration and drainage,pores size and their distribution of nonwoven geotextile are the most important parameters,which are directly related to its permeability.Based on the former researchers' works,the theoretical pore size distribution and maximum pore size of nonwoven geotextile are studided by means of Poisson polyhedron theory.The relation berween pore size distribution and permeability of nonwoven geotextile is derived by using Hagen-Poisseuille Law.The theoretical calculation value of vertical permeability coefficient is approximately agreeable to the expetimental result for a nonwoven geotextile sample.

  19. Fabrication of slag-glass composite with controlled porosity

    Ranko Adziski


    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  20. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  1. Unconfined versus confined speleogenetic settings: variations of solution porosity.

    Klimchouk Alexander


    Full Text Available Speleogenesis in confined settings generates cave morphologies that differ much from those formed in unconfined settings. Cavesdeveloped in unconfined settings are characterised by broadly dendritic patterns of channels due to highly competing development.In contrast, caves originated under confined conditions tend to form two- or three-dimensional mazes with densely packed conduits.This paper illustrates variations of solution (channel porosity resulted from speleogenesis in unconfined and confined settings by theanalysis of morphometric parameters of typical cave patterns. Two samples of typical cave systems formed in the respective settingsare compared. The sample that represents unconfined speleogenesis consists of solely limestone caves, whereas gypsum cavesof this type tend to be less dendritic and more linear. The sample that represents confined speleogenesis consists of both limestoneand gypsum maze caves. The comparison shows considerable differences in average values of some parameters between thesettings. Passage network density (the ratio of the cave length to the area of the cave field, km/km2 is one order of magnitudegreater in confined settings than in unconfined (average 167.3 km/km2 versus 16.6 km/km2. Similarly, an order of magnitudedifference is observed in cave porosity (a fraction of the volume of a cave block, occupied by mapped cavities; 5.0 % versus 0.4 %.This illustrates that storage in maturely karstified confined aquifers is generally much greater than in unconfined. The average areal coverage (a fraction of the area of the cave field occupied by passages in a plan view is about 5 times greater in confined settingsthan in unconfined (29.7 % versus 6.4 %. This indicates that conduit permeability in confined aquifers is appreciably easier to targetwith drilling than the widely spaced conduits in unconfined aquifers.

  2. The generation and evolution of anisotropic gas-permeability during viscous deformation in conduit-filling ignimbrites

    Kolzenburg, Stephan; Russell, Kelly


    Gas-permeability plays a governing role in the pre-explosive pressurization of volcanic edifices. Pressurization may only occur once the total volume flux of gases emitted by an underlying magmatic or hydrothermal source exceeds the flow capacity of the permeable pathways present in the edifice. We have measured the physical properties (strain, porosity, permeability and ultrasonic wave velocities) of breadcrust bombs recovered from the deposits of the 2350 B.P. eruption of Mt Meager, BC, Canada. These rocks represent a conduit-infilling pyroclastic breccia that underwent various degrees of welding and deformation and present a remarkable opportunity to constrain the nature and timescale of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. Here we present data from permeability measurements along the directions of maximum and minimum shortening which help quantifying the effect of vesicle microstructure on permeability. Permeability is measured by applying a range of confining pressures (between 3.4 and 17.2 MPa) to each sample and imposing a constant head (of 0.2 to 3.5 MPa) across the sample. The permeability is then determined using a modified version of Darcy's law applicable to compressible fluids. These rocks display a profound directionality in the measured physical properties resulting from the deformation-induced fabric. For all samples the permeability across the elongation fabric is highly correlated to the sample porosity whereas along the elongation fabric there is little effect of porosity on permeability. At porosity values of about 20% the permeability seems to reach a minimum at 10-16 m2 and does not change significantly with further reduction of porosity. Further, the effect of confining pressure on the permeability of these samples appears to be more pronounced across the elongation fabric than along the elongation fabric. The deformation fabric has a significant effect on the gas-permeability

  3. The Use Of Permeable Concrete For Ground Water Recharge

    Akshay Tejankar


    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  4. Poroelasticity of high porosity chalk under depletion

    Andreassen, Katrine Alling; Fabricius, Ida Lykke


    levels of pore pressure. The chalk is oil-saturated Lixhe chalk from a quarry near Liège, Belgium, with a general porosity of 45%. Additionally, we compare the theoretical lateral stress to the experimentally determined lateral stress at the onset of pore collapse. The static Biot coefficient based...

  5. A simple procedure for estimating soil porosity

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick


    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale, indicating the impacts of soil management. Reference Piwowarczyk, A., Giuliani, G. & Holden, N.M. 2011. Can soil

  6. Expressions of peroxisome proliferator-activated receptors (PPARs) are directly influenced by permeability barrier abrogation and inflammatory cytokines and depressed PPARα modulates expressions of chemokines and epidermal differentiation-related molecules in keratinocytes.

    Adachi, Yasuko; Hatano, Yutaka; Sakai, Takashi; Fujiwara, Sakuhei


    Previous studies have demonstrated that the activation of peroxisome proliferator-activated receptors (PPARs) not only has positive effects on permeability barrier homoeostasis but also has anti-inflammatory effects by an as yet unknown mechanism. Reduced expression of PPARα in lesion of human atopic dermatitis (AD) and in epidermis of murine AD-like dermatitis has been demonstrated. This study revealed that expression of PPARα alone among PPARs (α, β/δ and γ) was suppressed by both permeability barrier abrogation and additional existence of Th2 cytokine in cultured normal human keratinocytes. In addition, expressions of transglutaminase 1 and loricrin and those of thymus and activation-related chemokine and regulated on activation normal T-cell expressed in cultured human keratinocytes were reduced and enhanced, respectively, by transfection with siRNA for PPARα. In conclusion, depressed PPARα in keratinocytes might be involved in a relationship between permeability barrier abrogation and allergic inflammation and could be a therapeutic target which accounts for both the aspects in AD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Seismic Anisotropy and Velocity-Porosity Relationships in the Seafloor.

    Berge, Patricia A.

    In this dissertation, I investigate the structure and composition of marine sediments and the upper oceanic crust using seismic data and rock physics theories. Common marine sediments such as silty clays exhibit anisotropy because they are made up of thin sub-parallel lamellae of contrasting mineralogical composition and differing elastic properties. In 1986, Rondout Associates, Inc. and Woods Hole Oceanographic Institution recorded direct shear waves in shallow marine sediments in 21-m-deep water by using a newly developed ocean-bottom shear source and a multicomponent on-bottom receiver. A nearby drill hole showed that the sediments are interbedded silty clays, clays, and sands. I used an anisotropic reflectivity program written by Geo-Pacific Corporation to produce synthetic seismograms to estimate the five independent elastic stiffnesses necessary for describing transverse isotropy, the form of anisotropy found in these sediments. The synthetics fit the vertical and two horizontal components for two intersecting profiles, 150 and 200 m long. The data require low shear velocities (theories to modeling the oceanic crust. Seismic velocities are controlled by the porosity, typically 20-30% for the top of layer 2. Most rock physics theories that relate seismic velocities to porosities are invalid for such high porosities. I combined elements of the self-consistent and noninteraction approaches to extend some rock physics theories for porosities up to at least 30-35%. Since the oceanic crust contains pores and cracks of many shapes, an appropriate theory must model round pores as well as flat cracks. I present examples of how layer 2A of the oceanic crust might be represented using an extended version of the Kuster-Toksoz theory. Alteration processes modify the pore structure of the oceanic crust. Currently, alteration is measured primarily from ocean drilling results. By developing a realistic relationship between seismic velocities and the age-dependent pore

  8. Porosity evolution in Icelandic hydrothermal systems

    Thien, B.; Kosakowski, G.; Kulik, D. A.


    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  9. Impermeability of argillaceous layers: a relative concept as seen through two examples of sandstone permeability variations; L`etancheite des couvertures argileuses: une notion relative vue a travers deux exemples de variations de la permeabilite de gres

    Baudracco, J.; Veganzones, S.; Aoubouazza, M. [Universite Paul Sabatier, 31 - Toulouse (France). Laboratoire de Mecanismes de Transferts en Geologie


    Argillaceous formations are frequently used, due to their impermeability, in waste disposal to ensure tightness and protection of reservoirs. It is shown that an effluent influx may lead, through cationic exchanges or diffusion processes, to important permeability variations that could modify and deteriorate the formation imperviousness. An experimental study has been carried out on Berea sandstone using two different percolation cycles and a helium permeability experiment

  10. Examining the influence of heterogeneous porosity fields on conservative solute transport

    Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong


    It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.

  11. Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa; Ma, Shengnan; Zhang, Yue


    This paper experimentally investigates the relationship between laser keyhole characteristics on the porosity formation during pulsed laser-GTA welding of magnesium alloy. Based on direct observations during welding process, the influences of laser keyhole state on the porosity formation were studied. Results show that the porosities in the joint are always at the bottom of fusion zone of the joint, which is closely related to the keyhole behavior. A large depth to wide ratio always leads to the increase of porosity generation chance. Keeping the keyhole outlet open for a longer time benefits the porosity restriction. Overlap of adjacent laser keyhole can effectively decrease the porosity generation, due to the cutting effect between adjacent laser keyholes. There are threshold overlap rate values for laser keyholes in different state.

  12. Biostable glucose permeable polymer


    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  13. Modeling of porous filter penneability via image-based stochastic reconstruction of spatial porosity correlations.

    Zhao, Fu; Landis, Heather R; Skerlos, Steven J


    A methodology for producing a pore-scale, 3D computational model of porous filter permeability is developed that is based on the analysis of 2D images of the filter matrix and first principles. The computationally reconstructed porous filter model retains statistical details of porosity and the spatial correlations of porosity within the filter and can be used to calculate permeability for either isotropic or 1D anisotropic porous filters. In the isotropic case, validation of the methodology was conducted using 0.2 and 0.8 microm ceramic membrane filters,forwhich it is shown that the image-based computational models provide a viable statistical reproduction of actual porosity characteristics. It is also shown that these models can predict water flux directly from first principles with deviations from experimental measurements in the range of experimental error. In the anisotropic case, validation of the methodology was conducted using a natural river sand filter. For this case, it is shown that the methodology yields predictions of filtration velocity that are similar or better than predictions offered by existing filtration models. It was found for the sand filter that the deviation between observation and prediction was mostly due to swelling during the preparation of the sand filter for imaging and can be reduced significantly using alternative methods reported in the literature. On the basis of these results, it is concluded that the computational reconstruction methodology is valid for porous filter modeling, and given that it captures pore-scale details, it has potential application to the investigation of permeability decline underthe influence of pore-scale fouling mechanisms.

  14. Self-supported ceramic substrates with directional porosity by mold freeze casting

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.


    Manufacture of thin-film ceramic substrates with high permeability and robustness is of high technological interest. In this work thin (green state thickness ∼500 μm) porous yttria-stabilized zirconia self-supported substrates were fabricated by pouring stable colloidal aqueous suspensions...... in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  15. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Yun-Yong Kim


    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  16. A new Method to Estimate the Representative Elementary Volume (REV) for Porosity in Heterogeneous Karst Aquifers Using Geographic Information Systems

    Gross, M. R.; Manda, A. K.


    Karst limestones are characterized by solution-enhanced macropores and conduits that lead to exceptional heterogeneity at the aquifer scale. The interconnected network of solution cavities often results in a conduit flow regime that bypasses the less permeable rock matrix. Efforts to manage and protect karst aquifers, which are vital water resources in many parts of the world, will benefit from meaningful characterizations of the heterogeneity inherent in these formations. To this end, we propose a new method to estimate the representative elementary volume (REV) for macroporosity within karst aquifers using techniques borrowed from remote sensing and geospatial analysis. The REV represents a sampling window in which numerous measurements of a highly-variable property (e.g., porosity, hydraulic conductivity) can be averaged into a single representative value of statistical and physical significance. High-resolution borehole images are classified into binary images consisting of pixels designated as either rock matrix or pore space. A two-dimensional porosity is calculated by summing the total area occupied by pores within a rectangular sampling window placed over the binary image. Small sampling windows quantify the heterogeneous nature of porosity distribution in the aquifer, whereas large windows provide an estimate of overall porosity. Applying this procedure to imagery taken from the Biscayne aquifer of south Florida yields a macroporosity of ~40%, considerably higher than the ~28% porosity measured from recovered core samples. Geospatial analysis may provide the more reliable estimate because it incorporates large solution cavities and conduits captured by the borehole image. The REV is estimated by varying the size of sampling windows around prominent conduits and evaluating the change in porosity as a function of window size. Average porosities decrease systematically with increasing sampling size, eventually converging to a constant value and thus

  17. Deformation in thrust-ramp anticlines and duplexes: implications for geometry and porosity

    Groshong, R.H. Jr.; Usdansky, S.I.


    A computerized kinematic model of thrust-ramp anticline geometry allows workers to predict the zones of greatest deformation in ramp anticlines and fault duplexes. The model assumes a constant cross-section area, symmetrical fold hinges, and slip in the hanging wall parallel to the ramp and forelimb. Assuming that the collapse of original porosity or the generation of secondary fracture porosity is proportional to deformation, the model can be used to predict porosity changes. Deformation in a single ramp anticline is greatest in the forelimb and backlimb, and may be absent in the crest. A duplex structure results from comparatively closely spaced thrusts that have a common upper detachment horizon. Relatively wide spacing between the duplex faults yields a bumpy roofed duplex as in the central Appalachians. Forelimbs may be deformed twice and should show greater porosity modification. Relatively close spacing between ramp-and-flat thrusts can produce a listric-fault, snakehead anticline geometry because younger faults deform the preexisting thrust slices. The resulting geometry is here called a snakehead duplex and appears to be fairly common, as in the Jumpingpound field in the Canadian Rockies. Each thrust slice within the duplex is deformed six times or more, providing the maximum opportunity for deformation-related porosity changes. Maximum fracture porosity should occur in thrusts having listric-fan or snakehead duplex geometry. Structures involving duplexes generally should be better than isolated ramp anticlines.

  18. Wave Energy Dissipation by Permeable and Impermeable Submerged Breakwaters

    Yonguk Ryu


    Full Text Available The purpose of this study was to investigate the effect of the porosity of a submerged breakwater on wave fields, including snapshots of the wave, velocity profiles of the water over the structure, and the kinetic energy of the wave. Two-dimensional experiments were conducted for submerged trapezoidal breakwaters with impermeable and permeable layers in a two-dimensional wave tank. The flow fields obtained by the particle image velocimetry (PIV technique are presented to understand the flow characteristics due to the waves’ interactions with the submerged impermeable and permeable breakwaters, and these characteristics showed that the vertical velocity dominant flow occurred under the crest of the wave. In addition, the kinetic energies were compared for different porosities and wave conditions. The comparisons of the wave flow fields and kinetic energy distributions showed that the different pattern of the dissipated kinetic energy was dependent on the porosity. The dissipation of kinetic energy also was observed to increase as the wave period increased. The comparisons indicated that greater amounts of energy were dissipated for longer wave periods.

  19. Porosity estimates of the upper crust in the Endeavour segment of the Juan de Fuca Ridge

    Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.


    km depth the porosity is sealed (0%) at the Endeavour segment but is ~1-2.5% at the Lucky Strike. This may be related to the differences in upper crustal thickness or depth of the axial magma chamber between the intermediate and slow spreading ridges. These results illustrate how upper crustal porosities are controlled by a combination of tectonic, magmatic and hydrothermal processes.

  20. Watching dehydration: transient vein-shaped porosity in the oceanic mantle of the subducting Nazca slab

    Bloch, Wasja; John, Timm; Kummerow, Jörn; Wigger, Peter; Salazar, Pablo; Shapiro, Serge


    Subduction zones around the world show the common pattern of a Double Seismicity Zone, where seismicity is organized in the form of two sub-parallel planes, one at the plate contact and the other one, 10 to 30 km below, in the mantle of the oceanic lithosphere (Lower Seismicity Zone, LSZ). A commonly held hypothesis states that dehydration processes and the associated mineral reactions promote the earthquakes of the LSZ. Fluids filling a porespace strongly alter the petropyhsical properties of a rock. Especially the seismic P- to S-wave velocity ratio (Vp/Vs) has been shown to be sensitive to the presence of fluid-filled porosity. It transforms uniquely to Poisson's ratio. To test the mineral-dehydration-hypothesis, we use local earthquake data to measure Vp/Vs in the oceanic mantle of the subducting Nazca slab at 21°S. We determine it as the slope of the de-meaned differential P- vs. S-wave arrivaltimes of a dense seismicity cluster in the LSZ. This measurement yields a value for Vp/Vs of 2.10 ± 0.09, i.e. a Poisson's ratio of ˜0.35. This value clearly exceeds the range of Vp/Vs values expected for oceanic mantle rocks in their purely solid form at ˜50km depth. We follow a poroelastic approach to model the rock's elastic properties, including Vp/Vs, as a function of porosity and porespace-geometry. This results in a porespace model for the target volume having a vein-like porosity occupying only a minor volume fraction. Porosity is in the order of 0.1%. These findings are in very good agreement with field surveys and laboratory experiments of mantle dehydration. The pore-geometry is close to the geometrical percolation threshold, where long-ranged interconnectivity statistically emerges, suggesting good draining capabilities. Indeed, porosity is soft so that the amount of porosity and, consequently, permeability is very sensitive to local fluid pressure. We conclude that in the oceanic mantle of the subducting Nazca slab, mineral dehydration reactions are

  1. Thermal radiation effects on magnetohydrodynamic free convection heat and mass transfer from a sphere in a variable porosity regime

    Prasad, Vallampati Ramachandra Ramachandra


    A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via second order Forchheimer drag force term in the momentum boundary layer equation. The surface of the sphere is maintained at a constant temperature and concentration and is permeable, i.e. transpiration into and from the boundary layer regime is possible. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. Increasing porosity (ε) is found to elevate velocities, i.e. accelerate the flow but decrease temperatures, i.e. cool the boundary layer regime. Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters. © 2011 Elsevier B.V.

  2. Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media

    Ping Wang


    Full Text Available Discrete element method (DEM is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.

  3. A new method for permeability estimation from conventional well logs in glutenite reservoirs

    Shen, Bo; Wu, Dong; Wang, Zhonghao


    Permeability is one of the most important petrophysical parameters in formation evaluation. In glutenite reservoirs, the traditional permeability estimation method from conventional well logs cannot provide satisfactory results due to the characteristic of strong heterogeneity resulting from the wide variety of clastic grains and the extremely complex percolation network. In this paper, a new method for estimating permeability from conventional well logs is developed. On the basis of previous research, a simple method for estimating the flowing porosity of the Maxwell conductive model via well logs is proposed and then a ‘flowing permeability’ equation is established by using the equivalent parameters of geometry and flowing porosity. The form is similar to that of the Kozeny–Carman model for characterizing permeability. Based on the Maxwell conductive model, threshold theory, conductive efficiency theory and core analysis data, a new method to calculate the permeability of glutenite reservoirs by using float porosity is built up through deduction and analysis of the Kozeny–Carman equation, and field application to a glutenite reservoir shows that the result of the proposed method in this paper is accurate and reasonable.

  4. Reducing the open porosity of pyroboroncarbon articles

    Martyushov, G. G.; Zakharevich, A. M.; Pichkhidze, S. Ya.; Koshuro, V. A.


    It is established that a decrease in the open porosity of pyroboroncarbon, a pyrolytic glassy composite material of interest for manufacturing prosthetic heart valves (PHVs), can be achieved via impregnation of articles with an alcohol solution of 3-aminopropyltriethoxysilane and subsequent thermal treatment. The maximum roughness height and linear size of open pores on the surface of PHV parts made of pyroboroncarbon can additionally be reduced by final mechanical processing of a silicon oxide film formed on the surface.

  5. Visualization and prediction of porosity in roller compacted ribbonswith near infrared chemical imaging (NIR-CI)

    Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel; Sonnergaard, Jørn


    The porosity of roller compacted ribbon is recognized as an important critical quality attribute which has a huge impact on the final product quality. The purpose of this study was to investigate the use of near-infrared chemical imaging (NIR-CI) for porosity estimation of ribbons produced...... at different roll pressures. Two off-line methods were utilized as reference methods. The relatively fast method (oil absorption) was comparable with the more time-consuming mercury intrusion method (R2 = 0.98). Therefore, the oil method was selected as the reference off line method. It was confirmed by both...... reference methods that ribbons compressed at a higher pressure resulted in a lower mean porosity. Using NIR-CI in combination with multivariate data analysis it was possible to visualize and predict the porosity distribution of the ribbons. This approach is considered important for process monitoring...

  6. Porosity Detection in Ceramic Armor Tiles via Ultrasonic Time-Of

    Margetan, Frank J.; Richter, Nathaniel; Jensen, Terrence


    Some multilayer armor panels contain ceramic tiles as one constituent, and porosity in the tiles can affect armor performance. It is well known that porosity in ceramic materials leads to a decrease in ultrasonic velocity. We report on a feasibility study exploring the use of ultrasonic time-of-flight (TOF) to locate and characterize porous regions in armor tiles. The tiles in question typically have well-controlled thickness, thus simplifying the translation of TOF data into velocity data. By combining UT velocity measurements and X-ray absorption measurements on selected specimens, one can construct a calibration curve relating velocity to porosity. That relationship can then be used to translate typical ultrasonic C-scans of TOF-versus-position into C-scans of porosity-versus-position. This procedure is demonstrated for pulse/echo, focused-transducer inspections of silicon carbide (SiC) ceramic tiles.

  7. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects.

    Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S


    The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.

  8. FEM Analyses for T-H-M-M Coupling Processes in Dual-Porosity Rock Mass under Stress Corrosion and Pressure Solution

    Yu-Jun Zhang


    Full Text Available The models of stress corrosion and pressure solution established by Yasuhara et al. were introduced into the 2D FEM code of thermo-hydro-mechanical-migratory coupling analysis for dual-porosity medium developed by the authors. Aiming at a hypothetical model for geological disposal of nuclear waste in an unsaturated rock mass from which there is a nuclide leak, two computation conditions were designed. Then the corresponding two-dimensional numerical simulation for the coupled thermo-hydro-mechanical-migratory processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore and fracture pressures, flow velocities, nuclide concentrations and stresses in the rock mass were investigated. The results show: the aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up and then decline, furthermore tend towards stability; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the fracture aperture and porosity are decreases in the case 1, so the relative permeability coefficients reduce, therefore the nuclide concentrations in pore and fracture in this case are higher than those in case 2.

  9. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    Maliva,, Robert G.


    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  10. Permeability mapping in porous media by magnetization prepared centric-scan SPRITE

    Romanenko, Konstantin V.; Balcom, Bruce J.


    The ability of porous media to transmit fluids is commonly referred to as permeability. The concept of permeability is central for hydrocarbon recovery from petroleum reservoirs and for studies of groundwater flow in aquifers. Spatially resolved measurements of permeability are of great significance for fluid dynamics studies. A convenient concept of local Darcy's law is suggested for parallel flow systems. The product of porosity and mean velocity images in the plane across the average flow direction is directly proportional to permeability. Single Point Ramped Imaging with T 1 Enhancement (SPRITE) permits reliable quantification of local fluid content and flow in porous media. It is particularly advantageous for reservoir rocks characterized by fast magnetic relaxation of a saturating fluid. Velocity encoding using the Cotts pulsed field gradient scheme improves the accuracy of measured flow parameters. The method is illustrated through measurements of 2D permeability maps in a capillary bundle, glass bead packs and composite sandstone samples.

  11. Probe imaging studies of magnetic susceptibility and permeability for sensitive characterisation of carbonate reservoir rocks

    Ivakhnenko, Aleksandr; Bigaliyeva, Akmaral; Dubinin, Vladislav


    In this study were disclosed the main principals of identifying petrophysical properties of carbonate reservoirs such as porosity, permeability and magnetic susceptibility. While exploring and developing reservoir there are significant diversity of tasks that can be solved by appropriate knowledge of properties which are listed above. Behavior of fluid flow, distribution of hydrocarbons and other various industrial applications can be solved by measuring areal distribution of these petrophysical parameters. The results demonstrate how magnetic probe and hysteresis measurements correlate with petrophysical parameters in carbonate reservoirs. We made experimental measurements and theoretical calculations of how much magnetic susceptibility depends on the porosity of the rocks and analyzed data with graphics. In theoretical model of the carbonate rocks we considered calcite, dolomite, quartz and combinations of calcite and dolomite, calcite and Fe-dolomite, calcite and quartz, calcite and aragonite with increasing concentrations of the dolomite, Fe-dolomite, quartz and aragonite up to 50% with step of 5%. Here we defined dependence of magnetic susceptibility from the porosity: the higher porosity measurements, the less slope of magnetic susceptibility, consequently mass magnetization is higher for diamagnetic and lower for paramagnetic carbonate rocks, but in the both cases magnetic susceptibility tries to reach zero with increasing of the total porosity. Rock measurements demonstrate that reservoir zones of the low diamagnetic magnetic susceptibility are generally correlated with higher permeability and also porosity distribution. However for different carbonate reservoirs we establish different relationships depending on the complexity of their mineralogy and texture. Application of integral understanding in distribution of permeability, porosity and mineral content in heterogeneous carbonates represented by this approach can be useful tool for carbonate reservoir

  12. Density-Corrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per


    Accurate prediction of gas diffusivity (Dp/Do) and air permeability (ka) and their variations with air-filled porosity (e) in soil is critical for simulating subsurface migration and emission of climate gases and organic vapors. Gas diffusivity and air permeability measurements from Danish soil...... in subsurface soil. The data were regrouped into four categories based on compaction (total porosity F 0.4 m3 m-3) and soil texture (volume-based content of clay, silt, and organic matter 15%). The results suggested that soil compaction more than soil type was the major control on gas...... diffusivity and to some extent also on air permeability. We developed a density-corrected (D-C) Dp(e)/Do model as a generalized form of a previous model for Dp/ Do at -100 cm H2O of matric potential (Dp,100/Do). The D-C model performed well across soil types and density levels compared with existing models...

  13. [Effects of different planting modes on the soil permeability of sloping farmlands in purple soil area].

    Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian


    Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not.

  14. Prediction of permeability of cement-admixed soft clay using resistivity and time-domain IP measurements

    Latt, Khin M. M.; Giao, P. H.


    Permeability is one of the most important petrophysical parameters, which unfortunately is quite difficult to be tested and estimated, particularly for the fine-grained soils and mixed soils. Prediction of permeability based on geophysical measurements is currently one of the most challenging issues in petrophysics. There have been recently reported some empirical relationships between permeability, resistivity and spectral induced polarization (SIP) parameters for a porous medium. However, the disadvantage of this approach is the very scarcity of SIP data as most of practical measurements are time-domain IP. In this study, a detailed overview of permeability prediction models using resistivity and spectral IP data was made. More than that, an innovative approach using resistivity and time-domain IP measurements to predict permeability of cement-admixed Bangkok clay was proposed and successfully applied for tested samples based on measurements of resistivity and time-domain IP data. A good amount of geotechnical and geophysical tests was conducted to investigate the time-dependent development of strength, porosity, and permeability of cement-mixed Bangkok soft clay samples during a 28-day curing process. The permeability predicted by resistivity and chargeability model matched well with permeability measured by consolidation testing. In addition, a series of correlations between unconfined compressive strength, porosity and permeability as measured by geotechnical testing and resistivity and chargeability as measured by geophysical testing were found.

  15. Tunable permeability of magnetic wires at microwaves

    Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.


    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.

  16. A multi-tracer study in the Hutton Sandstone aquifer, Australia: How "wrong ages" give us deeper insights into aquifer structure and effective deep recharge to a double porosity system

    Suckow, Axel; Taylor, Andrew; Davies, Phil; Leaney, Fred


    Depressurisation of coal seams in the Walloon Coal Measures in Queensland, Australia, may influence aquifers both over- and underlying the formation. The Gubberamunda Sandstone aquifer, which overlies the Walloon Coal Measures, is the starting point of the Great Artesian Basin (GAB) flow system and has been the focus of numerous recharge studies. In comparison, the Hutton Sandstone aquifer, which underlies the Walloon Coal Measures, has received much less attention. This aquifer however, is the main supply of stock water for the beef industry in the area. A multi-environmental tracer study of the Hutton Sandstone aquifer was undertaken at the Mimosa Syncline and was complemented by a few samples taken from the underlying Precipice Sandstone aquifer. This multi-tracer study (comprising 18O, 2H, 3H, CFCs, SF6, 14C, 36Cl, and 4He) demonstrated that the Hutton Sandstone aquifer behaves as a double porosity system. At the regional scale, the system features a relatively small fraction of conductive rock within a fairly large fraction of low permeability rock. Tracer migration therefore occurs mainly by advection in the conductive fraction and mainly by diffusion in the low-permeability fraction of the aquifer. Groundwater flow velocities, derived from exponential decrease of 14C and 36Cl concentrations with distance, differ by a factor of ten and therefore do not indicate the real groundwater flow velocity. However, accounting for a double porosity interpretation of the tracer data leads to a single groundwater flow velocity that is consistent with all observed data. Advective velocity in this double porosity model differs from face value flow velocities derived from 14C and 36Cl by a factor of 4 and 40 respectively. As a consequence of this interpretation, the deeper groundwater flow system of the Hutton Sandstone aquifer is estimated to receive only 3% of the recharge previously estimated using the Chloride Mass Balance approach at the intake beds. The other 97% is

  17. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Poston, S.W.


    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  18. Determination of Shale Volume and Distribution Patterns and Effective Porosity from Well Log Data Based On Cross-Plot Approach for A Shaly Carbonate Gas Reservoir

    Moradi, Siyamak; Moeini, Mohammad; Kamal Ghassem al-Askari, Mohammad; Hamed Mahvelati, Elaheh


    Determination of shale volume distribution is one of the most important factors that has to be considered in formation evaluation, since existence of shale reduces effective porosity and permeability of the reservoir. In this paper, shale volume and distribution (dispersed, laminar and structural) and formation effective porosity are estimated from well log data and cross-plots. Results show that distribution of shale is mainly dispersed with few of laminar ones, and the quality of reservoir (effective porosity) decreases with depth resulting in low productivity of gas wells drilled in lower zones. Good agreement of estimated shale volumes and effective porosities from neutron-density cross-plot with the values determined from gamma ray log (CGR) and core analysis demonstrates the accuracy and applicability of these plots in determination of petrophysical parameters from conventional log data.

  19. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.


    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  20. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.


    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  1. Fracture Distribution Characteristics within Low-Permeability Reservoirs:Cases Studies from Three Types of Oil-bearing Basins,China

    Zeng Lianbo


    The permeability or/and porosity in low-permeability reservoirs mainly depends on fracture system.Wthin this kind of low-permeability reservior, fractures play a very important role on exploration and development. Because there are so many differences, such as basin properties and tectonic characteristics,among the eastern, western and central basins, the types and distribution characteristics of fractures are also obviously different. Quantitative information on fracture distribution is very important. Through the contrastive study of 7 oilfield, the differences and distribution characteristics of fractures in three types of oil-bearing basins are summarized.Due to the different geological conditions and stress state during the formation of fractures, the fracture systems in three types of basins are also different. Fractures are mainly composed of tectonic fractutres related to normal faultes in eastern basins, related to folds and reverse faultes in western basins, and regional fractures which widely distributed not only in outcrops but also at depth of the relatively undeformed strata in central basins. So, besides jointed-fractures, we can often see faulted-fractures similar to normal faults in eastern basins and similar to reverse faults in western basins.According to statistical data, fracture spacing generally has a lognormal distribution and is linearly proportional to layer thickness. The development degree of fractures is controlled by lithology, bed thickness,sedimentary microfacies and faults or folds, etc. The permeability, aperture and connectedness of fractures are related to the modern stress field. Though there are 3-4 sets of fractures in a oilfield, the fractures parallel to the maximum principal stress direction are main for the pattern arrangement of low-permeability reservoirs.

  2. Structural determinants of glomerular permeability.

    Deen, W M; Lazzara, M J; Myers, B D


    Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the

  3. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity

    Özgen, Ilhan; Zhao, Jiaheng; Liang, Dongfang; Hinkelmann, Reinhard


    The shallow water model with anisotropic porosity conceptually takes into account the unresolved subgrid-scale features, e.g. microtopography or buildings. This enables computationally efficient simulations that can be run on coarser grids, whereas reasonable accuracy is maintained via the introduction of porosity. This article presents a novel numerical model for the depth-averaged equations with anisotropic porosity. The porosity is calculated using the probability mass function of the subgrid-scale features in each cell and updated in each time step. The model is tested in a one-dimensional theoretical benchmark before being evaluated against measurements and high-resolution predictions in three case studies: a dam-break over a triangular bottom sill, a dam-break through an idealized city and a rainfall-runoff event in an idealized urban catchment. The physical processes could be approximated relatively well with the anisotropic porosity shallow water model. The computational resolution influences the porosities calculated at the cell edges and therefore has a large influence on the quality of the solution. The computational time decreased significantly, on average three orders of magnitude, in comparison to the classical high-resolution shallow water model simulation.

  4. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Qing Wang, Yan; Zu, Jean W.


    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  5. The effect of porosity of dust particles on polarization and color with special reference to comets

    Sen, A. K.; Botet, R.; Vilaplana, R.; Choudhury, Naznin R.; Gupta, Ranjan


    Cosmic dust particles are mostly responsible for polarization of the light that we observe from astrophysical objects. They also lead to color-extinction, thermal re-emission and other scattering related phenomena. Micrometric dust particles are often made of smaller constituent (nanometric grains). They are characterized by their size (average radius), chemical composition and morphology (including porosity). In the present work, we address the question of the role of the dust particle porosity on light polarization and color, using Discrete Dipole Approximation (DDA) light scattering code. To this purpose, we develop an algorithm to generate dust particles of arbitrary values of porosity. In brief, starting from a compact spherical ensemble of dipoles,randomly the dipoles are removed one by one, such that the remaining dipoles remain connected within their neighbours. We stop the removal process when the desired porosity is obtained. Then we compute and study the optical properties of the porous dust particle.The main objective of this paper is to develop a tool to generate dust particles with an arbitrary value of porosity and to study the effect of porosity on their light scattering properties. As a possible application, we simulate cometary polarization and color values which grossly match with the observed ones for the comet 1P/Halley, leaving scope for future work.

  6. The varying porosity of braided self-expanding stents and flow diverters: an experimental study.

    Makoyeva, A; Bing, F; Darsaut, T E; Salazkin, I; Raymond, J


    Braided self-expandable stents and flow diverters of uniform construction may develop zones of heterogeneous porosity in vivo. Unwanted stenoses may also occur at the extremities of the device. We studied these phenomena in dedicated benchtop experiments. Five braided devices of decreasing porosity were studied. To simulate discrepancies in diameters between the landing zones of the parent vessel and the aneurysm neck area, device extremities were inserted into silicone tubes of various diameters (2-3 mm), leaving the midportion free to react to experimental manipulations, which included axial approximation of the tubes (0-7 mm), and curvature (0-135°), with or without axial compression (0-2 mm). The length of the landing zone was sequentially decreased to study terminal device stenosis. All devices adopted a conformation characterized by 3 different zones: bilateral landing zones, a middle compaction zone, and 2 transition zones. It is possible, during deployment, to compact stents and FDs to decrease porosity, but a limiting factor was the transition zone, which remained relatively unchanged and of higher porosity than the expansion zone. Length of the transition zone increased when devices were constrained in smaller tubes. Heterogeneities in porosity with compaction and curvatures were predictable and followed simple geometric rules. Extremity stenoses occurred increasingly with decreasing length of the landing zone. Braided self-expandable devices show predictable changes in porosity according to device size, vessel diameter, and curvature. Adequate landing zones are required to prevent terminal device stenosis.

  7. Application of relative permeability modifier additives to reduce water production in different formations; Aplicacao de aditivos modificadores de permeabilidade relativa para reducao da producao de agua em diferentes formacoes

    Melo, Ricardo C.B.; Torres, Ricardo S.; Pedrosa Junior, Helio; Dean, Gregory [BJ Services do Brasil Ltda., RJ (Brazil)


    Today most oil companies would be better described as water companies. Total worldwide oil production averages some 75 million barrels per day and, while estimates vary, this is associated with the production of 300 - 400 million barrels of water per day. These values of approximately 5 - 6 barrels of water for every barrel of oil are quite conservative. In the United States, where many fields are depleted, the ratio of water-to-oil production is closer to 9 to 1. In some areas around the world, fields remain on production when the ratio is as high as 48 to 1. Numerous strategies, both mechanical and chemical, have been employed over the years in attempts to achieve reduction in water production. Simple shut-off techniques, using cement, mechanical plugs and cross-linked gels have been widely used. Exotic materials such as DPR (disproportionate permeability reducers) and or new generation of relative permeability modifiers (RPM) have been applied in radial treatments with varying degrees of success. Most recently 'Conformance Fracturing' operations have increased substantially in mature fields as the synergistic effect obtained by adding a RPM to a fracturing fluid have produced increased oil production with reduced water cut in one step, consequently eliminating the cost of additional water shut off treatment later on. This paper presents laboratory testing and worldwide case histories of applications of various RPM materials, at different permeability and temperatures. The paper also describes technical design and operational methodology that we believe to have a significant impact in the development strategies of many fields worldwide. (author)

  8. An experimental study of permeability development as a function of crystal-free melt viscosity

    Lindoo, A.; Larsen, J. F.; Cashman, K. V.; Dunn, A. L.; Neill, O. K.


    Permeability development in magmas controls gas escape and, as a consequence, modulates eruptive activity. To date, there are few experimental controls on bubble growth and permeability development, particularly in low viscosity melts. To address this knowledge gap, we have run controlled decompression experiments on crystal-free rhyolite (76 wt.% SiO2), rhyodacite (70 wt.% SiO2), K-phonolite (55 wt.% SiO2) and basaltic andesite (54 wt.% SiO2) melts. This suite of experiments allows us to examine controls on the critical porosity at which vesiculating melts become permeable. As starting materials we used both fine powders and solid slabs of pumice, obsidian and annealed starting materials with viscosities of ∼102 to ∼106 Pas. We saturated the experiments with water at 900° (rhyolite, rhyodacite, and phonolite) and 1025 °C (basaltic andesite) at 150 MPa for 2-72 hrs and decompressed samples isothermally to final pressures of 125 to 10 MPa at rates of 0.25-4.11 MPa/s. Sample porosity was calculated from reflected light images of polished charges and permeability was measured using a bench-top gas permeameter and application of the Forchheimer equation to estimate both viscous (k1) and inertial (k2) permeabilities. Degassing conditions were assessed by measuring dissolved water contents using micro-Fourier-Transform Infrared (μ-FTIR) techniques. All experiment charges are impermeable below a critical porosity (ϕc) that varies among melt compositions. For experiments decompressed at 0.25 MPa/s, we find the percolation threshold for rhyolite is 68.3 ± 2.2 vol.%; for rhyodacite is 77.3 ± 3.8 vol.%; and for K-phonolite is 75.6 ± 1.9 vol.%. Rhyolite decompressed at 3-4 MPa/s has a percolation threshold of 74 ± 1.8 vol.%. These results are similar to previous experiments on silicic melts and to high permeability thresholds inferred for silicic pumice. All basaltic andesite melts decompressed at 0.25 MPa/s, in contrast, have permeabilities below the detection

  9. Diagenesis and porosity evolution of tight sand reservoirs in Carboniferous Benxi Formation, Southeast Ordos Basin

    Hu, Peng; Yu, Xinghe; Shan, Xin; Su, Dongxu; Wang, Jiao; Li, Yalong; Shi, Xin; Xu, Liqiang


    The Ordos Basin, situated in west-central China, is one of the oldest and most important fossil-fuel energy base, which contains large reserves of coal, oil and natural gas. The Upper Palaeozoic strata are widely distributed with rich gas-bearing and large natural gas resources, whose potential is tremendous. Recent years have witnessed a great tight gas exploration improvement of the Upper Paleozoic in Southeastern Ordos basin. The Carboniferous Benxi Formation, mainly buried more than 2,500m, is the key target strata for hydrocarbon exploration, which was deposited in a barrier island and tidal flat environment. The sandy bars and flats are the favorable sedimentary microfacies. With an integrated approach of thin-section petrophysics, constant velocity mercury injection test, scanning electron microscopy and X-ray diffractometry, diagenesis and porosity evolution of tight sand reservoirs of Benxi Formation were analyzed in detail. The result shows that the main lithology of sandstone in this area is dominated by moderately to well sorted quartz sandstone. The average porosity and permeability is 4.72% and 1.22mD. The reservoirs of Benxi Formation holds a variety of pore types and the pore throats, with obvious heterogeneity and poor connection. Based on the capillary pressure curve morphological characteristics and parameters, combined with thin section and phycical property data, the reservoir pore structure of Benxi Formation can be divided into 4 types, including mid pore mid throat type(I), mid pore fine throat type(II), small pore fine throat type(III) and micro pro micro throat type(Ⅳ). The reservoirs primarily fall in B-subsate of middle diagenesis and late diagenesis, which mainly undergo compaction, cmentation, dissolution and fracturing process. Employing the empirical formula of different sorting for unconsolideated sandstone porosity, the initial sandstone porosity is 38.32% on average. Quantitative evaluation of the increase and decrease of

  10. Results from a new Cocks-Ashby style porosity model

    Barton, Nathan


    A new porosity evolution model is described, along with preliminary results. The formulation makes use of a Cocks-Ashby style treatment of porosity kinetics that includes rate dependent flow in the mechanics of porosity growth. The porosity model is implemented in a framework that allows for a variety of strength models to be used for the matrix material, including ones with significant changes in rate sensitivity as a function of strain rate. Results of the effect of changing strain rate sensitivity on porosity evolution are shown. The overall constitutive model update involves the coupled solution of a system of nonlinear equations.

  11. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities

    Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu


    We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"

  12. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer

    Gao, Yuan; Montana, Angel; Chen, Fengxiang


    Porosity and thickness are two key properties of GDL and both affect the transport properties of porous media. This paper focuses on the influence of the GDL microstructure on its transport properties, which will be analyzed from different samples. The results show that thickness affects permeability through the principal flow direction more than through non-principal directions, thus it is necessary to increase the anisotropic characteristics of the material. Moreover, it is ascertained that permeability is more affected by the number of fibers than by the thickness. For the variable porosity sample groups, the simulation results are coincident with the fractal model in principal and non-principal flow directions, and water saturation inside the GDL samples has been evaluated. They are shown several cases of the GDL model to illustrate the fluid flow along through-plane and in-plane directions as well as the conditions at inlet and outlet boundaries. These results have a strong potential to gain deeper understanding of the microscopic flow phenomenon within the porous structures and to determine the influence the microstructure has on the macroscopic transport properties, thus leading to notable improvements of fuel cell performance.

  13. Influence of solidification variables on the cast microstructure and porosity in directionally solidified Mar-M247

    Whitesell, Harry Smith, III

    The solidification microstructure is critical in determining the amount and distribution of porosity that develops during the freezing of castings. As the solidification velocity Vs increases, the microstructural length scales (primary and secondary dendrite arm spacings) decrease; thus (1) the mushy zone permeability would be expected to decrease; and (2) nucleated pores would be increasingly isolated. Although the first effect would tend to increase the observed porosity, the second effect would tend to decrease the porosity. As solidification velocity decreases, the cooling rate decreases allowing additional time for carbide growth. Large carbide size may block feeding in the intercellular spaces increasing observed porosity. To better understand these competitive mechanisms, a series of controlled unidirectional experiments were performed on bars of nickel-base superalloy Mar-M247. Samples were produced with constant dendrite arm spacing throughout an extended length of each cast bar. The axial thermal gradient and withdrawal velocity imposed on each casting were varied between castings to produce a range of microstructures from aligned cellular dendritic to aligned dendritic to misaligned dendritic. Macrosegregation effects along the lengths of the bars were evaluated and the resultant impact upon the density along the lengths of each casting was also characterized. The density measurements were found to be very sensitive to both (1) compositional macrosegregation in these castings and (2) internal porosity. Statistical analyses of microporosity in castings were based upon metallographic measurements. The development of microporosity in the unidirectionally solidified castings is shown to be dependent upon the hydrogen gas content of the samples and the imposed solidification velocity through the sample's cast microstructures. An optimum intermediate withdrawal velocity of 0.005--0.01 cm/s was found, which led to closely spaced dendrite arms, a large number of

  14. 3D Membrane Imaging and Porosity Visualization

    Sundaramoorthi, Ganesh


    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  15. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.


    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and

  16. Porosity of additive manufacturing parts for process monitoring

    Slotwinski, J. A.; Garboczi, E. J.


    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  17. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali


    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  18. Gas permeability of cement based materials; Etude de la permeabilite au gaz des materiaux cimentaires

    Galle, Ch.; Pin, M. [CEA Saclay, Dept. d' Entreposage et de Stockage des Dechets (DCC/DESD/SESD), 91 - Gif-sur-Yvette (France); Daian, J.F. [Universite Joseph-Fourier, Grenoble I, (INPG/CNRS/IRD), 38 (France)


    The study of the permeability of cement based materials is an important issue for their transport properties, which are good indicators of their durability. Studies were undertaken to acquire experimental data and to model the gas permeability of cement based materials. Among many parameters like cement type, water-cement ratio (w/c), curing, etc, the degree of water saturation and microstructural properties are the two main parameters controlling the ability of such type of materials to transport gas. It is well known that the higher the water saturation, the lower the gas permeability. Under pressure, gas will be also transported through the biggest pore accesses. It must be emphasized that the w/c ratio is the fundamental parameter for cement based materials. This ratio controls the hydration process and hence the material porosity. Gas permeability was calculated with Darcy law as modified by the Hagen-Poiseuille formula (1). Various materials were investigated: pure cement pastes prepared with different types of cement (CEM I-OPC, CEM V-BFS-PFA) and various w/c ratios, and industrial concretes. After curing, the samples were stored under controlled relative humidity conditions using saline solutions to reach a stable hydric state. N{sup 2} gas permeability tests were then performed with a Hassler apparatus. The microstructural properties of CEM I and CEM V materials are given in Figure 2. Examples of experimental results obtained with pure pastes are shown in Figure 3. A comparative example of paste and concrete data is provided in Figure 4. It was experimentally observed that gas permeability is extremely sensitive to material water saturation: up to five orders of magnitude of variation (between 10{sup -16} and 10{sup -21} m{sup 2} on average) for water saturations from a few % to 100%. The higher the w/c ratio, the higher the gas permeability. CEM I pastes are also less permeable than CEM V pastes. The higher total porosity effect of CEM V materials is not

  19. Reduction of the Residual Porosity in Parts Manufactured by Selective Laser Melting Using Skywriting and High Focus Offset Strategies

    Mancisidor, A. M.; Garciandia, F.; Sebastian, M. San; Álvarez, P.; Díaz, J.; Unanue, I.

    Residual porosity is observed in Inconel 718 samples manufactured by SLM within the optimum process window regardless the process parameters whose origin has been directly related to the starting and finishing of the laser scanning tracks. This porosity is concentrated preferentially in overlaps of fields (stripes and chessboard strategies) and borders. Location of pores has been demonstrated on long stripes, where laser stops only at borders, not in the hatch. It has been concluded that porosity is due to a high interaction time of the laser with powder which increases the energy in those points. Two different strategies have been validated to reduce this effect and thus diminish porosity. These strategies are the skywriting function, where the laser is switched off during the accelerating and decelerating portions and to increase the focus offset. The defocusing strategy is not as effective as the skywriting reducing the residual porosity.

  20. On the porosity of barrier layers

    J. Mignot


    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  1. The Porosity of Additive Noise Sequences

    Misra, Vinith


    Consider a binary additive noise channel with noiseless feedback. When the noise is a stationary and ergodic process $\\mathbf{Z}$, the capacity is $1-\\mathbb{H}(\\mathbf{Z})$ ($\\mathbb{H}(\\cdot)$ denoting the entropy rate). It is shown analogously that when the noise is a deterministic sequence $z^\\infty$, the capacity under finite-state encoding and decoding is $1-\\bar{\\rho}(z^\\infty)$, where $\\bar{\\rho}(\\cdot)$ is Lempel and Ziv's finite-state compressibility. This quantity is termed the \\emph{porosity} $\\underline{\\sigma}(\\cdot)$ of an individual noise sequence. A sequence of schemes are presented that universally achieve porosity for any noise sequence. These converse and achievability results may be interpreted both as a channel-coding counterpart to Ziv and Lempel's work in universal source coding, as well as an extension to the work by Lomnitz and Feder and Shayevitz and Feder on communication across modulo-additive channels. Additionally, a slightly more practical architecture is suggested that draws a...

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. A fast Laplace solver approach to pore scale permeability

    Arns, Christoph; Adler, Pierre


    alpha=0.5. Third, the most important test was performed on two types of real media that were used for previous studies. A fracture network measured by FIB/SEM in a low permeability sandstone was used for that purpose; the two dimensionless permeabilities KS and KL are equal to 9.3d-3 and 8.5d-3. Similar calculations were performed on 256 samples of Fontainebleau sandstones and the agreement was in general excellent, except may be for very low permeabilities. To conclude, the Laplace solver is significantly more stable than the lattice Boltzmann approach, uses less memory, and is significantly faster. Permeabilities are in excellent agreement over a wide range of porosities.

  4. Gravity Current in Horizontal Porous Media with A Permeability Gradient

    Zheng, Zhong; Tsai, Peichun; Al-Housseiny, Talal; Stone, Howard; Complex Fluid Group Team


    We study the influence of a power-law porosity and permeability gradient on the front propagation of a gravity current in an unconfined porous media. We neglect mass transfer and surface tension on the interface. A similarity solution is found for the propagating front, which is different from the homogeneous case. Experiments have been performed using liquid pushing air in a Hele-Shaw cell with a constant gradient in gap thickness in the vertical direction. We measure the speed of the front and the shape of the interface. We observe a third layer of trapped air in the region where the permeability is low, while it appears that the propagating front still satisfies the similarity solution with a modified coefficient. This work is supported by a funding from Carbon Mitigation Initiative at Princeton University

  5. Effects of spatially heterogeneous porosity on matrix diffusion as investigated by X-ray absorption imaging

    Tidwell, Vincent C.; Meigs, Lucy C.; Christian-Frear, Tracy; Boney, Craig M.


    High-resolution X-ray absorption imaging was used to investigate the effects of spatially heterogeneous porosity on matrix diffusion. Experiments were performed on four, centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant (WIPP) site. These tests involved the diffusion of potassium iodide into a single edge of each brine-saturated rock slab, while X-ray absorption imaging was used to measure the two-dimensional relative concentration distribution at different times during the experiment. X-ray imaging was also used to measure the heterogeneous, two-dimensional porosity distribution of each rock slab. The resulting high-resolution data provide unique insight into the spatially varying diffusion characteristics of each heterogeneous rock sample, which traditional methods such as through-diffusion experiments cannot. In these tests, significant variations in the diffusion coefficient were calculated over the relatively small length (centimeter) and time scales (months) investigated. Results also indicated that these variations were related to the heterogeneous porosity characteristics of each rock sample. Not only were the diffusion coefficients found to depend on the magnitude of the porosity but also on its spatial distribution. Specifically, the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab appeared to influence the diffusion characteristics.

  6. Permeability measuremens of brazilian Eucalyptus

    Marcio Rogério da Silva


    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  7. An improved method for predicting permeability by combining electrical measurements and mercury injection capillary pressure data

    Zhang, Chong; Cheng, Yuan; Zhang, Chaomo


    The applicability of the representative elemental volume (REV) model is analyzed on the basis of the capillary pressure curves, resistivity, porosity and permeability, taken from the experimental measurement data of 83 sandstone core samples from three different blocks mined in China. The results show that the permeability error (the ratio of core permeability to the permeability calculated by the REV model) can be controlled from 0.5 to 2 when the core permeability is more than 3 mD. On the whole, the permeability error is more than 2, and the calculated permeability is lower than the core permeability when the core permeability is less than 3 mD. The reason for the poor calculation accuracy of the REV model in low permeability sandstone is analyzed, and the research suggests that the ∫dS v/(P c)2 in the REV model characterizes the pore-throat radius of the rock. In reality, the permeability is influenced by the throat radius rather than the pore radius. When the core permeability is large enough, there is no obvious difference between the pore radius and the throat radius. So, the error between the core permeability and the permeability calculated by the REV model is small. However, when the core permeability is small, the difference between the pore radius and the throat radius is apparent, and, in general, the pore radius is larger than the throat radius. In these conditions, the pore radius plays a leading role in ∫dS v/(P c)2, thus making the error between the core permeability and the permeability calculated by the REV model apparent. Based on the above, we have derived an improved REV model by introducing the pore-throat radius ratio on the basis of Poiseuille’s law and Darcy’s law. Using the same experimental data, we make a comparison analysis between the improved model, the REV model and the Swanson model. The results show that compared with the REV model and the Swanson model, the accuracy of the calculated permeability of the improved model is

  8. The estimation of permeability of a porous medium with a generalized pore structure by geometry identification

    Rezaei Niya, S. M.; Selvadurai, A. P. S.


    The paper presents an approach for estimating the permeability of a porous medium that is based on the characteristics of the porous structure. The pressure drop in different fluid flow passages is estimated and these are combined to evaluate the overall reduction. The theory employed is presented and the level of accuracy for different cases is discussed. The successive steps in the solution algorithm are described. The accuracy and computational efficiency of the approach are compared with results obtained from a finite-element-based multiphysics formulation. It is shown that for a comparable accuracy, the computational efficiency of the approach can be two orders of magnitude faster. Finally, the model predictions are examined with conventional relationships that have been reported in the literature and are based on permeability-porosity relationships. It is shown that estimating the permeability of a porous medium using porosity can lead to an order of magnitude error and the expected permeability range in different porosities is presented using 10 000 random structures.

  9. Nitric oxide turnover in permeable river sediment

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M


    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...

  10. Effects of pore-scale precipitation on permeability and flow

    Noiriel, Catherine; Steefel, Carl I.; Yang, Li; Bernard, Dominique


    The effects of calcite precipitation on porous media permeability and flow were evaluated with a combined experimental and modeling approach. X-ray microtomography images of two columns packed with glass beads and calcite (spar crystals) or aragonite (Bahamas ooids) injected with a supersaturated solution (log Ω = 1.42) were processed in order to calculate rates of calcite precipitation with a spatial resolution of 4.46 μm. Identification and localization of the newly precipitated crystals on the 3D images was performed and results used to calculate the crystal growth rates and velocities. The effects of carbonate precipitation were also evaluated in terms of the integrated precipitation rate over the length of the column, crystal shape, surface area and pore roughness changes. While growth was epitaxial on calcite spar, calcite rhombohedra formed on glass beads and clusters of polyhedrons formed on aragonite ooids. Near the column inlet, calcite precipitation occurred preferentially on carbonate grains compared to glass beads, with almost 100% of calcite spar surface area covered by new crystals versus 92% in the case of aragonite and 11% in the case of glass beads. Although the experimental chemistry and flow boundary conditions in the two columns were similar, their porosity-permeability evolution was different because the nucleation and subsequent crystal growth on the two substrates (i.e., calcite spar and aragonite ooids) was very different. The impact of mineral precipitation on pore-scale flow and permeability was evaluated using a pore-scale Stokes solver that accounted for the changes in pore geometry. For similar magnitude reductions in porosity, the decrease in permeability was highest within the sample that experienced the greatest increase in pore roughness. Various porous media models were generated to show the impact of different crystal growth patterns and pore roughness changes on flow and permeability-porosity relationship. Under constant flow

  11. Permeability prediction in deep coal seam: a case study on the No. 3 coal seam of the Southern Qinshui Basin in China.

    Guo, Pinkun; Cheng, Yuanping


    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress.

  12. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    Pinkun Guo


    Full Text Available The coal permeability is an important parameter in mine methane control and coal bed methane (CBM exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress.

  13. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Eneh, C. T. M., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:; Töyräs, J., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:; Jurvelin, J. S., E-mail: [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail:, E-mail:, E-mail:, E-mail:, E-mail:; Liukkonen, J., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)


    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  14. Estimation of In Situ Stress and Permeability from an Extended Leak-off Test

    Nghiep Quach, Quoc; Jo, Yeonguk; Chang, Chandong; Song, Insun


    stress regime with the information of the maximum principal stress that will be estimated based on borehole breakout geometry analysis. To estimate the in situ permeability from the XLOT data, we derived a theoretical equation that relates the slope of pressure versus injected water volume (P-V) curve to permeability based on the Darcy's law. The equation is expressed in terms of permeability as a function of some key parameters such as open-hole dimensions, flowrate, porosity, pressure change and injected water volume. We applied this equation to the early stage of the P-V curves prior to the leak-off point to prevent the effect of induced fractures on permeability. The estimated in situ permeability was (3.1±0.4)×10-17m2, which turns out to be quite similar to the laboratory measurements in recovered cores.

  15. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Lee, O Y; Stadelmann, E J; Weiser, C J


    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified.

  16. Permeability of Aluminium Foams Produced by Replication Casting

    Maxim L. Cherny


    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  17. Experimental method to characterize the strain dependent permeability of tissue engineering scaffolds.

    Nasrollahzadeh, Naser; Pioletti, Dominique P


    Permeability is an overarching mechanical parameter encompassing the effects of porosity, pore size, and interconnectivity of porous structures. This parameter directly influences transport of soluble particles and indirectly regulates fluid pressure and velocity in tissue engineering scaffolds. The permeability also contributes to the viscoelastic behavior of visco-porous material under loading through frictional drag mechanism. We propose a straightforward experimental method for permeability characterization of tissue engineering scaffolds. In the developed set-up a step-wise spacer was designed to facilitate measurement of the permeability under different compressive strains while maintaining similar experimental conditions during the successive measurements. As illustration of the method, we measured the permeability of scaffolds presenting different average pore sizes and subjected to different compression values. Results showed an exponential relationship between the permeability and the average pore size of the scaffolds. Furthermore, the trend of the permeability decrease with compressive strains was depending on pore sizes of the scaffolds. The permeability also appeared to play a role in relaxation behavior of the scaffolds.

  18. The permeability of poly-disperse porous media and effective particle size

    Markicevic, B. I.; Preston, C.; Osterroth, S.; Iliev, O.; Hurwitz, M.


    The interactions between the fluid and solid phases in porous media account for the openness and length of the flow path that the fluid needs to travel within. The same reasoning applies for both mono- and poly-disperse media, and is reflected in the adoption of the same permeability models. The only difference is that an effective particle size diameter has to be used for the poly-disperse samples. A filtration experiment is used to form a particle layer, filter cake, consisting of particles of different sizes. Both inflow and outflow particle size distribution are measured by particle counting method, and from their difference, the particle size distribution in the cake is determined. In a set of experiments, the filtration history is altered by changing (i) filtration medium; (ii) suspension flow rate; and (iii) particle concentration, where in all cases investigated the cake permeability remains constant. In order to predict the permeability of poly-disperse cake from the analytical models, the particle size distribution moments are calculated, and the permeability is found for each moment. Comparing the experimental to the analytical permeability values the effective particle size is found, where the permeability calculated by using the harmonic mean of the particle size distribution reproduces the permeability experimental value best. Finally, in the parametric study, reducing the cake porosity and/or lowering the particle retention shifts effective particle size used in the permeability model toward higher moments of the particle size distribution function.

  19. Influence of deformation bands on sandstone porosity: A case study using three-dimensional microtomography

    Rodrigues, Mérolyn Camila Naves de Lima; Trzaskos, Barbara; Lopes, Angela Pacheco


    This study presents a qualitative and quantitative analysis of porosity in deformation bands by applying X-ray micro-computed tomography in conjunction with microstructural analysis. Samples of compactional cataclastic bands and shear compactional bands identified in Early Cretaceous aeolian sandstones of the Paraná Basin were analyzed. The application of X-ray micro-computed tomography expanded the view of features in the porous framework of each type of deformation band studied and provided information that are not clear or was not observable with optical microscopy. The compactional cataclastic bands and shear compactional bands differ in geometry, thickness, microstructures and, mainly, in the distribution, shape and orientation of the remaining pores. Porosity analysis was also performed by comparing values of porosity (total, open and closed pores) of the parental rock and the deformation band in each sample. Results of these analyses show a reduction of total porosity and open pores and therefore an increase in the amount of closed pores in all types of deformation bands in relation to parental rock. In addition, it is observed that changes in porosity characteristics are related to the effect of different deformation mechanisms that operated in each type of deformation band.

  20. Pore structure characteristics of the relative water-resisting layer on the top of the Ordovician in Longgu Coal Mine

    Rong Huren; Bai Haibo⇑


    In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 ? 10?3-2.782762 ? 10?3, 4.1092 ? 10?3-7.3387 ? 10?3 and 2.0891 ? 10?3-3.2705 ? 10?3 lm2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951%and 0.9829-1.8655%, respectively. The results indicate that:(1) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 lm;(2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurr