Two-phase relative permeability models in reservoir engineering calculations
Siddiqui, S.; Hicks, P.J.; Ertekin, T.
1999-01-15
A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)
Jinxun Wang; Mingzhe Dong; Jun Yao
2012-01-01
Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model.Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented.Model parameters affecting the trend of relative permeability curves are discussed.Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples.By adjusting model parameters to match the history of oil production and pressure drop,the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples.
Comparative assessment of three-phase oil relative permeability models
Ranaee, Ehsan; Riva, Monica; Porta, Giovanni M.; Guadagnini, Alberto
2016-07-01
We assess the ability of 11 models to reproduce three-phase oil relative permeability (kro) laboratory data obtained in a water-wet sandstone sample. We do so by considering model performance when (i) solely two-phase data are employed to render predictions of kro and (ii) two and three-phase data are jointly used for model calibration. In the latter case, a Maximum Likelihood (ML) approach is used to estimate model parameters. The tested models are selected among (i) classical models routinely employed in practical applications and implemented in commercial reservoir software and (ii) relatively recent models which are considered to allow overcoming some drawbacks of the classical formulations. Among others, the latter set of models includes the formulation recently proposed by Ranaee et al., which has been shown to embed the critical effects of hysteresis, including the reproduction of oil remobilization induced by gas injection in water-wet media. We employ formal model discrimination criteria to rank models according to their skill to reproduce the observed data and use ML Bayesian model averaging to provide model-averaged estimates (and associated uncertainty bounds) of kro by taking advantage of the diverse interpretive abilities of all models analyzed. The occurrence of elliptic regions is also analyzed for selected models in the framework of the classical fractional flow theory of displacement. Our study confirms that model outcomes based on channel flow theory and classical saturation-weighted interpolation models do not generally yield accurate reproduction of kro data, especially in the regime associated with low oil saturations, where water alternating gas injection (WAG) techniques are usually employed for enhanced oil recovery. This negative feature is not observed in the model of Ranaee et al. (2015) due to its ability to embed key effects of pore-scale phase distributions, such as hysteresis effects and cycle dependency, for modeling kro observed
More general capillary pressure and relative permeability models from fractal geometry.
Li, Kewen
2010-01-15
More general capillary pressure and relative permeability models were derived theoretically from fractal modeling of a porous medium. It was found that the new capillary pressure model could be reduced to the frequently-used Brooks-Corey capillary pressure model and the Li-Horne imbibition model when the fractal dimension of a porous medium takes specific values. This also demonstrates that the Brooks-Corey model and the Li-Horne model have a further confirmed theoretical basis. Capillary pressure data measured using mercury intrusion techinque were used to verify the model. The results demonstrated that the new capillary pressure model could represent the capillary pressure curves in those rocks with fracures or with great heterogeneity while the existing models cannot. The new relative permeability models can be reduced to the Brooks-Corey relative permeability model in a specific case. It has been proved theoretically that the relative permeability of each phase in a smooth fracture is only a linear function of its own saturation. Relative permeability data were calculated using the new models and the model results were compared with experimental data measured using a steady-state technique. The comparison demonstrated that the relative permeability models and experimental results were consistent with each other.
Relative permeability through fractures
Diomampo, Gracel, P.
2001-08-01
The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.
Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh
2016-07-01
Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.
Modelling Structured Societies: a Multi-relational Approach to Context Permeability
Nunes, Davide
2015-01-01
The structure of social relations is fundamental for the construction of plausible simulation scenarios. It shapes the way actors interact and create their identity within overlapping social contexts. Each actor interacts in multiple contexts within different types of social relations that constitute their social space. In this article, we present an approach to model structured agent societies with multiple coexisting social networks. We study the notion of context permeability, using a game in which agents try to achieve global consensus. We design and analyse two different models of permeability. In the first model, agents interact concurrently in multiple social networks. In the second, we introduce a context switching mechanism which adds a dynamic temporal component to agent interaction in the model. Agents switch between the different networks spending more or less time in each one. We compare these models and analyse the influence of different social networks regarding the speed of convergence to cons...
J A Vargas-Guzmán
2008-01-01
An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equationswithin those transformations need corrections via residual cumulants. A generalization of this result isthat transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.
Jia, W.; Pan, F.; McPherson, B. J. O. L.
2015-12-01
Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.
Accurate determination of characteristic relative permeability curves
Krause, Michael H.; Benson, Sally M.
2015-09-01
A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.
Abdallah, Wael
2011-05-18
Interfacial tension (IFT) measurements of Dodecane/brine systems at different concentrations and Dodecane/deionized water subject to different Dodecane purification cycles were taken over extended durations at room temperature and pressure to investigate the impact of aging. When a fresh droplet was formed, a sharp drop in IFT was observed assumed to be a result of intrinsic impurity adsorption at the interface. The subsequent measurements exhibited a prolonged equilibration period consistent with diffusion from the bulk phase to the interface. Our results indicate that minute amounts of impurities present in experimental chemical fluids "used as received" have a drastic impact on the properties of the interface. Initial and equilibrium IFT are shown to be dramatically different, therefore it is important to be cautious of utilizing IFT values in numerical models. The study demonstrates the impact these variations in IFT have on relative permeability relationships by adopting a simple pore network model simulation.
Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon
2016-08-01
The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.
Lipsey, Lindsay; Pluymaekers, Maarten; van Wees, Jan-Diederik; Limberger, Jon; Cloetingh, Sierd
2016-04-01
The presence of convective fluid flow in permeable layers can create zones of anomalously high temperature which can be exploited for geothermal energy. Temperature measurements from the Luttelgeest-01 (LTG-01) well in the northern onshore region of the Netherlands indicate variations in the thermal regime that could be indicative of convection. This thermal anomaly coincides with a 600 m interval (4600 - 5200 m) of Dinantian carbonates showing signs of increased fracture permeability of ~60 mD. For the purpose of geothermal energy exploration, it is of interest to know whether or not convection can occur in a particular reservoir, where convection cells are likely to develop and the temperature enhancements in convective upwellings. Three-dimensional numerical simulations provide insight on possible flow and thermal structures within the fractured carbonate interval. The development and number of convection cells is very much a time dependent process. First longitudinal rolls fill the domain, increasing in width until ultimately transforming into a more complex polyhedral structure. The model relaxes into a steady-state five-cell convection pattern. Furthermore, geometric aspects of the carbonate platform itself likely control the shape and location of upwellings. Convective upwellings can create significant temperature enhancements relative to the conductive profile and in agreement with the observations in the Luttelgeest carbonate platform. This enhancement is critically dependent on the aquifer thickness and geothermal gradient. Given a gradient of 39 °C/km and an aquifer thickness of 600 m, a temperature of 203 °C can be obtained at a depth of 4600 m directly above upwelling zones. Contrarily, downwelling zones result in a temperature of 185 °C at the same depth. This demonstrates the strong spatial variability of thermal anomalies in convective fractures aquifers at large depth, which can have a strong effect on exploration opportunity and risk of
Al-Hinai, Suleiman; Fisher, Quentin J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Al-Busafi, Bader [Petroleum Development of Oman, MAF, Sultanate of Oman, Muscat (Oman); Guise, Phillip; Grattoni, Carlos A. [Rock Deformation Research Limited, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)
2008-06-15
It is becoming increasingly common practice to model the impact of faults on fluid flow within petroleum reservoirs by applying transmissibility multipliers, calculated from the single-phase permeability of fault rocks, to the grid-blocks adjacent to faults in production simulations. The multi-phase flow properties (e.g. relative permeability and capillary pressure) of fault rocks are not considered because special core analysis has never previously been conducted on fault rock samples. Here, we partially fill this knowledge gap by presenting data from the first experiments that have measured the gas relative permeability (k{sub rg}) of cataclastic fault rocks. The cataclastic faults were collected from an outcrop of Permo-Triassic sandstone in the Moray Firth, Scotland; the fault rocks are similar to those found within Rotliegend gas reservoirs in the UK southern North Sea. The relative permeability measurements were made using a gas pulse-decay technique on samples whose water saturation was varied using vapour chambers. The measurements indicate that if the same fault rocks were present in gas reservoirs from the southern Permian Basin they would have k{sub rg} values of <0.02. Failure to take into account relative permeability effects could therefore lead to an overestimation of the transmissibility of faults within gas reservoirs by several orders of magnitude. Incorporation of these new results into a simplified production simulation model can explain the pressure evolution from a compartmentalised Rotliegend gas reservoir from the southern North Sea, offshore Netherlands, which could not easily be explained using only single-phase permeability data from fault rocks. (author)
Steam-water relative permeability
Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)
1997-12-31
A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.
Oostrom, Mart (BATTELLE (PACIFIC NW LAB)); Lenhard, Robert J.(INEEL); Delshad, M; Robertson, S D.(Spirit 76, Midland, TX); M.Th. van Genuchten, F.J. Leij and L. Wu
1998-01-01
A critical component of all multiphase flow codes is how relationships among relative permeabilities, fluid saturations, and capillary pressures (i.e., k-S-P relations) are described. Models that are able to mimic fundamental fluid-flow processes to predict k S-P relations are preferable than extrapolating measured data points to estimate k-S-P relations because they may have greater utility and may be more consistent. Furthermore, different saturation-path histories may be simulated with a computer code than those measured in the k-S-P experiments. Because the geometry of the pore spaces in natural porous media is very complex and will likely never be precisely known to predict k-S-P behavior from fundamental relationships, k-S-P models are largely empirical. In this paper, an empirical model based on theoretical considerations is developed to predict hysteretic k-S-P relations in porous media in which the smaller pores are water-wet and the larger pores are oil-wet, i.e., mixed-w et. At high oil-water capillary pressures, the water saturation is modeled to approach the residual water saturation. At low oil-water capillary pressures (i.e., negative), the oil saturation is modeled to approach the residual oil saturation. Relative permeabilities are predicted using parameters that describe main-drainage S-P relations and accounting for the distribution of water and oil in the pore spaces of mixed-wet porous media. The proposed algebraic expressions are easy to implement in multiphase flow codes and can be used to predict k-S-P relations for any saturation-path history. In addition, the model is relatively easy to calibrate to porous media.
Hussain, Mozammil; Natarajan, Raghu N; Chaudhary, Gulafsha; An, Howard S; Andersson, Gunnar B J
2011-05-01
Disc swelling pressure (P(swell)) facilitated by fixed charged density (FCD) of proteoglycans (P(fcd)) and strain-dependent permeability (P(strain)) are of critical significance in the physiological functioning of discs. FCD of proteoglycans prevents any excessive matrix deformation by tissue stiffening, whereas strain-dependent permeability limits the rate of stress transfer from fluid to solid skeleton. To date, studies involving the modeling of FCD of proteoglycans and strain-dependent permeability have not been reported for the cervical discs. The current study objective is to compare the relative contributions of strain-dependent permeability and FCD of proteoglycans in predicting cervical disc biomechanics. Three-dimensional finite element models of a C5-C6 segment with three different disc compositions were analyzed: an SPFP model (strain-dependent permeability and FCD of proteoglycans), an SP model (strain-dependent permeability alone), and an FP model (FCD of proteoglycans alone). The outcomes of the current study suggest that the relative contributions of strain-dependent permeability and FCD of proteoglycans were almost comparable in predicting the physiological behavior of the cervical discs under moment loads. However, under compression, strain-dependent permeability better predicted the in vivo disc response than that of the FCD of proteoglycans. Unlike the FP model (least stiff) in compression, motion behavior of the three models did not vary much from each other and agreed well within the standard deviations of the corresponding in vivo published data. Flexion was recorded with maximum P(fcd) and P(strain), whereas minimum values were found in extension. The study data enhance the understanding of the roles played by the FCD of proteoglycans and strain-dependent permeability and porosity in determining disc tissue swelling behavior. Degenerative changes involving strain-dependent permeability and/or loss of FCD of proteoglycans can further be
Eydinov, D. [Scandpower, Kjeller (Norway); Gao, G. [Chevron, San Ramon, CA (United States); Li, G.; Reynolds, A.C. [Tulsa Univ., Tulsa, OK (United States)
2007-07-01
Relative permeability curves are typically obtained through core flood tests. This paper provided details of a procedure that used automatic history matching of 3-phase flow production data to estimate permeability curves with grid block porosities. The method used a B-spline approximation to represent sets of permeability curves with a log transformation of parameters to ensure that curves were monotonic or convex. It was assumed that the model vector was a multivariate Gaussian distribution. The history matching problem was considered in a Bayesian framework. The method was then compared with a power law model using the same data from a synthetic reservoir model. Results showed that the B-spline model obtained more accurate permeability curves than the power law model. The randomized maximum likelihood (RML) method was used to quantify uncertainties in the model parameters. 19 refs., 17 figs.
A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs☆
Yulei Ge; Shurong Li; Kexin Qu
2014-01-01
In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability res-ervoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The param-eters of the new empirical equation are optimized with the hybrid RNA genetic algorithm (HRGA) based on the ex-perimental data. The data is obtained from a typical low permeability reservoir wel 54 core 27-1 in GuDong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified.
Relative permeability in dual porosity porous media
Deghmoum, A. [SONATRACH CRD, Boumerdes (Algeria); Tiab, D. [Oklahoma Univ., Norman, OK (United States); Mazouzi, A. [SONATRACH PED (Algeria)
2000-06-01
One of the important factors in the field of reservoir simulation of dual-porosity systems is reliable relative permeability data. Laboratory limitations hinder measurements. The real behaviour of naturally fractures reservoirs is not reflected in the reservoir core samples, which as a rule originate from zones without induced or natural fractures. Therefore, it is commonly assumed that the relative permeability of a naturally fractured system is a straight line, which can cause errors. The authors undertook to conduct special core analyses on Berea outcrop core samples, to simulate fracture opening through the cutting of the samples to get different fracture apertures, to study the effects of dual porosity on the shape of capillary pressure curves, and to evaluate absolute and relative permeability, as they are affected by fracture opening. The correlation obtained between absolute permeability and fracture aperture was good, and capillary pressure curves permitted the observation of the effect of dual porosity. High residual oil saturation was present in the matrix, since the fractures became the easiest route for water flow, and this situation prevented the use of unsteady-state tests to measure relative permeability on the samples. Instead, the centrifuge technique was successfully used. A naturally fractured reservoir (NFR), the Tin Fouye Tabankort (TFT) reservoir in Algeria was selected to extend the findings. The site was principally selected due to the availability of naturally fractured cores and published data. Core observations, well test analysis and borehole imager tools were all TFT natural fracture indicators presented in the paper. Representative data of relative permeability was obtained by conducting a displacement test on a full diameter core to solve the laboratory limitations. The correlation between permeability and fracture opening was used to estimate the aperture of natural fractures in TFT reservoir. 17 refs., 2 tabs., 24 figs.
Relations Between Permeability and Structure of Wood
Bao Fucheng; Zhao Youke; Lü Jianxiong
2003-01-01
The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.
Relation between relative permeability and hydrate saturation in Shenhu area, South China Sea
Li Chuan-Hui; Zhao Qian; Xu Hong-Jun; Feng Kai; Liu Xue-Wei
2014-01-01
Nuclear magnetic resonance measurements in hydrate-bearing sandstone samples from the Shenhu area, South China Sea were used to study the effect of gas hydrates on the sandstone permeability. The hydrate-bearing samples contain pore-fi lling hydrates. The data show that the pore-fi lling hydrates greatly affect the formation permeability while depending on many factors that also bear on permeability; furthermore, with increasing hydrate saturation, the formation permeability decreases. We used the Masuda model and an exponent N = 7.9718 to formulate the empirical equation that describes the relation between relative permeability and hydrate saturation for the Shenhu area samples.
Measurement of relative permeability of fuel cell diffusion media
Hussaini, I.S.
2010-06-01
Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.
Sanford, Ward E.
2016-11-01
The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.
Sanford, Ward E.
2017-03-01
The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.
Modelling of water permeability in cementitious materials
Guang, Ye; Lura, Pietro; van Breugel, K.
2006-01-01
This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model......, the predicted permeability of hydrating cement pastes is extremely sensitive to the particle size distribution of the cement and especially to the minimum size of the cement particles. Both in simulations and experiments, the permeability of cement pastes is mainly determined by the critical diameter...
Kong, X.
2012-11-03
The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.
Dynamic up-scaling of relative permeability in chalk
Frykman, P.; Lindgaard, H.F.
1997-12-31
This paper describes how fine-scale geo-statistic reservoir models can be utilised for the up-scaling of two-phase flow properties, including both relative permeability and capillary pressure function. The procedure is applied to a North Sea chalk carbonate reservoir example, which is a high-porosity/low-permeability reservoir type. The study focuses on waterflooding as the main recovery scheme and for the given flow regime in the reservoir. The main purpose of the paper is to demonstrate the use of dynamic multi-step up-scaling methods in the preparation of detailed geological information for full field reservoir simulation studies. (au) EFP-96. 39 refs.
Compositional effects on relative permeability and hysteresis for enhanced oil recovery
Khorsandi, S.; Li, L.; Johns, R. T.
2016-12-01
There are enormous efforts to develop relative permeability models that interpret pore scale flow mechanism into continuum scale observations. Relative permeabilities are complex functions of phase saturations, fluid compositions, pore structure, pore size distribution, interfacial properties, and distribution of phases. The current compositional reservoir simulators, however, are limited to use tuned correlations for relative permeabilities calculations. These correlations cannot quantify the more complex hysteresis, film drainage, capillary trapping or wettability alteration. Such processes are captured by adjusting the coefficients of relative permeability models based on capillary number, maximum non-wetting saturation, or phase compositions. Since the relative permeability models are not physical-based, the adjustments can result in inconsistency. The labeling of phases is another challenge for compositional floods, where phase properties can vary significantly such that phase inversion can happen. Therefore, common phase labeling techniques based on density or component tracking can fail. We proposed a novel compositional-dependent relative permeability model which calculates the phase flow rates based on pore structure, phase compositions, and phase distributions. This model can quantify many processes such as hysteresis, capillary trapping and film drainage, and does not require phase labeling. The effects of dissolution, vaporization and wettability alteration on relative permeabilities are also captured by the developed physical relative permeability model.
Simulating gas-water relative permeabilities for nanoscale porous media with interfacial effects
Wang Jiulong
2017-08-01
Full Text Available This paper presents a theoretical method to simulate gas-water relative permeability for nanoscale porous media utilizing fractal theory. The comparison between the calculation results and experimental data was performed to validate the present model. The result shows that the gas-water relative permeability would be underestimated significantly without interfacial effects. The thinner the liquid film thickness, the greater the liquid-phase relative permeability. In addition, both liquid surface diffusion and gas diffusion coefficient can promote gas-liquid two-phase flow. Increase of liquid surface diffusion prefer to increase liquid-phase permeability obviously as similar as increase of gas diffusion coefficient to increase gas-phase permeability. Moreover, the pore structure will become complicated with the increase of fractal dimension, which would reduce the gas-water relative permeability. This study has provided new insights for development of gas reservoirs with nanoscale pores such as shale.
An evaluation of mathematical models for predicting skin permeability.
Lian, Guoping; Chen, Longjian; Han, Lujia
2008-01-01
A number of mathematical models have been proposed for predicting skin permeability, mostly empirical and very few are deterministic. Early empirical models use simple lipophilicity parameters. The recent trend is to use more complicated molecular structure descriptors. There has been much debate on which models best predict skin permeability. This article evaluates various mathematical models using a comprehensive experimental dataset of skin permeability for 124 chemical compounds compiled from various sources. Of the seven models compared, the deterministic model of Mitragotri gives the best prediction. The simple quantitative structure permeability relationships (QSPR) model of Potts and Guy gives the second best prediction. The two models have many features in common. Both assume the lipid matrix as the pathway of transdermal permeation. Both use octanol-water partition coefficient and molecular size. Even the mathematical formulae are similar. All other empirical QSPR models that use more complicated molecular structure descriptors fail to provide satisfactory prediction. The molecular structure descriptors in the more complicated QSPR models are empirically related to skin permeation. The mechanism on how these descriptors affect transdermal permeation is not clear. Mathematically it is an ill-defined approach to use many colinearly related parameters rather than fewer independent parameters in multi-linear regression.
Compositional and Relative Permeability Hysteresis Effects on Near-Miscible WAG
Christensen, Jes Reimer; Stenby, Erling Halfdan; Skauge, Arne
1998-01-01
injection gases. Result obtained shows the WAG injection gives improved recovery compared to water injection, due to better sweep and lower residual oil saturation. Simulations with and without relative permeability hysteresis (two-phase model) were compared. The effect of trapped gas on oil recovery does...... not seem significant with the compositional model. The WAG process has been optimized with respect to slug size and the water-gas ratio. A black-oil-model was generated tuned to fit the results from the compositional simulations. A WAG three-phase relative permeability hysteresis model using cycle...... dependent relative permeabilities for both wetting and non-wetting phases, have been compared to the standard two-phase Killough and Carlson hysteresis models. The results show significant lower gas ratio and a higher oil recovery for the WAG injection when using cycle dependent relative permeabilities...
Committee neural network model for rock permeability prediction
Bagheripour, Parisa
2014-05-01
Quantitative formulation between conventional well log data and rock permeability, undoubtedly the most critical parameter of hydrocarbon reservoir, could be a potent tool for solving problems associated with almost all tasks involved in petroleum engineering. The present study proposes a novel approach in charge of the quest for high-accuracy method of permeability prediction. At the first stage, overlapping of conventional well log data (inputs) was eliminated by means of principal component analysis (PCA). Subsequently, rock permeability was predicted from extracted PCs using multi-layer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN). Eventually, a committee neural network (CNN) was constructed by virtue of genetic algorithm (GA) to enhance the precision of ultimate permeability prediction. The values of rock permeability, derived from the MPL, RBF, and GRNN models, were used as inputs of CNN. The proposed CNN combines results of different ANNs to reap beneficial advantages of all models and consequently producing more accurate estimations. The GA, embedded in the structure of the CNN assigns a weight factor to each ANN which shows relative involvement of each ANN in overall prediction of rock permeability from PCs of conventional well logs. The proposed methodology was applied in Kangan and Dalan Formations, which are the major carbonate reservoir rocks of South Pars Gas Field-Iran. A group of 350 data points was used to establish the CNN model, and a group of 245 data points was employed to assess the reliability of constructed CNN model. Results showed that the CNN method performed better than individual intelligent systems performing alone.
Modeling of microvascular permeability changes after electroporation.
Selma Corovic
Full Text Available Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach with in vivo measurements (by intravital fluorescence microscopy. Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s] for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation.
Modeling of microvascular permeability changes after electroporation.
Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz
2015-01-01
Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation.
Modeling the pharmacodynamics of passive membrane permeability
Swift, Robert V.; Amaro, Rommie E.
2011-11-01
Small molecule permeability through cellular membranes is critical to a better understanding of pharmacodynamics and the drug discovery endeavor. Such permeability may be estimated as a function of the free energy change of barrier crossing by invoking the barrier domain model, which posits that permeation is limited by passage through a single "barrier domain" and assumes diffusivity differences among compounds of similar structure are negligible. Inspired by the work of Rezai and co-workers (JACS 128:14073-14080, 2006), we estimate this free energy change as the difference in implicit solvation free energies in chloroform and water, but extend their model to include solute conformational affects. Using a set of eleven structurally diverse FDA approved compounds and a set of thirteen congeneric molecules, we show that the solvation free energies are dominated by the global minima, which allows solute conformational distributions to be effectively neglected. For the set of tested compounds, the best correlation with experiment is obtained when the implicit chloroform global minimum is used to evaluate the solvation free energy difference.
An asymptotic model of seismic reflection from a permeable layer
Silin, D.; Goloshubin, G.
2009-10-15
Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.
Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)
1997-08-01
The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities
Lattice Boltzmann modelling of intrinsic permeability
Li, Jun; Wu, Lei; Zhang, Yonghao
2016-01-01
Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In this technical note, we elaborate this issue in LBM modelling of porous media flows, which is particularly important for gas flows in ultra-tight media.
An integrated approach to permeability modeling using micro-models
Hosseini, A.H.; Leuangthong, O.; Deutsch, C.V. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)
2008-10-15
An important factor in predicting the performance of steam assisted gravity drainage (SAGD) well pairs is the spatial distribution of permeability. Complications that make the inference of a reliable porosity-permeability relationship impossible include the presence of short-scale variability in sand/shale sequences; preferential sampling of core data; and uncertainty in upscaling parameters. Micro-modelling is a simple and effective method for overcoming these complications. This paper proposed a micro-modeling approach to account for sampling bias, small laminated features with high permeability contrast, and uncertainty in upscaling parameters. The paper described the steps and challenges of micro-modeling and discussed the construction of binary mixture geo-blocks; flow simulation and upscaling; extended power law formalism (EPLF); and the application of micro-modeling and EPLF. An extended power-law formalism to account for changes in clean sand permeability as a function of macroscopic shale content was also proposed and tested against flow simulation results. There was close agreement between the model and simulation results. The proposed methodology was also applied to build the porosity-permeability relationship for laminated and brecciated facies of McMurray oil sands. Experimental data was in good agreement with the experimental data. 8 refs., 17 figs.
唐勇; 杨小莹; 宋道万; 张世明; 董亚娟; 何志雄
2016-01-01
根据基本流体运动方程，结合达西定律和黏度牛顿定律，利用油藏岩石渗透率合成法则，建立了平行水平裂缝系统油水相对渗透率的计算新模型。结果表明：每条裂缝含水饱和度相等时，平行水平裂缝系统相对渗透率与单条水平裂缝相同，并且与裂缝高度无关；水的相对渗透率随着水油黏度比增加而逐渐增加；油的相对渗透率随着水油黏度比增加而逐渐减少。%Considering the basic equation of fluid motion, together with the Darcy′s law and the Newton′s law of vis-cosity, this paper aims to present the new calculation model of oil-water relative permeability of the parallel horizon-tal fracture system by using the theory of permeability synthesis method of reservoirs.The results show that when water saturation of each fracture is equal, there is equivalence relationship of oil-water relative permeability between the parallel horizontal fracture system and the single one′s, and it also can be determined that the result has no relationship with the height of fracture;with the increasing of water-oil viscosity ratio, the relative permeability of water increased and the relative permeability of oil decreased.
Fractal Derivative Model for Air Permeability in Hierarchic Porous Media
Jie Fan
2012-01-01
Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.
Reynolds, A.C.; Li, R.; Oliver, D.S. [Tulsa Univ., Tulsa, OK (United States)
2001-06-01
A study was conducted in petroleum engineering to determine the feasibility of estimating absolute permeability fields and parameters that define relative permeability functions by automatic history matching of production data obtained under multiphase flow conditions. A prior model is used to assume irreducible water saturation, critical gas saturation and residual oil saturations. The three-phase oil relative permeability curve was calculated from the two sets of two-phase curves using Stone's Model II. The study considered data regarding pressure, gas-oil-ratio or water-oil ratio. It was concluded that when the parameters that characterize the relative permeability functions of a reservoir are known, then it is possible to estimate the relative permeability curves and log-permeability fields by history matching production data derived under three-phase flow conditions. 30 refs., 5 tabs., 14 figs.
Jason, L
2004-10-01
The relation between damage and permeability is of great importance to evaluate the consequences of a mechanical loading on the hydraulic integrity of sensitive concrete structures like containment buildings of nuclear power plants. An elastic plastic damage constitutive law for the mechanical behaviour is first developed. The model is validated on elementary and structural applications with a special focus on the efficiency of the numerical tools (tangent matrices). A relation between water saturation (drying), damage and permeability is then proposed, based on theoretical and experimental observations. Finally, a Representative Structural Volume of a containment vessel is studied to highlight the influence of hygro - mechanical loading on the hydraulic behaviour (distribution of gas pressure). (author)
Sarma, H.K.; Maini, B.B.; Purves, R.W. (Petroleum Recovery Inst., Calgary, AB (Canada)); Jha, K.N. (Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada))
1994-01-01
Enhanced oil recovery operations often involve immiscible displacement of the more viscous oil by a less viscous fluid. This often leads to an unstable and inefficient displacement process because of fingering of the more mobile displacement fluid through the more viscous oil. Conventional practice to predict displacement stability has been to use a Buckley-Leverett type analysis. A more direct approach to acccount for the presence of viscous instability is to use pseudo-relative permeabilities which are modified true relative permeability curves. A study was carried out to determine whether the conventional Buckley-Leverett model with modified relative permeability curves can be used to describe the recovery and pressure drop performance of unstable displacements. Several unstable immiscible displacement experiments were carried out in a rectangular model, examining the effects of different parameters on oil recovery and generating pseudo-relative permeability curves for each set of conditions. It was found that the Buckley-Leverett frontal advance theory in conjunction with pseudo-relative permeability curves can be used to describe the macroscopic behaviour of immiscible displacements involving viscous fingering provided one is aware of the degree of viscous instability. Effect of such factors as displacement rate and viscosity of the oil on the relative permeability curve for water was more pronounced than on the relative permeability for oil. The wettability number proposed by Peters and Flock is not constant for a particular rock-fluid system but may be a function of the flood rate as well. 12 refs., 22 figs., 4 tabs.
Modelling of Longwall Mining-Induced Strata Permeability Change
Adhikary, D. P.; Guo, H.
2015-01-01
The field measurement of permeability within the strata affected by mining is a challenging and expensive task, thus such tests may not be carried out in large numbers to cover all the overburden strata and coal seams being affected by mining. However, numerical modelling in conjunction with a limited number of targeted field measurements can be used efficiently in assessing the impact of mining on a regional scale. This paper presents the results of underground packer testing undertaken at a mine site in New South Wales in Australia and numerical simulations conducted to assess the mining-induced strata permeability change. The underground packer test results indicated that the drivage of main headings (roadways) had induced a significant change in permeability into the solid coal barrier. Permeability increased by more than 50 times at a distance of 11.2-11.5 m from the roadway rib into the solid coal barrier. The tests conducted in the roof strata above the longwall goaf indicated more than 1,000-fold increase in permeability. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at the 8.2-8.5 m test section in the solid coal barrier showed a decline in permeability value as compared to that at the 11.2-11.5 m section contrary to the expectations. It is envisaged that a number of factors during the tests might have had affected the measured values of permeability: (a) swelling and smearing of the borehole, possibly lowering the permeability values; (b) packer bypass by larger fractures; (c) test section lying in small but intact (without fractures) rock segment, possibly resulting in lower permeability values; and (d) test section lying right at the extensive fractures, possibly measuring higher permeability values. Once the anomalous measurement data were discarded, the numerical model results could be seen to match the remaining field permeability measurement data
Numerical-Simulation-Based Determination of Relative Permeability in Laminated Rocks
Sedaghat, Mohammad H.; Gerke, Kirill; Azizmohammadi, Siroos; Matthai, Stephan
2016-04-01
Reservoir simulation using the extended Darcy's law approach requires relative permeability curves derived either via analytic saturation functions (Corey models etc.) or from special core analysis (SCAL). Since such experimental exploration of the space of influential parameters (pore geometry and wettability) is costly and time consuming, establishing ways to extract ensemble relative permeability from numerical simulation, kri, over the entire range of water saturation is highly desirable. Recent work has highlighted that the shape of relative permeability strongly depends on the balance between viscous, gravitational, and capillary forces. Our work focuses on finding accurate ways to compute ensemble kri(sw) for layered rocks when both capillary and viscous forces are strong. Two methods are proposed: an unsteady state saturation variation (USSV) method and a steady state saturation variation (SSSV) technique. To evaluate these approaches, SCAL data was extracted numerically from a real mm-scale layered sample. Results obtained with a Finite Element-Centered Finite Volume (FECFM) simulator, suggest that either of the approaches work significantly better than conventional unsteady state and JBN (Johnson-Bossler-Naumann) methods. Also, investigating saturation and velocity profiles within the sample indicates that bed-by-bed variations in wettability influence the flow pattern along/across interfaces making equipermeable layers behave like zones with different flow velocity. This dramatically challenges conventional relative permeability models and is addressed in terms of a new variable called relative permeability index.
Water Retention Curve and Relative Permeability for Gas Production from Hydrate-Bearing Sediments
Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J.
2014-12-01
Water retention curve (soil water characteristic curve SWCC) and relative permeability equations are important to determine gas and water production for gas hydrate development. However, experimental studies to determine fitting parameters of those equations are not available in the literature. The objective of this research is to obtain reliable parameters for capillary pressure functions and relative permeability equations applicable to hydrate dissociation and gas production. In order to achieve this goal, (1) micro X-ray Computer Tomography (CT) is used to scan the specimen under 10MPa effective stress, (2) a pore network model is extracted from the CT image, (3) hydrate dissociation and gas expansion are simulated in the pore network model, (4) the parameters for the van Genuchten-type soil water characteristic curve and relative permeability equation during gas expansion are suggested. The research outcome will enhance the ability of numerical simulators to predict gas and water production rate.
Image-based relative permeability upscaling from the pore scale
Norouzi Apourvari, Saeid; Arns, Christoph H.
2016-09-01
High resolution images acquired from X-ray μ-CT are able to map the internal structure of porous media on which multiphase flow properties can be computed. While the resolution of a few micrometers may be sufficient for capturing the pore space of many sandstones, most carbonates exhibit a large amount of microporosity; pores which are below the image resolution and are not resolved at specific resolution. Neglecting the effect of micropores on fluid flow and transport properties of these rocks can cause erroneous results in particular at partial saturations. Current image-based pore scale models typically only consider macropores for simulating fluid flow. In this paper, we quantify the effect of microporosity on the effective permeability of the wetting phase for heterogeneous model structures with varying amount of micro-to-macro porosity. A multi-scale numerical approach is proposed to couple an average effect of micropores with an explicit representation of macropores. The Brinkman equation is solved using a lattice Boltzmann formulation to facilitate the coupling of Darcy and Stokes equations in micropores and macropores, respectively. The results show good agreement between the fine scale solution and the results of the upscaled models in which microporous regions are homogenised. The paper analyses in particular the choice of the momentum sink parameter at low wetting phase saturations. It is shown that this parameter can be found using either a flux-based calculation of permeability of microporous regions or chosen purely on the basis of the effective permeability of these regions.
Comparison of Mass Transfer Models for Determination of the Intestinal Permeability
P Zakeri-Milani
2008-09-01
Full Text Available Background and the purpose of the study: In determination of the permeability of the intestinal wall by external perfusion techniques, several models have been proposed. In the present study three models were used for experimental results that differ in their convection and diffusion assumptions. Material and Methods: Permeability coefficients for 13 compounds (metoprolol, propranolol, naproxen, ketoprofen, furosemide, hydrochlorothiazide, cimetidine, ranitidine, atenolol, piroxicam, antipyrine, ibuprofen and carbamazepine with known human intestinal permeability values were determined in anaesthetized rats by different mass transfer models and plotted versus the observed human intestinal permeabilities. Results: The calculated dimensionless wall permeability values were in the range of 0.37 - 4.85, 0.38-6.54 and 0.41-16.59 for complete radial mixing, mixing tank and laminar flow models respectively. The results indicated that all of the models work relatively well for our data despite fundamentally different assumptions. The wall permeabilities were in the order laminar flow > mixing tank > complete radial mixing. Conclusion: Although laminar flow model provides the most direct measure of the intrinsic wall permeability, it has limitations for highly permeable drugs such as ibuprofen. The normal physiological hydrodynamics is more complex and more investigation is required to find out the real hydrodynamics.
An apparent permeability model of shale gas under formation conditions
Chen, Peng; Jiang, Shan; Chen, Yan; Wang, Shanshan
2017-08-01
There are various types of pores in shale, mainly consisting of nanopores and micropores, causing flow regime variations and apparent permeability changes during the development of the reservoir. In this paper, a Knudsen number calculation model is proposed with the actual conditions of gas in a shale reservoir. Then, based on the distribution of pores in shale, an apparent permeability model is established using hydrodynamics, and a calculation method is put forward for the actual permeability of a reservoir. Finally, the Knudsen number model and the permeability correction coefficient model are used to analyze the flow regime and permeability correction coefficients in pores during the development of the shale gas reservoir. Results show that with a decreasing of pressure, the Knudsen number increases, the flow regime changes from continuous flow and slip flow to transition flow or free molecular flow. When the Knudsen number is Kn > 0.1, and with a further increasing of Kn, gas molecule slippage greatly intensifies and the permeability correction coefficient K app/Kd significantly increases. While the Knudsen number increases, the permeability correction coefficient significantly increases in the micropores and the small pores, but this does not appear in the macropores and the mesopores. These results can be used to guide flow regime analysis and production forecasting in shale gas reservoirs.
Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials
Hussaini, Irfan
2009-01-01
Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.
A study of relative permeability parameters on rock cores using a two-phase flow test
Chung-Hui Chiao
2017-01-01
Full Text Available To ensure sequestration safety, confirming the injectivity of the reservoir rock formation is of critical importance, requiring studies of the rock permeability to uncover the fluid migration scenarios within the porous reservoir rock. Two-phase (super-critical CO2-brine flow behavior following the post CO2 injection is believed to be a dominating factor; its flooding behavior within the porous rock media needs to be further clarified prior to confirming the feasibility of domestic CO2 geo-sequestration. This study aims to determine the relative permeability of rock cores obtained from field outcropping. A test facility was established to determine the relative permeability during drainage and imbibition processes using a core-flooding test characterized by displacement method. The test facility was assembled locally and is regarded as a pioneering attempt. By relevant data interpretation, the parameters of relative permeability for predicting the movement of super-critical CO2 after injection can be modeled. More reliable parameters can be obtained using history matching processes wherein time-elapsed data calibration is used in conjunction with a computer code, TOUGH2. The test results were iteratively calibrated using numerical simulation by conducting a history matching process. The K-S curves derived from best-fit parameters are believed to be the most relevant relative permeability for the reservoir rock. Through this preliminary study, a better understanding of some of the problems and limitations associated with the determination of the rock relative permeability using two-phase flow test is achieved, but more advanced research is required.
Christiansen, R.L.; Kalbus, J.S. [Colorado School of Mines, Golden, CO (United States). Petroleum Engineering Dept.; Howarth, S.M. [Sandia National Labs., Albuquerque, NM (United States)
1997-05-01
This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.
Daigle, H.; Rice, M. A.
2015-12-01
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.
Daigle, Hugh [University of Texas at Austin; Rice, Mary Anna [North Carolina State University; Daigle, Hugh
2015-12-14
Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.
Um, W.; Rod, K. A.; Strickland, C. E.
2016-12-01
Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media
Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids
Keller, Arturo A.; Chen, Mingjie
2003-10-01
Three-phase flow conditions are encountered regularly, for example, during migration of released NAPL through the vadose zone, certain stages of soil vapor extraction, bioslurping, or generation of gases by microbes. To model three-phase flow, a common approach is to construct three-phase relative permeabilities based on a combination of two-phase relative permeabilities. Although this circumvents a lack of experimental data, it can lead to serious underprediction or overprediction of residual NAPL saturation. This can mislead decision makers that need to predict whether a particular spill will reach the water table or predict the speed of a NAPL front or conduct an assessment of the performance of remediation actions. Experimental data to estimate three-phase relative permeabilities is sparse. A study by [2000a] generated significant experimental information. Their analysis focused on the high NAPL saturation region, given their emphasis on oil reservoir engineering. For environmental applications the low saturation region is of more interest. Using this data set, we derived a set of empirical relations that relate NAPL three-phase relative permeability krn to NAPL saturation Sn and spreading coefficient Cs for Sn less than about 0.1, such that krn = ? where A1 = 0.012 exp (-1.3Cs) and A2 = 2.1 - 0.60Cs + 0.036Cs2. At higher Sn, krn ≈ Sn4, independent of Cs. We present a pore-scale conceptual model that provides a phenomenological basis for the use of Cs as a predictor of krn at low Sn. We then present a number of simulated case studies that highlight the effect of these three-phase relative permeabilities on risk assessment or remediation design.
System level permeability modeling of porous hydrogen storage materials.
Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler (Purdue University, West Lafayette, IN)
2010-01-01
A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.
Liyuan Cao
2016-04-01
Full Text Available Wax deposition has always been a problem for the production of waxy crude oil. When the reservoir temperature is below the wax appearance temperature (WAT, wax would precipitate in the oil phase as wax crystals, which could increase the oil viscosity and decrease the permeability of the rock. In this study, a series of core flooding experiments under 5 different temperatures and using two groups of core samples with permeability liein300 md and 1000 md respectively were carried out to investigate the effect of temperature and rock permeability on waxy crude oil-water relative permeability curves under reservoir condition. The results revealed that temperature has a significant influence on relative permeability, especially when the temperature is below the WAT (70℃ in this study. The initial water decreased by 40% and the residual oil saturation increased to about 2.5 times when temperature decreased from 85℃ to 50℃ for experiments of both two groups in this study. Oil recovery decreased as the temperature dropped. There was not much difference between the oil recovery of cores with permeability of 1000 md and that with permeability of 300 md until the temperature dropped to 70℃, and the difference increased to 8% when temperature decreased to 50℃, which implies that reservoir with lower permeability is easier to be damaged by wax deposition only when the temperature drops to below WAT. According to this work, it is suggested that reservoir temperature should be better maintained higher than theWAT when extracting waxy crude oil of this reservoir, or at least above 60℃.
Review of permeability evolution model for fractured porous media
Jianjun Ma
2015-01-01
The ability to capture permeability of fractured porous media plays a significant role in several engi-neering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications, both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances;others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.
Relative water and gas permeability for gas production from hydrate-bearing sediments
Mahabadi, Nariman; Jang, Jaewon
2014-06-01
water and gas permeability equations are important for estimating gas and water production from hydrate-bearing sediments. However, experimental or numerical study to determine fitting parameters of those equations is not available in the literature. In this study, a pore-network model is developed to simulate gas expansion and calculate relative water and gas permeability. Based on the simulation results, fitting parameters for modified Stone equation are suggested for a distributed hydrate system where initial hydrate saturations range from Sh = 0.1 to 0.6. The suggested fitting parameter for relative water permeability is nw ≈ 2.4 regardless of initial hydrate saturation while the suggested fitting parameter for relative gas permeability is increased from ng = 1.8 for Sh = 0.1 to ng = 3.5 for Sh = 0.6. Results are relevant to other systems that experience gas exsolution such as pockmark formation due to sea level change, CO2 gas formation during geological CO2 sequestration, and gas bubble accumulation near the downstream of dams.
Effects of phase transformation of steam-water relative permeabilities
Verma, A.K.
1986-03-01
A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.
Experimental investigation the effect of nanoparticles on the oil-water relative permeability
Amedi, Hamidreza; Ahmadi, Mohammad-Ali
2016-05-01
This paper presents the effects of the nanosilica particles on the water and oil relative permeability curves at reservoir conditions. Real reservoir crude oil sample was employed as an oil phase in relative permeability measurements. In addition, real carbonate reservoir rock samples were employed as a porous media in core displacement experiments. To determine relative permeability curves, the unsteady-state approach was employed in which Toth et al. method was applied to the recovery data points. By increasing the nanosilica content of the aqueous phase the oil relative permeability increased while the residual oil saturation decreased; however, by increasing the nanosilica concentration in the aqueous solution the water relative permeability decreased. The outcomes of this paper can provide a better understanding regarding chemically enhanced oil recovery (EOR) by nanoparticles. Moreover, relative permeability curves help us in the history matching section of reservoir simulation for any further EOR scenarios.
Modelling the permeability of polymers: a neural network approach
Wessling, M.; Mulder, M.H.V.; Bos, A.; Linden, van der M.K.T.; Bos, M.; Linden, van der W.E.
1994-01-01
In this short communication, the prediction of the permeability of carbon dioxide through different polymers using a neural network is studied. A neural network is a numeric-mathematical construction that can model complex non-linear relationships. Here it is used to correlate the IR spectrum of a p
La Spina, G.; Polacci, M.; Burton, M.; de'Michieli Vitturi, M.
2017-09-01
Magma permeability is the most important factor controlling the transition between effusive and explosive styles during magma ascent at active volcanoes. When magma permeability is low, gas bubbles in the melt expand as the pressure decreases; above a critical gas volume fraction threshold, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas ascends through the conduit towards the surface faster than the magma ascent speed, producing decoupling of gas and magma and reducing the maximum vesicularity. This decoupled flow inhibits fragmentation and leads to either an effusive eruption or quiescent degassing. Accurate modelling of permeability behaviour is therefore fundamental when simulating magma ascent processes. In this work, we compare different permeability models for low viscosity magmas using a 1D steady-state model. We use, as a test case, the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using the linear Darcy's law with those obtained using the non-linear Forchheimer relation. Our numerical results show that, using Darcy's law and appropriate permeability models, it is possible to obtain an effusive eruption in agreement with observations. However, we found that, in the shallow conduit, the limit of applicability of Darcy's law (that is the modified Reynolds number Rem < 10) is exceeded due to high gas flow rates. Furthermore, we show that using Forchheimer's law and some parametric expressions for viscous and inertial permeabilities, results can be compatible with an effusive eruption, once appropriate values are chosen. However, one of the parameters required to obtain an effusive eruption, the friction coefficient between gas and melt, is several orders of magnitude lower than that determined from measurements of solid erupted samples. This result requires further experimental verification. We propose that our novel permeability modelling regime is
ANISOTROPIC PERMEABILITY EVOLUTION MODEL OF ROCK IN THE PROCESS OF DEFORMATION AND FAILURE
WANG Huan-ling; CHU Wei-jiang; HE Miao
2012-01-01
The rock permeability is an important parameter in the studies of seepage and stress coupling.The micro-cracks and pores can initiate and grow on a small scale and coalesce to form large-scale fractures and faults under compressive stresses,which would change the hydraulic conductivity of the rock,and therefore,the rock permeability.The rock permeability is,therefore,closely related with the micro-cracking growing,coalescence,and macro new fracture formation.This article proposes a conceptual model of rock permeability evolution and a micro kinematics mechanism of micro-cracking on the basis of the basic theory of micromechanics.The applicability of the established model is verified through numerical simulations of in situ tests and laboratory tests.The simulation results show that the model can accurately forecast the peak permeability evolution of brittle rock,and can well describe the macro-experimental phenomenon before the peak permeability evolution of brittle rock on a macro-scale.
Chen, X.; Kianinejad, A.; DiCarlo, D. A.
2014-12-01
CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches
Dual permeability FEM models for distributed fiber optic sensors development
Aguilar-López, Juan Pablo; Bogaard, Thom
2017-04-01
Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time
Xiao, Boqi; Tu, Xing; Ren, Wen; Wang, Zongchi
2015-06-01
In this study, the analytical expressions for the hydraulic permeability and Kozeny-Carman (KC) constant of porous nanofibers are derived based on fractal theory. In the present approach, the permeability is explicitly related to the porosity and the area fractal dimensions of porous nanofibers. The proposed fractal models for KC constant is also found to be a function of the microstructural parameters (porosity, area fractal dimensions). Besides, the present model clearly indicates that KC constant is not a constant and increases with porosity. However, KC constant is close to a constant value which is 18 for ϕ > 0.8. Every parameter of the proposed formulas of calculating permeability and KC constant has clear physical meaning. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different porosities.
Levine, Jonathan S; Goldberg, David S; Lackner, Klaus S; Matter, Juerg M; Supp, Michael G; Ramakrishnan, T S
2014-01-01
To mitigate anthropogenically induced climate change and ocean acidification, net carbon dioxide emissions to the atmosphere must be reduced. One proposed option is underground CO2 disposal. Large-scale injection of CO2 into the Earth's crust requires an understanding of the multiphase flow properties of high-pressure CO2 displacing brine. We present laboratory-scale core flooding experiments designed to measure CO2 endpoint relative permeability for CO2 displacing brine at in situ pressures, salinities, and temperatures. Endpoint drainage CO2 relative permeabilities for liquid and supercritical CO2 were found to be clustered around 0.4 for both the synthetic and natural media studied. These values indicate that relative to CO2, water may not be strongly wetting the solid surface. Based on these results, CO2 injectivity will be reduced and pressure-limited reservoirs will have reduced disposal capacity, though area-limited reservoirs may have increased capacity. Future reservoir-scale modeling efforts should incorporate sensitivity to relative permeability. Assuming applicability of the experimental results to other lithologies and that the majority of reservoirs are pressure limited, geologic carbon sequestration would require approximately twice the number of wells for the same injectivity.
A new coal-permeability model: Internal swelling stress and fracture-matrix interaction
Liu, H.H.; Rutqvist, J.
2009-10-01
We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.
Evaluating the relative air permeability of porous media from their water retention curves
Assouline, S.; Tuli, A.; Hopmans, J. W.
2016-05-01
Accurate modeling of water and air flow in porous media requires the definition of the relevant hydraulic properties, namely, the water retention curve (WRC) and the relative hydraulic conductivity function (RHC), as well as the definition of the relative air permeability function (RAP). Capitalizing on the approach developed previously to represent the RHC, a new model allowing the prediction of RAP based on information resulting from the WRC is proposed. The power value ηa in the model is a decreasing exponential function of the coefficient of variation, ɛ, characterizing the pore size distribution of the porous medium, and derived from its WRC. The model was calibrated using data from 22 disturbed and undisturbed soil samples and was validated using data from eight soil types ranging from quartz sand to silty clay loam. The proposed model provided accurate prediction of the soil RAP and performed in some cases (sandy loam and silty clay loam soils) better than available alternative models.
La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Landi, Patrizia; Polacci, Margherita
2016-04-01
Magma permeability is the most important factor controlling the transition between effusive and explosive activity of a basaltic eruption. Indeed, when low viscosity magmas are not permeable enough, volatiles stay trapped into the melt, expanding and pushing up more and more magma as the pressure decreases. As soon as the volume fraction of the gas, or the overpressure of the bubbles, or the strain rate of the melt becomes too large, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas is able to decouple from the melt and fragmentation does not occur, causing, thus, an effusive eruption. A correct modelisation of gas/magma decoupling is, therefore, fundamental to properly understand the ascent dynamics occurring during an eruption. Here we study several permeability models for a low viscosity magma using a 1D steady-state model for magma ascent dynamics, focussing, in particular, on the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using respectively Darcy's and Forchheimer's law. We also take into account the different expressions for Darcian permeability introduced by Bai et al. (2010, 2011) for Stromboli volcano, comparing them against a new expression for permeability derived from the data collected by Polacci et al. (2009) on Stromboli scoria. The numerical results show that using the permeability expressions of Bai et al. (2010, 2011) with Darcy's law, magma fragments into an explosive eruption. Using the new permeability model, instead, the decoupling between gas and magma is sufficient to generate an effusive eruption. However, when Forchheimer's law is adopted, fragmentation is always achieved, even with our new permeability. For a broader investigation on permeability, we also adopt the permeability relation introduced by Degruyter et al. (2012) as a function of three parameters: bubble number density, throat-bubble size ratio, and tortuosity factor
Maloney, D.
1993-11-01
This report describes the results from special core analyses and relative permeability measurements conducted on Almond formation and Fontainebleu sandstone plugs. Almond formation plug tests were performed to evaluate multiphase, steady-state,reservoir-condition relative permeability measurement techniques and to examine the effect of temperature on relative permeability characteristics. Some conclusions from this project are as follows: An increase in temperature appeared to cause an increase in brine relative permeability results for an Almond formation plug compared to room temperature results. The plug was tested using steady-state oil/brine methods. The oil was a low-viscosity, isoparaffinic refined oil. Fontainebleu sandstone rock and fluid flow characteristics were measured and are reported. Most of the relative permeability versus saturation results could be represented by one of two trends -- either a k{sub rx} versus S{sub x} or k{sub rx} versus Sy trend where x and y are fluid phases (gas, oil, or brine). An oil/surfactant-brine steady-state relative permeability test was performed to examine changes in oil/brine relative permeability characteristics from changes in fluid IFTS. It appeared that, while low interfacial tension increased the aqueous phase relative permeability, it had no effect on the oil relative permeability. The BOAST simulator was modified for coreflood simulation. The simulator was useful for examining effects of variations in relative permeability and capillary pressure functions. Coreflood production monitoring and separator interface level measurement techniques were developed using X-ray absorption, weight methods, and RF admittance technologies. The three types of separators should be useful for routine and specialized core analysis applications.
Study on the Relation between Individual Layer and Multi-layered Nonwoven Geotextile Permeability
刘丽芳; 储才元
2003-01-01
Water permeability is an important property of nonwoven geotextiles used in drainage field, and usually it is obtained by testing individual layer or multi-layered nonwoven geotextiles. However, the permeability coefficient tested by using different layers would be different for the same nonwoven geotextile. In this paper, the relation between them is studied based on Darcy's law. The study shows that vertical permeability coefficients are theoretically invariable no matter how many layers are tested; but experimental results show that vertical permeability coefficients decrease with the increase of nonwoven geotextile layers number.
Hao Wang; Chang-sheng Li; Tao Zhu
2014-01-01
The magnetic properties of highly grain-oriented electrical steel vary along different directions. In order to investigate these prop-erties, standard Epstein samples were cut at different angles to the rolling direction. The hard magnetization direction was found at an angle of 60° to the rolling direction. To compare the measured and fitting curves, when the magnetic field intensity is higher than 7000 A/m, it is appropriate to simulate the relation of magnetic permeability and magnetization angle using the conventional elliptical model. When the magnetic field intensity is less than 3000 A/m, parabolic fitting models should be used; but when the magnetic field intensity is between 3000 and 7000 A/m, hybrid models with high accuracy, as proposed in this paper, should be applied. Piecewise relation models of magnetic per-meability and magnetization angle are significant for improving the accuracy of electromagnetic engineering calculations of electrical steel, and these new models could be applied in further industrial applications.
MI-QSAR models for prediction of corneal permeability of organic compounds
Cheng CHEN; Jie YANG
2006-01-01
Aim: To derive a theoretical model for the prediction of corneal permeability of miscellaneous organic compounds in drug design. Methods: A training set of 28structurally diverse compounds was used to build up the membrane-interaction quantitative structure-activity relationship (MI-QSAR) models. Intermolecular and intramolecular solute descriptors were computed using molecular mechanics,molecular dynamics simulations and quantum chemistry. The QSAR models were optimized using multidimensional linear regression fitting and a stepwise method.A test set of 8 compounds was evaluated using the models as part of a validation process. Results: Significant MI-QSAR models (R=0.976, S=0.1301, F=70.957) of corneal permeability of organic compounds were constructed. Corneal permeability was found to depend upon the sum of net atomic charges of hydrogen atoms attached to the heteroatoms (N, O), the sum of the absolute values of the net atomic charges of oxygen and nitrogen atoms, the principal moment of inertia (X),the Connolly accessible area and the conformational flexibility of the solute-membrane complex. Conclusion: The MI-QSAR models indicated that the corneal permeability of organic molecules was not only influenced by the organic solutes themselves, but also related to the properties of the solute-membrane complex,that is, the interactions of the molecule with the phospholipid-rich regions of cellular membranes.
Lee, S. H.; Efendiev, Y.
2016-10-01
Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the
Risk factor(s) related to high membrane permeability in peritoneal dialysis.
Unal, Aydin; Sipahioglu, Murat Hayri; Kocyigit, Ismail; Tunca, Onur; Tokgoz, Bulent; Oymak, Oktay
2016-01-01
Peritoneal dialysis (PD) patients have different peritoneal membrane permeability (transport) characteristics. High peritoneal membrane permeability is associated with increased mortality risk in the patient population. In this study, we aimed to investigate possible risk factor(s) related to high peritoneal membrane permeability. The study included 475 PD patients (46.1 ± 14.5 years of mean age; 198 female and 277 male). The patients were divided two groups according to peritoneal equilibration test (PET) result: high-permeability group (high and high-average) and low- permeability group (low-average and low). In both the univariate and multivariate logistic regression analyses, it was found that diabetes mellitus and hypoalbuminemia was significantly associated with high peritoneal membrane permeability [relative risk (RR): 1.90, 95% confidence interval (CI): 1.26-2.86, p: 0.002 and RR: 2.14, 95% CI: 1.44-3.18, ppermeability. Diabetic patients had 1.9 times the likelihood of having high permeability. However, the relationship between hypoalbuminemia and high peritoneal permeability appears to be a result rather than cause.
Study on Wet Permeability Models of Yarns and Knitted Fabrics
王其; 冯勋伟
2001-01-01
Water transport through the pore structure of the knitted fabric can occur only in place where the fiber-water surface attraction force is greater than the water weight in the capillary. To investigate wet permeability of the knitted yarn in the fabric, a liquid transport model is established. The main factors which have significant influences on the liquid transport have been analyzed. It is derived from the argument that the optimal design for the knitted fabric with quick sweat transport property can be obtained.
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.
2016-05-01
Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.
Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities
Lee, Myung W.
2008-01-01
Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.
Direct measurement of relative permeability in rocks from unsteady-state saturation profiles
Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.
2016-08-01
We develop a method to measure liquid relative permeability in rocks directly from transient in situ saturation profiles during gravity drainage experiments. Previously, similar methods have been used for sandpacks; here, this method is extended to rocks by applying a slight overpressure of gas at the inlet. Relative permeabilities are obtained in a 60 cm long vertical Berea sandstone core during gravity drainage, directly from the measured unsteady-state in situ saturations along the core at different times. It is shown that for obtaining relative permeability using this method, if certain criteria are met, the capillary pressure of the rock can be neglected. However, it is essential to use a correct gas pressure gradient along the core. This involves incorporating the pressure drop at the outlet of the core due to capillary discontinuity effects. The method developed in this work obtains relative permeabilities in unsteady-state fashion over a wide range of saturations quickly and accurately.
Hurtado, Fernando S.V.; Maliska, Clovis R.; Silva, Antonio F.C. da; Ambrus, Jaime; Contessi, Bruno A.; Cordazzo, Jonas [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Simulacao Numerica em Mecanica dos Fluidos e Transferencia de Calor (SINMEC)
2004-07-01
It is unquestionable the significant role that reservoir simulation has gained in the petroleum industry today. Nevertheless, the accuracy of this prediction toll is frequently degraded not only by inherent uncertainty in the reservoir characterization, but also by usually deficient estimation of relative permeability curves, which are the key elements for macroscopic description of multiphase flow in porous media. In practice, these flow functions should be estimated from data collected in displacement experiments. Although numerous methods for estimating relative permeabilities from these experimental data have been developed over the years, their practical application have been suffered from many problems mainly arisen on the oversimplified mathematical models on which those methods were based. In recent years, parameter estimation techniques are being increasingly applied to estimate relative permeabilities, mostly because they allow employing a flow model as accurate as necessary to represent all influencing factors on the fluid displacement. The present work describes the main characteristics and potentialities of an application software developed as a supporting toll for the task of estimation of reliable relative permeability curves by a parameter estimation method. Special emphasis was given to the implementation of a numerical flow model including relevant physical factors, such as rock heterogeneity, capillary pressure, gravity effects, and fluid compressibility. (author)
Jiang, F.; Tsuji, T.
2017-01-01
Given the world's growing demand for energy, a combination of geological CO2 sequestration and enhanced oil recovery (EOR) technologies is currently regarded as a promising solution, as it would provide a means of reducing carbon emissions into the atmosphere while also leading to the economic benefit of simultaneously recovering oil. The optimization of injection strategies to maximize CO2 storage and increase the oil recovery factors requires complicated pore-scale flow information within a reservoir system consisting of coexisting oil, water, and CO2 phases. In this study, an immiscible three-phase lattice-Boltzmann (LB) model was developed to investigate the complicated flow state with interaction between water, oil, and CO2 systems in porous media. The two main mechanisms of oil remobilization, namely, double-drainage and film flow, can be captured by our model. The estimation of three-phase relative permeability is proposed using the digital rock physics (DRP) simulations. The results indicate that the relative permeability of CO2 as calculated using our steady state method is not sensitive to the initial oil fraction if the oil distribution is originally uniform. Baker's (1988) empirical model was tested and found to be able to provide a good prediction of the three-phase relative permeability data. Our numerical method provides a new tool for accurately predicting three-phase relative permeability data directly based on micro-CT rock images.
SONG Fan; HOU Jia-gen; SU Ni-na
2009-01-01
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field, we studied sedlimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reser-voir. By doing so, we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial dis-tribution of various kinds of sandstone bodies. By taking advantage of many coring wells and high quality logging data, we used regression analysis for a single well with geological conditions as constraints, to build the interpretation model for logging data and to calculate attribute parameters for a single well, which ensured accuracy of the 1-D vertical model. On this basis, we built a litho-facies model to replace the sedimentary facies model. In addition, we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint. In the end, we built a permeability model by using Markov-Bayes simula-tion, with the porosity attribute as the covariate. The results show that the permeability model reflects very well the relative differ-ences between low permeability values, which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken
2007-09-30
Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on
Special core analyses and relative permeability measurement on Almond formation reservoir rocks
Maloney, D.; Doggett, K.; Brinkmeyer, A.
1993-02-01
This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74{degrees}F laboratory temperature. Additional tests are planned at 150{degrees}F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.
Special core analyses and relative permeability measurement on Almond formation reservoir rocks
Maloney, D.; Doggett, K.; Brinkmeyer, A.
1993-02-01
This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74[degrees]F laboratory temperature. Additional tests are planned at 150[degrees]F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.
Školová, Barbora; Kováčik, Andrej; Tesař, Ondřej; Opálka, Lukáš; Vávrová, Kateřina
2017-05-01
Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier. Copyright © 2017 Elsevier B.V. All rights reserved.
A low-frequency asymptotic model of seismic reflection from a high-permeability layer
Silin, Dmitriy; Goloshubin, Gennady
2009-03-01
Analysis of compression wave propagation through a high-permeability layer in a homogeneous poroelastic medium predicts a peak of reflection in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of the Biot's model of poroelasticity. A new physical interpretation of some coefficients of the classical poroelasticity is a result of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and the Darcy's law. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The latter is equal to the product of the kinematic reservoir fluid mobility, an imaginary unit, and the frequency of the signal. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). The practical implications of the theory developed here are seismic modeling, inversion, and attribute analysis.
Nakshatrala, K B; Ballarini, R
2016-01-01
Geo-materials such as vuggy carbonates are known to exhibit multiple spatial scales. A common manifestation of spatial scales is the presence of (at least) two different scales of pores, which is commonly referred to as double porosity. To complicate things, the pore-network at each scale exhibits different permeability, and these networks are connected through fissure and conduits. Although some models are available in the literature, they lack a strong theoretical basis. This paper aims to fill this lacuna by providing the much needed theoretical foundations of the flow in porous media which exhibit double porosity/permeability. We first obtain a mathematical model for double porosity/permeability using the maximization of rate of dissipation hypothesis, and thereby providing a firm thermodynamic underpinning. We then present, along with mathematical proofs, several important mathematical properties that the solutions to the double porosity/permeability model satisfy. These properties are important in their...
Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical–Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)
2015-04-15
Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin
Application of in vitro BBB model to measure permeability of nanoparticles
Hanada, S.; Fujoka, K.; Inoue, Y.; Kanaya, F.; Manome, Y.; Yamamoto, K.
2013-04-01
In both pharmaceutical and toxicological fields, one of major issues has been the possibility of nanoparticle uptake to central nerve system. For the safe use of nanoparticles, it is integral to evaluate the permeability of nanoparticles through BBB. In our collaborative research group reported that a few nanoparticles accumulated in brain in animal experiment, as an in vitro model, we applied commercially available cell-based BBB model for establishing evaluation method, which is quick, quantitative and equivalent to in vivo assay. We assayed 30-1500 nm silica and surface charge dependent Qdots. Our results showed the size-dependency and the surface modification dependency. We compared our assay to several animal experiments. There are both equivalence and discrepancy with animal experiments. Our BBB model can be useful tools for evaluating size-dependent permeability, but not for surface modification-dependent permeability. Our BBB assay is non-serum assay and we have not adequately reflected the serum-related interaction between nanoparticles and cell surfaces. To clear up the discrepancy of our BBB model, serum-based assay and low-concentration detection will be needed.
Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability
Sourbron, S. P.; Buckley, D. L.
2012-01-01
The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.
Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son
2008-08-01
This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.
Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken
2007-09-30
Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on
Model and method of permeability evaluation based on mud invasion effects
Zhou, Feng; Hu, Xiang-Yun; Meng, Qing-Xin; Hu, Xu-Dong; Liu, Zhi-Yuan
2015-12-01
The evaluation of permeability in reservoir assessment is a complex problem. Thus, it is difficult to perform direct evaluation permeability with conventional well-logging methods. Considering that reservoir permeability significantly affects mud invasion during drilling, we derive a mathematical model to assess the reservoir permeability based on mud invasion. A numerical model is first used to simulate the process of mud invasion and mud cake growth. Then, based on Darcy's law, an approximation is derived to associate the depth of mud invasion with reservoir permeability. A mathematical model is constructed to evaluate the reservoir permeability as a function of the mud invasion depth in time-lapse logging. Sensitivity analyses of the reservoir porosity, permeability, and water saturation are performed, and the results suggest that the proposed model and method are well suited for oil layers or oil-water layers of low porosity and low permeability. Numerical simulations using field logging and coring data suggest that the evaluated and assumed permeability data agree, validating the proposed model and method.
S Zein
2016-09-01
Full Text Available In this paper, we are interested in simulating a stochastic permeability distribution constrained by some pressure measures coming from a steady flow (Poisson problem over a two-dimensional domain. The permeability is discretized over a regular rectangular gird and considered to be constant by cell but it can take randomly a finite number of values. When such permeability is modeled using a multidimensional Markov chain, it can be constrained by some permeability measures. The purpose of this work is to propose an algorithm that simulates stochastic permeability constrained not only by some permeability measures but also by pressure measures at some points of the domain. The simulation algorithm couples the MCMC sampling technique with the multidimensional Markov chain model in a Bayesian framework.
A multiple fractal model for estimating permeability of dual-porosity media
Li, Bo; Liu, Richeng; Jiang, Yujing
2016-09-01
A multiple fractal model that considers the fractal properties of both porous matrices and fracture networks is proposed for the permeability of dual-porosity media embedded with randomly distributed fractures. In this model, the aperture distribution is verified to follow the fractal scaling law, and the porous matrix is assumed to comprise a bundle of tortuous capillaries that also follow the fractal scaling law. Analytical expressions for fractal aperture distribution, total flow rate, total equivalent permeability, and dimensionless permeability are established, where the dimensionless permeability is defined as the ratio of permeability of the porous matrices to that of the fracture networks. The dimensionless permeability is closely correlated to the structural parameters (i.e., α, θ, Dtf, Dtp, De, Dp, emax, λmax) of the dual-porosity media, and it is more sensitive to the fractal dimension for the size distribution of fracture aperture than to that for the size distribution of pore/capillary diameter. The maximum pore/capillary diameter has a greater impact on the dimensionless permeability than that of the maximum fracture aperture. The dimensionless permeability of fracture networks constructed by the fractal aperture distribution has close values with those of models with lognormal aperture distribution. The proposed multiple fractal model does not involve any empirical constants that do not have clear physical meanings, which could serve as a quick estimation method for assessing permeability of dual-porosity media.
Applying COSISIM model to study the permeability of porous media
LIU Zhen; MU Chao-min
2011-01-01
Accuracy of simulated permeability can be improved using soft data during the process of simulation. Integrating soft data with hard data, a method based on COSISIM (sequential indicator cosimulation) was proposed to reconstruct permeability. The algorithm COSISIM extends the SISIM (sequential indicator simulation) algorithm to handle secondary data. At the difference of SISIM, data must already be an indicator-coded prior to using COSISIM. The soft data were integrated with hard data using the Markov-Bayes algorithm and must be coded into indicators before they are used. This method was tested on a regional simulation of permeability. The simulated results and the original distribution of permeability were compared. The experimental results demonstrate that this method is practical.
Fano, Walter G. [Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063EHA Buenos Aires (Argentina); Instituto Tecnologico de Buenos Aires, Av. Eduardo Madero 399, C11106ACD Buenos Aires (Argentina)], E-mail: gustavo.fano@ieee.org; Boggi, Silvina; Razzitte, Adrian C. [Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063EHA Buenos Aires (Argentina)
2008-03-01
In this paper, the numerical treatment of magnetic loss of NiZn, MnZn, Ni{sub 2}Y, and NiZnCu ferrite and their composites, by using Krameres-Kronig relations, is investigated. The complex magnetic permeability spectra for ferromagnetic materials have been studied. Due to the principle of causality and time independence in the relation between magnetic induction B and magnetic field H, the real and the imaginary part of the complex magnetic permeability are mutually dependent, and the correlation is given by the Krameres-Kronig equations. Through them, it is possible to measure the real component of the complex magnetic permeability, assuming the real component is given, and by the Hilbert transform, the imaginary part of the magnetic permeability can be calculated. Magnetic circuit model has been studied theoretically, focusing on the model's poles in the complex plane to verify the principle of causality and the temporary independence.
Permittivity and permeability measurements methods for particle accelerator related materials
Vollinger, C; Jensen, E
2014-01-01
For the special requirements related to particle accelerators, knowledge of the different material parameters of dielectrics and other materials are needed in order to carry out simulations during the design process of accelerator components. This includes also properties of magnetically biased ferrites of which usually little information is available about material characteristics, especially in magnetic bias fields. Several methods of measurement are discussed and compared of which some require delicate sample preparation whereas others can work with unmodified material shapes that makes those methods also suited for acceptance checks on incoming materials delivered by industry. Applications include characterization of different materials, as absorbers in which dielectric losses play an increasing role, as well as low frequency measurements on ferrites that are used for tunable cavities. We present results obtained from both broadband and resonant measurements on different materials determined in the same s...
Tim Vanuytsel
Full Text Available BACKGROUND: Impaired intestinal barrier function, low-grade inflammation and altered neuronal control are reported in functional gastrointestinal disorders. However, the sequence of and causal relation between these events is unclear, necessitating a spontaneous animal model. The aim of this study was to describe the natural history of intestinal permeability, mucosal and neuromuscular inflammation and nitrergic motor neuron function during the lifetime of the BioBreeding (BB rat. METHODS: Normoglycemic BB-diabetes prone (DP and control rats were sacrificed at different ages and jejunum was harvested to characterize intestinal permeability, inflammation and neuromuscular function. RESULTS: Both structural and functional evidence of increased intestinal permeability was found in young BB-DP rats from the age of 50 days. In older animals, starting in the mucosa from 70 days and in half of the animals also in the muscularis propria from 110 days, an inflammatory reaction, characterized by an influx of polymorphonuclear cells and higher myeloperoxidase activity, was observed. Finally, in animals older than 110 days, coinciding with a myenteric ganglionitis, a loss of nitrergic neurons and motor function was demonstrated. CONCLUSION: In the BB-rat, mucosal inflammatory cell infiltration is preceded by intestinal barrier dysfunction and followed by myenteric ganglionitis and loss of nitrergic function. This sequence supports a primary role for impaired barrier function and provides an insightful model for the pathogenesis of functional gastrointestinal disorders.
Modeling stress/strain-dependent permeability changes for deep geoenergy applications
Rinaldi, Antonio Pio; Rutqvist, Jonny
2016-04-01
Rock permeability is a key parameter in deep geoenergy systems. Stress and strain changes induced at depth by fluid injection or extraction may substantially alter the rock permeability in an irreversible way. With regard to the geoenergies, some applications require the permeability to be enhanced to improve productivity. The rock permeability is generally enhanced by shearing process of faults and fractures (e.g. hydroshearing for Enhanced and Deep Geothermal Systems), or the creation of new fractures (e.g. hydrofracturing for shale gas). However, such processes may, at the same time, produce seismicity that can be felt by the local population. Moreover, the increased permeability due to fault reactivation may pose at risk the sealing capacity of a storage site (e.g. carbon sequestration or nuclear waste disposal), providing then a preferential pathway for the stored fluids to escape at shallow depth. In this work we present a review of some recent applications aimed at understanding the coupling between stress (or strain) and permeability. Examples of geoenergy applications include both EGS and CO2 sequestration. To investigate both "wanted" and "unwanted" effects, THM simulations have been carried out with the TOUGH-FLAC simulator. Our studies include constitutive equations relating the permeability to mean effective stress, effective normal stress, volumetric strain, as well as accounting for permeability variation as related to fault/fracture reactivation. Results show that the geomechanical effects have a large role in changing the permeability, hence affecting fluids leakage, reservoir enhancement, as well as the induced seismicity.
A New Method for the Analysis of Relative Permeability in Porous Media
许友生; 吴锋民
2002-01-01
By combining three-dimensional digital microtomography techniques with the lattice Boltzmann method, a newmethodology is used to analyse the relative permeability of multiphase flow in porous media. The results indicate that the two coupling coefficients K12 and K21 have the same magnitude, therefore the Onsager reciprocity still holds. The results also agree well with the results of pipe flow numerical experiments.
Udegbunam, E.O.
1991-01-01
This paper presents a FORTRAN program for the determination of two-phase relative permeabilities from unsteady-state displacement data with capillary pressure terms included. The interpretative model employed in this program combines the simultaneous solution of a variant of the fractional flow equation which includes a capillary pressure term and an integro-differential equation derived from Darcy's law without assuming the simplified Buckley-Leverett flow. The incorporation of capillary pressure in the governing equations dispenses with the high flowrate experimental requirements normally employed to overcome capillarity effects. An illustrative example is presented herein which implements this program for the determination of oil/water relative permeabilities from a sandstone core sample. Results obtained compares favorably with results previously given in the literature. ?? 1991.
Wang, Junjian; Kang, Qinjun; Rahman, Sheik S
2016-01-01
Gas flow in shale is associated with both organic matter (OM) and inorganic matter (IOM) which contain nanopores ranging in size from a few to hundreds of nanometers. In addition to the noncontinuum effect which leads to an apparent permeability of gas higher than the intrinsic permeability, the surface diffusion of adsorbed gas in organic pores also can influence the apparent permeability through its own transport mechanism. In this study, a generalized lattice Boltzmann model (GLBM) is employed for gas flow through the reconstructed shale matrix consisting of OM and IOM. The Expectation-Maximization (EM) algorithm is used to assign the pore size distribution to each component, and the dusty gas model (DGM) and generalized Maxwell-Stefan model (GMS) are adopted to calculate the apparent permeability accounting for multiple transport mechanisms including viscous flow, Knudsen diffusion and surface diffusion. Effects of pore radius and pressure on permeability of both IOM and OM as well as effects of Langmuir ...
Model-based Permeability Estimation of Shaly Sands Using Seismic Velocity and Resistivity Data
Takahashi, T.
2016-12-01
Permeability is an indispensable parameter for hydraulic characterization of soils and rocks in many applications. Permeability of soils and rocks is usually obtained with the in-situ permeability test in a borehole and/or laboratory permeability test of soil/rock core samples obtained in the borehole. Many boreholes are necessary for building a hydraulic model of a large soil/rock mass. It is, however, often difficult to drill many boreholes due to time and cost constraints. For such a case, geophysical methods can be effectively utilized for profiling permeability of a large soil/rock mass if geophysical properties such as seismic velocity and resistivity can be used for estimating permeability. We, therefore, propose an effective method for estimating permeability of shaly sands by applying a rock physics model to seismic velocity and resistivity data. Because consolidated shaly sand is a key rock for aquifers and oil/gas reservoirs, and unconsolidated shaly sand is very common soils whose hydraulic properties are often important for safety evaluation of river embankments and designing countermeasure of its liquefaction. The method first estimates the grain size distribution of the shaly sand by applying a shaly sand model to seismic velocity and resistivity data obtained with seismic and resistivity measurements. The grain size of the soil/rock thus obtained and porosity estimated from resistivity data by applying the Glover's equation are then input to the Kozeny-Carman equation for estimating permeability of the shaly sand. The proposed method is applied to P- and S-wave velocities and resistivity data measured in the laboratory, well logging and surface seismic and electric surveys for shaly sands. Comparison of estimated permeability with actual measurements reveals that permeability can be estimated in accuracy less than one order of magnitude and the method can be used for profiling permeability of a large shaly sand using geophysical data measured on it.
Benson, P. M.; Schubnel, A.; Meredith, P. G.; Young, P.
2005-12-01
A key consequence of the presence of void space within rock is its significant influence upon fluid transport properties. This observation is fundamental to our understanding of crustal evolution and energy resource management, for example the efficient recovery of hydrocarbon and water resources, and the safe disposal of hazardous waste. However, the processes responsible for porosity formation are diverse, ranging from depositional processes such as sedimentary sorting and grain alignment, through diagenetic processes such as compaction and cementation, to deformational processes such as microcracking. The porosity that evolves from the superposition of these processes over time may therefore have a complex geometry or fabric. In addition, many of these processes have an inherent directionality which may lead to anisotropy of the void space, and all have been shown to play important roles in influencing the fluid transport properties of rock. The measurement of permeability at elevated pressures and the calculation of permeability from other data (such as elastic wave velocity) remains non-trivial. In particular, in order to test models that predict such relations, ideally both elastic wave velocity and permeability should be measured simultaneously. In this study, we use a novel apparatus in order to measure elastic wave velocities (P and S) contemporaneously with permeability and porosity for three rock types, a high porosity sandstone (Bentheim), a tight sandstone (Crab Orchard), and a microcracked granite (Takidani). This laboratory data is then used with permeability models of Gueguen and Dienes and Kozeny-Carman to investigate the role that void space of differing apertures imparts on the measured permeability of different rock types. Using the Kachanov non-interactive effective medium theory, measured elastic wave velocities are inverted using a least square fit, permitting the recovery of crack density evolution with increasing hydrostatic pressure. This
A multiscale model of distributed fracture and permeability in solids in all-round compression
De Bellis, Maria Laura; Ortiz, Michael; Pandolfi, Anna
2016-01-01
We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of a tensile or shear resistance in the undamaged material. Secondary faults may form in a hierarchical orga- nization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the dam- aged material. The approach is particularly appealing as a means of modeling low permeability oil and gas reservoirs stimulated by hydraulic fracturing.
Production-log base model for carbonate permeability distribution and steam flood optimization
Ahamed, S.F.; Choudhry, M.A.; Abdulbaqi, J.B. [Kuwait Gulf Oil Co. (Kuwait)
2008-10-15
This paper presented a model for the effective management of primary and thermal oil recovery operations in the Wafra Field in Kuwait, where a small huff and puff project was carried out in 1998 to determine if steam injection was a feasible recovery option for the field. The Eocene heavy oil reservoirs of the Wafra Field are carbonate rock admixtures with gypsum and anhydrite. They are the shallowest of the field's productive horizons and exhibit a high degree of fluid flow heterogeneity. The assessment of vertical and lateral permeability variation is a key factor for success of the reservoir development plan. Steam injection began in 2006 in a small scale test (SST) to determine if the innovative technology could produce steam from effluent water and to test the viability of steam injection in carbonate reservoirs. Following the success of the SST, a large scale pilot (LSP) is schedule to start in 2009. It can be used for completion strategies of injectors and producers in steam injection. The model showed that the productivity of the Eocene wells could be correlated with common available logs to develop a log based-permeability model. A series of cross plots for the perforated intervals of high and low productivity wells were constructed to develop a relationship between well productivity and location of log parameters on the plots. A relationship between rock quality, productivity and conventional log parameters was established. It was concluded that the vertical permeability and interwell continuity in the Eocene wells can be used to optimize new well placement for horizontal and vertical infill drilling. The model is also an effective tool to predict the steam injectivity profile to understand the anomalies related to temperature-depth distribution. The model can be used to improve the efficiency of formation heating by optimizing the steam flood process and steam pattern well completion. 16 refs.
General slip regime permeability model for gas flow through porous media
Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong
2016-07-01
A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.
Improved Porosity and Permeability Models with Coal Matrix Block Deformation Effect
Zhou, Yinbo; Li, Zenghua; Yang, Yongliang; Zhang, Lanjun; Qi, Qiangqiang; Si, Leilei; Li, Jinhu
2016-09-01
Coal permeability is an important parameter in coalbed methane (CBM) exploration and greenhouse gas storage. A reasonable theoretical permeability model is helpful for analysing the influential factors of gas flowing in a coalbed. As an unconventional reservoir, the unique feature of a coal structure deformation determines the state of gas seepage. The matrix block and fracture change at the same time due to changes in the effective stress and adsorption; the porosity and permeability also change. Thus, the matrix block deformation must be ignored in the theoretical model. Based on the cubic model, we analysed the characteristics of matrix block deformation and fracture deformation. The new models were developed with the change in matrix block width a. We compared the new models with other models, such as the Palmer-Manson (P-M) model and the Shi-Durucan (S-D) model, and used a constant confining stress. By matching the experimental data, our model matches quite well and accurately predicts the evolution of permeability. The sorption-induced strain coefficient f differs between the strongly adsorbing gases and weakly adsorbing gases because the matrix block deformation is more sensitive for the weakly adsorbing gases and the coefficient f is larger. The cubic relationship between porosity and permeability overlooks the importance of the matrix block deformation. In our model, the matrix block deformation suppresses the permeability ratio growth. With a constant confining stress, the weight of the matrix block deformation for the strongly adsorbing gases is larger than that for weakly adsorbing gases. The weight values increase as the pore pressure increases. It can be concluded that the matrix block deformation is an important phenomenon for researching coal permeability and can be crucial for the prediction of CBM production due to the change in permeability.
Lina Bufalino
2013-02-01
Full Text Available Studies concerning the production of particleboards with sugarcane bagasse as an alternative fibrous material have been carried out as an attempt to provide a sustainable and viable destination for this residue. This work aimed to evaluate the influence of several processing variables related to the microstructure of sugarcane bagasse particleboards (mat type, adhesive type and adhesive content on their permeability and water sorption properties. Air permeability data was collected by the rotameter method. Superficial air permeability (kg, Darcian constant (k1 and non-Darcian constant (k2 were measured. kg was related to sorption behavior of the particleboards. 1-layer particleboards presented significantly higher kg values than the 3-layer particleboards. In general, adhesive type, position and content did not influence kg of particleboards. However, these processing variables influenced interactions between fluid and material and tortuosity of the porous media. Particleboards produced with urea-formaldehyde with high kg presented higher water absorption and thickness swelling after 24 hours. Such relations were not observed in particleboards produced with melamine-urea-formaldehyde.
Jeanette, Mortensen; Engstrøm, Finn; Lind, Ida
1998-01-01
The origin to the difference in the relationship between permeability and porosity for Danian and Maastrichtian chalk from the Gorm field offshore Denmark has been investigated. The investigation was based on 300 sets of core data (He-expansion porosity and air permeability) from the well Gorm N-...... analytically from a simple porosity model and Poiseuilles law....
Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal
Eric P. Robertson
2005-10-01
Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.
Hiratsuka, Y.; Yamamoto, H.
2014-12-01
CCS (Carbon dioxide Capture and Storage) is a promising option for mitigating climate changes. To predict the behavior of injected CO2 in a deep reservoir, relative permeability of supercritical CO2 and water of the reservoir rock is one of the most fundamental and influential properties. For determining the relative permeability, we employed the unsteady state method, in which the relative permeability is determined based on history matching of transient monitoring data with a multi-phase flow model. The unsteady-state method is relatively simple and short, but obviously its accuracy strongly depends on the flow model assumed in the history matching. In this study, we conducted relative permeability measurements of supercritical CO2-water system for Berea sandstone with the unsteady-state method under a reservoir condition at a 1km depth (P= 9.5MPa, T = 44˚C). Automatic history matching was performed with an inversion simulator iTOUGH2/ECO2N for multi-phase flow system of supercritical CO2, NaCl, and water. A sensitivity analysis of relative permeability parameters for CO2 and water was carried out to better understand the uniqueness and the uncertainty of the optimum solution estimated by the history matching. Among the parameters of the Corey-type curve employed in this study, while the end-point permeability could be optimized in a limited range, the other parameters were correlated and their combinations were not unique. However it was found that any combination of these parameters results in nearly identical shapes of the curve in the range of CO2 saturation in this study (0 to 60%). The optimally estimated curve from the unsteady-method was well comparable with those from the steady-state method acquired in the previous studies. Our experiment also focuses on the impact of injection rate on the estimates of relative permeability, as it is known that the injection rate could have a significant effect on fluid distribution such as viscous fingering with
Numerical modelling rock deformation subject to nitrogen cooling to study permeability evolution
Chunhui Zhang; Laigui Wang; Jianhua Du; Yinghui Tian
2015-01-01
How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme-ability of the volumetric strain was defined, and the permeability was directly evaluated based on element’s volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.
Artificial neural network models for prediction of intestinal permeability of oligopeptides
Kim Min-Kook
2007-07-01
Full Text Available Abstract Background Oral delivery is a highly desirable property for candidate drugs under development. Computational modeling could provide a quick and inexpensive way to assess the intestinal permeability of a molecule. Although there have been several studies aimed at predicting the intestinal absorption of chemical compounds, there have been no attempts to predict intestinal permeability on the basis of peptide sequence information. To develop models for predicting the intestinal permeability of peptides, we adopted an artificial neural network as a machine-learning algorithm. The positive control data consisted of intestinal barrier-permeable peptides obtained by the peroral phage display technique, and the negative control data were prepared from random sequences. Results The capacity of our models to make appropriate predictions was validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC curve (the ROC score. The training and test set statistics indicated that our models were of strikingly good quality and could discriminate between permeable and random sequences with a high level of confidence. Conclusion We developed artificial neural network models to predict the intestinal permeabilities of oligopeptides on the basis of peptide sequence information. Both binary and VHSE (principal components score Vectors of Hydrophobic, Steric and Electronic properties descriptors produced statistically significant training models; the models with simple neural network architectures showed slightly greater predictive power than those with complex ones. We anticipate that our models will be applicable to the selection of intestinal barrier-permeable peptides for generating peptide drugs or peptidomimetics.
Chunhui ZHANG
Full Text Available How to quantitatively evaluate the permeability change of coalbed subjected to liquid nitrogen cooling is a key issue of enhanced-permeability technology of coalbed. To analyze the evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling, the coal is supposed as elastic, brittle and plastic material. Its deformation process includes elastic deformation stage, brittle strength degradation stage and residual plastic flow stage. Combined with strength degradation index, dilatancy index of the element and Mohr-Column strength criterion, the element scale constitutive model with the effects of confining pressure on peak-post mechanical behaviors is built. Based on the deformation process of coal rock, there exist two stages of permeability evolution of the element including decrease of permeability due to elastic contraction and increase due to coal rock element's failure. The relationships between the permeability and elastic deformation, shear failure and tension failure for coal are studied. The permeability will be influenced by the change of pore space due to elastic contraction or tension of element. Conjugate shear zones appear during the shear failure of the element, in which the flow follows so-called cubic law between smooth parallel plates. The calculation formulas of the permeability and the aperture of the fractures are given out based on the volumetric strain. When tension failure criterion is satisfied with the rock element fails and two orthogonal fractures appear. The calculation formulas of the permeability and the width of the fractures are given out based on the volumetric strain. Further, combined with the thermal conduction theory the permeability evolution model of coupled coal deformation, failure and liquid nitrogen cooling is presented. Then Fish function method in FLAC is employed to perform the model. The permeability's evolution process for coal bed cryogenically stimulated
Influence of high permeability disks in an axisymmetric model of the Cadarache dynamo experiment
Giesecke, A; Stefani, F; Gerbeth, G; Léorat, J; Herreman, W; Luddens, F; Guermond, J -L
2011-01-01
Numerical simulations of the kinematic induction equation are performed on a model configuration of the Cadarache von-K\\'arm\\'an-Sodium dynamo experiment. The effect of a localized axisymmetric distribution of relative permeability {\\mu} that represents soft iron material within the conducting fluid flow is investigated. The critical magnetic Reynolds number Rm^c for dynamo action of the first non-axisymmetric mode roughly scales like Rm^c({\\mu})-Rm^c({\\mu}->infinity) ~ {\\mu}^(-1/2) i.e. the threshold decreases as {\\mu} increases. This scaling law suggests a skin effect mechanism in the soft iron disks. More important with regard to the Cadarache dynamo experiment, we observe a purely toroidal axisymmetric mode localized in the high permeability disks which becomes dominant for large {\\mu}. In this limit, the toroidal mode is close to the onset of dynamo action with a (negative) growth-rate that is rather independent of the magnetic Reynolds number. We qualitatively explain this effect by paramagnetic pumping...
Review on Absolute Permeability Model%渗透率模型研究进展
孙建孟; 闫国亮
2012-01-01
Introduced is current permeability model about single porosity media and dual porosity media. There exist some problems in permeability model, such as lacking theoretical researches, no uniform model and model of dual porosity media also needs urgently developing. Permeability and porosity of single porosity media have good correlation, but porosity is not the only parameter which is crucial to the accurate permeability .model, and therefore other parameters of rock structure and pore structure should be considered. Permeability model about dual porosity media can be divided into matrix permeability and fracture permeability, and the coupling of them is critical for permeability model. The application of fractal theory and imaging well logging may improve the accuracy of dual porosity media modeling. Beside this, the application of 3D digital core technology and induced polarization method are the importance in permeability model construction.%讨论单重孔隙介质和双重孔隙介质渗透率模型的发展,分析渗透率建模面临的问题:建模理论研究缺乏,至今没有提出统一的模型,双重孔隙介质渗透率模型亟待发展.单重孔隙介质渗透率与孔隙度相关性较好,但仅有孔隙度不能建立精确的渗透率模型,还需考虑岩石结构和孔隙结构参数.双重孔隙介质渗透率可分为基质渗透率和裂缝渗透率2个方面研究,它们之间的耦合是渗透率建模重点考虑的问题.提出应用分形理论和成像测井有望提高双重孔隙介质渗透率模型的建模精度.渗透率建模发展方向是三维数字岩心技术和激发极化法的应用.
Ronny Pini; Sally M Benson
2013-01-01
Capillary pressure and relative permeability drainage curves are simultaneously measured on a single Berea Sandstone core by using three different fluid pairs, namely g CO 2/water, g N 2/water and s c CO 2/brine...
Density-Corrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil
Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per
2011-01-01
Accurate prediction of gas diffusivity (Dp/Do) and air permeability (ka) and their variations with air-filled porosity (e) in soil is critical for simulating subsurface migration and emission of climate gases and organic vapors. Gas diffusivity and air permeability measurements from Danish soil...... in subsurface soil. The data were regrouped into four categories based on compaction (total porosity F 0.4 m3 m-3) and soil texture (volume-based content of clay, silt, and organic matter 15%). The results suggested that soil compaction more than soil type was the major control on gas...... diffusivity and to some extent also on air permeability. We developed a density-corrected (D-C) Dp(e)/Do model as a generalized form of a previous model for Dp/ Do at -100 cm H2O of matric potential (Dp,100/Do). The D-C model performed well across soil types and density levels compared with existing models...
Verification of capillary pressure functions and relative permeability equations for gas production
Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)
2016-10-25
The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO_{2} sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.
Azizian, Morvarid; Grant, Stanley B; Kessler, Adam J; Cook, Perran L M; Rippy, Megan A; Stewardson, Michael J
2015-09-15
Bedforms are a focal point of carbon and nitrogen cycling in streams and coastal marine ecosystems. In this paper, we develop and test a mechanistic model, the "pumping and streamline segregation" or PASS model, for nitrate removal in bedforms. The PASS model dramatically reduces computational overhead associated with modeling nitrogen transformations in bedforms and reproduces (within a factor of 2 or better) previously published measurements and models of biogeochemical reaction rates, benthic fluxes, and in-sediment nutrient and oxygen concentrations. Application of the PASS model to a diverse set of marine and freshwater environments indicates that (1) physical controls on nitrate removal in a bedform include the pore water flushing rate, residence time distribution, and relative rates of respiration and transport (as represented by the Damkohler number); (2) the biogeochemical pathway for nitrate removal is an environment-specific combination of direct denitrification of stream nitrate and coupled nitrification-denitrification of stream and/or sediment ammonium; and (3) permeable sediments are almost always a net source of dissolved inorganic nitrogen. The PASS model also provides a mechanistic explanation for previously published empirical correlations showing denitrification velocity (N2 flux divided by nitrate concentration) declines as a power law of nitrate concentration in a stream (Mulholland et al. Nature, 2008, 452, 202-205).
A Direct inverse model to determine permeability fields from pressure and flow rate measurements
Brouwer, G.K.; Fokker, P.A.; Wilschut, F.; Zijl, W.
2008-01-01
The determination of the permeability field from pressure and flow rate measurements in wells is a key problem in reservoir engineering. This paper presents a Double Constraint method for inverse modeling that is an example of direct inverse modeling. The method is used with a standard block-centere
Barani, Hamidreza Rostami; Lashkaripour, Gholamreza; Ghafoori, Mohammad
2014-08-01
In the present study, a new model is proposed to predict the permeability per fracture in the fault zones by a new parameter named joint hydraulic factor (JH). JH is obtained from Water Pressure Test (WPT) and modified by the degree of fracturing. The results of JH correspond with quantitative fault zone descriptions, qualitative fracture, and fault rock properties. In this respect, a case study was done based on the data collected from Seyahoo dam site located in the east of Iran to provide the permeability prediction model of fault zone structures. Datasets including scan-lines, drill cores, and water pressure tests in the terrain of Andesite and Basalt rocks were used to analyse the variability of in-site relative permeability of a range from fault zones to host rocks. The rock mass joint permeability quality, therefore, is defined by the JH. JH data analysis showed that the background sub-zone had commonly core had permeability characteristics nearly as low as the outer damage zone, represented by 8 Lu (1.3 ×10-4 m 3/s) per fracture, with occasional peaks towards 12 Lu (2 ×10-4 m 3/s) per fracture. The maximum JH value belongs to the inner damage zone, marginal to the fault core, with 14-22 Lu (2.3 ×10-4-3.6 ×10-4 m 3/s) per fracture, locally exceeding 25 Lu (4.1 ×10-4 m 3/s) per fracture. This gives a proportional relationship for JH approximately 1:4:2 between the fault core, inner damage zone, and outer damage zone of extensional fault zones in crystalline rocks. The results of the verification exercise revealed that the new approach would be efficient and that the JH parameter is a reliable scale for the fracture permeability change. It can be concluded that using short duration hydraulic tests (WPTs) and fracture frequency (FF) to calculate the JH parameter provides a possibility to describe a complex situation and compare, discuss, and weigh the hydraulic quality to make predictions as to the permeability models and permeation amounts of different
Hamidreza Rostami Barani; Gholamreza Lashkaripour; Mohammad Ghafoori
2014-08-01
In the present study, a new model is proposed to predict the permeability per fracture in the fault zones by a new parameter named joint hydraulic factor (JH). JH is obtained from Water Pressure Test WPT) and modified by the degree of fracturing. The results of JH correspond with quantitative fault zone descriptions, qualitative fracture, and fault rock properties. In this respect, a case study was done based on the data collected from Seyahoo dam site located in the east of Iran to provide the permeability prediction model of fault zone structures. Datasets including scan-lines, drill cores, and water pressure tests in the terrain of Andesite and Basalt rocks were used to analyse the variability of in-site relative permeability of a range from fault zones to host rocks. The rock mass joint permeability quality, therefore, is defined by the JH. JH data analysis showed that the background sub-zone had commonly > 3 Lu (less of 5 × 10−5 m3/s) per fracture, whereas the fault core had permeability characteristics nearly as low as the outer damage zone, represented by 8 Lu (1.3 × 10−4 m3/s) per fracture, with occasional peaks towards 12 Lu (2 × 10−4 m3/s) per fracture. The maximum JH value belongs to the inner damage zone, marginal to the fault core, with 14–22 Lu (2.3 × 10−4 –3.6 × 10−4 m3/s) per fracture, locally exceeding 25 Lu (4.1 × 10−4 m3/s) per fracture. This gives a proportional relationship for JH approximately 1:4:2 between the fault core, inner damage zone, and outer damage zone of extensional fault zones in crystalline rocks. The results of the verification exercise revealed that the new approach would be efficient and that the JH parameter is a reliable scale for the fracture permeability change. It can be concluded that using short duration hydraulic tests (WPTs) and fracture frequency (FF) to calculate the JH parameter provides a possibility to describe a complex situation and compare, discuss, and weigh the hydraulic quality to make
Distribution of biofilm thickness in porous media and implications for permeability models
Ye, Shujun; Zhang, Yanhong; Sleep, Brent E.
2015-12-01
The distribution of biofilm thickness on individual sand grains in a two-dimensional sand-filled cell maintained under anaerobic conditions was investigated. The cell was inoculated with a mixed microbial culture fed with methanol. Concentrations of biomass attached to the sand and suspended in the water in the cell were determined by protein analysis. The biofilm thickness on individual sand grains was investigated with confocal laser scanning microscopy (CLSM), and was found to follow a normal distribution with a mean range of 59-316 μ and standard deviations of 30-77 μ. The bulk average permeability reduction factor is 8. To investigate the implications of the variability of biofilm thicknesses, four models were used to calculate reductions in porous media permeability. Taylor's model predicted a reduction by a factor ranging from 14 to 5,000 (from minimum to maximum mean biofilm thickness). Vandevivere's model predicted a reduction in permeability by a factor ranging from 769 to 3,846 (from minimum to maximum mean biofilm thickness). Seki's model did not give physically meaningful results in this study. Clement's model predicted reduction by a factor ranging from 1 to 1.14 over the range of biomass levels observed in the cell. Data on the statistical and normal distributions of biofilm thickness in porous media, and assessment of their implications with respect to different permeability models, could lead to better understanding of the extent of bioclogging associated with field implementation of bioremediation of contaminants in aquifers.
John R Kelly
2015-10-01
Full Text Available The emerging links between our gut microbiome and the central nervous system are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting pre-clinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behaviour by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a leaky gut may facilitate communication between the microbiota and these key signalling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the central nervous system (CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function.
Schimpel, Christa; Teubl, Birgit; Absenger, Markus; Meindl, Claudia; Fröhlich, Eleonore; Leitinger, Gerd; Zimmer, Andreas; Roblegg, Eva
2014-03-03
Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems.
Maillot, J.; Davy, P.; De Dreuzy, J. R.; Le Goc, R.; Darcel, C.
2014-12-01
A major use of Discrete Fracture Network models (DFN) is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. Although extensively studied, there has been little interest in the spatial structure of DFN models, generally assumed to be Poissonian, i.e. spatially random. In this paper, we compare the results of Poissonian DFN to new DFN models where fractures result from a growth process defined by simplified rules for nucleation, growth and fracture arrest. This 'mechanical' model is characterized by a large proportion of T-intersections, and a distribution of the number of intersections per fracture models from Poissonian DFN. Flow distributions and permeability were calculated for 3D networks with up to 1,200 fractures and power-law fracture length distributions. For the same statistical properties in orientation and density, the permeability is significantly smaller in mechanical models than in their Poissonian equivalent, with ratios between 3 and >10. We estimate flow channeling by calculating the participation ratio of the distribution of flow per fracture (Pf), which gives the number of fractures that carry a significant part of the flow. Pf is much larger for Poissonian model than for mechanical ones. Moreover we find that permeability scales linearly with Pf, illustrating the close relationship between the geological structure, flow structure, and permeability. In most of hardrock aquifers (illustrated with examples from Sweden), the density of fracture is about a few fractures per meter, while the flow localizes in a few channels at the kilometric scale. There are several reasons why channeling is so extreme, including a large distribution of fracture transmissivities, but this observation also questions the use of Poissonian models in describing the actual fracture network structure.
A multiscale model of distributed fracture and permeability in solids in all-round compression
De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna
2017-07-01
We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.
Two-Scale Modeling Approach to Predict Permeability of Fibrous Media
Sudhakar Jaganathan
2008-06-01
Full Text Available We previously demonstrated how one can develop a 3-D geometry to model the fibrous microstructure of a nonwoven fiberweb and use it to simulate its permeability at fiber level [1-6]. Developing 3-D models of most nonwoven fabrics (bonded fiberwebs, however, is cumbersome, as in the case of hydroentangled fabrics, for instance. In such cases, microscopic techniques are often used to generate 3-D images of the media’s microstructures. Nevertheless, whether the microstructure is modeled or obtained from 3-D imaging, extensive computational resources are required to use them in fluid flow simulations [7]. To circumvent this problem, a two-scale modeling approach is proposed here that allows us to simulate the entire thickness of a commercial fabric/filter on a personal computer. In particular, the microscale permeability of a hydroentangled nonwoven is computed using 3-D reconstructed microstructures obtained from Digital Volumetric Imaging (DVI. The resulting microstructural permeability tensors are then used in a macroscale porous model to simulate the flow through the material’s thickness and the calculation of its overall permeability.
A New Model for Gas Transfer and Storage in a Permeable Volcanic Edifice
Collinson, A. D.; Neuberg, J.
2011-12-01
There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. It is therefore essential to understand degassing, to appreciate how much gas is lost and where. Previous studies by a variety of scientists have led to the accumulation of data via field evidence from both active and fossil volcanoes (Stasiuk et al., 1996), laboratory experiments (Moore et al., 1994) and conceptual modelling, in which Darcy's law has become increasingly applicable (Eichelberger et al., 1986; Edmonds et al., 2003). Of particular interest for this study, is the effect different permeabilities have on the degree and pattern of the gas flux. A new method has been devised to investigate gas transport and storage in a permeable volcanic edifice. The continuity equation and Darcy's law are amalgamated to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas flux. The properties of the gas are described by the ideal gas law. The strength of this method is that it allows the modelling of two and three dimensional structures both in stationary equilibrium and as a time dependent progression. A geometry is created and the pressure and permeabilites incorporated into the model as boundary and domain conditions respectively. The aim of the model is to investigate how variable permeability and pressure gradients influence the gas flux, for example highly permeable cracks in the dome, or impermeable layers within the volcanic structure. We also use this gas model to complement the model of Neuberg et al. (2006) in which brittle failure of the conduit-wall boundary is used as a trigger mechanism of low-frequency earthquakes. The associated behaviour of the gas in response to the brittle failure is simulated in our model by increasing the permeability through a narrow zone at the boundary between the conduit
Shao, W.; Bogaard, T.A.; Bakker, M.
2014-01-01
Preferential flow paths, such as cracks, macropores, fissures, pipes etc. are common features of highly heterogeneous slopes. During intense rainstorms, preferential flow has a significant influence on subsurface flow and slope stability. Dual-permeability models are widely used to simulate
Shao, W.; Bogaard, T.A.; Bakker, M.
2014-01-01
Preferential flow paths, such as cracks, macropores, fissures, pipes etc. are common features of highly heterogeneous slopes. During intense rainstorms, preferential flow has a significant influence on subsurface flow and slope stability. Dual-permeability models are widely used to simulate preferen
Prediction of human skin permeability using artificial neural network (ANN)modeling
Long-jian CHEN; Guo-ping LIAN; Lu-jia HAN
2007-01-01
Aim: To develop an artificial neural network (ANN) model for predicting skin permeability (log Kp) of new chemical entities. Methods: A large dataset of 215experimental data points was compiled from the literature. The dataset was subdi-vided into 5 subsets and 4 of them were used to train and validate an ANN model.The same 4 datasets were also used to build a multiple linear regression (MLR)model. The remaining dataset was then used to test the 2 models. Abraham descriptors were employed as inputs into the 2 models. Model predictions were compared with the experimental results. In addition, the relationship between log Kp and Abraham descriptors were investigated. Results: The regression re-sults of the MLR model were n=215, determination coefficient (R2)=0.699, mean square error (MSE)=0.243, and F=493.556. The ANN model gave improved results with n=215, R2=0.832, MSE=0.136, and F=1050.653. The ANN model suggests that the relationship between log Kp and Abraham descriptors is non-linear. Conclusion:The study suggests that Abraham descriptors may be used to predict skin permeability, and the ANN model gives improved prediction of skin permeability.
Temporal evolution modeling of hydraulic and water quality performance of permeable pavements
Huang, Jian; He, Jianxun; Valeo, Caterina; Chu, Angus
2016-02-01
A mathematical model for predicting hydraulic and water quality performance in both the short- and long-term is proposed based on field measurements for three types of permeable pavements: porous asphalt (PA), porous concrete (PC), and permeable inter-locking concrete pavers (PICP). The model was applied to three field-scale test sites in Calgary, Alberta, Canada. The model performance was assessed in terms of hydraulic parameters including time to peak, peak flow and water balance and a water quality variable (the removal rate of total suspended solids). A total of 20 simulated storm events were used for model calibration and verification processes. The proposed model can simulate the outflow hydrographs with a coefficient of determination (R2) ranging from 0.762 to 0.907, and normalized root-mean-square deviation (NRMSD) ranging from 13.78% to 17.83%. Comparison of the time to peak flow, peak flow, runoff volume and TSS removal rates between the measured and modeled values in model verification phase had a maximum difference of 11%. The results demonstrate that the proposed model is capable of capturing the temporal dynamics of the pavement performance. Therefore, the model has great potential as a practical modeling tool for permeable pavement design and performance assessment.
Two-Scale Modeling Approach to Predict Permeability of Fibrous Media
Sudhakar Jaganathan; Behnam Pourdeyhimi, Ph.D.; Hooman V. Tafreshi, Ph.D.
2008-01-01
We previously demonstrated how one can develop a 3-D geometry to model the fibrous microstructure of a nonwoven fiberweb and use it to simulate its permeability at fiber level [1-6]. Developing 3-D models of most nonwoven fabrics (bonded fiberwebs), however, is cumbersome, as in the case of hydroentangled fabrics, for instance. In such cases, microscopic techniques are often used to generate 3-D images of the media’s microstructures. Nevertheless, whether the microstructure is modeled or obta...
Pepin, J.; Folsom, M.; Person, M. A.; Kelley, S.; Gomez-Velez, J. D.; Peacock, J.
2016-12-01
Over the last 30 years, considerable effort has focused on understanding the distribution of permeability within the earth's crust and its implications for flow and transport. The scarcity of direct observations makes the description of permeabilities beyond depths of about 3 km particularly challenging. Numerous studies have defined depth-decay relationships for basement permeability, while others note that it is too complex to be characterized by a general relationship. Hydrothermal modeling studies focusing on two geothermal systems within the tectonically active Rio Grande rift of New Mexico suggest that there may be laterally extensive regions of highly permeable (10-14 to 10-12 m2) basement rocks at depths ranging between 4 and 8 km. The NaCl groundwater signature, elevated fracture density, and secondary mineralization of fractured basement outcrops associated with these geothermal systems indicate that there may indeed be significant groundwater flow within the basement rocks of the rift. We hypothesize that there are extensive regions of highly permeable crystalline basement rocks at depths greater than 3 km within the Rio Grande rift. These fractured zones serve as large conduits for geothermal fluids before they ascend to shallow depths through gaps in overlying confining sediments or along faults. To test these hypotheses, we use a combination of geophysical observations and flow and transport modeling. We used electromagnetic geophysics (TEM & MT) to image resistivity in one of the hypothesized deep circulation geothermal systems near Truth or Consequences, NM. The resistivity dataset, in tandem with geochemical and thermal observations, is then used to calibrate a hydrothermal model of the system. This new calibration methodology has the potential to change the way researchers study crustal fluid flow and geothermal systems; thereby providing a tool to explore depths greater than 3 km where minimal data is available. In addition, it has the advantage
Crone, T. J.; Sohn, R. A.; Barreyre, T.
2014-12-01
Recent measurements of ocean bottom pressure suggest that hydrothermal flow induces cm-scale periodic ground surface displacement (GSD) at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge (Sohn et al., 2009). The pressure measurements contain spectral peaks and harmonics with periods ranging from 22 to 53 min, none of which can be attributed to oceanographic or Earth tide processes. It is hypothesized that GSD cycles in this system may result from a nonlinear feedback between pore pressure and permeability in the hydrothermal system. To test this hypothesis we have developed a poroelastic convection model representing the upper crustal section at TAG that includes a "switching" type pressure-permeability feedback in the stockwork zone of the hydrothermal system. In this zone, the permeability increases when the pressure reaches a critical high value, and decreases when it reaches a critical low value. This behavior simulates the opening and closing of cracks within the hydrothermal system, and is similar to mechanisms that have been proposed for dike propagation in magmatic systems (Buck et al., 2006). Our modeling suggests that this mechanism can generate GSD that are similar to those observed at TAG. We are currently using these models to explore the sensitivity of inflation and deflation rates to system properties such as the geometry of the stockwork zone, the temperature of fluid in the upflow zone, the elastic properties of the lithosphere, and the relationship between pore pressure and permeability.
Fairstein, Moran; Swissa, Rotem; Dahan, Arik
2013-04-01
Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.
Booth, R; Kim, H
2014-12-01
This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood-brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm(2) shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP e values [ranging from -4.06 to -3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R (2) > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.
Modelling And Analysis Of Permeability Of Anisotropic Compressed Non-Woven Filters
Prieur du Plessis, J.; Woudberg, Sonia; Le Coq, Laurence
2010-05-01
An existing geometrical pore-scale model for flow through isotropic spongelike media is adapted to predict flow through anisotropic non-woven glass fibre filters. Model predictions are compared to experimental results for the permeability obtained for a filter under different stages of compression to demonstrate the capability of the model to adjust to changes in porosity. The experimental data used are for a glass fibre paper with a uniform fibre diameter. The input parameters of the pore-scale model are the porosity, fibre diameter and some measure of the anisotropy between the in-plane and normal directions to the paper. Correlation between the predictions and the experimental results is satisfactory and provides confidence in the modelling procedure. It is shown that the permeability is very sensitive to changes in the level of anisotropy, i.e. the level of compression of the nonwoven material.
Pusch G.
2006-11-01
Full Text Available A new 2-parameter desaturation function is introduced which offers a broader range of applicability to reservoir rock. Based on this function two-phase relative permeabilities are derived for oil phase and microemulsion flow. These functions are used to match a laboratory experiment by using surfactant flooding for a single surfactant system. Les auteurs présentent une nouvelle fonction de désaturation à deux paramètres qui offre une plus large gamme de possibilités d'application aux roches réservoir. On tire de cette fonction des perméabilités relatives biphasiques pour l'écoulement de la phase pétrole et d'une microémulsion. Ces fonctions sont utilisées pour reproduire une expérience de laboratoire avec injection de surfactant pour un seul système surfactant.
Kim, Jae-Seung; Mitchell, Stefanie; Kijek, Paul; Tsume, Yasuhiro; Hilfinger, John; Amidon, Gordon L
2006-01-01
The FDA has published recommendations for sponsors who wish to request a waiver of in vivo bioavailability (BA) or bioequivalence (BE) studies for immediate release (IR) solid oral dosage forms based on the Biopharmaceutics Classification System (BCS). Biowaivers can be requested for IR formulations in which the active ingredient is shown to be a BCS class I drug: that is, a drug showing high permeability and high solubility over a pH range of 1-7.5. For permeability determinations, a variety of experimental methods can be used, such as the rat in situ single pass perfusion or Caco-2 cell culture models, once the suitability of the particular method is established. Following the recommended procedure for assessing the suitability of permeability determinations, we determined the permeability of 20 test drugs using the in situ single pass perfusion model in rats. The test compounds were coperfused through jejunal intestinal segments with an internal permeability reference standard (metoprolol) over a 90 min time period. Sample analysis was performed by HPLC, and the ratio of the effective permeability, Peff (cm/s), of test compound to that of metoprolol was determined. To address the question of test drug permeabilities that approach that of the internal standard, we propose that a statistical analysis such as the "0.8-1.25 rule" used for in vivo or in vitro bioequivalence studies provide guidance for permeability classification using the in situ single pass perfusion model. We developed a method using the 90% confidence interval of the permeability ratio of the test to internal reference standard in order to differentiate between high and low permeability compounds. This analysis allowed for the proper permeability classification of all of the test compounds and suggests a robust means for assessing drug permeability classification.
Density-corrected models for gas diffusivity and air permeability in unsaturated soil
Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Møldrup, Per; Schjønning, Per
2011-01-01
. Also, a power-law ka model with exponent 1.5 (derived from analogy with a previous gas diffusivity model) used in combination with the D-C approach for ka,100 (reference point) seemed promising for ka(e) predictions, with good accuracy and minimum parameter requirements. Finally, the new D-C model......Accurate prediction of gas diffusivity (Dp/Do) and air permeability (ka) and their variations with air-filled porosity (e) in soil is critical for simulating subsurface migration and emission of climate gases and organic vapors. Gas diffusivity and air permeability measurements from Danish soil...... profile data (total of 150 undisturbed soil samples) were used to investigate soil type and density effects on the gas transport parameters and for model development. The measurements were within a given range of matric potentials (-10 to -500 cm H2O) typically representing natural field conditions...
Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability
Heye, Anna K.; Thrippleton, Michael J.; Armitage, Paul A.; Valdés Hernández, Maria del C.; Makin, Stephen D.; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M.
2016-01-01
There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model
Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.
Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M
2016-01-15
There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability
Water vapour permeability of poly(lactic acid): Crystallinity and the tortuous path model
Duan, Z.; Thomas, N. L.
2014-02-01
The water vapour transmission rates (WVTR) through samples of polylactic acid of different crystallinities have been measured. Three different grades of commercial poly(lactic acid) (PLA) were used with different ratios of L-lactide and D-lactide to give a range of crystallinities from 0% to 50%. Sheets of PLA were prepared by melt compounding followed by compression moulding and annealing at different temperatures and for different times to give the range of crystallinities required. Crystallinity was measured by differential scanning calorimetry and the morphology of the samples was observed under crossed polars in a transmitted light microscope. Water vapour transmission rates through the films were measured at 38 °C and at a relative humidity of 90%. It was found that the measured values of WVTR decreased linearly with increasing crystallinity of the PLA from 0% to 50%. The results are discussed in terms of the effect of crystallinity on solubility and shown to fit the "Tortuous Path Model." The model was also successfully used to explain published data on water permeability of polyethylene terephthalate.
Wedin, Håkan; Cherubini, Stefania
2016-12-01
The asymptotic suction boundary layer (ASBL) is used for studying two permeability models, namely the Darcy and the Forchheimer model, the latter being more physically correct according to the literature. The term that defines the two apart is a function of the non-Darcian wall permeability {\\hat{K}}2 and of the wall suction {\\hat{V}}0, whereas the Darcian wall permeability {\\hat{K}}1 is common to the two models. The underlying interest of the study lies in the field of transition to turbulence where focus is put on two-dimensional nonlinear traveling waves (TWs) and their three-dimensional linear stability. Following a previous study by Wedin et al (2015 Phys. Rev. E 92 013022), where only the Darcy model was considered, the present work aims at comparing the two models, assessing where in the parameter space they cease to produce the same results. For low values of {\\hat{K}}1 both models produce almost identical TW solutions. However, when both increasing the suction {\\hat{V}}0 to sufficiently high amplitudes (i.e. lowering the Reynolds number Re, based on the displacement thickness) and using large values of the wall porosity, differences are observed. In terms of the non-dimensional Darcian wall permeability parameter, a, strong differences in the overall shape of the bifurcation curves are observed for a≳ 0.70, with the emergence of a new family of solutions at Re lower than 100. For these large values of a, a Forchheimer number {{Fo}}\\max ≳ 0.5 is found, where Fo expresses the ratio between the kinetic and viscous forces acting on the porous wall. Moreover, the minimum Reynolds number, {{Re}}g, for which the Navier-Stokes equations allow for nonlinear solutions, decreases for increasing values of a. Fixing the streamwise wavenumber to α = 0.154, as used in the study by Wedin et al referenced above, we find that {{Re}}g is lowered from Re ≈ 3000 for zero permeability, to below 50 for a = 0.80 for both permeability models. Finally, the stability of
Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick
2014-01-01
The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions.
Modelling of the magnetic and magnetostrictive properties of high permeability Mn–Zn ferrites
R Szewczyk
2006-12-01
This paper presents the results of modelling of both magnetic and magnetostrictive properties of high permeability Mn0.51Zn0.44Fe2.05O4 ferrites. The parameters of energy-based Jiles–Atherton–Sablik (J–A–S) model were calculated for each experimental hysteresis loop on the basis of evolutionary strategies and Hook–Jevis optimization method. Finally, high conformity between experimental and modelling results was achieved. This high conformity indicates that the presented results create new opportunity of modelling of the properties of inductive components based on ferrites as well as quantitative description of magnetization process.
Westerwaal, R. J.; Bouman, E. A.; Haije, W. G.; Schreuders, H.; Dutta, S.; Wu, M. Y.; Boelsma, C.; Ngene, P.|info:eu-repo/dai/nl/314121684; Basak, S.; Dam, B.
2015-01-01
Pd-Cu is a well-known alloy for H-2 separation membranes. Using a new optical combinatorial method we determined the H-2 permeability of Pd-Cu alloys at room temperature in relation to their crystal structure and microstructure. Compositional gradient samples allow us to determine the intrinsic perm
Eirheim, Heidi Ugelstad; Bundgaard, Christoffer; Nielsen, Hanne Mørck
2004-01-01
exposed to different GC concentrations for 4 h. The MTS/PMS assay and neutral red (NR) retention were performed along with quantitation of ATP, lactate dehydrogenase (LDH) and extracellular protein. The toxicity was calculated as the IC50 value relative to the control. Increase in 3H-mannitol permeability...
Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto
2017-04-01
We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.
Alveolocapillary membrane permeability in experimental model of ventilator induced lung injury
Наталья Александровна Решетняк
2016-01-01
Full Text Available Aim: to assess alveocapillary membrane permeability for the whole protein, middle molecular peptides and some lipoperoxidation markers depending on respiratory volume using in reproduction of ventilator induced lung injury model.Material and methods: Experiments were carried out on 15 laboratory rats- males (body mass 180–240 gr. of “Vistar” line. The mechanical pulmonary ventilation in rats was carried out using tracheostomy cannula ALV Hamilton G 5 apparatus during 2 hours under the total anesthesia with sodium thiopental at a rate of 40 mg|kg of animal body mass. The initial parameters of ventilation were equal in all animals: Inspiratory time = 0,5 seconds; respiratory rate = 60 – 76/minute; pressure at the end of expiration (PEE = 0 - 2 sm. of water column; inspiration-expiration ratio (I:E = 1:1 or 1:2. Depending on the size of respiratory volume (RV animal were divided into 3 groups (n=5. Animals with RV=7 ml/kg of body mass formed the first group (the control one. The second group included animals with RV = 20 ml/kg of body mass (the moderate volutrauma and the third one included animals with RV = 40 ml/kg of body mass (the heavy volutrauma. The bronchoalveolar lavage was carried out on isolated lungs with the volume of filling at a rate 5 ml of 0,9 % sodium chloride solution for 1 g of pulmonary tissue and there was received nearly 2,5+0,5 ml of lavage liquid (sodium chloride solution + bronchoalveolar liquid. The alveolocapillary membrane permeability was assessed by detecting in the received liquid of bronchoalveolar lavage the concentration of whole protein on Lowry, the content of middle mass molecules on extinction at wave lengths 238, 254, 260, and 280 nm; the level of diene conjugates on V.B. Gavrilov and catalase activity on M.A. Koroliuk. The received data were processed using methods of nonparametric statistics. The revealed intergroup differences were assessed on Kruskall-Wallis «ANOVA» criterion. The differences at
Zhang, Duo; Papadikis, K.; Gu, Sai
2016-09-01
In the current paper, the effect of the geometrical characteristics of 2-D porous media on the relative permeability in immiscible two-phase flows is studied. The generation of the different artificial porous media is performed using a Boolean model based on a random distribution of overlapping circles/ellipses, the size and shape of which are chosen to satisfy the specific Minkowski functionals (i.e. volume fraction, solid line contour length, connectivity). The study aims to identify how each different Minkowski functional affects the relative permeability of each phase at various saturations of the non-wetting phase. A 2-D multi-relaxation time (MRT) lattice Boltzmann model (LBM) that can handle high density ratios is employed in the simulation. The relationship between the driving forces G and the relative permeabilities of the two phases for every artificial structure is quantified. It is found that for high non-wetting phase saturations (fully connected flow), a non-linear relationship exists between the non-wetting phase flow rate and the driving force, whilst this relationship becomes linear at higher magnitudes of the latter. The force magnitude required to approach the linear region is highly influenced by the pore size distribution and the connectivity of the solid phase. For lower non-wetting phase saturation values, its relative permeability in the linear regime decreases as the fraction of small pores in the structure increases and the non-wetting phase flow becomes disconnected. A strong influence of the solid phase connectivity is also observed.
Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand
2016-04-01
Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90
Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.
2017-08-01
In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.
Zhu Hongqiu; Yang Chunhua; Gui Weihua
2009-01-01
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive particle swarm optimization (PSO). The number of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model.
Liu, Hui-Hai
2014-05-01
In clay or other low-permeability media, water flow becomes non-Darcian and characterized by the non-linear relationship between water flux and hydraulic gradient. This work is devoted to addressing a number of key issues related to geological disposal of high-level nuclear waste in clay/shale formations. It is demonstrated that water flow velocity in the damaged zone (often considered as a potential preferential advection paths in a repository) surrounding the tunnel is extremely small, as a result of non-Darcian flow behavior, such that solute transport is dominated by diffusion, rather than advection. The finding is also consistent with the often-observed existence of persistent abnormal pressures in shale formations. While relative permeability is the key parameter for modeling the unsaturated flow process, without incorporating non-Darcian flow behavior, significant errors can occur in the determination of relative permeability values from traditional measurement methods. An approach for dealing with temperature impact on non-Darcian flow and a formulation to calculate non-Darcian water flux in an anisotropic medium are presented, taking into consideration that a geological repository is subject to temperature evolution in the near field as a result of heat generated by nuclear waste, and that shale formations are generally anisotropic.
Permeability of Electrospun Superhydrophobic Nanofiber Mats
Sarfaraz U. Patel
2012-01-01
Full Text Available This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.
El-Dieb, A.S.; Hooton, R.D. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)
1994-01-01
The permeability of concrete is becoming a focal characteristic with regard to the durability and performance of cement-based materials, pastes, mortars and concretes. Since it is mainly affected by the microstructure of the porous media, many models and theories have been developed relating the permeability of porous media to their microstructural parameters. One which proved to be useful in predicting the permeability of sedimentary rock, from mercury intrusion porosimetry data, is the Katz-Thompson theory. A review of this theory and its assumptions is presented, and its applicability to cementitious materials is investigated using two sets of data of various hardened cement pastes and concretes. Also, the major differences between cement-based materials and sedimentary rock from the microstructural point of view is reported.
VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA
The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the
VANELBURG, RM; UIL, JJ; MULDER, CJJ; HEYMANS, HSA
1993-01-01
The functional integrity of the small bowel is impaired in coeliac disease. Intestinal permeability, as measured by the sugar absorption test probably reflects this phenomenon. In the sugar absorption test a solution of lactulose and mannitol was given to the fasting patient and the lactulose/mannit
Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro
Nielsen, Hanne Mørck; Rassing, Margrethe Rømer
2002-01-01
The present study was conducted to investigate and compare the effect of pH and drug concentration on nicotine permeability across the TR146 cell culture model and porcine buccal mucosa in vitro. As a further characterization of the TR146 cell culture model, it was explored whether the results were...... comparable for bi-directional and uni-directional transport in the presence of a transmembrane pH gradient. Nicotine concentrations between 10(-5) and 10(-2) M were applied to the apical side of the TR146 cell culture model or the mucosal side of porcine buccal mucosa. Buffers with pH values of 5.5, 7.......4 and 8.1 were used to obtain different fractions of non- and mono-ionized nicotine. The apparent permeability (P(app)) of nicotine across both models increased significantly with increasing pH, and the P(app) values obtained with the two models could be correlated in a linear manner. With increasing...
Christiansen, R.L. [Colorado School of Mines, Golden, CO (United States). Dept. of Petroleum Engineering; Howarth, S.M. [Sandia National Labs., Albuquerque, NM (United States)
1995-08-01
This report documents a literature review of methods for measuring relative permeability as applied to low permeability anhydrite rock samples from the Salado Formation. About one hundred papers were reviewed, and four methods were identified as promising techniques for measuring the relative permeability of the Salado anhydrite: (1) the unsteady-state high-rate method, (2) the unsteady-state stationary-liquid method, (3) the unsteady-state centrifuge method, and (4) the unsteady-state low-rate method. Except for the centrifuge method, all have been used for low permeability rocks. The unsteady-state high-rate method is preferred for measuring relative permeability of Salado anhydrite, and the unsteady-state stationary-liquid method could be well suited for measuring gas relative permeability of Salado anhydrite. The unsteady-state low-rate method, which combines capillary pressure effects with relative permeability concepts may also prove effective. Likewise, the unsteady-state centrifuge method may be an efficient means for measuring brine relative permeability for Salado anhydrite, especially at high gas saturations.
Zahra Izadi
2014-12-01
Full Text Available More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs, in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horizontal permeability anisotropy and stress sensitivity are often ignored or inaccurately taken into account when simulating fluid flow in NFRs. The aim of this paper is to present an integrated approach for evaluating the dynamic and true anisotropic nature of permeability in naturally fractured reservoirs. Among other features, this approach considers the effect of reservoir depletion on reservoir permeability tensor, allowing more realistic production forecasts. In this approach the NFR is discretized into grids for which an analytical model yields full permeability tensors. Then, fluid flow is modelled using the finite-element method to obtain pore-pressure distribution within the reservoir. Next, another analytical model evaluates the change in the aperture of individual fractures as a function of effective stress and rock mechanical properties. The permeability tensor of each grid is then updated based on the apertures obtained for the current time step. The integrated model proceeds according to the next prescribed time increments.
Takeuchi, K.; Okada, M.; Niida, H.; Okabe, S.
1989-02-01
The relationship between gastric mucosal glutathione (GSH) levels, vascular permeability, gastric motility and mucosal injury caused by ethanol was investigated in rats. Oral administration of 50% ethanol (1 ml) produced elongated reddish bands of lesions in the mucosa with a significant reduction of GSH levels and increase of microvascular permeability. These lesions were significantly inhibited by pretreatment with s.c. administered diethylmaleate (DEM: 1 ml/kg), cysteamine (100 mg/kg) and 16, 16-dimethyl prostaglandin E2 (dmPGE2, 10 micrograms/kg) but worsened markedly by N-ethylmaleimide (NEM: 10 mg/kg). Irrespective of whether the animals were treated with 50% ethanol or not, the mucosal GSH levels were significantly decreased or increased, respectively, by DEM or cysteamine, and were not affected by both NEM and dmPGE2. NEM significantly enhanced the vascular permeability in the absence or presence of ethanol (greater than 10%), whereas other agents significantly inhibited only the increased vascular permeability caused by ethanol. On the other hand, gastric motility was potently and persistently inhibited by either DEM, cysteamine or dmPGE2 at the doses which prevented ethanol-induced mucosal injury, whereas NEM had no effect on the motility. These results suggest that 1) the mucosal GSH levels do not relate directly to either development or prevention of ethanol-induced gastric injury, 2) potentiation by NEM of the mucosal injury may be accounted for by its enhancement of the vascular permeability and 3) inhibition of gastric motility may be associated with prevention of mucosal lesions.
Gena, Patrizia; Buono, Nicoletta Del; D'Abbicco, Marcello; Mastrodonato, Maria; Berardi, Marco; Svelto, Maria; Lopez, Luciano; Calamita, Giuseppe
2017-01-01
Liver is crucial in the homeostasis of glycerol, an important metabolic intermediate. Plasma glycerol is imported by hepatocytes mainly through Aquaporin-9 (AQP9), an aquaglyceroporin channel negatively regulated by insulin in rodents. AQP9 is of critical importance in glycerol metabolism since hepatic glycerol utilization is rate-limited at the hepatocyte membrane permeation step. Glycerol kinase catalyzes the initial step for the conversion of the imported glycerol into glycerol-3-phosphate, a major substrate for de novo synthesis of glucose (gluconeogenesis) and/or triacyglycerols (lipogenesis). A model addressing the glucose-insulin system to describe the hepatic glycerol import and metabolism and the correlation with the glucose homeostasis is lacking so far. Here we consider a system of first-order ordinary differential equations delineating the relevance of hepatocyte AQP9 in liver glycerol permeability. Assuming the hepatic glycerol permeability as depending on the protein levels of AQP9, a mathematical function is designed describing the time course of the involvement of AQP9 in mouse hepatic glycerol metabolism in different nutritional states. The resulting theoretical relationship is derived fitting experimental data obtained with murine models at the fed, fasted or re-fed condition. While providing useful insights into the dynamics of liver AQP9 involvement in male rodent glycerol homeostasis our model may be adapted to the human liver serving as an important module of a whole body-model of the glucose metabolism both in health and metabolic diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.
Permeability-driven selection in a semi-empirical protocell model
Piedrafita, Gabriel; Monnard, Pierre-Alain; Mavelli, Fabio
2017-01-01
to prebiotic systems evolution more intricate, but were surely essential for sustaining far-from-equilibrium chemical dynamics, given their functional relevance in all modern cells. Here we explore a protocellular scenario in which some of those additional constraints/mechanisms are addressed, demonstrating...... their 'system-level' implications. In particular, an experimental study on the permeability of prebiotic vesicle membranes composed of binary lipid mixtures allows us to construct a semi-empirical model where protocells are able to reproduce and undergo an evolutionary process based on their coupling...
Toropova, Alla P; Toropov, Andrey A
2017-05-15
New criterion of the predictive potential of quantitative structure-property/activity relationships (QSPRs/QSARs) is suggested. This criterion is calculated with utilization of the correlation coefficient between experimental and calculated values of endpoint for the calibration set, with taking into account the positive and negative dispersions between experimental and calculated values. The utilization of this criterion improves the predictive potential of QSAR models of dermal permeability coefficient, logKp (cm/h). Copyright © 2017 Elsevier B.V. All rights reserved.
Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi
2014-05-01
There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the
Hayek, Mohamed
2014-09-01
The paper presents certain exact solutions describing the vertical movement of a water pulse through a semi-infinite unsaturated porous column. The saturation-based form of the Richards' equation is used with special power law relative-permeability functions. Both capillary and gravity effects are taken into account. Three exact solutions are derived corresponding to three relative-permeability functions, linear, quadratic and cubic. The Richards' equation is nonlinear for the three cases. The solutions are obtained by applying a general similarity transformation. They are explicit in space and time variables and do not contain any approximation. They describe the evolution of the water saturation in the vertical column and they can be used to predict the post-infiltration movement of a finite quantity of water. Exact expressions of the masses of water leaving a given depth are also derived for the three cases. We analyze the effect of relative-permeability and capillary pressure. The proposed solutions are also useful for checking numerical schemes. One of the exact solutions is used to validate numerical solution obtained from an arbitrary initial condition. Results show that the numerical solution converges to the exact solution for large times.
St John, R C; Mizer, L A; Weisbrode, S E; Dorinsky, P M
1991-11-01
Multiple nonpulmonary organ failure is a frequent complication of the adult respiratory distress syndrome (ARDS), and contributes significantly to the high mortality rate associated with this disorder. Although previous studies suggest that systemic organ injury may be an integral component of ARDS, little is known about the specific functional alterations that occur in these target organs. The present study was designed, therefore, to test the hypothesis that endothelial damage, as assessed by microvascular permeability changes, develops in systemic organs in a model of acute lung injury. To test this postulate, the microvascular permeability for total protein was estimated using the steady-state relationship between the lymph (CL) to plasma (Cp) protein concentration ratio (i.e., CL/Cp) and lymph flow in autoperfused cat ileum preparations. Specifically, CL/Cp was measured in five cats, 2 h after acute lung injury was induced by intravenously administered phorbol myristate acetate (PMA), 15 micrograms/kg, and the results were compared with those of seven time-matched control animals. Prior to PMA infusion, the PaO2/FIO2 ratio was 451 +/- 28 in both groups and remained unchanged (486 +/- 26) in the control group. By contrast, the PaO2/FIO2 ratio fell to 275 +/- 95 after PMA infusion (p less than 0.05). In addition, whereas CL/Cp was 0.099 +/- 0.008 in the control animals, it increased to 0.36 +/- 0.06 in the PMA-injured animals (p less than 0.01). In summary, this study demonstrated that in this model of acute lung injury produced by PMA-induced activation of circulating inflammatory cells, both acute lung injury and systemic organ injury (i.e., morphologic and permeability alterations) occurred.
Buckley, S. T.; Fischer, S. M.; Fricker, G.;
2012-01-01
The application of in vitro models in drug permeability studies represents a useful screening tool for assessing the biopharmaceutical appropriateness of new chemical entities (NCEs). Of note, there remains an ever-increasing number of NCEs which exhibit poor aqueous solubility. However, in their...... soluble drugs and critically assess those experimental modifications and solutions employed thus far in terms of their capacity to generate results with improved accuracy and precision. (C) 2011 Elsevier B.V. All rights reserved.......The application of in vitro models in drug permeability studies represents a useful screening tool for assessing the biopharmaceutical appropriateness of new chemical entities (NCEs). Of note, there remains an ever-increasing number of NCEs which exhibit poor aqueous solubility. However...... a more bio-relevant model system which offers good compatibility with poorly soluble compounds. Moreover, in many instances poorly soluble drugs necessitate the inclusion of excipients to facilitate efficient delivery and to enhance their bioavailability. Thus, there exists an increasing demand...
Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)
2014-11-03
Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.
Beauquier, Maxime; Schürmann, Carsten
2011-01-01
In this paper, we present a model based on relations for bigraphical reactive system [Milner09]. Its defining characteristics are that validity and reaction relations are captured as traces in a multi-set rewriting system. The relational model is derived from Milner's graphical definition...
CO2-induced dissolution of low permeability carbonates. Part II: Numerical modeling of experiments
Hao, Yue; Smith, Megan; Sholokhova, Yelena; Carroll, Susan
2013-12-01
We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity-permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts. The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more
Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara
2015-01-01
Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745
Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara
2015-03-01
Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.
Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.
2016-12-01
It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated
Xiaowu Tang
2016-01-01
Full Text Available Permeability of soil plays an important role in geotechnical engineering and is commonly determined by methods combining measurements with theory. Using the double-scale asymptotic expansion method, the Navier-Stokes equation is numerically solved to calculate the permeability, based on the homogenization method and the assumption that the homogeneous microstructure of the relevant porous media is represented accurately as the Representative Elemental Volume (REV. In this study, the commonly used square model is tested in the calculation of sea clay permeability. The results show large deviations. It is suspected that the square model could not represent the flattened shape of the clay particles and the bound water film wrapping around them. Hence, the Rectangle Particle-Water Film Model (i.e., the R-W model is proposed. After determining the horizontal and vertical characteristic length of the unit cell using two pairs of initial data, the permeabilities of other different void ratios could be inversely calculated. The results of three types of clay obtained using the R-W model agree well with the experimental data. This shows the efficient feasibility and accuracy of the R-W model by providing a good representation of the clay particles when using the double-scale asymptotic expansion method to calculate clay permeability.
Karlsson, Erik A.; Oguin, Thomas H.; Meliopoulos, Victoria; Iverson, Amy; Broadnax, Alexandria; Yoon, Sun-Woo; Pestina, Tamara; Thomas, Paul; Webby, Richard; Schultz-Cherry, Stacey; Rosch, Jason W.
2017-01-01
Sickle cell disease (SCD) is a major global health concern. Patients with SCD experience disproportionately greater morbidity and mortality in response to influenza infection than do others. Viral infection is one contributing factor for the development of Acute Chest Syndrome (ACS), a major cause of morbidity and mortality in SCD patients. We determined whether the heightened sensitivity to influenza infection could be reproduced in the two different SCD murine models to ascertain the underlying mechanisms of increased disease severity. In agreement with clinical observations, we found that both genetic and bone marrow-transplanted SCD mice had greater mortality in response to influenza infection than did wild-type animals. Despite similar initial viral titers and inflammatory responses between wild-type and SCD animals during infection, SCD mice continued to deteriorate and failed to resolve the infection, resulting in increased mortality. Histopathology of the lung tissues revealed extensive pulmonary edema and vascular damage following infection, a finding confirmed by heightened vascular permeability following virus challenge. These findings implicate the development of exacerbated pulmonary permeability following influenza challenge as the primary factor underlying heightened mortality. These studies highlight the need to focus on prevention and control strategies against influenza infection in the SCD population. PMID:28256526
Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks.
Gyoneva, Lazarina; Segal, Yoav; Dorfman, Kevin D; Barocas, Victor H
2015-07-01
Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.
Modeling of Fischer-Tropsch Synthesis in a Slurry Reactor with Water Permeable Membrane
Fabiano A. N. Fernandes
2007-01-01
Fischer-Tropsch synthesis is an important chemical process for the production of liquid fuels and olefins. In recent years, the abundant availability of natural gas and the increasing demand of olefins, diesel, and waxes have led to a high interest to further develop this process. A mathematical model of a slurry membrane reactor used for syngas polymerization was developed to simulate and compare the maximum yields and operating conditions in the reactor with that in a conventional slurry reactor.The carbon polymerization was studied from a modeling point of view in a slurry reactor with a water permeable membrane and a conventional slurry reactor. Simulation results show that different parameters affect syngas conversion and carbon product distribution, such as the hydrogen to carbon monoxide ratio,and the membrane parameters such as membrane permeance.
Two-Region Extended Archie's Law Model for Soil Air Permeability and Gas Diffusivity
Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken
2011-01-01
The air permeability (ka) and soil gas diffusion coefficients (Dp) are controlling factors for gas transport and fate in variably saturated soils. We developed a unified model for ka and Dp based on the classical Archie's law, extended by: (i) allowing for two-region gas transport behavior...... for structured soils, with the natural field moisture condition (set at −100 cm H2O matric potential [pF 2]) as the reference (spliced) point between the large-pore (drained pore diameter ≥30 μm at pF ≤ 2) and the small-pore (subsequently drained pores 2) regions, and (ii) including a percolation...... threshold, set as 10% of the total porosity for structureless porous media or 10% of the porosity in the large-pore region for structured soils. The resulting extended Archie's law with reference point (EXAR) models for ka and Dp were fitted to the measured data. For both structureless and structured porous...
Jin, Xuelong; Wang, Feifei; Liu, Xingju; Liang, Bin; Chen, Zequn; He, Junfeng; Zhang, Hong; Zhang, Jianning
2014-11-01
TBI causes localized cerebral ischemia that, in turn, is accompanied by both changes in BBB permeability and recruitment of CD34(+) cells to the injured tissue. However, it remains unknown whether CD34(+) cell recruitment is linked to BBB permeability. This study is a preliminary investigation into possible correlations between CD34(+) cell recruitment and BBB permeability following TBI in a rat model. Male SD rats were subjected to mild fluid percussion injury. BBB permeability was assessed by measuring extrinsic EB dye extravasation and endogenous EBA expression at days 1, 3, 5, 7, and 12 post injury. The number of CD34(+) cells in the damaged tissue was analyzed by immunohistochemistry at each time point. EB dye extravasation reached a peak at day 3 following TBI, while EBA expression displayed the reverse profile. Accumulation of CD34(+) cells in injured brain tissue was evident at five days post injury. It revealed a negative linear correlation between CD34(+) cell and BBB permeability. The negative linear correlation between CD34(+) cell recruitment and BBB permeability following TBI provides a support for further study of CD34(+) cell transplantation for BBB repair after TBI. © 2014 John Wiley & Sons Ltd.
Bouzerar, Roger; Chaarani, Bader; Baledent, Olivier [University Hospital, Image Processing Department, Amiens (France); Gondry-Jouet, Catherine [University Hospital, Radiology Department, Amiens (France); Zmudka, Jadwiga [University Hospital, Geriatric Unit, Amiens (France)
2013-12-15
The cerebrospinal fluid (CSF) plays a major role in the physiology of the central nervous system. The continuous turnover of CSF is mainly attributed to the highly vascularized choroid plexus (CP) located in the cerebral ventricles which represent a complex interface between blood and CSF. We propose a method for evaluating CP functionality in vivo using perfusion MR imaging and establish the age-related changes of associated parameters. Fifteen patients with small intracranial tumors were retrospectively studied. MR Imaging was performed on a 3T MR Scanner. Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (CA). The software developed used the combined T1- and T2-effects. The decomposition of the relaxivity signals enables the calculation of the CP capillary permeability (K{sub 2}). The relative cerebral blood volume (rCBV), mean transit time (MTT), and signal slope decrease (SSD) were also calculated. The mean permeability K{sub 2} of the extracted CP was 0.033+/-0.18 s{sup -1}. K{sub 2} and SSD significantly decreased with subject's age whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV and rCBF. The decrease in CP permeability is in line with the age-related changes in CSF secretion observed in animals. The MTT increase indicates significant structural changes corroborated by microscopy studies in animals or humans. Overall, DSC MR-perfusion enables an in vivo evaluation of the hemodynamic state of CP. Clinical applications such as neurodegenerative diseases could be considered thanks to specific functional studies of CP. (orig.)
Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.
2016-04-01
Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.
Zhou, Kang; Hou, Jian; Fu, Hongfei; Wei, Bei; Liu, Yongge
2017-01-01
Relative permeability controls the flow of multiphase fluids in porous media. The estimation of relative permeability is generally solved by Levenberg-Marquardt method with finite difference Jacobian approximation (LM-FD). However, the method can hardly be used in large-scale reservoirs because of unbearably huge computational cost. To eliminate this problem, the paper introduces the idea of simultaneous perturbation to simplify the generation of the Jacobian matrix needed in the Levenberg-Marquardt procedure and denotes the improved method as LM-SP. It is verified by numerical experiments and then applied to laboratory experiments and a real commercial oilfield. Numerical experiment indicates that LM-SP uses only 16.1% computational cost to obtain similar estimation of relative permeability and prediction of production performance compared with LM-FD. Laboratory experiment also shows the LM-SP has a 60.4% decrease in simulation cost while a 68.5% increase in estimation accuracy compared with the earlier published results. This is mainly because LM-FD needs 2n (n is the number of controlling knots) simulations to approximate Jacobian in each iteration, while only 2 simulations are enough in basic LM-SP. The convergence rate and estimation accuracy of LM-SP can be improved by averaging several simultaneous perturbation Jacobian approximations but the computational cost of each iteration may be increased. Considering the estimation accuracy and computational cost, averaging two Jacobian approximations is recommended in this paper. As the number of unknown controlling knots increases from 7 to 15, the saved simulation runs by LM-SP than LM-FD increases from 114 to 1164. This indicates LM-SP is more suitable than LM-FD for multivariate problems. Field application further proves the applicability of LM-SP on large real field as well as small laboratory problems.
Blau, Christoph W; Cowley, Thelma R; O'Sullivan, Joan; Grehan, Belinda; Browne, Tara C; Kelly, Laura; Birch, Amy; Murphy, Niamh; Kelly, Aine M; Kerskens, Christian M; Lynch, Marina A
2012-05-01
In view of the increase in the aging population and the unavoidable parallel increase in the incidence of age-related neurodegenerative diseases, a key challenge in neuroscience is the identification of clinical signatures which change with age and impact on neuronal and cognitive function. Early diagnosis offers the possibility of early therapeutic intervention, thus magnetic resonance imaging (MRI) is potentially a powerful diagnostic tool. We evaluated age-related changes in relaxometry, blood flow, and blood-brain barrier (BBB) permeability in the rat by magnetic resonance imaging and assessed these changes in the context of the age-related decrease in synaptic plasticity. We report that T2 relaxation time was decreased with age; this was coupled with a decrease in gray matter perfusion, suggesting that the observed microglial activation, as identified by increased expression of CD11b, MHCII, and CD68 by immunohistochemistry, flow cytometry, or polymerase chain reaction (PCR), might be a downstream consequence of these changes. Increased permeability of the blood-brain barrier was observed in the perivascular area and the hippocampus of aged, compared with young, rats. Similarly there was an age-related increase in CD45-positive cells by flow cytometry, which are most likely infiltrating macrophages, with a parallel increase in the messenger mRNA expression of chemokines IP-10 and MCP-1. These combined changes may contribute to the deficit in long-term potentiation (LTP) in perforant path-granule cell synapses of aged animals.
Permeability prediction in chalks
Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika
2011-01-01
The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches...... to enhance permeability prediction fromKozeny’s equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The Sg concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability...
Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients
Chamindu, Deepagoda T K K; Arthur, Emmanuel; Møldrup, Per
2013-01-01
Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... in soil and is controlled by soil physical characteristics representing soil texture and structure. Models predicting ka as a function of air-filled porosity (ɛ) often use a reference-point measurement, for example, ka,1000 at ɛ1000 (where the measurement is done at a suction of –1000 cm H2O). Using ka...... measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential...
Zhengong Zhou; Peiwei Zhang; Linzhi Wu
2010-01-01
In this paper,the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally,the relation between the electric field,the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress,the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.
Jiang, Lanlan; Liu, Yu; Teng, Ying; Zhao, Jiafei; Zhang, Yi; Yang, Mingjun; Song, Yongchen
2017-01-01
The purpose of this work is to develop a permeability estimation method for porous media. This method is based on an improved capillary bundle model by introducing some pore geometries. We firstly carried out micro-CT scans to extract the 3D digital model of porous media. Then we applied a maximum ball extraction method to the digital model to obtain the topological and geometrical pore parameters such as the pore radius, the throat radius and length and the average coordination number. We also applied a random walker method to calculate the tortuosity factors of porous media. We improved the capillary bundle model by introducing the pore geometries and tortuosity factors. Finally, we calculated the absolute permeabilities of four kinds of porous media formed of glass beads and compared the results with experiments and several other models to verify the improved model. We found that the calculated permeabilities using this improved capillary bundle model show better agreement with the measured permeabilities than the other methods.
Donna H. Murrell
2015-06-01
Full Text Available OBJECTIVES: Brain metastases due to breast cancer are increasing, and the prognosis is poor. Lack of effective therapy is attributed to heterogeneity of breast cancers and their resulting metastases, as well as impermeability of the blood–brain barrier (BBB, which hinders delivery of therapeutics to the brain. This work investigates three experimental models of HER2+ breast cancer brain metastasis to better understand the inherent heterogeneity of the disease. We use magnetic resonance imaging (MRI to quantify brain metastatic growth and explore its relationship with BBB permeability. DESIGN: Brain metastases due to breast cancer cells (SUM190-BR3, JIMT-1-BR3, or MDA-MB-231-BR-HER2 were imaged at 3 T using balanced steady-state free precession and contrast-enhanced T1-weighted spin echo sequences. The histology and immunohistochemistry corresponding to MRI were also analyzed. RESULTS: There were differences in metastatic tumor appearance by MRI, histology, and immunohistochemistry (Ki67, CD31, CD105 across the three models. The mean volume of an MDA-MB-231-BR-HER2 tumor was significantly larger compared to other models (F2,12 = 5.845, P < .05; interestingly, this model also had a significantly higher proportion of Gd-impermeable tumors (F2,12 = 22.18, P < .0001. Ki67 staining indicated that Gd-impermeable tumors had significantly more proliferative nuclei compared to Gd-permeable tumors (t[24] = 2.389, P < .05 in the MDA-MB-231-BR-HER2 model. CD31 and CD105 staining suggested no difference in new vasculature patterns between permeable and impermeable tumors in any model. CONCLUSION: Significant heterogeneity is present in these models of brain metastases from HER2+ breast cancer. Understanding this heterogeneity, especially as it relates to BBB permeability, is important for improvement in brain metastasis detection and treatment delivery.
Pépino, Marc; Rodríguez, Marco A; Magnan, Pierre
2012-07-01
Dispersal is a key determinant of the spatial distribution and abundance of populations, but human-made fragmentation can create barriers that hinder dispersal and reduce population viability. This study presents a modeling framework based on dispersal kernels (modified Laplace distributions) that describe stream fish dispersal in the presence of obstacles to passage. We used mark-recapture trials to quantify summer dispersal of brook trout (Salvelinus fontinalis) in four streams crossed by a highway. The analysis identified population heterogeneity in dispersal behavior, as revealed by the presence of a dominant sedentary component (48-72% of all individuals) characterized by short mean dispersal distance (dispersal distance (56-1086 m). We did not detect evidence of barrier effects on dispersal through highway crossings. Simulation of various plausible scenarios indicated that detectability of barrier effects was strongly dependent on features of sampling design, such as spatial configuration of the sampling area, barrier extent, and sample size. The proposed modeling framework extends conventional dispersal kernels by incorporating structural barriers. A major strength of the approach is that ecological process (dispersal model) and sampling design (observation model) are incorporated simultaneously into the analysis. This feature can facilitate the use of prior knowledge to improve sampling efficiency of mark-recapture trials in movement studies. Model-based estimation of barrier permeability and its associated uncertainty provides a rigorous approach for quantifying the effect of barriers on stream fish dispersal and assessing population dynamics of stream fish in fragmented landscapes.
ChiBin, Zhang; XiaoHui, Lin; ZhaoMin, Wang; ChangBao, Wang
2017-03-01
In experiments and theoretical analyses, this study examines the capture efficiency (CE) of magnetic drug carrier particles (MDCPs) for implant-assisted magnetic drug targeting (IA-MDT) in microvessels. It also proposes a three-dimensional statistical transport model of MDCPs for IA-MDT in permeable microvessels, which describes blood flow by the two-fluid (Casson and Newtonian) model. The model accounts for the permeable effect of the microvessel wall and the coupling effect between the blood flow and tissue fluid flow. The MDCPs move randomly through the microvessel, and their transport state is described by the Boltzmann equation. The regulated changes and factors affecting the CE of the MDCPs in the assisted magnetic targeting were obtained by solving the theoretical model and by experimental testing. The CE was negatively correlated with the blood flow velocity, and positively correlated with the external magnetic field intensity and microvessel permeability. The predicted CEs of the MDCPs were consistent with the experimental results. Additionally, under the same external magnetic field, the predicted CE was 5-8% higher in the IA-MDT model than in the model ignoring the permeability effect of the microvessel wall.
Modeling water permeability in needle-punched nonwovens using finite element analysis
Patanaik, A
2008-03-01
Full Text Available -punching process. The pore size in the nonwovens is measured by liquid extrusion porometry. Water permeability is measured by the water permeability tester. A finite element analysis is employed to predict the flow velocity through the nonwovens. A good correlation...
Compact rock material gas permeability properties
Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)
2014-09-15
Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.
Mass Transport Modelling in low permeability Fractured Rock: Eulerian versus Lagrangian approaches.
Capilla, J. E.; Rodrigo, J.; Llopis, C.; Grisales, C.; Gomez-Hernandez, J. J.
2003-04-01
Modeling flow and mass transport in fractured rocks can not be always successfully addressed by means of discrete fracture models which can fail due to the difficulty to be calibrated to experimental measurements. This is due to the need of having an accurate knowledge of fractures geometry and of the bidimensional distribution of hydrodynamic parameters on them. Besides, these models tend to be too rigid in the sense of not being able to re-adapt themselves correcting deficiencies or errors in the fracture definition. An alternative approach is assuming a pseudo-continuum media in which fractures are represented by the introduction of discretization blocks of very high hydraulic conductivity (K). This kind of model has been successfully tested in some real cases where the stochastic inversion of the flow equation has been performed to obtain equally likely K fields. However, in this framework, Eulerian mass transport modeling yields numerical dispersion and oscillations that make very difficult the analysis of tracer tests and the inversion of concentration data to identify K fields. In this contribution we present flow and mass transport modelling results in a fractured medium approached by a pseudo-continuum. The case study considered is based on data from a low permeability formation and both Eulerian and Lagrangian approaches have been applied. K fields in fractures are modeled as realizations of a stochastic process conditional to piezometric head data. Both a MultiGaussian and a non-multiGaussian approches are evaluated. The final goal of this research is obtaining K fields able to reproduce field tracer tests. Results show the important numerical problems found when applying an Eurelian approach and the possibilities of avoiding them with a 3D implementation of the Lagrangian random walk method. Besides, we see how different can be mass transport predictions when Gaussian and non-Gaussian models are assumed for K fields in fractures.
Ishitsuka, Kazuya; Matsuoka, Toshifumi; Nishimura, Takuya; Tsuji, Takeshi; ElGharbawi, Tamer
2017-06-01
We investigated the post-seismic surface displacement of the 2011 Tohoku earthquake around the Kanto Plain (including the capital area of Japan), which is located approximately 400 km from the epicenter, using a global positioning system network during 2005-2015 and persistent scatterer interferometry of TerraSAR-X data from March 2011 to November 2012. Uniform uplift owing to viscoelastic relaxation and afterslip on the plain has been reported previously. In addition to the general trend, we identified areas where the surface displacement velocity was faster than the surrounding areas, as much as 7 mm/year for 3 years after the earthquake and with a velocity decay over time. Local uplift areas were 30 × 50 km2 and showed a complex spatial distribution with an irregular shape. Based on an observed groundwater level increase, we deduce that the local ground uplift was induced by a permeability enhancement and a pore pressure increase in the aquifer system, which is attributable to mainshock vibration.[Figure not available: see fulltext.
Guo, B.; Fitts, J. P.; Dobossy, M.; Bielicki, J. M.; Peters, C. A.
2012-12-01
Climate mitigation, public acceptance and energy, markets demand that the potential CO2 leakage rates from geologic storage reservoirs are predicted to be low and are known to a high level of certainty. Current approaches to predict CO2 leakage rates assume constant permeability of leakage pathways (e.g., wellbores, faults, fractures). A reactive transport model was developed to account for geochemical alterations that result in permeability evolution of leakage pathways. The one-dimensional reactive transport model was coupled with the basin-scale Estimating Leakage Semi-Analytical (ELSA) model to simulate CO2 and brine leakage through vertical caprock pathways for different CO2 storage reservoir sites and injection scenarios within the Mt. Simon and St. Peter sandstone formations of the Michigan basin. Mineral dissolution in the numerical reactive transport model expands leakage pathways and increases permeability as a result of calcite dissolution by reactions driven by CO2-acidified brine. A geochemical model compared kinetic and equilibrium treatments of calcite dissolution within each grid block for each time step. For a single fracture, we investigated the effect of the reactions on leakage by performing sensitivity analyses of fracture geometry, CO2 concentration, calcite abundance, initial permeability, and pressure gradient. Assuming that calcite dissolution reaches equilibrium at each time step produces unrealistic scenarios of buffering and permeability evolution within fractures. Therefore, the reactive transport model with a kinetic treatment of calcite dissolution was coupled to the ELSA model and used to compare brine and CO2 leakage rates at a variety of potential geologic storage sites within the Michigan basin. The results are used to construct maps based on the susceptibility to geochemically driven increases in leakage rates. These maps should provide useful and easily communicated inputs into decision-making processes for siting geologic CO2
Hom, J.; Dankbaar, J. W.; Schneider, T.; Cheng, S. -C.; Bredno, J.; Wintermark, M.
2009-01-01
BACKGROUND AND PURPOSE: A previous study demonstrated the need to use delayed acquisition rather than first-pass data for accurate blood-brain barrier permeability surface product (BBBP) calculation from perfusion CT (PCT) according to the Patlak model, but the optimal duration of the delayed acquis
Raziperchikolaee, S.; Alvarado, V.; Yin, S.
2014-09-01
Studying rock joint deformation including both slippage and opening mechanisms provides an opportunity to investigate the connection between the permeability and seismic source mechanisms. A microscale fluid flow-geomechanics-seismicity model was built to evaluate the transport response and failure mechanism of microcracks developed along a joint in Berea sandstone samples during deformation. The modeling method considers comprehensive grain-cement interactions. Fluid flow behavior is obtained through a realistic network model of the pore space in the compacted assembly. The geometric description of the complex pore structure is characterized to predict permeability of the rock sample as a function of rock deformation by using a dynamic pore network model. As a result of microcracks development, forces and displacements in grains involved in bond breakage are measured to determine seismic moment tensor. Shear and nonshear displacements are applied to the joint samples to investigate their effects on permeability evolution and failure mechanism of microcracks during joint deformation. In addition, the effect of joint roughness is analyzed by performing numerical compression tests. We also investigate how confining pressure affects volumetric deformation leading to opening or closure of developed microcracks and permeability changes of samples with joints.
Studying Pore Structure of Nonwovens with 3D Imaging and Modeling Permeability
Baradari, Mehdi Gholipour
permeability of the media. So, pore was assumed as a capillary and employing the similarity between Hagen-Poiseuille's and Ohm's laws results in simplifying a network of capillaries to a single number. For this purpose, the capillary network was considered as a resistor network and the equivalent resistance of this network was used to calculate permeability of the nonwoven, in conjunction with Darcy's law at the scale of imaged sample. Using several datasets (real and simulated) indicates that there is a decent agreement between the model and experiment.
An analytical model for cumulative infiltration into a dual-permeability media
Peyrard, Xavier; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Simunek, Jiri
2010-05-01
Modeling of water infiltration into the vadose zone is important for better understanding of movement of water-transported contaminants. There is a great need to take into account the soil heterogeneity and, in particular, the presence of macropores or cracks that could generate preferential flow. Several mathematical models have been proposed to describe unsaturated flow through heterogeneous soils. The dual-permeability model assumes that flow is governed by Richards equation in both porous regions (matrix and fractures). Water can be exchanged between the two regions following a first-order rate law. A previous study showed that the influence of the hydraulic conductivity of the matrix/macropore interface had a little influence on cumulative infiltration at the soil surface. As a result, one could consider the surface infiltration for a specific case of no water exchange between the fracture and matrix regions (a case of zero interfacial hydraulic conductivity). In such a case, water infiltration can be considered to be the sum of the cumulative infiltrations into the matrix and the fractures. On the basis of analytical models for each sub domain (matrix and fractures), an analytical model is proposed for the entire dual-porosity system. A sensitivity analysis is performed to characterize the influence of several factors, such as the saturated hydraulic conductivity ratio, the water pressure scale parameter ratio, and the saturated volumetric water content scale ratio, on the total cumulative infiltration. Such an analysis greatly helps in quantifying the impact of macroporosity and fractures on water infiltration, which can be of great interest for hydrological models.
Influence of permeability on hydrothermal circulation in the sediment-buried oceanic crust
WANG Xingtao; ZHAI Shikui; MENG Fanshun; LI Huaiming; YU Zenghui; SUN Ge; XUE Gang
2006-01-01
Hydrothermal convection in the upper oceanic crust has been inferred to be a common and important process. Under the simplified conditions of planar boundaries, permeability provides a strong constraint on the pattern of circulation, the dimensions of convective cells and flow field of hydrothermal circulation. By applying an advanced numerical modeling method, to our knowledge, it is the first time to investigate convection as it is influenced by different strata permeability structures,formational anisotropy, fracture zone and cooling intrusion. The simplified geological model is composed of 3 layers, sedimentary layer, high permeable basement layer and low permeable basement layer from top to bottom. When permeability in high permeable layer is 10 times larger than that in sedimentary layer, convection occurs in high permeable layer. The pattern of hydrothermal circulation and flow velocity of hydrothermal fluid are strongly influenced by strata permeability structures,changes of permeability in high permeable basement layer, fracture zone and cooling intrusion.However, formational anisotropy relatively exerts weak influence on hydrothermal circulation, with the ratio up to 1.5 of vertical permeability to lateral permeability in high permeable layer. Fracture zone existing in basement is the most important factor affecting the circulation field. The effects of a local intrusion are limited to convection intensity above the intrusion and have little impact on the fluid flow on a regional scale. As the result of numerical modelling, key factors affecting the hydrothermal circulation are good permeable zone and long-term heat source, not including fluid source.
肖前华; 魏国齐; 杨正明; 徐轩; 田文博; 张亚蒲
2014-01-01
As for ultra-low permeability reservoir, the adaptability of common nine-spot well pattern is studied through large-scale flat models made by micro-fractured natural sandstone outcrops. Combined with non-linear porous flow characteristics, the concept of dimensionless pressure sweep efficiency and deliverability index are put forward to evaluate the physical models’ well pattern adaptability. Through experiments, the models’ pressure distribution is measured and on which basis, the pressure gradient fields are drawn and the porous flow regions of these models are divided into dead oil region, non-linear porous flow region, and quasi-linear porous flow region with the help of twin-core non-linear porous flow curve. The results indicate that rectangular well pattern in fracture reservoirs has the best adaptability, while the worst is inverted nine-spot equilateral well pattern. With the increase of drawdown pressure, dead oil region decreases, pressure sweep efficiency and deliverability index increase; meantime, the deliverability index of rectangular well pattern has much more rational increase. Under the same drawdown pressure, the rectangular well pattern has the largest pressure sweep efficiency.
Palassini, M; Remuzzi, A
1998-01-01
Viscous flow through fibrous media is characterized macroscopically by the Darcy permeability (KD). The relationship between KD and the microscopic structure of the medium has been the subject of experimental and theoretical investigations. Calculations of KD based on the solution of the hydrodynamic flow at fiber scale exist in literature only for two-dimensional arrays of parallel fibers. We considered a fiber matrix consisting of a three-dimensional periodic array of cylindrical fibers with uniform radius (r) and length connected in a tetrahedral structure. According to recent ultrastructural studies, this array of fibers can represent a model for the glomerular basement membrane (GBM). The Stokes flow through the periodic array was simulated using a Galerkin finite element method. The dimensionless ratio K* = KD/r2 was determined for values of the fractional solid volume (phi) in the range 0.005 equation only for phi > 0.4. Among the other theoretical analysis considered, only that of Spielman and Goren (Environ. Sci. Technol. 2: 279-287, 1968) gives satisfactory agreement in the whole range of phi considered. These results can be useful to model combined transport of water and macromolecules through the GBM for the estimation of the radius and length of extracellular protein fibrils.
Solid phase studies and geochemical modelling of low-cost permeable reactive barriers
Bartzas, Georgios, E-mail: gbartzas@metal.ntua.gr [Laboratory of Metallurgy, School of Mining and Metallurgical Engineering, National Technical University of Athens, Zografos Campus, 15780 Athens (Greece); Komnitsas, Kostas [Department of Mineral Resources Engineering, Technical University of Crete, 73100 Chania (Greece)
2010-11-15
A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs.
Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.
2012-01-01
Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath
Modelling dense relational data
Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;
2012-01-01
Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....
Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models
León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia
2016-01-01
Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investiga...
Direct relations between morphology and transport in Boolean models.
Scholz, Christian; Wirner, Frank; Klatt, Michael A; Hirneise, Daniel; Schröder-Turk, Gerd E; Mecke, Klaus; Bechinger, Clemens
2015-10-01
We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.
Zhang, Xiuqing; Liu, Ting; Fan, Xiaohui; Ai, Ni
2017-08-01
In silico modeling of blood-brain barrier (BBB) permeability plays an important role in early discovery of central nervous system (CNS) drugs due to its high-throughput and cost-effectiveness. Natural products (NP) have demonstrated considerable therapeutic efficacy against several CNS diseases. However, BBB permeation property of NP is scarcely evaluated both experimentally and computationally. It is well accepted that significant difference in chemical spaces exists between NP and synthetic drugs, which calls into doubt on suitability of available synthetic chemical based BBB permeability models for the evaluation of NP. Herein poor discriminative performance on BBB permeability of NP are first confirmed using internal constructed and previously published drug-derived computational models, which warrants the need for NP-oriented modeling. Then a quantitative structure-property relationship (QSPR) study on a NP dataset was carried out using four different machine learning methods including support vector machine, random forest, Naïve Bayes and probabilistic neural network with 67 selected features. The final consensus model was obtained with approximate 90% overall accuracy for the cross-validation study, which is further taken to predict passive BBB permeability of a large dataset consisting of over 10,000 compounds from traditional Chinese medicine (TCM). For 32 selected TCM molecules, their predicted BBB permeability were evaluated by in vitro parallel artificial membrane permeability assay and overall accuracy for in vitro experimental validation is around 81%. Interestingly, our in silico model successfully predicted different BBB permeation potentials of parent molecules and their known in vivo metabolites. Finally, we found that the lipophilicity, the number of hydrogen bonds and molecular polarity were important molecular determinants for BBB permeability of NP. Our results suggest that the consensus model proposed in current work is a reliable tool for
Serra, K.V.; Peres, A.M.M. (PETROBRAS, Rio de Janeiro, RJ (Brazil)); Reynolds, A.C. (Tulsa Univ., OK (USA))
1990-06-01
For transient radial flow to a well producing a solution-gas-drive reservoir, it is shown that estimates of effective phase permeabilities as functions of pressure can be obtained directly from the measured flowing wellbore pressure and the flow rates. Rough estimates of effective permeabilities as functions of oil saturation also can be obtained. It is also shown that a semilog plot of pressure squared vs. time can be used to estimate effective permeabilities and the skin factor.
Netzlaff, Frank; Kaca, Monika; Bock, Udo; Haltner-Ukomadu, Eleonore; Meiers, Peter; Lehr, Claus-Michael; Schaefer, Ulrich F
2007-04-01
The objective of this work was to compare the barrier function of the small diameter reconstructed human epidermis model Episkin (d=12 mm) to human skin in vitro. For that purpose a modification for the Franz diffusion cell (d=15mm) had to be developed so as to allow direct comparison with the following human skin preparations: Full thickness skin (FTS), split thickness skin (STS), heat-separated epidermis (HSE), and trypsin isolated stratum corneum (TISC). Among the tested preparations, HSE appeared to be the most preferable due to its clear morphological structure and ease of preparation. The lipid profile of HSE and Episkin was analyzed and showed significant differences in terms of cholesterol, ceramides and triglycerides contents, whereas cholesterol esters and fatty acids were not different. Permeation data with HSE and Episkin were then gathered using caffeine and testosterone. Both test compounds permeated much faster through Episkin than through HSE. Moreover, opposed to Episkin, HSE differentiated between the two test compounds. In spite of the remarkable progress in developing RHEs in the past years at this time Episkin can obviously not yet fully replace human skin for in vitro permeability experiments.
DENG Xiaoyan; WANG Guixue; YANG Yang
2003-01-01
A sudden tubular expansion with a semi- permeable wall was constructed from a tubular dialysis membrane to investigate the effects of filtration flow and flow disturbance on particle deposition. The expansion was perfused with a dilute, neutrally buoyant suspension of 1.10 ?m diameter polystyrene latex spheres (as models of platelets) in Tris buffer solution containing 10% Dextran T70 and 2% bovine serum albumin. The results showed that adhesion of particles correlated positively with the filtration rate and inversely with the wall shear rate. In the vortex flow region distal to the expansion, particle adhesion was significantly elevated with a maximum at the reattachment point where the wall shear rate was the lowest and particles were constantly carried toward the vessel wall along the curved streamlines. In conclusion, filtration flow has a profound impact on the interaction of blood cells such as platelets with blood vessel walls, and the disturbed flow with a low wall shear rate can enhance the deposits of platelet thrombi to the vessel wall.
Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.
2016-12-01
Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media
Ray, Chittaranjan; Vogel, Tomas; Dusek, Jaromir
2004-05-01
A dual-permeability model (S_1D_DUAL) was developed to simulate the transport of land-applied pesticides in macroporous media. In this model, one flow domain was represented by the bulk matrix and the other by the preferential flow domain (PFD) where water and chemicals move at faster rates. The model assumed the validity of Darcian flow and the advective-dispersive solute transport in each of the two domains with inter-domain transfer of water and solutes due to pressure and concentration gradients. It was conceptualized that sorption and biodegradation rates vary with soil depth as well as in each of the two flow domains. In addition to equilibrium sorption, kinetic sorption was simulated in the PFD. Simulations were conducted to evaluate the combined effects of preferential flow, depth- and domain-variant sorption, and degradation on leaching of two pesticides: one with strong sorption potential (trifluralin) and the other with weak sorption potential (atrazine). Simulation results for a test case showed that water flux in the PFD was three times more than in the matrix for selected storm events. When equilibrium sorption was considered, the simulated profile of trifluralin in each domain was similar; however, the atrazine profile was deeper in the PFD than in the bulk matrix under episodic storm events. With an assumption of negligible sorption in the PFD, both the atrazine and the trifluralin profiles moved twice deeper into the PFD. The simulated concentrations of the chemicals were several orders higher in the PFD than in the matrix, even at deeper depths. The volume fraction of the macropores and the sorption and biodegradation properties of the chemicals could also affect the amount of pesticides leaving the root zone. For an intense storm event, slow sorption reaction rates in the PFD produced higher breakthrough concentrations of atrazine at the bottom of the simulated soil profile, thus posing the risk for breakthrough of chemicals from the root zone.
Cappa, F.; Rutqvist, J.
2010-06-01
The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.
Oláh G
2013-09-01
Full Text Available Gáspár Oláh,1 Judit Herédi,1 Ákos Menyhárt,1 Zsolt Czinege,2 Dávid Nagy,1 János Fuzik,1 Kitti Kocsis,1 Levente Knapp,1 Erika Krucsó,1 Levente Gellért,1 Zsolt Kis,1 Tamás Farkas,1 Ferenc Fülöp,3 Árpád Párdutz,4 János Tajti,4 László Vécsei,4 József Toldi1 1Department of Physiology, Anatomy and Neuroscience, 2Department of Software Engineering, 3Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, 4Department of Neurology and MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary Abstract: Cortical spreading depression (CSD involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA and dizocilpine, on CSD and the related blood–brain barrier (BBB permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid. We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease
Soil Water Retention and Relative Permeability for Full Range of Saturation
Zhang, Z. F.
2010-09-28
Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.
Blöcher, Johanna; Kuraz, Michal
2017-04-01
In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.
Analytic Model for Predicting the Permeability of Foam-type Wick
Ngo, Ich-Long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)
2016-06-15
Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman’s equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.
Kelkar, Sharad [Los Alamos National Laboratory
2011-01-01
The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.
Serpooshan, Vahid
Among various natural biopolymers, type I collagen gels have demonstrated the highest potential as biomimetic scaffolds for tissue engineering (TE). However, the successful application of collagen gels requires a greater understanding of the relationship between their microstructure and physical-mechanical properties. Therefore, a precise method to modulate collagen gel microstructure in order to attain optimal scaffold properties for diverse biomedical applications is necessary. This dissertation describes a new approach to produce collagen gels with defined microstructures, quantified by hydraulic permeability ( k), in order to optimize scaffold properties for TE applications. It was hypothesized that the measurement of k can be used to study the role of microstructure in collagen gel properties, as well as cell function and cell-scaffold interactions. Applying increasing levels of plastic compression (PC) to the highly hydrated collagen gels resulted in an increase in collagen fibrillar density, reduced Happel model derived k values, increased gel stiffness, promoted MSC metabolic activity, osteogenic differentiation, and mineral deposition, while cell-induced gel contraction diminished. Thus, collagen gels with lower k and higher stiffness values exhibited greater potential for bone tissue engineering. Correlating between collagen gel microstructure, k, and fibroblast function within collagen gels indicated that increasing the level of PC yielded a reduction in pore size and an increase in fibril bundle diameter. Decrease in k values resulted in a decrease in gel contraction and an increase in cell metabolic activity. An increase in cell density accelerated contraction. Therefore, fibroblast function within collagen gels can be optimised by a balance between the microstructure, k, and cell seeding density. Developing a micromechanical model to measure experimental k of collagen gels during confined compression revealed the formation of a dense collagen lamella
Neela, Vasu; von Solms, Nicolas
2014-01-01
. Using a high-pressure permeation cell, the permeability and diffusivity of carbon dioxide were measured in several polymers used as packing and sealing materials. These were the fluoropolymers PTFE, FKM and TFM, both pure and containing glass, graphite, Ekonol and polysulfone as additives...
Stender, Michael E; Regueiro, Richard A; Ferguson, Virginia L
2017-02-01
The changes experienced in synovial joints with osteoarthritis involve coupled chemical, biological, and mechanical processes. The aim of this study was to investigate the consequences of increasing permeability in articular cartilage (AC), calcified cartilage (CC), subchondral cortical bone (SCB), and subchondral trabecular bone (STB) as observed with osteoarthritis. Two poroelastic finite element models were developed using a depth-dependent anisotropic model of AC with strain-dependent permeability and poroelastic models of calcified tissues (CC, SCB, and STB). The first model simulated a bone-cartilage unit (BCU) in uniaxial unconfined compression, while the second model simulated spherical indentation of the AC surface. Results indicate that the permeability of AC is the primary determinant of the BCU's poromechanical response while the permeability of calcified tissues exerts no appreciable effect on the force-indentation response of the BCU. In spherical indentation simulations with osteoarthritic permeability properties, fluid velocities were larger in magnitude and distributed over a smaller area compared to normal tissues. In vivo, this phenomenon would likely lead to chondrocyte death, tissue remodeling, alterations in joint lubrication, and the progression of osteoarthritis. For osteoarthritic and normal tissue permeability values, fluid flow was predicted to occur across the osteochondral interface. These results help elucidate the consequences of increases in the permeability of the BCU that occur with osteoarthritis. Furthermore, this study may guide future treatments to counteract osteoarthritis.
Darwish, M.A., E-mail: Mostafa_ph@yahoo.com [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Saafan, S.A.; El- Kony, D. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Salahuddin, N.A. [Chemistry Department, Faculty of Science, Tanta University, Tanta (Egypt)
2015-07-01
Ferrite nanoparticles – having the compositions Li{sub (x/2)}(Ni{sub 0.5}Zn{sub 0.5}){sub (1−x)}Fe{sub (2+x/2)}O{sub 4} (x=0, 0.2, 0.3) – have been prepared by the co-precipitation method. The prepared powders have been divided into groups and sintered at different temperatures (373 K, 1074 K and 1473 K). X-Ray diffraction analysis (XRD) for all samples has confirmed the formation of the desired ferrites with crystallite sizes within the nanoscale (<100 nm). The dc conductivity, the relative permeability and the magnetization of the ferrite samples have been investigated and according to the results, the sample Li{sub 0.15}(Ni{sub 0.5}Zn{sub 0.5}){sub 0.7} Fe{sub 2.15}O{sub 4} sintered at 1473 K has been chosen to prepare the composites. The particle size of this sample has been recalculated by using JEOL JEM-100SX transmission electron microscope and it has been found about 64.7 nm. Then, a pure epoxy sample and four pristine epoxy resin /Li{sub 0.15}(Ni{sub 0.5}Zn{sub 0.5}){sub 0.7} Fe{sub 2.15}O{sub 4} composites have been prepared using different ferrite contents (20%, 30%, 40%, and 50%) wt.%. These samples have been characterized by Fourier transform infrared (FTIR) spectroscopy and their dc conductivity, relative permeability and magnetization have also been investigated. The obtained results indicate that the investigated composites may be promising candidates for practical applications such as EMI suppressor and high frequency applications. - Highlights: • Li–Ni–Zn ferrites have been prepared by the chemical co-precipitation method. • Epoxy-ferrite composites have been prepared too. • Structural and magnetic properties of all prepared samples were investigated. • Results indicate that these composites may be promising for useful applications.
Pullmannová, Petra; Staňková, Klára; Pospíšilová, Markéta; Skolová, Barbora; Zbytovská, Jarmila; Vávrová, Kateřina
2014-08-01
The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann-Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d=12.7nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin. Copyright © 2014 Elsevier B.V. All rights reserved.
Bazelaire, Cedric de [Saint Louis Hospital, Radiology Department, Paris (France); Siauve, Nathalie; Fournier, Laure; Clement, Olivier; Kerviler, Eric de; Cuenod, Charles Andre [George Pompidou European Hospital, Radiology Department, Paris (France); Frouin, Frederique [INSERM U494, Faculte de Medecine Pitie-Salpetriere, Paris (France); Robert, Philippe [Guerbet Laboratoire Guerbet, Recherche et Developpement, Paris (France)
2005-12-01
To present a new compartmental analysis model developed to simultaneously measure tissue perfusion and capillary permeability in a tumor using MRI and a macromolecular contrast medium. Rhadomyosarcomas were implanted subcutaneously in 20 rats and studied by 1.5-T MRI using a fast gradient echo sequence (2D fast SPGR TR/TE/{alpha} 13 ms/1.2 ms/60 ) after injection of a macromolecular contrast medium. The left ventricle and tumor signal intensities were converted into concentrations and modeled using compartmental analysis, yielding tumor perfusion F, distribution volume V{sub distribution}, volume transfer constant K{sup trans}, rate constant of influx k{sub pe}, and initial extraction (fraction) E. Tumor perfusion was F=43{+-}29 ml.min{sup -1}.100 g{sup -1}. The permeability study allowed the measurement of k{sub pe}=0.37{+-}0.12 min{sup -1} and K{sup trans}=0.01{+-}0.0031 min{sup -1}. The blood volume could be assimilated to the distribution volume (V{sub distribution}=2.9{+-}1.01%) since the capillary leakage was small. The simultaneous assessment of perfusion and permeability allowed quantification of the initial extraction (fraction) E=2.34{+-}1.05%. Quantification of both tumor perfusion and capillary leakage is feasible using MRI using a macromolecular blood pool agent. The method should improve tumor characterization. (orig.)
Prediction of in vivo atenolol removal by high-permeability hemodialysis based on an in vitro model.
Daheb, Kahina; Lecours, Jean-Philippe; Lipman, Mark L; Hildgen, Patrice; Roy, Julie J
2013-01-01
In order to update our data on drug dialyzability using the high-permeability dialysis membranes, atenolol elimination by an in vitro dialysis model was compared to that observed in six patients during high-permeability hemodialysis (HD), and the predictive value of the model was evaluated. Atenolol clearance was evaluated in six patients undergoing chronic HD. They were considered as eligible candidates if they were between 18 and 80 years of age, had a body mass index between 19 and 30 kg/m2, underwent HD and were taking atenolol on a regular basis in oral tablet form for at least 1 month before the study started. Atenolol clearance was also evaluated in three in vitro dialysis sessions with high-permeability polysulfone membrane. Atenolol was dissolved in 6 L of Krebs-Henseleit buffer with bovine serum albumin. Dialysis parameters were set to mirror as much as possible the patients' parameters (flow rate: 300 mL/min, dialyzate flow: 500 mL/min). After sample collection, drug concentrations were measured with high performance liquid chromatography. The comparison between in vivo and in vitro atenolol elimination kinetics was performed by drawing the curve fittings of concentrations vs. time on SigmaPlot 12, and adding a 95% prediction interval to each elimination curve fitting. Mean dialysis clearance of atenolol in vitro and in vivo was 198 ± 4 and 235 ± 53 mL/min, respectively. Atenolol was significantly removed within the study time period in both in vitro and in vivo experiments. By the end of in vitro dialysis, atenolol remaining in the drug reservoir was less than 2% of initial arterial concentration. Our study has indicated that atenolol is almost entirely cleared during high-permeability hemodialysis. Furthermore, the in vitro prediction interval of the drug elimination curve fitting could forecast its in vivo elimination especially at the end of dialysis.
Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; van der Meer, J W
2012-01-01
Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath the armour layer has the ability to dissipate more wave energy and therefore requires less weight of the armour layer. The influence of this parameter is thus very important in economic sense. Up u...
Kobayashi, Shigeru; Yoshizawa, Hidezo; Shimada, Seiichiro; Guerrero, Alexander Rodríguez; Miyachi, Masaya
2013-01-01
It is generally considered that the genesis of myelopathy associated with the degenerative conditions of the spine may result from both mechanical compression and circulatory disturbance. Many references about spinal cord tissue ischemic damage can be found in the literature, but not detailed studies about spinal cord microvasculature damage related to congestion or blood permeability. This study investigates the effect of ischemia and congestion on the spinal cord using an in vivo model. The aorta was clamped as an ischemia model of the spinal cord and the inferior vena cava was clamped as a congestion model at the 6th costal level for 30 min using forceps transpleurally. Measurements of blood flow, partial oxygen pressure, and conduction velocity in the spinal cord were repeated over a period of 1 h after release of clamping. Finally, we examined the status of blood-spinal cord barrier under fluorescence and transmission electron microscope. Immediately after clamping of the inferior vena cava, the central venous pressure increased by about four times. Blood flow, oxygen tension and action potential were more severely affected by the aorta clamping; but this ischemic model did not show any changes of blood permeability in the spinal cord. The intramedullar edema was more easily produced by venous congestion than by arterial ischemia. In conclusions, venous congestion may be a preceding and essential factor of circulatory disturbance in the compressed spinal cord inducing myelopathy.
Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...
Law, B.E.; Dickinson, W.W.
1985-01-01
The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.
Chen, Xiongyu; DiCarlo, David A.
2016-10-01
This study presents a new unsteady-state method for measuring two-phase relative permeability by obtaining local values of the three key parameters (saturation, pressure drop, and phase flux) versus time during a displacement. These three parameters can be substituted to two-phase Darcy Buckingham equation to directly determine relative permeability. To obtain the first two, we use a medical X-ray Computed Tomography (CT) scanner to monitor saturation in time and space, and six differential pressure transducers to measure the overall pressure drop and the pressure drops of five individual sections (divided by four pressure taps on the core) continuously. At each scanning time, the local phase flux is obtained by spatially integrating the saturation profile and converting this to the flux using a fractional flow framework. One advantage of this local method over most previous methods is that the capillary end effect is experimentally avoided; this improvement is crucial for experiments using low viscosity fluids such as supercritical and gas phases. To illustrate the new method, we conduct five CO2-brine primary drainage experiments in a 60.8 cm long and 116 mD Berea sandstone core at 20 °C and 1500 psi. In return, we obtain hundreds of unsteady-state CO2 and brine relative permeability data points that are consistent with steady-state relative permeability data from the same experiments. Due to the large amount of relative permeability data obtained by the new unsteady-state method, the uncertainties of the exponents in the Corey-type fits decrease by up to 90% compared with the steady-state method.
Thomas, Bobby; Banerjee, Rebecca; Starkova, Natalia N.; Zhang, Steven F.; Calingasan, Noel Y.; Yang, Lichuan; Wille, Elizabeth; Lorenzo, Beverly J.; Ho, Daniel J.; Beal, M. Flint; Starkov, Anatoly
2012-01-01
Aims: Mitochondrial damage due to Ca2+ overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca2+ threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-...
Fractal Analysis of Stress Sensitivity of Permeability in Porous Media
Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Cai, Jianchao
2015-12-01
A permeability model for porous media considering the stress sensitivity is derived based on mechanics of materials and the fractal characteristics of solid cluster size distribution. The permeability of porous media considering the stress sensitivity is related to solid cluster fractal dimension, solid cluster fractal tortuosity dimension, solid cluster minimum diameter and solid cluster maximum diameter, Young's modulus, Poisson's ratio, as well as power index. Every parameter has clear physical meaning without the use of empirical constants. The model predictions of permeability show good agreement with those obtained by the available experimental expression. The proposed model may be conducible to a better understanding of the mechanism for flow in elastic porous media.
Hanada, Sanshiro; Fujioka, Kouki; Inoue, Yuriko; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji
2014-01-24
The possibility of nanoparticle (NP) uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs) passed through the blood-brain barrier (BBB). For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (P(app)) to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm), revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots), showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.
Sanshiro Hanada
2014-01-01
Full Text Available The possibility of nanoparticle (NP uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs passed through the blood–brain barrier (BBB. For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (Papp to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm, revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots, showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.
Dunn, T.L.
1996-10-01
This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.
Kessler, Adam J.; Glud, Ronnie N.; Cardenas, M. Bayani
2012-01-01
insight into the coupled hydrodynamic and biogeochemical processes. There was broad agreement between the model results and experimental data. The model showed that the coupling between nitrification and denitrification was relatively weak in comparison to that in cohesive sediments. This was due...... to the direct advective transport between anoxic pore water and the overlying water column, and little interaction between the mostly oxic advective region and the underlying anoxic region. Denitrification was therefore mainly fueled by nitrate supplied from the water column. This suggests that the capacity...
2014-03-27
Web: http://www.epa.gov/superfund/sites/rods/fulltext/e1098040. pdf InsideEPA.com. "EPA Seeks To Ease Groundwater Cleanup Policy Following NAS...PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS James M. Bell, Captain, USAF AFIT-ENV-14-M-08...MODELING THE IMPACT OF LOW PERMEABILITY LAYERS IN A GROUNDWATER SOURCE ZONE ON DISSOLVED CONTAMINANT FATE AND TRANSPORT THESIS Presented
Zhen Zhang; Jiachun Li
2016-01-01
In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation consider-ably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mecha-nisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chem-ical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reser-voir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.
Lu, R.; Watanabe, N.; Shao, H.; Kolditz, O.
2015-12-01
This paper focuses on the evolution of the fracture permeability due to water-granite long-term interactions when deionized water flows through the fracture surface. Laboratory-scale batch experiments have been conducted by Yasuhara et al (2011), wherein artificial fractures are subject to a mechanical confining pressure, variable differential hydraulic pressures and different applied temperatures. The aqueous geochemical system involved in the chemical weathering of granite is investigated in the first place which is a mixture of several kinetic reactions corresponding to mineral dissolution and a series of equilibrium reactions corresponding to potential derivatives in the aqueous solution. As fracture surfaces are in contact under confining stress, mineral dissolution rates may be different at hydrostatically stressed open pore and at asperity contacts under non-hydrostatic stress. Especially at asperity contacts, intergranular pressure solution may accelerate mineral dissolution rates whose driving force is represented as the chemical potential difference between a stressed contact and a hydrostatically stressed open pore (Taron and Elsworth (2010)). To better understand dominant mechanisms in the system, a reactive transport model including both the free-face reactions and the pressure solution is developed in the open-source simulator OpenGeoSys. Fracture aperture is updated as a result of the mass removal from the open-pore walls and the contacting asperities. The study presents impacts of mineral composition and their spatial distribution on the permeability evolution. ReferencesYasuhara, H., Kinoshita, N., Ohfuji, H., Lee, D.S., Nakashima, S., and Kishida, K. (2011), Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model. Applied Geochemistry 26: 2074-2088. Taron, J., and Elsworth, D. (2010). Constraints on compaction rate and equilibrium in the pressure solution creep
Pescina, Silvia; Govoni, Paolo; Potenza, Arianna; Padula, Cristina; Santi, Patrizia; Nicoli, Sara
2015-01-01
In this paper, an ex vivo model for the study of the transcorneal permeation of drugs, based on porcine tissues, was evaluated. The setup is characterized by ease of realization, absence of O₂ and CO₂ bubbling and low cost; additionally, the large availability of porcine tissue permits a high throughput. Histological images showed the comparability between porcine and human corneas and confirmed the effectiveness of the isolation procedure. A new de-epithelization procedure based on a thermal approach was also set up to simulate cornea permeability in pathological conditions. The procedure did not affect the integrity of the underlying layers and allowed the characterization of the barrier properties of epithelium and stroma. Six compounds with different physicochemical properties were tested: fluorescein, atenolol, propranolol, diclofenac, ganciclovir and lidocaine. The model highlighted the barrier function played by epithelium toward the diffusion of hydrophilic compounds and the permselectivity with regard to more lipophilic molecules. In particular, positively charged compounds showed a significantly higher transcorneal permeability than negatively charged compounds. The comparability of results with literature data supports the goodness and the robustness of the model, especially taking into account the behavior of fluorescein, which is generally considered a marker of tissue integrity.
Oka, G. K.; Pinder, G.
2009-12-01
Bioremediation involves using bacteria present in the soil or injected into the soil to degrade contaminants dissolved in groundwater. The degrading bacteria grow attached to the soil particles using the contaminants as substrate for growth. In the process, the pore spaces between soil particles get partially or totally blocked. This blocking, called bioclogging, affects an important parameter, the permeability of soil, which governs the distribution of contaminants in groundwater. The distribution of contaminants in turn affects the growth of bacteria through its changed availability pattern. We attempt to model the complex relationship between the growth of bacteria and biodegradation of the contaminants by coupling a 'Cellular Automata' (CA) model for biomass growth with a multiphase transport model for contaminants in groundwater. The growth in biomass of bacteria at the microscopic spatial scale is translated into a change in permeability at the macroscopic scale by using averaging techniques on CA grids regarding them as 'Representative Elementary Volume' (REV) elements. The results of simulation are presented and compared with a laboratory column experiment.
Ilyasov, A. M.; Bulgakova, G. T.
2016-08-01
This paper describes a mathematical model of the main fracture isolation in porous media by water-based mature gels. While modeling injection, water infiltration from the gel pack through fracture walls is taking into account, due to which the polymer concentration changes and the residual water resistance factor changes as a consequence. The salutation predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for conditions of a non-deformable formation as well as a gel front trajectory in the fracture. The mathematical model of agent injection into the main fracture is based on the fundamental laws of continuum mechanics conservation describing the flow of non-Newtonian and Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The mathematical model is based on a one-dimensional isothermal approximation, with dynamic parameters pressure and velocity, averaged over the fracture section.
Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions
Chung Hae ePARK
2015-04-01
Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.
Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions
Park, Chung Hae; Krawczak, Patricia
2015-04-01
In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.
Janůšová, Barbora; Zbytovská, Jarmila; Lorenc, Petr; Vavrysová, Helena; Palát, Karel; Hrabálek, Alexandr; Vávrová, Kateřina
2011-03-01
Stratum corneum ceramides play an essential role in the barrier properties of skin. However, their structure-activity relationships are poorly understood. We investigated the effects of acyl chain length in the non-hydroxy acyl sphingosine type (NS) ceramides on the skin permeability and their thermotropic phase behavior. Neither the long- to medium-chain ceramides (8-24 C) nor free sphingosine produced any changes of the skin barrier function. In contrast, the short-chain ceramides decreased skin electrical impedance and increased skin permeability for two marker drugs, theophylline and indomethacin, with maxima in the 4-6C acyl ceramides. The thermotropic phase behavior of pure ceramides and model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesterol sulfate was studied by differential scanning calorimetry and infrared spectroscopy. Differences in thermotropic phase behavior of these lipids were found: those ceramides that had the greatest impact on the skin barrier properties displayed the lowest phase transitions and formed the least dense model stratum corneum lipid membranes at 32°C. In conclusion, the long hydrophobic chains in the NS-type ceramides are essential for maintaining the skin barrier function. However, this ability is not shared by their short-chain counterparts despite their having the same polar head structure and hydrogen bonding ability. Copyright © 2010 Elsevier B.V. All rights reserved.
Araújo, Francisca; Sarmento, Bruno
2013-12-15
Caco-2 based cell models have been the gold standard in vitro method to study intestinal drug permeability, despite the absence of many important features with major influence in the drug absorption mechanism. In the present work, a triple co-culture comprising Caco-2, HT29-MTX and Raji B cells was established to mimic in a closely way the human intestinal epithelium, presenting the main components in the process of drug absorption, namely the absorptive cells that resemble enterocytes, mucus producers cells and cells able to induce M-cell phenotype on Caco-2 cells. All the three cell lines maintained their function when cultured together with each other being, thus, an asset to new orally administrated drugs development. The seeding ratio of 90:10 between Caco-2 and HT29-MTX showed to be the best to achieve physiological proportions after cells maturation and differentiation in culture. The formation of M-cells phenotype from enterocytes was identified for the first time in a co-culture system comprising Caco-2 and HT29-MTX cells through immunocytochemical techniques. Thus, the triple co-culture model presented in the herein work is a good and reliable alternative to the in vitro methods already existents for the study of drugs permeability. Copyright © 2013 Elsevier B.V. All rights reserved.
Nhan, Tam; Burgess, Alison; Lilge, Lothar; Hynynen, Kullervo
2014-10-01
Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant Ktrans range of 0.01-0.03 min-1. Finally, the model suggests that infusion over a short duration (20-60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration.
Bicker, Joana; Alves, Gilberto; Fortuna, Ana; Soares-da-Silva, Patrício; Falcão, Amílcar
2016-03-30
The determination of the permeability of drug candidates across the blood-brain barrier (BBB) is a fundamental step during drug discovery programs. The parallel artificial membrane permeability assay (PAMPA) is a high throughput screening tool applied to evaluate the passive permeability and adapted to predict BBB penetration. Herein, a new PAMPA model was developed using an in-house brain lipid extract capable of discriminating BBB permeable from non-permeable compounds. The apparent permeability (Papp) of 18 reference molecules and 10 test compounds was assessed and compared with phosphatidylcholine and commercial porcine polar brain lipid (PBL). The physicochemical selectivity of the in-house brain lipid extract was demonstrated by correlating Papp values with physicochemical properties and its predictive capacity estimated by establishing in vitro-in vivo correlations. The strong correlations achieved between 2% (w/v) in-house lipid extract and PBL for reference (r(2)=0.77) and test compounds (r(2)=0.94) support an equivalent discriminatory capacity and validate the presented model. Moreover, PAMPA studies performed with PBL and in-house lipid extract exhibited a higher correlation with the in vivo parameter logBB (r(2)=0.76 and r(2)=0.72, respectively) than phosphatidylcholine (r(2)=0.51). Overall, the applied lipid extraction process was reproducible, economical and provided lipid extracts that can be used to reliably assess BBB permeation.
Zargar, G.
2005-10-15
In this thesis, we present a new approach, which consists in directly up-scaling the geostatistical permeability distribution rather than the individual realizations. Practically, filtering techniques based on. the FFT (Fast Fourier Transform), allows us to generate geostatistical images, which sample the up-scaled distributions. In the log normal case, an equivalence hydraulic criterion is proposed, allowing to re-estimate the geometric mean of the permeabilities. In the anisotropic case, the effective geometric mean becomes a tensor which depends on the level of filtering used and it can be calculated by a method of renormalisation. Then, the method was generalized for the categorial model. Numerical tests of the method were set up for isotropic, anisotropic and categorial models, which shows good agreement with theory. (author)
Kürti, Levente; Veszelka, Szilvia; Bocsik, Alexandra; Ozsvári, Béla; Puskás, László G; Kittel, Agnes; Szabó-Révész, Piroska; Deli, Mária A
2013-05-01
The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm(2), the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10(-6) cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.
Effect of self-etching adhesives on dentin permeability in a fluid flow model.
Grégoire, Geneviève; Guignes, Philippe; Millas, Arlette
2005-01-01
-Pop, 51%; optiBond solo Plus Self Etch, 45%; Clearfil SE Bond, 35.5%, Prime & Bond NRC Nt, 16.4%; and Prompt L-Pop, 16.3%. Within the limitations of this study, the self-etching systems tested produced different reductions in dentin permeability. For some, the reduction was much greater than the decrease in dentin permeability provided by the bonding system with a phosphoric acid pre-etch; for others, the reduction was small.
Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.
2013-12-01
Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This
Experimental observations and modeling of ponding and overland flow in flat, permeable soil fields
Appels, Willemijn; Bogaart, Patrick; van der Zee, Sjoerd
2015-04-01
In flat well-drained agricultural terrain, overland flow is a relatively rare phenomenon, yet still a potentially important driver of sediment and nutrient transport. Under these conditions, periods of intense rainfall, shallow groundwater dynamics and local combinations of meso- and microtopography control whether water in ponds will become connected to streams and ditches. Combining overland flow measurements at agricultural fields with a new modeling approach, we explored: (i) what rainfall conditions relate to overland flow and (ii) how does flow route connectivity develop for various types of runoff generation and meso/microtopography? For this purpose, we assessed overland flow at two field sites in flat, lowland catchments in the sandy part of the Netherlands and developed a dynamic model (FAST-runoff) to simulate redistribution of water over a heterogeneous surface with infiltration and soil water storage. Experimentally, it appeared that most overland flow occurred as saturation excess runoff during long wet periods, though infiltration excess runoff generation may have played a role during snowmelt periods that generated small amounts of runoff. For both fields, the contributing area during the saturation excess events was large and flow paths long, irrespective of the profoundly different microtopographies. We explored this behaviour with our FAST-Runoff model and found that under saturation excess conditions, mesotopographic features, such as natural depressions or those caused by tillage, gain importance at the expense of the spatial organization of microtopography. The surface topographies of our experimental fields were equal in terms of standard topographic analytical measures such as Curvature, Convergence Index, and Topographic Wetness Index. However, the fields could be distinguished when analysed with a quantitative indicator of flow for hydrological connectivity. Also, the fields had different dynamics related to the runoff generating mechanism
Franek, F; Jarlfors, A; Larsen, F.
2015-01-01
Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desve......Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step...... for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq®, an extended release formulation...... (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp®) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions...
H. H. Gerke
2011-06-01
Full Text Available Subsurface drained experimental fields are frequently used for studying preferential flow (PF in structured soils. Considering two-dimensional (2-D transport towards the drain, however, the relevance of mass transfer coefficients, apparently reflecting small-scale soil structural properties, for the water and solute balances of the entire drained field is largely unknown. This paper reviews and analyzes effects of mass transfer reductions on Br^{−} leaching for a subsurface drained experimental field using a numerical 2-D dual-permeability model (2D-DPERM. The sensitivity of the "diffusive" mass transfer component on bromide (Br^{−} leaching patterns is discussed. Flow and transport is simulated in a 2-D vertical cross-section using parameters, boundary conditions (BC, and data of a Br^{−} tracer irrigation experiment on a subsurface drained field (5000 m^{2} area at Bokhorst (Germany, where soils have developed from glacial till sediments. The 2D-DPERM simulation scenarios assume realistic irrigation and rainfall rates, and Br-application in the soil matrix (SM domain. The mass transfer reduction controls preferential tracer movement and can be related to physical and chemical properties at the interface between flow path and soil matrix in structured soil. A reduced solute mass transfer rate coefficient allows a better match of the Br^{−} mass flow observed in the tile drain discharge. The results suggest that coefficients of water and solute transfer between PF and SM domains have a clear impact on Br^{−} effluent from the drain. Amount and composition of the drain effluent is analyzed as a highly complex interrelation between temporally and spatially variable mass transfer in the 2-D vertical flow domain that depends on varying "advective" and "diffusive" transfer components, the spatial distribution of residual tracer concentrations, and the lateral flow fields in both domains from
Wahajuddin; Singh, Sheelendra Pratap; Raju, K S R; Nafis, Asad; Jain, Girish Kumar
2012-01-01
A simple, sensitive and specific reversed phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination of atenolol, paracetamol, hydrochlorothiazide, caffeine, cephalexin, metoprolol, propranolol, ketoprofen along with phenol red (a non-absorbable compound) in samples obtained from intestinal in situ single-pass perfusion studies, was developed and validated. Chromatography was carried out on RP18 column with mobile phase comprising of 10 mM phosphate buffer (pH 2.5) and methanol in gradient mode. The calibration curves were linear for all nine permeability model compounds (r² > 0.999) across the concentration range of 1.25-40 μg/ml. The coefficient of variation for intra and inter-day assay precision was between 0.04 and 3.08% and the accuracy was between 98.39 and 109.45%. Stability studies were carried out at different storage conditions and all the analytes were found to be stable. The method was successfully applied for analysing the permeability samples obtained from in situ single pass perfusion studies. The effective permeability (P(eff)) values obtained upon cassette administration were in close proximity to the permeability values obtained upon single administration of model compounds. In conclusion, the developed RP-HPLC method can be used for high throughput cassette validation of rat in situ perfusion model for intestinal permeability assessment.
Cheng, J.; Johnson, B.; Everett, M.
2003-12-01
Preliminary field work shows slug interference tests using an array of multilevel active and monitoring wells have potential of permitting enhanced aquifer characterization. Analysis of these test data, however, ultimately will rely on numerical geophysical inverse models. In order to gain insight as well as to provide synthetic data sets, we use a 3-D finite element analysis (code:FEHM-LANL) to explore the effect of idealized, low permeability, stratigraphical and structural (faults) heterogeneities on the transient head field associated with a slug test in a packer-isolated interval of an open borehole. The borehole and packers are modeled explicitly; wellbore storage is selected to match values of field tests. The homogeneous model exhibits excellent agreement with that of the semi-analytical model of Liu and Butler (1995). Models are axisymmetric with a centrally located slugged interval within a homogenous, isotropic, confined aquifer with embedded, horizontal or vertical zones of lower permeability that represent low permeability strata or faults, respectively. Either one or two horizontal layers are located opposite the borehole packers, which is a common situation at the field site; layer thickness (0.15-0.75 m), permeability contrast (up to 4 orders of magnitude contrast) and lateral continuity of layers are varied between models. The effect of a "hole" in a layer also is assessed. Fault models explore effects of thickness (0.05-0.75 m) and permeability contrast as well as additional effects associated with the offset of low permeability strata. Results of models are represented most clearly by contour maps of time of arrival and normalized amplitude of peak head perturbation, but transient head histories at selected locations provide additional insight. Synthesis of the models is on-going but a few points can be made at present. Spatial patterns are distinctive and allow easy discrimination between stratigraphic and structural impedance features. Time
Dual-permeability models are increasingly used to quantify the transport of solutes and microorganisms in soils with preferential flow. An ability to accurately determine the model parameters and their variation with preferential pathway characteristics is crucial for predicting the transport of mi...
Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan
2015-03-01
Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823 ± 600, 1817 ± 732 and 2432 ± 448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P tumors by a factor of two or more (2222 ± 784, 3687 ± 796 and 5658 ± 821 ng g-1) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement
Kinetic model of osmosis through semipermeable and solute-permeable membranes.
Kiil, F
2003-02-01
The gas analogy of the van't Hoff equation for osmotic pressure deltapi = RT/V, where R is gas constant, T absolute temperature and V mole volume of water, remained unexplained for a century because of a few misconceptions: (1) Use of supported membranes prevented the recognition that osmotic forces exert no effect on the solid membrane. During osmotic flow frictional force of solvent within membrane channels equals osmotic kinetic force pi at the interface against the solution containing impermeant solute. (2) Retrograde diffusion of water is much less than osmotic flow even when dx in the gradient dc/dx approaches zero. (3) The gas analogy was thought to be accidental. Actually, the internal kinetic pressure is P = RT/V, because intermolecular forces cancel out at the liquid interface, just as within a gas. The kinetic osmotic pressure is the difference in solvent pressure across the interface: pi = RT/V-(RT/V)X1 = (RT/V)X2, where X1 and X2 are the mole fractions of water and impermeant solute, respectively. Integration gives pi = -(RT/V)lnX1, identical to the thermodynamic equation. This equation is correct up to 25 atmospheres, and up to 180 atmospheres by assuming that a sucrose molecule binds 4 and a glycerol molecule 2.5 water molecules. For solute-permeable membranes, the reflection coefficient sigma can be calculated by formulas proposed for ultrafiltration. Because the fraction (1-sigma) of solute concentration behaves as solvent, osmosis may well proceed against the chemical potential gradient for water. The analogy to an ideal gas applies because pi = -(RT/V)lnX1 is the small difference between enormous internal solvent pressures.
Dalla Valle, Nicolas; Wutzler, Thomas; Meyer, Stefanie; Potthast, Karin; Michalzik, Beate
2017-04-01
Dual-permeability type models are widely used to simulate water fluxes and solute transport in structured soils. These models contain two spatially overlapping flow domains with different parameterizations or even entirely different conceptual descriptions of flow processes. They are usually able to capture preferential flow phenomena, but a large set of parameters is needed, which are very laborious to obtain or cannot be measured at all. Therefore, model inversions are often used to derive the necessary parameters. Although these require sufficient input data themselves, they can use measurements of state variables instead, which are often easier to obtain and can be monitored by automated measurement systems. In this work we show a method to estimate soil hydraulic parameters from high frequency soil moisture time series data gathered at two different measurement depths by inversion of a simple one dimensional dual-permeability model. The model uses an advection equation based on the kinematic wave theory to describe the flow in the fracture domain and a Richards equation for the flow in the matrix domain. The soil moisture time series data were measured in mesocosms during sprinkling experiments. The inversion consists of three consecutive steps: First, the parameters of the water retention function were assessed using vertical soil moisture profiles in hydraulic equilibrium. This was done using two different exponential retention functions and the Campbell function. Second, the soil sorptivity and diffusivity functions were estimated from Boltzmann-transformed soil moisture data, which allowed the calculation of the hydraulic conductivity function. Third, the parameters governing flow in the fracture domain were determined using the whole soil moisture time series. The resulting retention functions were within the range of values predicted by pedotransfer functions apart from very dry conditions, where all retention functions predicted lower matrix potentials
Different Methods of Predicting Permeability in Shale
Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette
Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...
Characterization and estimation of permeability correlation structure from performance data
Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)
1997-08-01
In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.
Relative survival multistate Markov model.
Huszti, Ella; Abrahamowicz, Michal; Alioum, Ahmadou; Binquet, Christine; Quantin, Catherine
2012-02-10
Prognostic studies often have to deal with two important challenges: (i) separating effects of predictions on different 'competing' events and (ii) uncertainty about cause of death. Multistate Markov models permit multivariable analyses of competing risks of, for example, mortality versus disease recurrence. On the other hand, relative survival methods help estimate disease-specific mortality risks even in the absence of data on causes of death. In this paper, we propose a new Markov relative survival (MRS) model that attempts to combine these two methodologies. Our MRS model extends the existing multistate Markov piecewise constant intensities model to relative survival modeling. The intensity of transitions leading to death in the MRS model is modeled as the sum of an estimable excess hazard of mortality from the disease of interest and an 'offset' defined as the expected hazard of all-cause 'natural' mortality obtained from relevant life-tables. We evaluate the new MRS model through simulations, with a design based on registry-based prognostic studies of colon cancer. Simulation results show almost unbiased estimates of prognostic factor effects for the MRS model. We also applied the new MRS model to reassess the role of prognostic factors for mortality in a study of colorectal cancer. The MRS model considerably reduces the bias observed with the conventional Markov model that does not permit accounting for unknown causes of death, especially if the 'true' effects of a prognostic factor on the two types of mortality differ substantially.
Yusof, Siti R; Avdeef, Alex; Abbott, N Joan
2014-12-18
In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software
Marco Villani
2013-09-01
Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.
Gena, Patrizia; Mastrodonato, Maria; Portincasa, Piero; Fanelli, Elena; Mentino, Donatella; Rodríguez, Amaia; Marinelli, Raúl A; Brenner, Catherine; Frühbeck, Gema; Svelto, Maria; Calamita, Giuseppe
2013-01-01
One form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD), is a worrisome health problem worldwide characterized by intrahepatic triacylglycerol (TG) overaccumulation. NAFLD is a common feature of metabolic syndrome being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately resulting in excessive TG deposition in hepatocytes. However, scarce is the attention about the relevance of hepatic import of glycerol, the other primary source (as glycerol-3-phosphate) of increased TG in hepatocytes. Obese leptin-deficient (ob/ob) mice, an animal model of NAFLD, were used to evaluate the functional involvement of Aquaporin-9 (AQP9), the major pathway of liver glycerol entry, in hepatosteatosis. By RT-PCR and qPCR, the level of Aqp9 mRNA in the liver of starved obese mice was comparable with the corresponding control lean littermates. By immunoblotting, the AQP9 protein at the hepatocyte sinusoidal plasma membrane of obese mice was markedly lower (33%) than lean mice, a finding fully confirmed by immunohistochemistry. By stopped-flow light scattering, the liver glycerol permeability of ob/ob mice was significantly lower (53%) than lean mice, a finding consistent with both the observed down-regulation of AQP9 protein and increased level of plasma glycerol characterizing obese mice. In summary, our results suggest implication of AQP9 in liver steatosis. The reduction of hepatocyte AQP9 and, consequently, glycerol permeability might be a defensive mechanism to counteract further fat infiltration in liver parenchyma.
Patrizia Gena
Full Text Available One form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD, is a worrisome health problem worldwide characterized by intrahepatic triacylglycerol (TG overaccumulation. NAFLD is a common feature of metabolic syndrome being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately resulting in excessive TG deposition in hepatocytes. However, scarce is the attention about the relevance of hepatic import of glycerol, the other primary source (as glycerol-3-phosphate of increased TG in hepatocytes. Obese leptin-deficient (ob/ob mice, an animal model of NAFLD, were used to evaluate the functional involvement of Aquaporin-9 (AQP9, the major pathway of liver glycerol entry, in hepatosteatosis. By RT-PCR and qPCR, the level of Aqp9 mRNA in the liver of starved obese mice was comparable with the corresponding control lean littermates. By immunoblotting, the AQP9 protein at the hepatocyte sinusoidal plasma membrane of obese mice was markedly lower (33% than lean mice, a finding fully confirmed by immunohistochemistry. By stopped-flow light scattering, the liver glycerol permeability of ob/ob mice was significantly lower (53% than lean mice, a finding consistent with both the observed down-regulation of AQP9 protein and increased level of plasma glycerol characterizing obese mice. In summary, our results suggest implication of AQP9 in liver steatosis. The reduction of hepatocyte AQP9 and, consequently, glycerol permeability might be a defensive mechanism to counteract further fat infiltration in liver parenchyma.
Sledz, J.J.; Huff, D.D.
1981-04-01
Joint orientations for the shale and siltstone beds of the Conasauga Group were measured from outcrop exposures on the Oak Ridge National Laboratory Reservation. The data collected from two strike belts (structural trends) were analyzed with the use of the computer and subdivided into individual joint sets. The joint set patterns in the Northern outcrop belt were too complex for orientation prediction; joint formation is believed to be influenced by polyphase deformation. The Southern Conasauga Belt contains an orthogonal joint set consisting of strike and a-c joints in all outcrops measured. These are believed to be tension joints formed during thrust sheet emplacement. Joint length and spacing, measured in the field, were found to be extremely variable within each exposure and highly dependent upon surficial weathering. The measurements from all locations were combined for detailed analysis and trend prediction. Results showed that the joint length and spacing increased with increasing bed thickness in the siltstone, while the bed thickness variations in the shale had little effect on the joints. A computer model was developed by combining the joint orientation, joint spacing, and joint length data collected in the field with subsurface drill core information for the purpose of calculating the fracture porosity and permeability of the rocks. The joint gap width was measured from both outcrop and subsurface samples with ranges from 0.1 mm to 0.7 mm in the siltstones and less than 0.2 mm in the shales. The value for the joint gap width was found to be the major factor in the fracture porosity and permeability calculation.
Ajay Kumar
Full Text Available Staphylococcus (S. aureus is a common causative agent of bacterial endophthalmitis, a vision threatening complication of eye surgeries. The relative contribution of S. aureus virulence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehensively analyzed the development of intraocular inflammation, vascular permeability, and the loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S. aureus (HKSA, peptidoglycan (PGN, lipoteichoic acid (LTA, staphylococcal protein A (SPA, α-toxin, and Toxic-shock syndrome toxin 1 (TSST1. Our data showed a dose-dependent (range 0.01 μg/eye to 1.0 μg/eye increase in the levels of inflammatory mediators by all virulence factors. The cell wall components, particularly PGN and LTA, seem to induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Similarly, among the virulence factors, PGN induced higher PMN infiltration. The vascular permeability assay revealed significant leakage in eyes challenged with live SA (12-fold and HKSA (7.3-fold, in comparison to other virulence factors (~2-fold and controls. These changes coincided with retinal tissue damage, as evidenced by histological analysis. The electroretinogram (ERG analysis revealed a significant decline in retinal function in eyes inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings demonstrate the differential innate responses of the retina to S. aureus virulence factors, which contribute to intraocular inflammation and retinal function loss in endophthalmitis.
Latham, J.P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.F.; Blunt, M.J.
2013-01-01
The influence of in-situ stresses on flow processes in fractured rock is investigated using a novel modelling approach. The combined finite-discrete element method (FEMDEM) is used to model the deformation of a fractured rock mass. The fracture wall displacements and aperture changes are modelled in
Sievers, K. W.; Goltz, M. N.; Huang, J.; Demond, A. H.
2011-12-01
Dense Non-Aqueous Phase Liquids (DNAPLs), which are chemicals and chemical mixtures that are heavier than and only slightly soluble in water, are a significant source of groundwater contamination. Even with the removal or destruction of most DNAPL mass, small amounts of remaining DNAPL can dissolve into flowing groundwater and continue as a contamination source for decades. One category of DNAPLs is the chlorinated aliphatic hydrocarbons (CAHs). CAHs, such as trichloroethylene and carbon tetrachloride, are found to contaminate groundwater at numerous DoD and industrial sites. DNAPLs move through soils and groundwater leaving behind residual separate phase contamination as well as pools sitting atop low permeability layers. Recently developed models are based on the assumption that dissolved CAHs diffuse slowly from pooled DNAPL into the low permeability layers. Subsequently, when the DNAPL pools and residual DNAPL are depleted, perhaps as a result of a remediation effort, the dissolved CAHs in these low permeability layers still remain to serve as long-term sources of contamination, due to so-called "back diffusion." These recently developed models assume that transport in the low permeability zones is strictly diffusive; however field observations suggest that more DNAPL and/or dissolved CAH is stored in the low permeability zones than can be explained on the basis of diffusion alone. One explanation for these field observations is that there is enhanced transport of dissolved CAHs and/or DNAPL into the low permeability layers due to cracking. Cracks may allow for advective flow of water contaminated with dissolved CAHs into the layer as well as possible movement of pure phase DNAPL into the layer. In this study, a multiphase numerical flow and transport model is employed in a dual domain (high and low permeability layers) to investigate the impact of cracking on DNAPL and CAH movement. Using literature values, the crack geometry and spacing was varied to model
Wang, Dayong; Han, Dongyan; Li, Wenqiang; Zheng, Zhanpeng; Song, Yongchen
2017-03-01
Permeability variation in reservoir rocks results from the combined effects of various factors, and makes porosity-permeability (ϕ-k) relationships more complex, or, in some cases, non-existent. In this work, the ϕ-k relationship of macroscopically homogeneous glass-bead packs is deduced based on magnetic resonance imaging (MRI) measurement and Kozeny-Carman (K-C) model analysis; these are used as a frame of reference to study permeability of reservoir rocks. The results indicate: (1) most of the commonly used simplified K-C models (e.g. the simplified traditional (omitting specific surface area), high-order, threshold, and fractal models) are suitable for estimating permeability of glass-bead packs. The simplified traditional model does not present obvious dependence on rock samples. Whether for the glass-bead packs or clean natural sandstones, the sample coefficients almost remain invariant. Comparably, the high-order, the fractal, and the threshold models are strongly sample-specific and cannot be extrapolated from the glass-bead packs to natural sandstones; (2) the ϕ-k relationships of quartz sands and silty sandstones resemble those of the glass-bead packs, but they significantly deviate from the K-C models at low porosities due to small pore entry radius; (3) a small amount of intergranular cements (<10%v) does not affect the general variation trend of permeability with porosity but can potentially increase predictive errors of the K-C models, whereas in the case of more cements, the ϕ-k relationships of sandstones become uncertain and cannot be described by any of these K-C models.
Wang, Dayong; Han, Dongyan; Li, Wenqiang; Zheng, Zhanpeng; Song, Yongchen
2017-08-01
Permeability variation in reservoir rocks results from the combined effects of various factors, and makes porosity-permeability ( ϕ- k) relationships more complex, or, in some cases, non-existent. In this work, the ϕ- k relationship of macroscopically homogeneous glass-bead packs is deduced based on magnetic resonance imaging (MRI) measurement and Kozeny-Carman (K-C) model analysis; these are used as a frame of reference to study permeability of reservoir rocks. The results indicate: (1) most of the commonly used simplified K-C models (e.g. the simplified traditional (omitting specific surface area), high-order, threshold, and fractal models) are suitable for estimating permeability of glass-bead packs. The simplified traditional model does not present obvious dependence on rock samples. Whether for the glass-bead packs or clean natural sandstones, the sample coefficients almost remain invariant. Comparably, the high-order, the fractal, and the threshold models are strongly sample-specific and cannot be extrapolated from the glass-bead packs to natural sandstones; (2) the ϕ- k relationships of quartz sands and silty sandstones resemble those of the glass-bead packs, but they significantly deviate from the K-C models at low porosities due to small pore entry radius; (3) a small amount of intergranular cements (<10%v) does not affect the general variation trend of permeability with porosity but can potentially increase predictive errors of the K-C models, whereas in the case of more cements, the ϕ- k relationships of sandstones become uncertain and cannot be described by any of these K-C models.
Chen, Meng-Huo
2016-06-01
Nanoparticles are particles that are between 1 and 100 nanometers in size. They present possible dangers to the environment due to the high surface to volume ratio, which can make the particles very reactive or catalytic. Furthermore, rapid increase in the implementation of nanotechnologies has released large amount of the nanowaste into the environment. In the last two decades, transport of nanoparticles in the subsurface and the potential hazard they impose to the environment have attracted the attention of researchers. In this work, we use numerical simulation to investigate the problem regarding the transport phenomena of nanoparticles in anisotropic porous media. We consider the case in which the permeability in the principal direction components will vary with respect to time. The interesting thing in this case is the fact that the anisotropy could disappear with time. We investigate the effect of the degenerating anisotropy on various fields such as pressure, porosity, concentration and velocities.
Sarma H. K.
2006-11-01
limiting value at high values of Isr. It is evident that the relative permeability inferred from unsteady-state core floods conducted under unfavourable mobility conditions is a lumped parameter which includes the effects of viscous instabilities. Therefore, unless the laboratory displacements happens to be a fully scaled model of the field-scale displacement, the relative permeability curves generated in the laboratory would not fully describe the field behaviour. Hence, it is essential to assess the extent of instability likely to be present in the field process. If the field process involves favourable mobility ratio, the expectation is that it would be free of viscous instability. Accordingly, the laboratory tests should also be conducted under favourable mobility ratio conditions. When the field process is known to involve unfavourable mobility ratio, it would be desirable to simulate the extent of instability in laboratory tests. Unfortunately, the scaling criteria for the growth and propagation of viscous fingers are not yet fully known. However, the relative permeability curves approach a limiting value at high values of instability number and the instability numbers encountered in the field are likely to be much higher because much larger geometric size is involved. Therefore, for unfavourable mobility ratio systems, it would be desirable to conduct the laboratory displacements in the pseudostable regime, i. e. at a high value of the instability number (> 900. This can be achieved simply by using high flow rates, provided the complications of fines migration can be avoided. Cet article présente les résultats d'une étude expérimentale sur les relations entre l'ampleur de l'instabilité visqueuse lors d'une expérience de déplacement en laboratoire et la perméabilité relative déterminée à partir des mesures effectuées lors du déplacement. Les expériences de déplacement de pétrole ont été effectuées sur un sable quartzeux à confinement triaxial. On
Zhu-Fu Quan; Chong Yang; Ning Li; Jie-Shou Li
2004-01-01
AIM: To study the effects of glutamine (Gln) on the change of intestinal permeability and its relationship to systemic inflammatory response in early abdominal postoperative patients.METHODS: A prospective, randomized, double-blind and controlled trial was taken. Twenty patients undergoing abdominal surgery were randomized into Gln group (oral administration of glutamine, 30 g/d, for 7 d, n=10) and placebo group (oral administration of placebo, 30 g/d, for 7 d, n=10). Temperatures and heart rates of all patients were daily recorded. White blood cell counts(WBC) and biochemical variables were measured before operation and 4 and 7 d after drug administration. Serum concentrations of glutamine, endotoxin, diamine oxidase and malondialdehyde and urine lactulose/mannito (L/M) ratio were measured before and 7 d after drug administration.RESULTS: The patients in the 2 groups were comparable prior to drug administration. Serum Gln concentration was significantly decreased in the placebo group and increased in the Gln group 7 d after drug administration. Urine L/M ratio was significantly increased in the placebo group and decreased in the Gln group. The serum concentration of endotoxin, diamine oxidase and malondialdehyde was significantly decreased in the Gln group compared with those in the placebo group. Temperatures, heart rates and WBC counts were significantly lower in the Gln group than those in the placebo group.CONCLUSION: Gut is one of the sources of systemic inflammatory response in abdominal postoperative patients and glutamine can decrease intestinal permeability, maintain intestinal barrier and attenuate systemic inflammatory response in early postoperative patients.
Franek, F; Jarlfors, A; Larsen, F; Holm, P; Steffansen, B
2015-09-18
Desvenlafaxine is a biopharmaceutics classification system (BCS) class 1 (high solubility, high permeability) and biopharmaceutical drug disposition classification system (BDDCS) class 3, (high solubility, poor metabolism; implying low permeability) compound. Thus the rate-limiting step for desvenlafaxine absorption (i.e. intestinal dissolution or permeation) is not fully clarified. The aim of this study was to investigate whether dissolution and/or intestinal permeability rate-limit desvenlafaxine absorption from an immediate-release formulation (IRF) and Pristiq(®), an extended release formulation (ERF). Semi-mechanistic models of desvenlafaxine were built (using SimCyp(®)) by combining in vitro data on dissolution and permeation (mechanistic part of model) with clinical data (obtained from literature) on distribution and clearance (non-mechanistic part of model). The model predictions of desvenlafaxine pharmacokinetics after IRF and ERF administration were compared with published clinical data from 14 trials. Desvenlafaxine in vivo dissolution from the IRF and ERF was predicted from in vitro solubility studies and biorelevant dissolution studies (using the USP3 dissolution apparatus), respectively. Desvenlafaxine apparent permeability (Papp) at varying apical pH was investigated using the Caco-2 cell line and extrapolated to effective intestinal permeability (Peff) in human duodenum, jejunum, ileum and colon. Desvenlafaxine pKa-values and octanol-water partition coefficients (Do:w) were determined experimentally. Due to predicted rapid dissolution after IRF administration, desvenlafaxine was predicted to be available for permeation in the duodenum. Desvenlafaxine Do:w and Papp increased approximately 13-fold when increasing apical pH from 5.5 to 7.4. Desvenlafaxine Peff thus increased with pH down the small intestine. Consequently, desvenlafaxine absorption from an IRF appears rate-limited by low Peff in the upper small intestine, which "delays" the predicted
Berge, P A; Blair, S C; Shaffer, R J; Wang, H F
1997-02-18
We provide in this report a methodology to estimate bounds on the changes in fracture permeability due to thermal-mechanical processes associated with excavation of drifts and emplacement of waste. This report is the first milestone associated with Task A of the LLNL initiative to evaluate available methods for estimating chamges in fracture permeability surrounding drifts in the Exploratory Studies Facility (ESF) and the potential repository at Yucca Mountain in response to (1) construction-induced stress changes and (2) subsequent thermal pulse effects due to waste emplacement. These results are needed for modeling changes in repository-level moisture movement and seepage.
Sarma H. K.; Maini B. B.; Allen. G
2006-01-01
This paper presents the results of an experimental investigation into the relationship between the extent of viscous instability involved in a laboratory displacement and the relative permeability inferred from measured displacement data. Oil displacement experiments were conducted in a triaxially confined silica sand pack. The extent of viscous instability was varied by using mineral oils of different viscosities and by conducting the displacement runs at different flow rates. Relative perme...
Object-relational mapping model
Žukauskas, Arūnas
2007-01-01
This work is analyzing problems, arising because of sematical gap between relational and object-oriented approaches and discusses how to utilize object-relational mapping for solving this problem. After analysis of object-relational mapping framework (further – ORM) principles and features of existing ORM frameworks a model is suggested, that allows to implement ORM by utilizing MVP principles in a way that retains major portion of both approach pros and is perfect for transitioning existing ...
Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.
2017-03-01
A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.
Thomas, Bobby; Banerjee, Rebecca; Starkova, Natalia N; Zhang, Steven F; Calingasan, Noel Y; Yang, Lichuan; Wille, Elizabeth; Lorenzo, Beverly J; Ho, Daniel J; Beal, M Flint; Starkov, Anatoly
2012-05-01
Mitochondrial damage due to Ca(2+) overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca(2+) threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity.
Structural determinants of glomerular permeability.
Deen, W M; Lazzara, M J; Myers, B D
2001-10-01
Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the
邵维志; 解经宇; 迟秀荣; 李俊国; 吴淑琴; 肖斐
2013-01-01
The view about the higher porosity with the higher permeability has guided high porosity and high permeability reservoir production operations,but in the low porosity and low permeability reservoirs,there often appears the phenomenon contrary to this view,the capacity difference is very large in almost the same porosity reservoir.Experiment data from 250 rock samples indicate that permeability is not obviously controlled by the total porosity in the low porosity and low permeability rock,traditional porosity-permeability calculation method is no longer applicable.In the low porosity and low permeability rock,permeability is mainly controlled by pore structure,the pore with different pore sizes has different contribution to the permeability,the pore sizes and the corresponded proportion in the pores control the permeability value together.On this basis,the nuclear magnetic resonance logging is used to depict the pore size ranges,then the interval porosity is used to calculate the permeability.This method not only improves the permeability calculation accuracy in the low porosity and permeability reservoir but also develops the traditional formula,it can effectively guide the productivity evaluation of low porosity and low permeability reservoirs in the future.%孔隙度越高渗透性越好的观点一直指导中-高孔隙度渗透率储层生产作业,但在低孔隙度低渗透率储层中常出现与该观点相违背的现象,孔隙度基本一致的储层产能差异非常大.通过256块岩样实验发现,低孔隙度低渗透率岩石的渗透率受总孔隙度控制作用不明显,传统的孔隙度—渗透率计算方法已经不再适用；低孔隙度低渗透率岩石渗透率主要受控于孔隙结构,不同孔径尺寸孔隙对渗透率贡献不同,渗透率大小受孔径尺寸大小及其相对应孔隙的比例高低共同控制.提出利用核磁共振测井刻画孔径尺寸区间,根据岩石压汞实验中的孔隙分布直方图数据,参
De Boever, Wesley, E-mail: Wesley.deboever@ugent.be [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Bultreys, Tom; Derluyn, Hannelore [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium); Van Hoorebeke, Luc [UGCT/Radiation Physics, Dept. of Physics & Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent (Belgium); Cnudde, Veerle [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281, 9000 Ghent (Belgium)
2016-06-01
In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications. - Highlights: • Measurements of capillary absorption are compared to in-situ permeability. • We obtain pore size distribution and connectivity by using micro-CT. • These properties explain correlation between permeability and capillarity. • Correlation between both methods is good to excellent. • Permeability measurements could be a good alternative to capillarity measurement.
Modeling the filtration of deformable and permeable colloidal particles: the case of casein micelles
Qu, Peng; Bouchoux, Antoine
2011-01-01
When filtrating a colloidal dispersion, colloids accumulate at the membrane surface, thus forming a polarized layer that can ultimately turns into a deposit (= a "gel") in some extreme cases. Modeling such a filtration has always been a challenge. In recent developments, Bacchin et al. propose a model based on the analogy between permeation in a deposit and diffusion in a polarized layer [1]. The permeation flux is then given by the following equation, which is the analog of the classical Dar...
Shao, Xiaojian; Gao, Dan; Chen, Yongli; Jin, Feng; Hu, Guangnan; Jiang, Yuyang; Liu, Hongxia
2016-08-31
Since most of the central nervous system (CNS) drug candidates show poor permeability across the blood-brain barrier (BBB), development of a reliable platform for permeability assay will greatly accelerate drug discovery. Herein, we constructed a microfluidic BBB model to mimic drug delivery into the brain to induce cytotoxicity at target cells. To reconstitute the in vivo BBB properties, human cerebral microvessel endothelial cells (hCMEC/D3) were dynamically cultured in a membrane-based microchannel. Sunitinib, a model drug, was then delivered into the microchannel and forced to permeate through the BBB model. The permeated amount was directly quantified by an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after on-chip SPE (μSPE) pretreatment. Moreover, the permeated drug was incubated with glioma cells (U251) cultured inside agarose gel in the downstream to investigate drug-induced cytotoxicity. The resultant permeability of sunitinib was highly correlated with literature reported value, and it only required 30 min and 5 μL of sample solution for each permeation experiment. Moreover, after 48 h of treatment, the survival rate of U251 cells cultured in 3D scaffolds was nearly 6% higher than that in 2D, which was in accordance with the previously reported results. These results demonstrate that this platform provides a valid tool for drug permeability and cytotoxicity assays which have great value for the research and development of CNS drugs.
Chen, Jui-Sheng; Hsu, Shao-Yiu; Li, Ming-Hsu; Liu, Chen-Wuing
2016-12-01
Transport behavior through a permeable reactive barrier (PRB)-aquifer system is complicated because of the different physical and chemical properties of the PRB and the aquifer. Dual-domain solute transport models are efficient tools for better understanding the various processes and mechanisms of reactive solute transport through a PRB-aquifer system. This study develops a dual-domain analytical model to assess the physical and chemical processes of two-dimensional reactive solute transport through a PRB-aquifer system. The dispersion processes of a dual-domain system on the solute transport are investigated. The results show that the dispersion parameters in a dual-domain system synchronously govern the dynamic shape of the contaminant plume. The low longitudinal and transverse dispersion coefficients of a dual-domain system may restrict the spreading of the plume and elevate the plume's concentration level. The derived analytical solution is applied to explore how the different reactive transport processes affect the performance of a PRB-aquifer system. The results show that the first-order decay rate constant of the PRB has a critical effect on the performance of the PRB-aquifer system, whereas the effects of the physical dispersion properties on PRB performance are less significant.
邓英尔; 刘慈群
2003-01-01
A mathematical model of two-phase fluid nonlinear flow in the direction ofnormal of ellipse through low-permeability porous media was established according to anonlinear flow law expressed in a continuous function with three parameters, a massconservation law and a concept of turbulent ellipses. A solution to the model was obtainedby using a finite difference method and an extrapolation method. Formulas of calculatingdevelopment index not only before but also after water breaks through an oil well in thecondition of two-phase fluid nonlinear flow in the media were derived. An example wasdiscussed. Water saturation distribution was presented. The moving law of drainage frontwas found. Laws of change of pressure difference with time were recognized. Results showthat there is much difference of water saturation distribution between nonlinear flow andlinear flow; that drainage front by water moves faster, water breaks through sooner and theindex gets worse because of the nonlinear flow ; and that dimensionless pressure differencegets larger at the same dimensionless time and difficulty of oil development becomes biggerby the nonlinear flow . Thus, it is necessary that influence of nonlinear flow on developmentindexes of the oil fields be taken into account. The results provide water-floodingdevelopment of the oil fields with scientific basis.
Modification of rock mass permeability in the zone surrounding a shaft in fractured, welded tuff
Case, J.B.; Kelsall, P.C.
1987-03-01
The excavation of a nuclear waste repository at Yucca Mountain, Nevada requires access through shafts and ramps from the ground surface to the repository horizon. To evaluate the need and performance of the sealing subsystem, it is necessary to predict the modifications in the rock immediately surrounding the shaft. The purpose of this study is to develop a model of permeability changes as a function of radial distance from a shaft. The model is based upon analyses which consider modification in rock mass permeability resulting from stress redistribution and blast damage due to excavation around a shaft. Elastic and elastoplastic stress analyses are performed to estimate the stress distribution for a wide range of rock properties and in situ stress conditions. Changes in stress are related to changes in rock mass permeability using stress-permeability relations for fractures obtained from laboratory and field testing. The effects of blast damage are estimated from case histories. The analyses indicate that rock mass permeability is expected to decline rapidly to the undisturbed value with greater permeability changes occurring at or near the shaft wall. For several conditions evaluated, the equivalent permeability of the modified permeability zone, averaged over an annulus one radius wide around the shaft, ranges from 15 to 80 times the undisturbed rock mass permeability. 61 refs., 24 figs., 6 tabs.
Ni Wu
2016-01-01
Full Text Available The blood-brain barrier (BBB permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10−8–10−6 cm/s; those of 8-O-4′-neolignan and tetrahydrofuran-lignan were at 10−6–10−5 cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10−8–10−7 cm/s. To 5-methoxy-dehydrodiisoeugenol (2, erythro-2-(4-allyl-2,6-dimethoxyphenoxy-1-(3,4-dimethoxyphenyl-propan-1-ol acetate (6, verrucosin (8, and nectandrin B (9, an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1, myrislignan (7 and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.
On the permeability of fractal tube bundles
Zinovik, I
2011-01-01
The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability-porosity relationships represented by the Kozeny-Carman equations and Archie's law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The goal of this paper is an evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the two-dimensional foams generated by finite iterations of the corresponding geometric fractals can be used to model poro...
Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamid
2016-01-01
Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling...
De Boever, Wesley; Bultreys, Tom; Derluyn, Hannelore; Van Hoorebeke, Luc; Cnudde, Veerle
2016-06-01
In this paper, we examine the possibility to use on-site permeability measurements for cultural heritage applications as an alternative for traditional laboratory tests such as determination of the capillary absorption coefficient. These on-site measurements, performed with a portable air permeameter, were correlated with the pore network properties of eight sandstones and one granular limestone that are discussed in this paper. The network properties of the 9 materials tested in this study were obtained from micro-computed tomography (μCT) and compared to measurements and calculations of permeability and the capillary absorption rate of the stones under investigation, in order to find the correlation between pore network characteristics and fluid management characteristics of these sandstones. Results show a good correlation between capillary absorption, permeability and network properties, opening the possibility of using on-site permeability measurements as a standard method in cultural heritage applications.
Estimation of sub-core permeability statistical properties from coreflooding data
Rabinovich, Avinoam
2017-10-01
Knowledge of sub-core permeability is necessary for accurate numerical modeling of coreflooding experiments and for investigation of sub-core flow phenomenon. A new method for estimating sub-core permeability geometric mean (kG) and log-permeability variance (σy2) is presented. The method is based on matching coreflooding experiment measurements of wetting phase relative permeability with semi-analytical calculations of effective relative permeability. The semi-analytical solution is formulated assuming log-normal permeability (k), steady state and capillary-limit conditions. It is based on the geometric mean and log-phase-permeability variance for isotropic k and power law averaging for anisotropic correlations. The solution is validated on synthetic k realizations by comparison with numerical calculations. Then, the estimation method is tested on synthetic data assuming various types of core capillary pressure relationships, relative permeability functions and k anisotropies. Results demonstrate high accuracy in almost all of the cases except for small anisotropy ratios lh/lv between horizontal (lh) and vertical (lv) dimensionless correlation lengths, where flow is in the horizontal direction, and when σy2 is large. The method is also validated using data from CO2-brine coreflooding experiments conducted on two different cores. It is found that the estimation method remains accurate in these realistic settings, however, accuracy of kG is reduced when the core permeability departs from a log-normal distribution.
Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.
Khairy Zaimi
Full Text Available The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.
Strength-permeability Model of Pervious Cement Concrete%透水性混凝土强度-渗透性模型试验研究
崔新壮; 欧金秋; 张娜; 高智珺; 隋伟
2013-01-01
High permeability is an important characteristic of pervious concrete . For the existing permeability testing devices of pervious concrete ,the specimen sidewall leakage is serious due to the large numbers of open pores on the surface of specimens . To solve the problem ,a new permeability testing method for pervious concrete was developed and a composite sidewall structure with waterproof daub , flexible rubber cushion and rigid sleeve sidewall was proposed .Meanwhile ,the strength and permeability of pervious cement concrete are incompatible with a reciprocal relationship .However ,limited research has been conducted on the relationship between them .Effects of water-cement ratio (W/C) ,aggregate-cement ratio and porosity on the properties of pervious concrete , including strength and permeability , were studied . Furthermore , strength-porosity model , permeability-porosity model and strength-permeability model were established .Tests reveal that :a) There is an optimum W/C of pervious concrete ,at which strength reaches the maximum ;b) The relationship between the strength and W/C shows a downward quadratic curve ,and the permeability is proportional to porosity and aggregate-cement ratio ;c) The relationship between strength and permeability of pervious cement concrete can be well fitted with the Lorentzian function ,and the strength decreases when the permeability increases ,but the rate of reduction decreases gradually .The optimum combination of strength and permeability should be determined based on the specific engineering requirements in design .%高透水性是透水性混凝土的重要特征，现有的透水性混凝土渗透系数测试装置存在试件侧壁渗漏问题，为此提出了一种试件侧面防水涂抹＋柔性夹层＋套筒刚性壁的防侧漏复合结构，提高了渗透系数测试精度。透水性混凝土的透水性和强度是一对矛盾体，此消彼长，但目前对它们之间关系缺乏系统的研究。通过
Functional test of FOOTPRINT pedotransfer functions for the dual-permeability model MACRO
Moeys, J.; Jarvis, N. J.; Stenemo, F.; Hollis, J. M.; Dubus, I. G.; Larsbo, M.; Brown, C. D.; Bromilow, R.; Coquet, Y.; Vachier, P.
2009-04-01
Our ability to assess and predict pollution risks for surface waters and groundwater across larger areas (e.g. catchment and regional scales) relies on our capacity to estimate soil physical and hydrological properties and crop characteristics that are generally required as model parameters. ‘Pedotransfer' functions (PTF) can be used to estimate model parameters from more easily available soil survey data. The EU-FP6 European project FOOTPRINT (www.eu-footprint.org) has supported the development of a full set of PTF's to completely parameterise the pesticide fate model MACRO from only easily available site and soil data for a range of European agronomic, climatic and pedological scenarios The work presented here aimed at assessing the performance of the parameterisation procedures developed in the FOOTPRINT project for MACRO, from a functional point of view. We present a comparison of measured and simulated tracer leaching in medium- to long-term (2 months to 2 years) experiments driven by natural-transient rainfall conditions on 41 lysimeters, representing 15 soil types, located in Sweden, UK and France. For each experiment, the only information used to parameterize the model was a soil profile description, in which each horizon is characterized by its thickness, FAO master horizon type, texture class, organic carbon content and bulk density and knowledge of the tillage (till, no-till, harrowed) and cropping practices (crop type, and sowing dates). The average depth of the lysimeters was 1 meter, each profile containing an average of 4.6 horizons. The soil properties covered a large range of textures (1 to 78% clay), organic matter contents (0 to 29%) and bulk densities (550 to 1870 kg.m-3). Simulations were first conducted without any calibration of parameters. In a second step, we conducted simulations where two crop parameters were optimized (root depth and root water uptake efficiency), in order to estimate the impact of errors in the simulated water balance
Aysel Yavuz
2012-04-01
Full Text Available This research in which components of permeability concept is tried to be set forth, presents the results of a field study conducted on a pedestrian-shopping street in Trabzon, a coastal city in the eastern Black Sea Region. The criteria affecting permeability are dealt with in physical, functional and perceptual properties. Accordingly, three hypotheses are proposed in this article. The study was a two-stage survey. The first survey is prepared to determine user preferences. With the second survey prepared in the light of the data obtained from the first one, characteristics defining the permeability concept were sought for. As a result, permeability level of a street is found to be closely related with the physical, functional and perceptual properties providing such permeability and, permeability is determined to be best provided by considering all the three properties together, and new perspective to the concept of permeability is brought with this model.
Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls
Ciprian G. Gal
2006-11-01
Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.
Dessirier, B.; Frampton, A.; Fransson, Å.; Jarsjö, J.
2016-08-01
The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.
S. A. Landsverk
2012-01-01
Full Text Available Background. The inside of the endothelium is covered by a glycocalyx layer, and enzymatic degradation of this layer induces vascular leakage ex vivo. We hypothesized that enzymatic degrading of the glycocalyx in an in vivo, whole body model, would induce plasma leakage and affect the microcirculation. Methods. Golden Syrian hamsters were divided into an enzyme (hyaluronidase and a control group. Mean arterial pressure (MAP, heart rate (HR, hematocrit (Hct, base excess (BE, and plasma volume were obtained before, 45 and 120 min after enzyme/saline treatment. Plasma volume was evaluated by the distribution volume of indocyanine green and the microcirculation by functional capillary density (FCD. The enzymatic effect was determined by measuring plasma levels of hyaluronan (HA. Results. There were no differences in MAP, HR, Hct, and BE between the two groups. Enzyme treatment did not induce changes in plasma volume but reduced FCD. There was a 50–100-fold increase in plasma HA, but no relationship was found between HA levels and plasma volume or FCD. Conclusion. Vascular leakage was not confirmed in an in vivo, whole body model after degradation of the endothelial glycocalyx. The microcirculation was affected, but no relationship between plasma levels of HA and FCD was seen.
A Model for International Relations
无
2006-01-01
Since the end of the Cold War, the new international environment has required a new model of relationship between major countries. The basis of the new relations is to safeguard one's own national interests while respecting the national interests of the other country. The process of establishing such rela-
Chokejaroenrat, Chanat; Kananizadeh, Negin; Sakulthaew, Chainarong; Comfort, Steve; Li, Yusong
2013-11-19
The residual buildup and treatment of dissolved contaminants in low permeable zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate into LPZs to treat dissolved-phase TCE. This was accomplished by conducting transport experiments that quantified the ability of xanthan-MnO4(-) solutions to penetrate and cover (i.e., sweep) an LPZ that was surrounded by transmissive sands. By incorporating the non-Newtonian fluid xanthan with MnO4(-), penetration of MnO4(-) into the LPZ improved dramatically and sweeping efficiency reached 100% in fewer pore volumes. To quantify how xanthan improved TCE removal, we spiked the LPZ and surrounding sands with (14)C-lableled TCE and used a multistep flooding procedure that quantified the mass of (14)C-TCE oxidized and bypassed during treatment. Results showed that TCE mass removal was 1.4 times greater in experiments where xanthan was employed. Combining xanthan with MnO4(-) also reduced the mass of TCE in the LPZ that was potentially available for rebound. By coupling a multiple species reactive transport model with the Brinkman equation for non-Newtonian flow, the simulated amount of (14)C-TCE oxidized during transport matched experimental results. These observations support the use of xanthan as a means of enhancing MnO4(-) delivery into LPZs for the treatment of dissolved-phase TCE.
Ramirez, A L; Daily, W D
2003-11-21
We have performed a numerical modeling study that evaluated the capacity of electrical resistance tomography (ERT) to detect flaws in a passive reactive barrier (PRB). The model barrier is based on a real barrier described in the literature Slater and Binley (2003). It consists of highly conducting, granular iron emplaced within a trench. We assumed that the barrier was filled with a mixture of iron and sand, and that vertical electrode arrays were embedded within the barrier. We have considered (a) characterization and (b) monitoring scenarios. For (a), the objective is to use tomographs of absolute resistivity to detect construction flaws and inhomogeneities in iron distribution shortly after installation. For (b), the objective is to use resistivity change tomographs to detect iron oxidation and barrier plugging as a function of time. The study considered varying PRB hole sizes and locations. For any given model, a hole was located right next to and near the center of an electrode array (maximum sensitivity and resolution expected), at the center between two electrode arrays (moderate sensitivity and resolution), or near the bottom centered between the two arrays (minimum sensitivity and resolution). We also considered various hole sizes. The smallest hole considered had a height and a width of 0.33 m (0.11 m{sup 2}), or 1/2 of the electrode spacing within an array; the depth of the hole was always equal to the thickness of the barrier (0.66m). The largest hole had a height and a width of 1.22 m (1.74 m{sup 2}). We also modeled a medium sized hole with a height and a width of 0.66 m (0.44 m{sup 2}). The PRB material had an electrical resistivity of 0.3 ohm-m (sand/iron mix) while the hole's resistivity was 3.0 ohm-m. The study also considered various array aspect ratios because it is well known that aspect ratio controls sensitivity and resolution when line arrays of electrodes are used (Ramirez et al., 1993). Aspect ratio is defined as the distance between
Model Transformer Evaluation of High-Permeability Grain-Oriented Electrical Steels
2000-01-01
The dependence of transformer performance on the material properties was investigated using two Laboratory-processed 0.23 mm thick grain-oriented electrical steels domain-refined with elec trolytically etched grooves having different magnetic properties. The iron loss at 1.7 T, 50 Hz and the flux density at 800 A/m of material A were 0.73 W/kg and 1.89 T, respectively; and those of material B, 0.83 W/kg and 1.88 T. Model stacked and wound transformer core experiments using the tested materials exhibited performance well reflecting the material characteristics. In a three-phase stacked core with step-lap joints excited to 1.7 T, 50 Hz, the core loss, the exciting current and the noise level were 0.86 W/kg, 0.74 A and 52 dB, respectively, with material A; and 0.97 W/kg, 1.0 A and 54 dB with material B. The building factors for the core losses of the two materials were almost the same in both core configurations. The effect of higher harmonics on transformer performance was also investigated.
Zhu, Lin; Gong, Huili; Dai, Zhenxue; Guo, Gaoxuan; Teatini, Pietro
2017-02-01
Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity (K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log10(K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain, China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. The results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.
Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob
2015-01-01
Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.
Fernandes, Celso P.; Philippi, Paulo C.; Damiani, Marcos C.; Cunha Neto, Jose A.B. da [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Meios Porosos e Propriedades Termofisicas]. E-mail: celso@lmpt.ufsc.br; philippi@lmpt.ufsc.br; damiani@lmpt.ufsc.br; bellini@lmpt.ufsc.br; Daian, Jean-Francois (Laboratoire d' Etudes des Transferts en Hydrologie et Environement)
2000-07-01
Multiscale percolation systems (MPS) are presented as giving a fast method for calculating intrinsic permeability of porous media. MPS were proposed to study invasion processes in porous media considering the porous section as a polydisperse structure, which modify its geometrical structure when the scale of observation is changed. Multiscale models are non-regular percolation systems and do not have the following limitations common to classical percolation systems: it is not necessary to choose a particular value for the coordination number; constrictions appears naturally as pores of smaller diameters connecting pores of greater diameters, as the result of superposing different scales (Fernandes, C. P., Magnani, F.S., Philippi, P.C., Daian, J.F. 1996, Multiscale reconstruction of the porous structure, Physical Review E, 54, 1734-1742). Present paper describes the numerical prediction of intrinsic permeability of petroleum reservoir rocks by using a MPS approach. Rock's microstructure is reconstructed in a three dimensional MPS, starting from 2D thin sections geometrical information, after binarization and microstructural analysis. Intrinsic permeability is, then, calculated, using a procedure based on renormalization theory. The method is presented and applied for the calculation of intrinsic permeability of several petroleum reservoir rocks. Results are compared with experimental data. (author)
Burns, Erick R.; Williams, Colin F.; Ingebritsen, Steven E.; Voss, Clifford I.; Spane, Frank A.; DeAngelo, Jacob
2015-02-01
Heat-flow mapping of the western USA has identified an apparent low-heat-flow anomaly coincident with the Columbia Plateau Regional Aquifer System, a thick sequence of basalt aquifers within the Columbia River Basalt Group (CRBG). A heat and mass transport model (SUTRA) was used to evaluate the potential impact of groundwater flow on heat flow along two different regional groundwater flow paths. Limited in situ permeability (k) data from the CRBG are compatible with a steep permeability decrease (approximately 3.5 orders of magnitude) at 600–900 m depth and approximately 40°C. Numerical simulations incorporating this permeability decrease demonstrate that regional groundwater flow can explain lower-than-expected heat flow in these highly anisotropic (kx/kz ~ 104) continental flood basalts. Simulation results indicate that the abrupt reduction in permeability at approximately 600 m depth results in an equivalently abrupt transition from a shallow region where heat flow is affected by groundwater flow to a deeper region of conduction-dominated heat flow. Most existing heat-flow measurements within the CRBG are from shallower than 600 m depth or near regional groundwater discharge zones, so that heat-flow maps generated using these data are likely influenced by groundwater flow. Substantial k decreases at similar temperatures have also been observed in the volcanic rocks of the adjacent Cascade Range volcanic arc and at Kilauea Volcano, Hawaii, where they result from low-temperature hydrothermal alteration.
Dufour, F
2007-12-15
The industrial context of this research work is to study the durability of the internal barriers of nuclear power plants. This paper is divided in two parts, the first part is relative to the crack-damage state and the second part to the creep consequences on the rupture properties of concrete. In the first part, the analysis of the experimental results, (carried out on a compression cylinder on which the radial permeability has been measured), shows that the permeability decreases until a deformation of half of those at the force peak, by re-closure of the preexisting microcracks in the material; then the permeability strongly increases until after the force peak by initiation, connexion and opening of the crack, and at last it increases less rapidly until the rupture because only the opening of the macro-cracks increases. In order to simulate these phenomena, two original methods are presented, in post-treatment phase, for estimating the leaks from a mechanical computing based on finite element methods. With the first method, it is possible to measure the permeability from the damage field and from a relation between the permeability and the damage which bind the Poiseuille law to an empirical law established for weak damages. The second method is on the deformations field from which the position and opening of the crack are calculated. The Poiseuille relation is then applied along the crack to estimate the leaks rates. The relation between the concrete creep and its mechanical characteristics is analyzed in the second part. In particular, are studied the creep consequences on the long term mechanical properties. After having given the experimental results which show essentially an embrittlement of the material after creep, a qualitative analysis by the bifurcations study is proposed, and then by a discrete numerical method to find again the same influence of the visco-elasticity on the rupture embrittlement experimentally observed. At last, the first results of
Coppack, Simon W; Chinkes, David L; Miles, John M; Patterson, Bruce W; Klein, Samuel
2005-07-01
Lipolysis of adipose tissue triglycerides releases glycerol. Twenty-four volunteers, of whom 6 were obese and 13 were women, received a primed-constant infusion of 2H5-glycerol for 120 min during postabsorptive steady-state conditions. Arterial, abdominal venous, and interstitial (microdialysis) samples were taken, and a four-compartment model was applied to assess subcutaneous abdominal adipose tissue glycerol kinetics. Adipose tissue blood flow was measured using 133Xe washout. Venous glycerol concentrations (median 230 micromol/l [interquartile range 210-268]) were consistently greater than those of arterial blood (69.1 micromol/l [56.5-85.5]), while glycerol isotopic enrichments (tracer-to-tracee ratio) were greater in arterial blood (8.34% [7.44-10.1]) than venous blood (2.34% [1.71-2.69], P < 0.01). Microdialysate glycerol enrichment was 1.44% (1.11-1.79), indicating incomplete permeability of glycerol between capillary blood and interstitium. Calculated interstitial glycerol concentrations were between 270 micromol/l (256-350) and 332 micromol/l (281-371) (examining different boundary conditions). The calculated capillary diffusion capacity (ps) was between 2.21 ml . 100 g tissue(-1) . min(-1) (1.31-3.13) and 3.09 ml . 100 g tissue(-1) . min(-1) (1.52-4.90) and correlated inversely with adiposity (Rs< or = -0.45, P < 0.05). Our results support previous estimates of interstitial glycerol concentration within adipose tissue and reveal capillary diffusion capacity is reduced in obesity.
王健; 张晓丽; 刘陶
2011-01-01
In view of the difficulty in nonlinear modeling for prediction of woven fabric permeability, a projection pursuit regression ( PPR) model for prediction of air permeability of woven fabrics was established using the structural parameters such as the total tightness, thickness, and weight per square meter and average float as factors affecting the prediction of woven fabric permeability. The fitted values of tested samples and the predicted values of trained samples were analyzed with the means and standard deviations of relative error as the indicators and were compared with the results of BP neural network and multiple linear regression model. The results showed that the PPR model fitting and prediction accuracy was better than those of BP neural network and multiple linear regression model. In the case of less trained samples, the PPR model still had relatively high prediction accuracy and good generalization ability, providing a novel approach to the prediction of woven fabric permeability.%针对机织物透气性预测中存在非线性建模困难的问题,选择机织物总紧度、厚度、面密度及平均浮长等结构参数作为机织物透气性预测的影响因素,建立机织物透气性预测的投影寻踪回归模型.对模型训练样本的拟合值及检验样本的预测值以相对误差的均值及标准差为指标进行分析,并与BP神经网络及多元线性回归模型进行对比.结果表明,投影寻踪回归模型的拟合及预测精度均优于BP神经网络及多元线性回归模型,且在训练样本较少的情况下,投影寻踪回归模型仍有较高的预测精度和较强的泛化能力,可为机织物透气性预测提供一种新的方法.
Poulsen, Marie Sønnegaard; Rytting, Erik; Mose, Tina
2009-01-01
across the BeWo cells was observed in the rank order of caffeine>antipyrine>benzoic acid>glyphosate in terms of both the apparent permeability coefficient and the initial slope, defined as the linear rate of substance transferred to the fetal compartment as percent per time, a parameter used to compare...
Gómez Susana
2014-07-01
Full Text Available The aim of this work is to study the automatic characterization of Naturally Fractured Vuggy Reservoirs via well test analysis, using a triple porosity-dual permeability model. The inter-porosity flow parameters, the storativity ratios, as well as the permeability ratio, the wellbore storage effect, the skin and the total permeability will be identified as parameters of the model. In this work, we will perform the well test interpretation in Laplace space, using numerical algorithms to transfer the discrete real data given in fully dimensional time to Laplace space. The well test interpretation problem in Laplace space has been posed as a nonlinear least squares optimization problem with box constraints and a linear inequality constraint, which is usually solved using local Newton type methods with a trust region. However, local methods as the one used in our work called TRON or the well-known Levenberg-Marquardt method, are often not able to find an optimal solution with a good fit of the data. Also well test analysis with the triple porosity-double permeability model, like most inverse problems, can yield multiple solutions with good match to the data. To deal with these specific characteristics, we will use a global optimization algorithm called the Tunneling Method (TM. In the design of the algorithm, we take into account issues of the problem like the fact that the parameter estimation has to be done with high precision, the presence of noise in the measurements and the need to solve the problem computationally fast. We demonstrate that the use of the TM in this study, showed to be an efficient and robust alternative to solve the well test characterization, as several optimal solutions, with very good match to the data were obtained.
Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.
2016-12-01
The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow
Lebedev, Ivan; Nemajerova, Alice; Foda, Zachariah H; Kornaj, Maja; Tong, Michael; Moll, Ute M; Seeliger, Markus A
2016-10-09
Tissue necrosis as a consequence of ischemia-reperfusion injury and oxidative damage is a leading cause of permanent disability and death worldwide. The complete mechanism by which cells undergo necrosis upon oxidative stress is not understood. In response to an oxidative insult, wild-type p53 has been implicated as a central regulatory component of the mitochondrial permeability transition (mPT), triggering necrosis. This process is associated with cellular stabilization and translocation of p53 into the mitochondrial matrix. Here, we probe the mechanism by which p53 activates the key mPT regulator cyclophilin D (CypD). We explore the involvement of Trap1, an Hsp90-related mitochondrial matrix protein and a member of the mitochondrial unfolded protein response, and its ability to suppress mPT in a p53-dependent manner. Our study finds that catalytically active CypD causes strong aggregation of wild-type p53 protein (both full-length and isolated DNA-binding domain) into amyloid-type fibrils in vitro. The responsible CypD residues for this activity were mapped by NMR to the active site amino acids R55, F60, F113, and W121. The data also present a new proline isomerization assay for CypD by monitoring the aggregation of p53 as an indicator of CypD activity. Moreover, we find that the inhibition of Trap1 by the mitochondria-specific HSP90 ATPase antagonist Gamitrinib strongly sensitizes primary mouse embryonic fibroblasts to mPT and permeability transition pore opening in a p53- and CypD-dependent manner. We propose a mechanism by which the influx of unfolded p53 into the mitochondrial matrix in response to oxidative stress indirectly activates the normally inhibited CypD by displacing it from Trap1 complexes. This activates CypD's isomerase activity. Liberated CypD then isomerizes multiple proteins including p53 (causing p53 aggregation) and the structural components of the mPTP pore, inducing pore opening. This working model can now be tested in the future
Yuxin Leng
Full Text Available INTRODUCTION: Intra-abdominal hypertension (IAH is known as a common, serious complication in critically ill patients. Bacterial translocation and permeability changes are considered the pathophysiological bases for IAH-induced enterogenic endotoxemia and subsequent multiorgan failure. Nevertheless, the effects of slightly elevated intra-abdominal pressures (IAPs on the intestinal mucosa and the associated mechanisms remain unclear. METHODS: To investigate the acute effects of different nitrogen pneumoperitoneum grades on colonic mucosa, male Sprague-Dawley rats were assigned to six groups with different IAPs (0 [control], 4, 8, 12, 16, and 20 mmHg, n = 6/group. During 90 min of exposure, we dynamically monitored the heart rate and noninvasive hemodynamic parameters. After gradual decompression, arterial blood gas analyses were conducted. Thereafter, structural injuries to the colonic mucosa were identified using light microscopy. Colon permeability was determined using the expression of tight junction proteins, combined with fluorescein isothiocyanate dextran (FD-4 absorption. The pro-oxidant-antioxidant balance was determined based on the levels of malondialdehyde (MDA and antioxidant enzymes. RESULTS: IAH significantly affected the histological scores of the colonic mucosa, tight junction protein expression, mucosal permeability, and pro-oxidant-antioxidant balance. Interestingly, elevations of IAP that were lower than the threshold for IAH also showed a similar, undesirable effect. In the 8 mmHg group, mild hyponatremia, hypocalcemia, and hypoxemia occurred, accompanied by reduced blood and abdominal perfusion pressures. Mild microscopic inflammatory infiltration and increased MDA levels were also detected. Moreover, an 8-mm Hg IAP markedly inhibited the expression of tight junction proteins, although no significant differences in FD-4 permeability were observed between the 0- and 8-mmHg groups. CONCLUSIONS: Acute exposure to slightly
Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.
2006-01-01
A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate
Estimation of soil permeability
Amr F. Elhakim
2016-09-01
Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.
Clogging in permeable concrete: A review.
Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R
2017-05-15
Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang L
2016-07-01
Full Text Available Lin Zhang, Shou-Ying Du, Yang Lu, Chang Liu, Zhi-Hao Tian, Chang Yang, Hui-Chao Wu, Zhen Wang School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, People’s Republic of China Abstract: Nasal administration is a high-potential delivery system, particularly because it can provide a pathway from the nose to the brain. The objective of this research is to characterize puerarin transport across a Calu-3 cell monolayer used as a model of the nasal mucosa and to evaluate the influence of puerarin in combination with paeoniflorin and menthol to explore the enhanced mechanism of the permeability at the cell level. The apparent permeability coefficients (Papp of puerarin bidirectional transport were both <1.5×10-6 cm/s, and the efflux ratio was <1.5, indicating that puerarin alone exhibited poor absorption and that its transport primarily occurred by passive diffusion through the cell monolayer. When puerarin was coadministered with paeoniflorin, the Papp was not changed (P>0.05. However, the addition of menthol significantly (P<0.05 improved the Papp of puerarin in both directions. Moreover, based on immunofluorescence experiments and transepithelial electrical resistance measurements, the data indicated that the drug compatibility opened tight junctions and weakened the barrier capabilities of epithelial cells, thereby promoting the permeability of puerarin. Keywords: puerarin, paeoniflorin, menthol, nasal administration, transport, tight junction
Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.
2009-03-01
The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.
EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA
2014-01-01
Full Text Available Following an application from Omikron Italia S.r.l., submitted pursuant to Article 13.5 of Regulation (EC No 1924/2006 via the Competent Authority of Italy, the Panel on Dietetic Products, Nutrition and Allergies (NDA was asked to deliver an opinion on the scientific substantiation of a health claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability. The food that is a subject of the health claim, a combination of diosmin, troxerutin and hesperidin, is sufficiently characterised. The claimed effect, maintenance of normal venous-capillary permeability, is a beneficial physiological effect. No human intervention studies from which conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between the consumption of a combination of diosmin, troxerutin and hesperidin and the maintenance of normal venous-capillary permeability.
Macro fluid analysis of laminated fabric permeability
Qiu Li
2016-01-01
Full Text Available A porous jump model is put forward to predict the breathability of laminated fabrics by utilizing fluent software. To simplify the parameter setting process, the methods of determining the parameters of jump porous model by means of fabric layers are studied. Also, effects of single/multi-layer fabrics and thickness on breathability are analyzed, indicating that fabric breathability reduces with the increase of layers. Multi-layer fabric is simplified into a single layer, and the fabric permeability is calculated by proportion. Moreover, the change curve of fabric layer and face permeability, as well as the equation between the fabric layer and the face permeability are obtained. Then, face permeability and pressure-jump coefficient parameters setting of porous jump model could be integrated into single parameter (i. e. fabric layers, which simplifies the fluent operation process and realizes the prediction of laminated fabric permeability.
Han, Tian
2013-02-01
To observe changes in expression of tumor necrosis factor (TNF)-alpha and permeability of blood brain barrier after salidroside pretreatment in rats with injury induced by focal cerebralischemia-reperfusion. Forty-five male SD rats were randomly divided into three groups (n=15): control group, ischemia-reperfusion (IR) model group, and salidroside pretreatment group. Before the IR model establishment, the rats in the salidroside pretreatment group were intraperitoneally administered with salidroside at a dose of 24 mg/(kg·d) for 7 d. After 30 min post the last administration, the IR model was induced by occlusion of middle cerebral artery with a filament. After 24 h post the operation, the water content and Evens blue content in the ischemia cerebral hemisphere were determined, and the level of TNF-alpha mRNA was detected by the semi-quantitative RT-PCR. Compared with the IR model group, the salidroside pretreatment group had significantly lower (Psalidroside pretreatment alleviated the focal cerebralischemia-reperfusion injury in the rat model, possibly by decreasing the permeability of blood brain barrier, attenuating brain edema and reducing TNF-alpha expression. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Tian Han
2013-01-01
Objective:To observe changes in expression of tumor necrosis factor(TNF)-alpha and permeability of blood brain barrier after salidroside pretreatment in rats with injury induced by focal cerebralischemia-reperfusion.Methods:Forty-five maleSD rats were randomly divided into three groups(n=15): control group, ischemia-reperfusion(IR) model group, and salidroside pretreatment group.Before theIR model establishment, the rats in the salidroside pretreatment group were intraperitoneally administered with salidroside at a dose of24 mg/(kg•d) for7 d.After30 min post the last administration, theIR model was induced by occlusion of middle cerebral artery with a filament.After24 h post the operation, the water content andEvens blue content in the ischemia cerebral hemisphere were determined, and the level of TNF-alpha mRNA was detected by the semi-quantitativeRT-PCR.Results:Compared with theIR model group, the salidroside pretreatment group had significantly lower(P<0.05) water content andEvens blue content in the ischemia cerebral hemisphere and also had significantly lower(P<0.05) level of TNF-alpha in the ischemic cerebral cortex tissue.Conclusions:The salidroside pretreatment alleviated the focal cerebralischemia-reperfusion injury in the rat model, possibly by decreasing the permeability of blood brain barrier, attenuating brain edema and reducingTNF-alpha expression.
Mitchell, T. M.; Faulkner, D. R.
2008-11-01
Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger-scale models that predict bulk fluid flow within the crust. Permeability is particularly enhanced in the damage zone of faults, where microfracture damage accumulates under stress less than that required for macroscopic failure. Experiments performed in the prefailure region can provide data directly applicable to these zones of microfracture damage surrounding faults. The strength, permeability, and pore fluid volume evolution of initially intact crystalline rocks (Cerro Cristales granodiorite and Westerly granite) under increasing differential load leading to macroscopic failure has been determined at water pore pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to, and over, 2 orders of magnitude prior to macroscopic failure, with the greatest increase seen at lowest effective pressures. Postfailure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities and approaches the lower limit of predicted in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced and the greatest permeability increases are seen between 90 and 99% of the failure stress. Prefailure permeabilities are nearly 7 to 9 orders of magnitude lower than that predicted by some high-pressure diffusive models suggesting that if these models are correct, microfracture matrix flow cannot dominate, and that bulk fluid flow must be dominated by larger-scale structures such as macrofractures. We present a model, based on our data, in which the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks increases by more than 2 orders of magnitude. Stress reduction related to
Jankovic, I.; Maghrebi, M.; Fiori, A.; Dagan, G.
2017-02-01
Natural gradient steady flow of mean velocity U takes place in heterogeneous aquifers of random logconductivity Y = lnK , characterized by the univariate PDF f(Y) and autocorrelation ρY. Solute transport is analyzed through the Breakthrough Curve (BTC) at planes at distance x from the injection plane. The study examines the impact of permeability structures sharing same f(Y) and ρY, but differing in higher order statistics (integral scales of variograms of Y classes) upon the numerical solution of flow and transport. Flow and transport are solved for 3D structures, rather than the 2D models adopted in most of previous works. We considered a few permeability structures, including the widely employed multi-Gaussian, the connected and disconnected fields introduced by Zinn and Harvey [2003] and a model characterized by equipartition of the correlation scale among Y values. We also consider the impact of statistical anisotropy of Y, the shape of ρY and local diffusion. The main finding is that unlike 2D, the prediction of the BTC of ergodic plumes by numerical and analytical models for different structures is quite robust, displaying a seemingly universal behavior, and can be used with confidence in applications. However, as a prerequisite the basic parameters KG (the geometric mean), σY2 (the logconductivity variance) and I (the horizontal integral scale of ρY) have to be identified from field data. The results suggest that narrowing down the gap between the BTCs in applications can be achieved by obtaining Kef (the effective conductivity) or U independently (e.g. by pumping tests), rather than attempting to characterize the permeability structure beyond f(Y) and ρY.
Sigmund, Eric E.; Novikov, Dmitry S.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Babb, James S.; Liu, Kecheng; Feiweier, Thorsten; Kwon, Jane; Mcgorty, KellyAnne; Bencardino, Jenny; Fieremans, Els
2014-01-01
Purpose To collect diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3-T scanner at rest and after treadmill exertion at 4 different diffusion times. Radial diffusion values λrad were computed for each of 7 different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. Results All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p<0.05) increases with exercise for volunteers, and a increased significantly (p<0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p=0.07), and larger permeability increases (p=0.07) than controls. Conclusions Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be
Noth, Rainer; Häsler, Robert; Stüber, Eckhard; Ellrichmann, Mark; Schäfer, Heiner; Geismann, Claudia; Hampe, Jochen; Bewig, Burkhard; Wedel, Thilo; Böttner, Martina; Schreiber, Stefan; Rosenstiel, Philip; Arlt, Alexander
2013-04-01
Although a profound barrier dysfunction has been reported, little is known about the pathophysiological mechanism evoking gastrointestinal graft-vs.-host disease (GI-GvHD) and apparent therapeutic options. The aim of this study was to evaluate the influence of oral glutamine on the course of GI-GvHD in an acute semiallogenic graft-vs.-host disease (GvHD) in irradiated B6D2F1 mice. An acute semiallogenic GvHD was induced by intraperitoneal injection of lymphocytes from C57BL/6 mice to irradiated B6D2F1 mice. Half of the GvHD animals received oral glutamine supplementation for 6 days started at the time of lymphocyte transfer. Six days after induction of the semiallogenic GvHD, jejunum specimens were prepared. The expression of the proinflammatory cytokine TNF-α and the tight junction protein occludin was investigated by PCR. Histological changes along with the apoptotic response were evaluated and intestinal permeability was assessed. Animals with GvHD showed a strong increase in paracellular permeability as a sign of the disturbed barrier function. TNF-α expression was significantly increased and the expression of the tight junction protein occludin decreased. GvHD led to mucosal atrophy, crypt hyperplasia, crypt apoptosis, and a disintegration of the tight junctions. Glutamine-treated mice showed reduced expression of TNF-α, increased occludin expression, fewer histological changes in the jejunum, smaller number of apoptotic cells in the crypt, and reduced gastrointestinal permeability. In conclusion, oral glutamine seems to have beneficial effects on the severity of inflammatory changes in the course of GvHD and might be a therapeutic option.
Maleki, K
2004-03-15
The relation between damage and permeability in rocks is a very important subject in industrial applications. It is for example the case of cracks around the radioactive waste storage galleries (EDZ) which can rise considerably the permeability and so make a serious problem for the sealing and the safety of these structures. The same phenomena can occur in the surrounding concrete wall of the nuclear power stations and also in the cracking of the oil-bearing rocks reservoirs. The experimental research on this subject, specially in laboratory G.3S-LMS in Ecole Polytechnique made it possible to determine the orders of damage effect on the permeability change. But a numerical modeling of these phenomena for setting a constitutive behavior law was to be done. This is the principal objective of this thesis. In this project, at first the notion of crack damage is defined. This type of damage is modeled by the disc shaped crack distribution in the 3D space. The disc's geometrical characteristics (radius, direction and opening) obey the statistical distribution laws, depending on the type of loading (compression or extension). The upper and lower limits of the characteristics are fixed according to actual observations, carried out on clay-stone (host rock selected for the realization of an underground research laboratory in Bure). In order to modeling the damage in the porous media, the double porosity concept is considered. A method of homogenization is used to simulate the flow through the network of cracks and porosity. It allows to derive the equivalent permeability of the fractured porous media. The study of the correlations between permeability and damage, obtained by this method for various values of fracture density, made it possible to obtain a relation between permeability and crack damage, for classical types of loading as simple extension and simple compression. To generalize this relation in the case of any specified triaxial loading, the crack damage is
Tratta, E; Pescina, S; Padula, C; Santi, P; Nicoli, S
2014-09-01
The aim of this work was to study the penetration of cytochrome c, a positively charged model protein (MW 12.4 kDa, charge at pH 8.2: +9), across different ocular tissues, and to evaluate the potential of iontophoresis to enhance and control the transscleral transport. The passive transport of cytochrome c across the sclera and across the bilayer choroid-Bruch's membrane was evaluated using Franz diffusion cells and porcine tissues. The affinity of cytochrome c for melanin was measured by means of in vitro binding experiments. The iontophoretic (anodal) permeation was studied as a function of donor concentration (from 5 to 70 mg/ml) and current intensity (from 0.9 to 3.5 mA; density from 1.5 to 5.8 mA/cm(2)), and the contribution of electroosmosis on cytochrome c transport was evaluated by using a high molecular weight fluorescent dextran (FD-150, 149 kDa) as neutral marker. Finally, the possibility of tuning cytochrome c permeation rate was investigated on a 70 mg/ml cytochrome c solution, by alternating passive permeation and iontophoresis at different intensities. Cytochrome c permeated the sclera with a passive permeability coefficient of about 2.5 × 10(-6)cm/s, comparable to molecules of similar molecular radius. The choroid-Bruch's layer was an important barrier to penetration, since its presence reduced 5-7 times the amount permeated after 5h, also because of the presence of melanin that binds cytochrome. Iontophoresis (2.9 mA/cm(2)) enhanced cytochrome c penetration across the sclera at all the concentrations tested, increasing about ten times the amount permeated after 2h. The effect was proportional to current density: the enhancement factor (measured on a 10mg/ml solution), resulted 6.0 ± 4.3 (i=0.9 mA; density=1.5 mA/cm(2)), 10.6 ± 4.1 (i=1.75 mA; density=2.9 mA/cm(2)), 33.2 ± 8.3 (i=1.75 mA; density=5.8 mA/cm(2)). Iontophoretic (density=2.9 mA/cm(2)) experiments performed with FD-150, an electroosmotic flow (EO) marker, demonstrated that cytochrome
Dispersion controlled by permeable surfaces: surface properties and scaling
Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia
2016-07-19
Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.
Xu, G; Hughes-Oliver, J M; Brooks, J D; Yeatts, J L; Baynes, R E
2013-01-01
Quantitative structure-activity relationship (QSAR) models are being used increasingly in skin permeation studies. The main idea of QSAR modelling is to quantify the relationship between biological activities and chemical properties, and thus to predict the activity of chemical solutes. As a key step, the selection of a representative and structurally diverse training set is critical to the prediction power of a QSAR model. Early QSAR models selected training sets in a subjective way and solutes in the training set were relatively homogenous. More recently, statistical methods such as D-optimal design or space-filling design have been applied but such methods are not always ideal. This paper describes a comprehensive procedure to select training sets from a large candidate set of 4534 solutes. A newly proposed 'Baynes' rule', which is a modification of Lipinski's 'rule of five', was used to screen out solutes that were not qualified for the study. U-optimality was used as the selection criterion. A principal component analysis showed that the selected training set was representative of the chemical space. Gas chromatograph amenability was verified. A model built using the training set was shown to have greater predictive power than a model built using a previous dataset [1].
Bai-Jian Wei
2016-09-01
Full Text Available Resin transfer molding (RTM is a popular manufacturing technique that produces fiber reinforced polymer (FRP composites. In this paper, a model-assisted flow front control system is developed based on real-time estimation of permeability/porosity ratio using the information acquired by a visualization system. In the proposed control system, a radial basis function (RBF network meta-model is utilized to predict the position of the future flow front by inputting the injection pressure, the current position of flow front, and the estimated ratio. By conducting optimization based on the meta-model, the value of injection pressure to be implemented at each step is obtained. Moreover, a cascade control structure is established to further improve the control performance. Experiments show that the developed system successfully enhances the performance of flow front control in RTM. Especially, the cascade structure makes the control system robust to model mismatch.
Roy K
2015-02-01
Full Text Available Kislay Roy,1 Rupinder K Kanwar,1 Subramanian Krishnakumar,2,3 Chun Hei Antonio Cheung,4 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Molecular and Medical Research (MMR Strategic Research Centre, School of Medicine (SoM, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia; 2Department of Nanobiotechnology, 3Larsen & Toubro (L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India; 4Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China Abstract: Endogenous survivin expression has been related with cancer survival, drug resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin (SurR9-C84A, referred to as SR9 competitively inhibited endogenous survivin and blocked the cell cycle at the G1/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles (CHNP substantially increased the bioavailability and serum stability of SR9. The mechanism of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results confirmed that CHNP–SR9 protected primary cells from autophagy and successfully induced tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP–SR9 significantly reduced the tumor spheroid size (three-dimensional model by nearly 7-fold. Effects of SR9 and CHNP–SR9 were studied on 35 key molecules involved in the apoptotic pathway. Highly significant (4.26-fold, P≤0.005 reduction in tumor volume was observed using an in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, P≤0.005 and necrotic indexes (3.5-fold, P≤0.05 were comparatively higher in CHNP–SR9 when compared to void CHNP and CHNP–SR9
肿瘤微血管芯片的制备及其应用%A tumor capillary model preparation based on microfluidic chip for permeability assay
翟万银; 吴蕾; 贾春平; 邵建波; 徐元森
2011-01-01
Tumor capillary blood vessel is much different from vessel in normal tissues. Based on mi-crofluidic chip of normal tissue vessels which was prepared in this laberatory, a novel tumor capillary model preparation has been made using microfabrication technology. The model consists of (1) a micro-channel with 24 mm in length,50 μm in width and 40 μm in depth, (2) a microchamber linked to a mi-crochannel by micro gaps. The microchannel was expanded at three sites in the middle part to mimic the irregular structure of tumor capillary. After the microchannel being transfused with human umbilical vein endothelial cells, the chip was cultured for 10 d to obtain an integrated cell barrier. Permeability has been achieved after 24 h induction for cell migration by adjusting the height of culture medium in pipette tip of inlet and outlet. The permeability of microfluidic chip well mimicked the characteristics of tumor blood vessels. The chip can respond just like in vivo to histamine and metalloprotease - 2 which can induce high permeability. In present study, this microfluidic chip has been used to measure the effect of procyanidins and irinotecan, a clinical medicine for curing cancers, on permeability. The result showed that procyanidins at 0. 1, 1 and 2 μg/mL can inhibit the permeability. All these data proved the prepared microfluidic chip has the primary function for permeability assay.%肿瘤血管结构不同于正常组织血管,由内皮细胞松散地围成不完整的管道,呈高通透性.为建立体外简便、有效、低廉的肿瘤血管模型,本研究采用微加工技术,制作了肿瘤血管微流控芯片.芯片包括24 mm长50 μm宽40 μm深的微管道和一侧的微腔体以及两者之间的微缝.微管道中部设有膨胀区域以模拟肿瘤血管结构.在微管道内导入血管内皮细胞,培养形成细胞壁垒.通过促进细胞迁移而使得细胞壁垒出现稳定的泄漏点,使血管芯片具有通透性,并对体内调控血
Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
Gerke, Kirill
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
Agartan, E.; Illangasekare, T. H.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.; Trevisan, L.
2013-12-01
Dissolution trapping is one of the primary mechanisms contributing to long-term and stable storage of supercritical CO2 (scCO2) in deep saline geologic formations. When entrapped scCO2 dissolves in formation brine, density-driven convective fingers are expected to be generated due to the higher density of the solution compared to brine. These fingers enhance mixing of dissolved scCO2 in brine (Ennis-King & Paterson, 2003). The goal of this study is to evaluate the contribution of convective mixing to dissolution trapping of CO2 in naturally layered heterogeneous formations with low permeability zones via experimental and numerical analyses. To understand the fundamental process of dissolution trapping in the laboratory under ambient pressure and temperature conditions, a group of surrogate fluids were selected according to their density and viscosity values before and after dissolution. Fluids were tested in a variety of porous media systems. After selection of the appropriate fluid mixture based on the closest behavior to scCO2 brine systems, a set of experiments in a small homogeneously packed test tank was performed to analyze the fingering behaviors. A second set of experiments was conducted in the same test tank with layered soil systems to study the effects of formation heterogeneity on convective mixing. A finite volume method based numerical code was developed to capture the dominant processes observed in the experiments. This model was then used to simulate more complex heterogeneous systems that were not represented in the limited set of experiments. Results of these analyses suggest that convective fingers developed in homogeneous formations may not be significantly contributing to mixing and hence dissolution trapping in heterogeneous formations depending on the permeability contrasts and thickness of the low permeability layers.
Cosmological models in general relativity
B B Paul
2003-12-01
LRS Bianchi type-I space-time ﬁlled with perfect ﬂuid is considered here with deceleration parameter as variable. The metric potentials and are functions of as well as . Assuming '/=(), where prime denotes differentiation with respect to , it was found that =('/) and =(), where =() and is the scale factor which is a function of only. The value of Hubble’s constant 0 was found to be less than half for non-ﬂat model and is equal to 1.3 for a ﬂat model.
Gas and Water Permeability of Concrete
Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.
2012-11-01
The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.
Lopalco A
2015-03-01
Full Text Available Antonio Lopalco,1–3,* Hazem Ali,1,* Nunzio Denora,3 Erik Rytting1,4,5 1Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA; 2Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; 3Department of Pharmacy – Drug Sciences, University of Bari Aldo Moro, Bari, Italy; 4Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; 5Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA *These authors contributed equally to this work Abstract: Encapsulation of antiepileptic drugs (AEDs into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]. The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells and human placental trophoblast cells (BeWo b30 cells. Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below −34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6 demonstrated increased permeability of surfactant-coated nanoparticles
Bloomfield, J. P.; Newell, A.; Moreau, M.
In order to enhance our ability to develop effective numerical models of flow and con- taminant transport in the Permo-Triassic sandstone aquifer of the UK, relationships between lithofacies, rock mass characteristics (such as porosity and pore-throat size distribution), and permeability have been investigated through a series of case studies. Flow in the Permo-Triassic sandstones is primarily through the matrix. Permeability distribution is principally a function of the pore-throat size distribution and there is a relatively weak correlation with primary sedimentary lithofacies. It is observed that matrix permeability data broadly fall into two, discontinuous, sub-populations above and below about 1 mD. It is proposed that modification of primary sedimentary litho- facies by circulation of groundwater is the main control on the development of these two permeability sub-populations or hydrofacies. Identification of these two hydrofa- cies has significant implications for numerical modelling of the sandstones.
Moeys, J.; Larsbo, M.; Bergström, L.; Brown, C. D.; Coquet, Y.; Jarvis, N. J.
2012-07-01
Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedo)transfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved. Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42). Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = -0.26) due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72). Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably more important than the
J. Moeys
2012-07-01
Full Text Available Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisations usually rely on a set of lookup tables and (pedotransfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved.
Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42. Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = −0.26 due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72. Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is
J. Moeys
2012-02-01
Full Text Available Estimating pesticide leaching risks at the regional scale requires the ability to completely parameterise a pesticide fate model using only survey data, such as soil and land-use maps. Such parameterisation usually rely on a set of lookup tables and (pedotransfer functions, relating elementary soil and site properties to model parameters. The aim of this paper is to describe and test a complete set of parameter estimation algorithms developed for the pesticide fate model MACRO, which accounts for preferential flow in soil macropores. We used tracer monitoring data from 16 lysimeter studies, carried out in three European countries, to evaluate the ability of MACRO and this "blind parameterisation" scheme to reproduce measured solute leaching at the base of each lysimeter. We focused on the prediction of early tracer breakthrough due to preferential flow, because this is critical for pesticide leaching. We then calibrated a selected number of parameters in order to assess to what extent the prediction of water and solute leaching could be improved.
Our results show that water flow was generally reasonably well predicted (median model efficiency, ME, of 0.42. Although the general pattern of solute leaching was reproduced well by the model, the overall model efficiency was low (median ME = −0.26 due to errors in the timing and magnitude of some peaks. Preferential solute leaching at early pore volumes was also systematically underestimated. Nonetheless, the ranking of soils according to solute loads at early pore volumes was reasonably well estimated (concordance correlation coefficient, CCC, between 0.54 and 0.72. Moreover, we also found that ignoring macropore flow leads to a significant deterioration in the ability of the model to reproduce the observed leaching pattern, and especially the early breakthrough in some soils. Finally, the calibration procedure showed that improving the estimation of solute transport parameters is probably
Bakopoulou, C.; Bulygina, N.; Butler, A. P.; McIntyre, N. R.
2012-04-01
used here takes into account a multiobjective approach, which means that more than one objective functions are evaluated. These are the Nash-Sutcliffe efficiency (NSE) and the Absolute value of the relative bias (Absr-bias). The sensitivity analysis also provided an approximation of the optimal parameter sets so that the residual model error would originate mainly from the datasets and the model structure. JULES performance at the point scale using the default recommended parameter values was variable. The case study area is focused on the Thames catchment and more specifically on the Pang and Lambourn catchments. The examined areas are located in the WarrenFarm site, a grassland livestock site that is high on Lambourn Downs, and the Frilsham Meadow site, a grassland recharge site next to the River Pang. With the incorporation of the optimised parameters the soil moisture performance was considered reasonable so that there is no evidence that the model structure is insufficient in these catchments, and that the challenge is parameter estimation. The greater problem of parameter estimation at larger operational scales is discussed.
Schoknecht, Karl; Prager, Ofer; Vazana, Udi; Kamintsky, Lyn; Harhausen, Denise; Zille, Marietta; Figge, Lena; Chassidim, Yoash; Schellenberger, Eyk; Kovács, Richard; Heinemann, Uwe; Friedman, Alon
2014-11-01
Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.
张红杰; 蔡振华; 李春; 李芳芳
2015-01-01
通过Blake-Kozeny方程推导了聚、油两相渗流时聚合物有效粘度计算公式，并通过兰格缪尔方程引入了相对渗透率下降因子。将有效粘度及渗透率下降因子代入广义达西公式获得了考虑剪切变稀和吸附滞留的稳态法聚合物驱相对渗透率计算公式。室内通过物理实验对比了新方法与传统稳态法聚合物驱相渗曲线区别，以及水驱和聚合物驱相渗曲线的区别。研究结果表明：与传统稳态法相比，受不可及体积和吸附滞留的影响，新方法计算的油相和聚合物相相对渗透率值均较低，其中油相相对渗透率主要受吸附滞留的影响，较传统稳态法下降了12％，聚合物相相对渗透率受不可及体积和吸附滞留的共同影响，较传统稳态法下降了44％。由于新方法不仅考虑了聚合物剪切变稀的非牛顿流体特性，还考虑了聚合物不可及体积和吸附滞留引起的渗透率下降，结果更为准确可靠。%Through Blake-Kozeny equation the effective viscosity of polymer was derived, and with Langmiur isotherm equation the effect of static adsorption and dynamic retention on oil/polymer relative permeability was con-sidered by introducing relative permeability reduction ratio.With polymer effective viscosity, relative permeability and broader Darcy’ s law, the relative permeability of polymer flooding in steady state could be obtained by consid-ering shear-thinning, static adsorption and dynamic retention effect.Then, laboratory experiments were conducted to compare the relative permeability of polymer flooding obtained by new method with that of old method and water flooding.The results showed that both oil phase and polymer phase relative permeabilities obtained by new method are much lower than old method due to the effect of inaccessible pore volume, static adsorption and dynamic reten-tion.Because of static adsorption, oil phase relative permeability reduced by 12
Hoffmann, Angelika; Bredno, Jörg; Wendland, Michael F; Derugin, Nikita; Hom, Jason; Schuster, Tibor; Zimmer, Claus; Su, Hua; Ohara, Peter T; Young, William L; Wintermark, Max
2012-12-01
Permeability imaging might add valuable information in the risk assessment of hemorrhagic transformation. This study evaluates the predictive value of blood-brain barrier permeability (BBBP) measurements extracted from dynamic contrast-enhanced MRI for hemorrhagic transformation in ischemic stroke. Spontaneously hypertensive and Wistar rats with 2 h filament occlusion of the right MCA underwent MRI during occlusion, at 4 and 24 h post reperfusion. BBBP was imaged by DCE imaging and quantified by Patlak analysis. Cresyl-violet staining was used to characterize hemorrhage in sacrificed rats at 24 h, immediately following the last imaging study. BBBP changes were evaluated at baseline, 4 and 24 h after reperfusion. Receiver-operating characteristic (ROC) analysis was performed to determine the most accurate BBBP threshold to predict hemorrhagic transformation. In animals showing macroscopic hemorrhage at 24 h, 95th BBBP percentile values ipsilateral were 0.323 [0.260, 0.387], 0.685 [0.385, 0.985], and 0.412 [0.210, 0.613] ml/min·100 g (marginal mean [95%CI]) during occlusion, at 4 and 24 h post reperfusion, respectively. The BBBP values on the infarcted and contralateral side were significantly different at 4 (p = 0.034) and 24 h post reperfusion (p = 0.031). The predictive value of BBBP in terms of macroscopic hemorrhage was highest 4 h after reperfusion (ROC area under the curve = 84 %) with a high negative predictive value (98.3 %) and limited positive predictive value (14.9 %) for a threshold of 0.35 ml/min·100g. Altered BBBP is a necessary but not sufficient condition to cause hemorrhagic transformation in rats with an infarct. Further research is needed to identify those additional risk factors that are required for hemorrhagic transformation to develop in the setting of ischemic stroke.
Lunar electrical conductivity and magnetic permeability
Dyal, P.; Parkin, C. W.; Daily, W. D.
1975-01-01
Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.
Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.
2010-09-15
Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.
Permeability of edible coatings.
Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A
2010-01-01
The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).
Permeability of edible coatings
B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.
2010-01-01
The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m2.day (6% beeswax) to 758.0 g/m2.day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...
Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...
Permeable pavement study (Edison)
U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...
Aghbelagh, Yousef Beiraghdar; Yang, Jianwen
2017-03-01
The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.
Heege, J.H. ter; Hoedeman, G.C.
2013-01-01
The presence of clay in fault zones has a dramatic effect on both fault mechanics and permeability. Quantification of this effect relies on small scale laboratory experiments or indirect observations from hydrocarbon fields, for which systematic variation of clay content, clay distribution, and defo
A Negative Permeability Material at Red Light
Yuan, Hsiao-Kuan; Chettiar, Uday K.; Cai, Wenshan;
2007-01-01
A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square...... roughness of 7 nm, while Sample B is made of thicker strips with 3-nm roughness. The real part of permeability, μ ′ , is −1 at a wavelength of 770 nm in Sample A and −1.7 at 725 nm in Sample B. Relative to prototypes simulated with ideal strips, larger strip roughness acts to decrease μ ′ by a factor of 7...
Tetens, Inge
claim related to a combination of diosmin, troxerutin and hesperidin and maintenance of normal venous-capillary permeability. The food that is a subject of the health claim, a combination of diosmin, troxerutin and hesperidin, is sufficiently characterised. The claimed effect, maintenance of normal...... the consumption of a combination of diosmin, troxerutin and hesperidin and the maintenance of normal venous-capillary permeability....
Kim, Eun Soo [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Seung-Koo [Department of Radiology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Kwon, Mi Jung [Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Phil Hye [Department of Neurology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Ju, Young-Su [Department of Industrial Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Yoon, Dae Young [Department of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355 (Korea, Republic of); Kim, Hye Jeong [Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441 (Korea, Republic of); Lee, Kwan Seop [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of)
2016-11-01
The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1}, p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1}, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.
Kim, Eun Soo; Lee, Kwan Seop; Kwon, Mi Jung; Ju, Young Su [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Lee, Seung Koo; Lee, Phil Hye [Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Dae Young [Dept. of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Kim, Hye Jeong [Dept. of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)
2016-09-15
The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20 .deg. ) infusion group, and localized warm-saline (37 .deg. ) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1},p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1},p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20 .deg. ) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37 .deg. ) infusion group.
Poulsen, T.G.; Christophersen, Mette; Moldrup, P.
2003-01-01
were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...
Relative risk regression models with inverse polynomials.
Ning, Yang; Woodward, Mark
2013-08-30
The proportional hazards model assumes that the log hazard ratio is a linear function of parameters. In the current paper, we model the log relative risk as an inverse polynomial, which is particularly suitable for modeling bounded and asymmetric functions. The parameters estimated by maximizing the partial likelihood are consistent and asymptotically normal. The advantages of the inverse polynomial model over the ordinary polynomial model and the fractional polynomial model for fitting various asymmetric log relative risk functions are shown by simulation. The utility of the method is further supported by analyzing two real data sets, addressing the specific question of the location of the minimum risk threshold.
Voorn, M. H.; Rath, A.; Exner, U.
2012-04-01
a similar way as the µCT data, but different segmentation routines apply. The microporosity in the samples is variable for different domains in the sample, where intra- and intergrain as well as matrix porosity are compared. Both datasets of microporosity and macroporosity in the fracture network serve as an input for various permeability models. We attempt different approaches for calculating the permeability, e.g. by finite element models solving the Navier-Stokes equations, or by Lattice Boltzmann modelling. Testing of variable grid resolution and numerical sample volume is performed to identify representative volume providing consistent permeability values from the different modelling techniques. Eventually, all mentioned data sets are integrated to provide an as complete as possible overview of the fractures and the petrophysical properties of the rocks, from µm to dm scale.
刘丽芳; 王卫章; 储才元; 迟景魁
2002-01-01
在过滤排水系统中,孔径及其分布是非织造土工布的重要指标,它与非织造土工布的渗透性能直接相关.利用Poisson Polyhedron理论,在前人研究的基础上分析了非织造土工布的理论孔径分布及其最大孔径,并根据Hagen-Poisseuille定律探讨了非织造土工布的孔径分布与其渗透性能间的关系,理论计算的垂直渗透与实测结果有较好的一致性.%In the field of filtration and drainage,pores size and their distribution of nonwoven geotextile are the most important parameters,which are directly related to its permeability.Based on the former researchers' works,the theoretical pore size distribution and maximum pore size of nonwoven geotextile are studided by means of Poisson polyhedron theory.The relation berween pore size distribution and permeability of nonwoven geotextile is derived by using Hagen-Poisseuille Law.The theoretical calculation value of vertical permeability coefficient is approximately agreeable to the expetimental result for a nonwoven geotextile sample.
Wang, Dan; Fu, Jijun; Shi, Yujie; Peng, Dong; Yuan, Lan; He, Bing; Dai, Wenbing; Zhang, Hua; Wang, Xueqing; Tian, Jie; Zhang, Qiang
2016-09-28
The transport of nanocarriers is supposed to be based on EPR effect which is affected by diverse factors, so the modulation of EPR effect seems very significant for nanocarriers including targeted drug delivery systems (TDDSs). Besides, it is extremely unclear how the EPR effect impacts the fate of different types of TDDSs. To make the most advantage of EPR effect for TDDSs, it is definitely necessary to clarify these key issues. Here, we construct and characterize various TDDSs, including sterically-stabilized liposomes (SSL), RGD functionalized SSL (RGD-SSL) and novel 7PEP functionalized SSL (7PEP-SSL), loaded with doxorubicin (DOX), DIR or DID. Here, we modulate the permeability of tumor vessels by thalidomide (THD) in a sarcoma-bearing EPR mouse model via monitoring endogenous deoxygenated hemoglobin in circulation, and then we confirm the effect of THD on tumor vessel permeability by vessel density, vessel maturity, VEGF expression and so on. Importantly, we investigate and find the impacts of EPR effect on the antitumor efficacy, in vivo distribution and intratumoral microdistribution of the three TDDSs. Interestingly, the EPR effects affect different TDDSs differently. The elevated EPR effect enhances the tumor accumulation of SSL and RGD-SSL but fails to increase their efficacy. The RGD-SSL exhibits the best efficacy with the least fluctuation, demonstrating the advantage of angiogenesis targeted systems. 7PEP-SSL seems the biggest beneficiary of EPR effect, suggesting the significance of EPR modulation for cells targeted systems. Generally, this study demonstrates the feasibility of modulating EPR effect bidirectionally by THD as well as the impacts of EPR effect on different type of testing TDDSs based on this animal model. It certainly provides novel insight into the design and potential use of TDDSs.
2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability
Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent
2013-09-03
Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of
Effective stress law for the permeability of a limestone
Ghabezloo, Siavash; Guédon, Sylvine; Martineau, François
2008-01-01
The effective stress law for the permeability of a limestone is studied experimentally by performing constant head permeability tests in a triaxial cell with different conditions of confining pressure and pore pressure. Test results have shown that a pore pressure increase and a confining pressure decrease both result in an increase of the permeability, and that the effect of the pore pressure change on the variation of the permeability is more important than the effect of a change of the confining pressure. A power law is proposed for the variation of the permeability with the effective stress. The permeability effective stress coefficient increases linearly with the differential pressure and is greater than one as soon the differential pressure exceeds few bars. The test results are well reproduced using the proposed permeability-effective stress law. A conceptual pore-shell model based on a detailed observation of the microstructure of the studied limestone is proposed. This model is able to explain the ex...
Lifted Inference for Relational Continuous Models
Choi, Jaesik; Hill, David J
2012-01-01
Relational Continuous Models (RCMs) represent joint probability densities over attributes of objects, when the attributes have continuous domains. With relational representations, they can model joint probability distributions over large numbers of variables compactly in a natural way. This paper presents a new exact lifted inference algorithm for RCMs, thus it scales up to large models of real world applications. The algorithm applies to Relational Pairwise Models which are (relational) products of potentials of arity 2. Our algorithm is unique in two ways. First, it substantially improves the efficiency of lifted inference with variables of continuous domains. When a relational model has Gaussian potentials, it takes only linear-time compared to cubic time of previous methods. Second, it is the first exact inference algorithm which handles RCMs in a lifted way. The algorithm is illustrated over an example from econometrics. Experimental results show that our algorithm outperforms both a groundlevel inferenc...
Kameyama, Masashi
2014-07-01
Brain perfusion tracers like [(99m)Tc] d,l-hexamethyl-propyeneamine oxime ((99m)Tc-HMPAO) and [(99m)Tc] ethyl-cysteinate dimer ((99m)Tc-ECD) underestimate regional cerebral blood flow (rCBF) at high flow values. To improve linearity between tracer accumulation and rCBF, two different models have been proposed. One is Lassen's correction algorithm for back-diffusion of tracer, and the other is based on the permeability-surface (PS) model for correction of low first-pass extraction. Although both these models have the same goal, they have completely different forms of equation. It was demonstrated that mathematical approximation of the PS model equation leads to Lassen's equation. In this process, the relationship between PS, CBF values and Lassen's parameter was acquired, and how to correct both the back-diffusion and low first-pass extraction was also demonstrated. A computer simulation confirmed that the two models provided similar consequences when the parameter value is chosen according to the relationship found. Lassen's equation can be used to correct not only back-diffusion but also low first-pass extraction. To perform overall correction, the parameter value we have been using for decades may be too weak. I estimated that the parameter value for overall correction of HMPAO would be around 0.5, and that of ECD would be around 0.65.
XU Hong; WEI Kai; CUI Ruyong; ZHU Yurui; EBERLI G P; LUO Wei; ZHAO Xinwei; CAI Ying; LIU Xinyu; YAN Guijing; ZHANG Bolin
2015-01-01
(dissolved pores+intragranular dissolved pores—intercrystalline pores+algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%–46.1%, a permeability of 0.203×10–3–2 641×10–3μm2, and a throat radius of 23.42–90.43μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.
Belin, S.; Fritz, B. [Centre de Geochimie de la Surface, UMR 7517, 67 - Strasbourg (France); Anguy, Y.; Bernard, D. [Lab. Energetique et Phenomenes de transfert, UMR 8508, 33 - Talence (France)
1999-07-01
This study deals with the relation between the micro-geometry and the permeability in a series of samples from a sandstone reservoir of the Alwyn area (North Sea). The samples have various petro-physical properties with porosities comprised between 13 and 26% and permeabilities ranging from 0.1 to 3000 mD. Five different types of pores were identified using micro-graphic images of the porosity. The spatial organization of pores and the 3-D connectivity between adjacent pores is deduced from the image processing data and the petrophysical data combined using multi-linear regression models. This approach has permitted to demonstrate a relation between the type of pores and size of the access radius. (J.S.)
A Model of Egoistical Relative Deprivation
Crosby, Faye
1976-01-01
Examines the theory of relative deprivation. This theory states, basically, that objective and subjective well-being are not isomorphically related, so that sometimes the better-off one is, the worse-off one feels subjectively. After a brief review of work in the area of relative deprivation, a formal model is developed. (Editor/RK)
Adachi, Yasuko; Hatano, Yutaka; Sakai, Takashi; Fujiwara, Sakuhei
2013-09-01
Previous studies have demonstrated that the activation of peroxisome proliferator-activated receptors (PPARs) not only has positive effects on permeability barrier homoeostasis but also has anti-inflammatory effects by an as yet unknown mechanism. Reduced expression of PPARα in lesion of human atopic dermatitis (AD) and in epidermis of murine AD-like dermatitis has been demonstrated. This study revealed that expression of PPARα alone among PPARs (α, β/δ and γ) was suppressed by both permeability barrier abrogation and additional existence of Th2 cytokine in cultured normal human keratinocytes. In addition, expressions of transglutaminase 1 and loricrin and those of thymus and activation-related chemokine and regulated on activation normal T-cell expressed in cultured human keratinocytes were reduced and enhanced, respectively, by transfection with siRNA for PPARα. In conclusion, depressed PPARα in keratinocytes might be involved in a relationship between permeability barrier abrogation and allergic inflammation and could be a therapeutic target which accounts for both the aspects in AD. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pullmannová, Petra; Pavlíková, Ludmila; Kováčik, Andrej; Sochorová, Michaela; Školová, Barbora; Slepička, Petr; Maixner, Jaroslav; Zbytovská, Jarmila; Vávrová, Kateřina
2017-05-01
The Stratum corneum (SC) prevents water loss from the body and absorption of chemicals. SC intercellular spaces contain ceramides (Cer), free fatty acids (FFA), cholesterol (Chol) and cholesteryl sulfate (CholS). Cer with "very long" acyl chains (for example, N-lignoceroyl-sphingosine, CerNS24) are important for skin barrier function, whereas increased levels of "long" acyl Cer (for example, N-palmitoyl-sphingosine, CerNS16) occur in patients suffering from atopic eczema or psoriasis. We studied the impact of the replacement of CerNS24 by CerNS16 on the barrier properties and microstructure of model SC lipid membranes composed of Cer/FFA/Chol/CholS. Membranes containing the long CerNS16 were significantly more permeable to water (by 38-53%), theophylline (by 50-55%) and indomethacin (by 83-120%) than those containing the very long CerNS24 (either with lignoceric acid or a mixture of long to very long chain FFA). Langmuir monolayers with CerNS24 were more condensed than with CerNS16 and atomic force microscopy showed differences in domain formation. X-ray powder diffraction revealed that CerNS24-based membranes formed one lamellar phase and separated Chol, whereas the CerNS16-based membranes formed up to three phases and Chol. These results suggest that replacement of CerNS24 by CerNS16 has a direct negative impact on membrane structure and permeability. Copyright © 2017 Elsevier B.V. All rights reserved.
Mitchell, T.; Faulkner, D.
2007-12-01
Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger scale models that predict bulk fluid flow within the crust. The strength, permeability and pore fluid volume evolution of initially intact crystalline rock (Westerly granite and Cerro Cristales granodiorite) under increasing differential load leading to macroscopic failure has been measured in a triaxial deformation apparatus. Experiments were run under pore water pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to and over two orders of magnitude prior to macroscopic failure, from 3.5 x 10-21 to 9 x 10-19 m2 with the greatest increase seen at lowest effective pressures. Post-failure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities, as high as 4 x 10-18 m2, and approaches lower the limit of measurements of in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced. The largest permeability increases are seen between 90-99% of the failure stress. Under hydrothermal conditions without further loading, it is suggested that much of this permeability can be recovered, and pre-macroscopic failure fracture damage may heal relatively faster than post-failure macroscopic fractures. Pre-failure permeabilities are nearly seven to nine orders of magnitude lower than that predicted by some high pressure diffusive models suggesting that microfracture matrix flow cannot dominate, and agrees with inferences that bulk fluid flow and dilatancy must be dominated by larger scale structures, such as macrofractures. It is suggested that the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks could increase by more than 2 orders of magnitude
Baudracco, J.; Veganzones, S.; Aoubouazza, M. [Universite Paul Sabatier, 31 - Toulouse (France). Laboratoire de Mecanismes de Transferts en Geologie
1997-12-31
Argillaceous formations are frequently used, due to their impermeability, in waste disposal to ensure tightness and protection of reservoirs. It is shown that an effluent influx may lead, through cationic exchanges or diffusion processes, to important permeability variations that could modify and deteriorate the formation imperviousness. An experimental study has been carried out on Berea sandstone using two different percolation cycles and a helium permeability experiment
Mount, G. J.; Comas, X.
2015-12-01
Subsurface water flow within the Biscayne aquifer is controlled by the heterogeneous distribution of porosity and permeability in the karst Miami Limestone and the presence of numerous dissolution and mega-porous features. The dissolution features and other high porosity areas can create preferential flow paths and direct recharge to the aquifer, which may not be accurately conceptualized in groundwater flow models. As hydrologic conditions are undergoing restoration in the Everglades, understanding the distribution of these high porosity areas within the subsurface would create a better understanding of subsurface flow. This research utilizes ground penetrating radar to estimate the spatial variability of porosity and dielectric permittivity of the Miami Limestone at centimeter scale resolution at the laboratory scale. High frequency GPR antennas were used to measure changes in electromagnetic wave velocity through limestone samples under varying volumetric water contents. The Complex Refractive Index Model (CRIM) was then applied in order to estimate porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates ranged from 45.2-66.0% from the CRIM model and correspond well with estimates of porosity from analytical and digital image techniques. Dielectric permittivity values of the limestone solid phase ranged from 7.0 and 13.0, which are similar to values in the literature. This research demonstrates the ability of GPR to identify the cm scale spatial variability of aquifer properties that influence subsurface water flow which could have implications for groundwater flow models in the Biscayne and potentially other shallow karst aquifers.
Variability of permeability with diameter of conduit
J A Adegoke; J A Olowofela
2008-05-01
An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.
Methods of modelling relative growth rate
Arne Pommerening; Anders Muszta
2015-01-01
Background:Analysing and modelling plant growth is an important interdisciplinary field of plant science. The use of relative growth rates, involving the analysis of plant growth relative to plant size, has more or less independently emerged in different research groups and at different times and has provided powerful tools for assessing the growth performance and growth efficiency of plants and plant populations. In this paper, we explore how these isolated methods can be combined to form a consistent methodology for modelling relative growth rates. Methods:We review and combine existing methods of analysing and modelling relative growth rates and apply a combination of methods to Sitka spruce (Picea sitchensis (Bong.) Carr.) stem-analysis data from North Wales (UK) and British Douglas fir (Pseudotsuga menziesi (Mirb.) Franco) yield table data. Results:The results indicate that, by combining the approaches of different plant-growth analysis laboratories and using them simultaneously, we can advance and standardise the concept of relative plant growth. Particularly the growth multiplier plays an important role in modelling relative growth rates. Another useful technique has been the recent introduction of size-standardised relative growth rates. Conclusions:Modelling relative growth rates mainly serves two purposes, 1) an improved analysis of growth performance and efficiency and 2) the prediction of future or past growth rates. This makes the concept of relative growth ideally suited to growth reconstruction as required in dendrochronology, climate change and forest decline research and for interdisciplinary research projects beyond the realm of plant science.
Methods of modelling relative growth rate
Arne Pommerening
2015-03-01
Full Text Available Background Analysing and modelling plant growth is an important interdisciplinary field of plant science. The use of relative growth rates, involving the analysis of plant growth relative to plant size, has more or less independently emerged in different research groups and at different times and has provided powerful tools for assessing the growth performance and growth efficiency of plants and plant populations. In this paper, we explore how these isolated methods can be combined to form a consistent methodology for modelling relative growth rates. Methods We review and combine existing methods of analysing and modelling relative growth rates and apply a combination of methods to Sitka spruce (Picea sitchensis (Bong. Carr. stem-analysis data from North Wales (UK and British Douglas fir (Pseudotsuga menziesii (Mirb. Franco yield table data. Results The results indicate that, by combining the approaches of different plant-growth analysis laboratories and using them simultaneously, we can advance and standardise the concept of relative plant growth. Particularly the growth multiplier plays an important role in modelling relative growth rates. Another useful technique has been the recent introduction of size-standardised relative growth rates. Conclusions Modelling relative growth rates mainly serves two purposes, 1 an improved analysis of growth performance and efficiency and 2 the prediction of future or past growth rates. This makes the concept of relative growth ideally suited to growth reconstruction as required in dendrochronology, climate change and forest decline research and for interdisciplinary research projects beyond the realm of plant science.
Permeability-porosity relationships of subduction zone sediments
Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.
2011-01-01
Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.
The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials
Hamilton, N. C.
2015-03-01
The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.
Biostable glucose permeable polymer
2017-01-01
A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...
Air sparging in low permeability soils
Marley, M.C. [Envirogen, Inc., Canton, MA (United States)
1996-08-01
Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.
Bias Modeling for Distantly Supervised Relation Extraction
Yang Xiang
2015-01-01
Full Text Available Distant supervision (DS automatically annotates free text with relation mentions from existing knowledge bases (KBs, providing a way to alleviate the problem of insufficient training data for relation extraction in natural language processing (NLP. However, the heuristic annotation process does not guarantee the correctness of the generated labels, promoting a hot research issue on how to efficiently make use of the noisy training data. In this paper, we model two types of biases to reduce noise: (1 bias-dist to model the relative distance between points (instances and classes (relation centers; (2 bias-reward to model the possibility of each heuristically generated label being incorrect. Based on the biases, we propose three noise tolerant models: MIML-dist, MIML-dist-classify, and MIML-reward, building on top of a state-of-the-art distantly supervised learning algorithm. Experimental evaluations compared with three landmark methods on the KBP dataset validate the effectiveness of the proposed methods.
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
Blood flow and permeability in microvessels
Sugihara-Seki, Masako; Fu, Bingmei M.
2005-07-01
The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.
Relating business modelling and enterprise architecture
Meertens, Lucas Onno
2013-01-01
This thesis proposes a methodology for creating business models, evaluating them, and relating them to enterprise architecture. The methodology consists of several steps, leading from an organization’s current situation to a target situation, via business models and enterprise architecture. Current
Models and relations in economics and econometrics
Juselius, Katarina
1999-01-01
Based on a money market analysis using the cointegrated VAR model the paper demonstrates some possible pitfalls in macroeconomic inference as a direct consequence of inadequate stochastic model formulation. A number of questions related to concepts such as empirical and theoretical steady-states,...
Relating business modelling and enterprise architecture
Meertens, Lucas Onno
2013-01-01
This thesis proposes a methodology for creating business models, evaluating them, and relating them to enterprise architecture. The methodology consists of several steps, leading from an organization’s current situation to a target situation, via business models and enterprise architecture.
The generic model of General Relativity
Tsamparlis, Michael, E-mail: mtsampa@phys.uoa.g [Department of Physics, Section Astrophysics Astronomy Mechanics, University of Athens, University of Athens, Zografos 15783, Athens (Greece)
2009-10-01
We develop a generic spacetime model in General Relativity from which all existing model results are produced under specific assumptions, depending on the case. We classify each type of possible assumption, especially the role of observers and that of symmetries, and discuss their role in the development of a model. We apply the results in a step by step approach to the case of a Bianchi I spacetime and a string fluid.
Michalski Dominik
2012-01-01
Full Text Available Abstract Background In ischemic stroke, blood-brain barrier (BBB regulations, typically involving matrix metalloproteinases (MMPs and inhibitors (TIMPs as mediators, became interesting since tissue plasminogen activator (tPA-related BBB breakdown with risk of secondary hemorrhage was considered to involve these mediators too. Despite high clinical relevance, detailed interactions are purely understood. After a pilot study addressing hyperoxia as potential neuroprotective co-treatment to tPA, we analyzed interrelations between BBB permeability (BBB-P, MMPs and TIMPs. Findings Rats underwent embolic middle cerebral artery occlusion (eMCAO and treatment with normobaric (NBO or hyperbaric oxygen (HBO, tPA, tPA+HBO, or no treatment. BBB-P was assessed by intravenously applied FITC-albumin at 4 or 24 hours. MMP-2/-9 and TIMP-1/-2 serum levels were determined at 5 or 25 hours. Time point-corrected partial correlations were used to explore interrelations of BBB-P in ischemic regions (extra-/intravasal FITC-albumin ratio and related serum markers. BBB-P correlated positively with MMP-2 and MMP-9 in controls, whereas hyperoxia led to an inverse association, most pronounced for HBO/MMP-9 (r = -0.606; P Conclusions HBO was found to reverse the positively directed interrelation of BBB-P and MMPs after eMCAO, but this effect failed to sustain in the expected amount when HBO and tPA were given simultaneously.
Al-Shehri, A.; Favretto, M.E.; Ioannou, P.V.; Romero, I.A.; Couraud, P.O.; Weksler, B.B.; Parker, T.L.; Kallinteri, P.
2015-01-01
PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeuti
*S. K. Bajpai
2014-09-01
Full Text Available This work describes moisture sorption behavior and water vapor permeability of gluteraldehyde –crosslinked Carrageenen/polyvinyl alcohol (Carr/PVA films. The moisture uptake has been studied under various relative humidity (RH and the data obtained has been interpreted in the terms of various isotherm models such as GAB, Oswin and Halsey models. The moisture permeability through the films has been characterized in the terms of various parameters like water vapor transmission rate (WVTR, permeance (P and Water vapor permeability (WVP. It was found that these parameters are greatly affected by the degree of crosslinking of the films. Finally, the model drug Gentamycin Sulphate was loaded in to the films and its release was monitored kinetically in the physiological buffer (PF at 370C. The films exhibited diffusion controlled release mechanism.
Quantifying porosity, compressibility and permeability in Shale
Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter
(XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...
Tunable permeability of magnetic wires at microwaves
Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.
2015-06-01
This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.
Shilei Wang; Yanting Wang; Yan Jiang; Qingxian Chang; Peng Wang; Shiduan Wang
2011-01-01
Cromakalim, an adenosine triphosphate-sensitive potassium channel opener, exhibits protective effects on cerebral ischemia/reperfusion injury. However, there is controversy as to whether this effect is associated with aquaporin-4 and blood-brain barrier permeability. Immunohistochemistry results show that preventive administration of cromakalim decreased aquaporin-4 and IgG protein expression in rats with ischemia/reperfusion injury; it also reduced blood-brain barrier permeability, and alleviated brain edema, ultimately providing neuroprotection.
Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S
2016-03-01
Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5% dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS.
Bataille, Arnaud; Genthon, Pierre; Rabinowicz, Michel [Laboratoire de Dynamique Terrestre et Planetaire, UMR 5562, Observatoire Midi-Pyrenees, 14 Avenue Edouard Belin, 31400 Toulouse (France); Fritz, Bertrand [Centre de Geochimie de Surface, UMR 7517, Ecole de l' Observatoire des Sciences de la Terre, 1 rue Blessig, F-67084 Strasbourg (France)
2006-10-15
The aim of the hydraulic stimulations in the Soultz-sous-Forets, France, Enhanced Geothermal System (EGS) project was to create, in crystalline rocks, a fractured reservoir 750 m high, 750 m long and 35 m thick interconnecting the injection and production wells. Increasing the permeability in a zone with a high geothermal gradient will trigger free convection, which will interact with the forced flow driven by pumping. A systematic numerical study of the coupling between forced and free convective flows has been performed by considering a large range of injection rates and Rayleigh numbers. The simulations showed that if there is weak or no free convection in an EGS reservoir, economic exploitation of the system will rapidly end because of a decrease in produced fluid temperature. The maximum injection rate preventing such a temperature drop increases with the Rayleigh number and the height of the stimulated domain. The model establishes constraints on the conditions for achieving optimal heat extraction at the Soultz-sous-Forets EGS site. It was also shown that, although mineral precipitation may partially close or heal some open fissures, it does not lead to a major decrease of the hydraulic conductivity in the stimulated reservoir. (author)
Wang, Bin; Liu, Yu; Huang, Lianyan; Chen, Jianjun; Li, Jing jing; Wang, Ruishan; Kim, Eunhee; Justicia, Carles; Sakata, Kazuko; Chen, Hao; Planas, Anna; Ostrom, Rennolds S; Li, Wei; Yang, Guang; McDonald, Michael P.; Chen, Ruihong; Heck, Detlef; Liao, Francesca-Fang
2016-01-01
Induction of neuroprotective heat-shock proteins via pharmacological Hsp90 inhibitors is currently being investigated as a potential treatment for neurodegenerative diseases. Two major hurdles for therapeutic use of Hsp90 inhibitors are systemic toxicity and limited CNS permeability. We demonstrate here that chronic treatment with a proprietary Hsp90 inhibitor compound (OS47720) not only elicits a heat shock-like response, but also offers synaptic protection in symptomatic Tg2576 mice, a model of Alzheimer’s disease (AD), without noticeable systemic toxicity. Despite a short half-life of OS47720 in mouse brain, a single intraperitoneal injection induces rapid and long-lasting (> 3 d) nuclear activation of the heat shock factor, HSF1. Mechanistic study indicates that the remedial effects of OS47720 depend upon HSF1 activation and the subsequent HSF-1-mediated transcriptional events on synaptic genes. Taken together, this work reveals a novel role of HSF1 in synaptic function and memory, which likely occurs through modulation of the synaptic transcriptome. PMID:27457810
Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan
2015-10-01
The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.
Modelling anisotropic fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt
2015-01-01
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Modeling Relational Data via Latent Factor Blockmodel
Gao, Sheng; Gallinari, Patrick
2012-01-01
In this paper we address the problem of modeling relational data, which appear in many applications such as social network analysis, recommender systems and bioinformatics. Previous studies either consider latent feature based models but disregarding local structure in the network, or focus exclusively on capturing local structure of objects based on latent blockmodels without coupling with latent characteristics of objects. To combine the benefits of the previous work, we propose a novel model that can simultaneously incorporate the effect of latent features and covariates if any, as well as the effect of latent structure that may exist in the data. To achieve this, we model the relation graph as a function of both latent feature factors and latent cluster memberships of objects to collectively discover globally predictive intrinsic properties of objects and capture latent block structure in the network to improve prediction performance. We also develop an optimization transfer algorithm based on the general...
Evidence for the development of permeability anisotropy in lava domes and volcanic conduits
Farquharson, Jamie I.; Heap, Michael J.; Lavallée, Yan; Varley, Nick R.; Baud, Patrick
2016-09-01
The ease at which exsolving volatiles can migrate though magma and outgas influences the explosivity of a volcanic eruption. Volcanic rocks often contain discrete discontinuities, providing snapshots of strain localisation processes that occur during magma ascent and extrusion. Whether these features comprise pathways for or barriers to fluid flow is thus of relevance for volcanic eruption and gas emission modelling. We report here on nine discontinuity-bearing andesite blocks collected from Volcán de Colima, Mexico. We present a systematic porosity and permeability study of fifty cores obtained from the blocks collected, and interpret the genetic processes of the discontinuities through detailed microstructural examination. Bands in pumiceous blocks were inferred to be relicts of inhomogeneous bubble expansion which, despite significantly increasing porosity, do not markedly affect permeability. Other discontinuities in our blocks are interpreted to be shear strain-induced flow banding, cavitation porosity, and/or variably healed fractures. In each of these cases, an increase in permeability (up to around three orders of magnitude) was measured relative to the host material. A final sample contained a band of lower porosity than the host rock, characterised by variably infilled pores. In this case, the band was an order of magnitude less permeable than the host rock, highlighting the complex interplay between dilatant and densifying processes in magma. We therefore present evidence for significant permeability anisotropy within the conduit and/or dome of a volcanic system. We suggest that the abundance and distribution of strain localisation features will influence the escape or entrapment of volatiles and therefore the evolution of pore pressure within active volcanic systems. Using a simple upscaling model, we illustrate the relative importance of permeable structures over different lengthscales. Strain localisation processes resulting in permeability
Shakila Tobwala
2014-06-01
Full Text Available Oxidative stress, which is the loss of balance between antioxidant defense and oxidant production in the cells, is implicated in the molecular mechanism of heavy metal-induced neurotoxicity. Given the key role of lead (Pb and cadmium (Cd in inducing oxidative stress, we investigated their role in disrupting the integrity and function of immortalized human brain microvascular endothelial cells (hCMEC/D3. To study this, hCMEC/D3 cells were exposed to control media or to media containing different concentrations of Pb or Cd. Those exposed to Pb or Cd showed significantly higher oxidative stress than the untreated group, as indicated by cell viability, reactive oxygen species (ROS, glutathione (GSH levels, and catalase enzyme activity. Pb also induced oxidative stress-related disruption of the hCMEC/D3 cell monolayer, as measured by trans-endothelial electrical resistance (TEER, the dextran permeability assay, and the level of tight junction protein, zona occluden protein (ZO-2. However, no significant disruption in the integrity of the endothelial monolayer was seen with cadmium at the concentrations used. Taken together, these results show that Pb and Cd induce cell death and dysfunction in hCMEC/D3 cells and, in the case of Pb, barrier disruption. This suggests blood brain barrier (BBB dysfunction as a contributing mechanism in Pb and Cd neurotoxicities.
Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)
2008-10-15
The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el
Animal models of age related macular degeneration
Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.
2012-01-01
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the ...
Bias Modeling for Distantly Supervised Relation Extraction
Yang Xiang; Yaoyun Zhang; Xiaolong Wang; Yang Qin; Wenying Han
2015-01-01
Distant supervision (DS) automatically annotates free text with relation mentions from existing knowledge bases (KBs), providing a way to alleviate the problem of insufficient training data for relation extraction in natural language processing (NLP). However, the heuristic annotation process does not guarantee the correctness of the generated labels, promoting a hot research issue on how to efficiently make use of the noisy training data. In this paper, we model two types of biases to reduce...
Lee J Martin
2014-12-01
Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurological disorder in humans characterized by progressive degeneration of skeletal muscle and motor neurons in spinal cord, brainstem, and cerebral cortex causing skeletal muscle paralysis, respiratory insufficiency, and death. There are no cures or effective treatments for ALS. ALS can be inherited, but most cases are not associated with a family history of the disease. Mitochondria have been implicated in the pathogenesis but definitive proof of causal mechanisms is lacking. Identification of new clinically translatable disease mechanism-based molecular targets and small molecule drug candidates are needed for ALS patients. We tested the hypothesis in an animal model that drug modulation of the mitochondrial permeability transition pore (mPTP is therapeutic in ALS. A prospective randomized placebo-controlled drug trial was done in a transgenic mouse model of ALS. We explored GNX-4728 as a therapeutic drug. GNX-4728 inhibits mPTP opening as evidenced by increased mitochondrial calcium retention capacity both in vitro and in vivo. Chronic systemic treatment of G37R-human mutant superoxide dismutase-1 (hSOD1 transgenic mice with GNX-4728 resulted in major therapeutic benefits. GNX-4728 slowed disease progression and significantly improved motor function. The survival of ALS mice was increased significantly by GNX-4728 treatment as evidence by a nearly 2-fold extension of lifespan (360 days to 750 days. GNX-4728 protected against motor neuron degeneration and mitochondrial degeneration, attenuated spinal cord inflammation, and preserved neuromuscular junction innervation in the diaphragm in ALS mice. This work demonstrates that a mPTP-acting drug has major disease-modifying efficacy in a preclinical mouse model of ALS and establishes mitochondrial calcium retention, and indirectly the mPTP, as targets for ALS drug development.
Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato
2017-02-01
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.
Ayyalasomayajula, Avinash; Park, Robert I; Simon, Bruce R; Vande Geest, Jonathan P
2016-01-01
Progressively deteriorating visual field is a characteristic feature of primary open-angle glaucoma (POAG), and the biomechanics of optic nerve head (ONH) is believed to be important in its onset. We used porohyperelasticity to model the complex porous behavior of ocular tissues to better understand the effect variations in ocular material properties can have on ONH biomechanics. An axisymmetric model of the human eye was constructed to parametrically study how changes in the permeabilities of retina-Bruch's-choroid complex (k(RBC)), sclera k(sclera), uveoscleral pathway (k(UVSC)) and trabecular meshwork k(TM) as well as how changes in the stiffness of the lamina cribrosa (LC) and sclera affect IOP, LC strains, and translaminar interstitial pressure gradients (TLIPG). Decreasing k(RBC) from 5 × 10(- 12) to 5 × 10(- 13) m/s increased IOP and LC strains by 17%, and TLIPG by 21%. LC strains increased by 13% and 9% when the scleral and LC moduli were decreased by 48% and 50%, respectively. In addition to the trabecular meshwork and uveoscleral pathway, the retina-Bruch's-choroid complex had an important effect on IOP, LC strains, and TLIPG. Changes in k(RBC) and scleral modulus resulted in nonlinear changes in the IOP, and LC strains especially at the lowest k(TM) and k(UVSC). This study demonstrates that porohyperelastic modeling provides a novel method for computationally studying the biomechanical environment of the ONH. Porohyperelastic simulations of ocular tissues may help provide further insight into the complex biomechanical environment of posterior ocular tissues in POAG.
Melo, Ricardo C.B.; Torres, Ricardo S.; Pedrosa Junior, Helio; Dean, Gregory [BJ Services do Brasil Ltda., RJ (Brazil)
2004-07-01
Today most oil companies would be better described as water companies. Total worldwide oil production averages some 75 million barrels per day and, while estimates vary, this is associated with the production of 300 - 400 million barrels of water per day. These values of approximately 5 - 6 barrels of water for every barrel of oil are quite conservative. In the United States, where many fields are depleted, the ratio of water-to-oil production is closer to 9 to 1. In some areas around the world, fields remain on production when the ratio is as high as 48 to 1. Numerous strategies, both mechanical and chemical, have been employed over the years in attempts to achieve reduction in water production. Simple shut-off techniques, using cement, mechanical plugs and cross-linked gels have been widely used. Exotic materials such as DPR (disproportionate permeability reducers) and or new generation of relative permeability modifiers (RPM) have been applied in radial treatments with varying degrees of success. Most recently 'Conformance Fracturing' operations have increased substantially in mature fields as the synergistic effect obtained by adding a RPM to a fracturing fluid have produced increased oil production with reduced water cut in one step, consequently eliminating the cost of additional water shut off treatment later on. This paper presents laboratory testing and worldwide case histories of applications of various RPM materials, at different permeability and temperatures. The paper also describes technical design and operational methodology that we believe to have a significant impact in the development strategies of many fields worldwide. (author)
Gyroid Nanoporous Membranes with Tunable Permeability
Li, Li; Schulte, Lars; Clausen, Lydia D.
2011-01-01
Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...
Mechanical Models of Fault-Related Folding
Johnson, A. M.
2003-01-09
The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2008-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t
Sara Nullens
Full Text Available During sepsis, gastrointestinal ileus, mucosal barrier dysfunction and bacterial translocation are accepted to be important triggers that can maintain or exacerbate the septic state. In the caecal ligation and puncture animal model of sepsis, we demonstrated that systemic and colonic interleukin-6 levels are significantly increased coinciding with an impaired colonic barrier function. We therefore aimed to study the effect of therapeutic or curative administration of anti-IL6 antibodies on overall GI motility, colonic permeability and translocation of intestinal bacteria in blood and mesenteric lymph nodes in the mouse caecal ligation and puncture model.OF-1 mice were randomized to either the preventive or curative protocol, in which they received 1 mg/kg of antibodies to interleukin-6, or its IgG isotype control solution. They subsequently underwent either the caecal ligation and puncture procedure, or sham-surgery. GI motility was assessed 48 h following the procedure, as well as colonic permeability, serum and colon cytokines, colonic tight junction proteins at the mRNA level; cultures of blood and mesenteric lymph nodes were performed.Preventive administration of anti-interleukin-6 antibodies successfully counteracted the gastrointestinal motility disturbances and impaired colonic barrier function that could be observed in vehicle-treated septic animals. Serum and colonic levels of proinflammatory cytokines were significantly lower when animals were preventively treated with anti-interleukin-6 antibodies. A repetitive injection 24 h later resulted in the most pronounced effects. Curative treatment significantly lowered systemic and colonic inflammation markers while the effects on transit and permeability were unfortunately no longer significant.Caecal ligation and puncture resulted in septic ileus with an increased colonic permeability. Antibodies to interleukin-6 were able to ameliorate gastro-intestinal motility, suppress inflammation and
Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.
2013-03-01
To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.
Prediction of permeability of monodisperse granular materials with a micromechanics approach
Yang, Rongwei; Lemarchand, Eric; Fen-Chong, Teddy; Li, Kefei
2016-04-01
Prediction of the permeability of porous media is of vital importance to such fields as petroleum engineering, agricultural engineering and civil engineering. The liquid water within unsaturated granular materials is distinguished as the intergranular layer, the wetting layer and the water film. By means of the micromechanics approach, a physical conceptual model is developed to predict the permeability (intrinsic and relative permeabilities) of the monodisperse granular materials. The proposed model has been validated by comparing the available experimental data and the empirical models, and has been used to re-interpret the Kozeny-Carman's relation in particular. The results obtained with this model show that the intergranular water will dominate the flow transport when the saturation degree is higher than the residual saturation degree; when the saturation degree is below the residual saturation degree, the wetting layer will govern the flow transport and the relative permeability will decrease by 3 to 8 orders of magnitude depending on the connectivity of the wetting layer.
A tool for computing time-dependent permeability reduction of fractured volcanic conduit margins.
Farquharson, Jamie; Wadsworth, Fabian; Heap, Michael; Baud, Patrick
2016-04-01
scale limits: the first to determine the applicability of the compaction model over the width of each fracture, and the second to indicate whether the fracture can outgas (or if pore pressure within the fracture will increase). The computational tool warns the user when the scale limits are violated. We outline applications of our tool: both independently and in concert with larger-scale models of volcanic outgassing. For example, in testing the tool, results suggest that fractures in a highly permeable edifice have marginal - if any - influence on the overall permeability of a volcanic system. On the other hand, in low permeability systems, even narrow fractures can allow significant outgassing to occur. Similarly, shallow fractures will serve to increase outgassing capability relative to deep fractures that heal more rapidly. We highlight the eminent flexibility of our tool, which enables it to be adapted to a wide range of specific user-defined requirements and scenarios.
Abuasal, Bilal S; Lucas, Courtney; Peyton, Breanne; Alayoubi, Alaadin; Nazzal, Sami; Sylvester, Paul W; Kaddoumi, Amal
2012-05-01
γ-Tocotrienol (γ-T3), a member of the vitamin E family, has been reported to possess an anticancer activity. γ-T3 is a lipophilic compound with low oral bioavailability. Previous studies showed that γ-T3 has low intestinal permeability. Thus, we have hypothesized that enhancing γ-T3 intestinal permeability will increase its oral bioavailability. Solid lipid nanoparticles (SLN) were tested as a model formulation to enhance γ-T3 permeability and bioavailability. γ-T3 intestinal permeability was compared using in situ rat intestinal perfusion, followed by in vivo relative oral bioavailability studies. In addition, in vitro cellular uptake of γ-T3 from SLN was compared to mixed micelles (MM) in a time and concentration-dependent studies. To elucidate the uptake mechanism(s) of γ-T3 from SLN and MM the contribution of NPC1L1 carrier-mediated uptake, endocytosis and passive permeability were investigated. In situ studies demonstrated SLN has tenfold higher permeability than MM. Subsequent in vivo studies showed γ-T3 relative oral bioavailability from SLN is threefold higher. Consistent with in situ results, in vitro concentration dependent studies revealed γ-T3 uptake from SLN was twofold higher than MM. In vitro mechanistic characterization showed that while endocytosis contributes to γ-T3 uptake from both formulations, the reduced contribution of NPC1L1 to the transport of γ-T3, and passive diffusion enhancement of γ-T3 are primary explanations for its enhanced uptake from SLN. In conclusion, SLN successfully enhanced γ-T3 oral bioavailability subsequent to enhanced passive permeability.
Animal models of age related macular degeneration.
Pennesi, Mark E; Neuringer, Martha; Courtney, Robert J
2012-08-01
Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.
Development of an Improved Permeability Modification Simulator
Gao, H.W.; Elphnick, J.
1999-03-09
This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.
Ammonia and urea permeability of mammalian aquaporins
Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas
2009-01-01
The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...... significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...
Permeability measuremens of brazilian Eucalyptus
Marcio Rogério da Silva
2010-09-01
Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.
Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.
2016-08-01
Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.
Nitric oxide turnover in permeable river sediment
Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M
2014-01-01
We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...
Selective permeability of PVA membranes. I - Radiation-crosslinked membranes
Katz, M. G.; Wydeven, T., Jr.
1981-01-01
The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.
Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes
Katz, Moshe G.; Wydeven, Theodore, Jr.
1981-01-01
The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.
Constitutive relations for multiphase flow modeling
Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik
1998-01-01
The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)
Lattice Boltzmann Model for Numerical Relativity
Ilseven, E
2015-01-01
In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Zhou, J
2006-03-15
This work deals with a modeling of the mechanical and hydro-mechanical behaviour of saturated rocks taking into account the variation of the permeability with damage. At first is established a function of the free enthalpy by a direct micro-mechanical approach in taking into account the distribution of the microcrack length. The opening of the closed microcracks due to the tangential gliding is taken into account because of the roughness of the cracks surfaces. This opening contributes directly to the volume expansion and to the variation of the macroscopic permeability of the material. A phenomenological approach with an approximation by a damage tensor of two order is shown too. Then, an extension of the model is proposed for describing the poro-mechanical behaviour of saturated rocks. The poro-mechanical answers in drained and undrained conditions of the Vosges sandstone have been studied. In the last part, a coupled model describing the behaviour of the coupling between the induced damage and the variation of the rocks permeability is proposed. (O.M.)
Influence of decenylsuccinic Acid on water permeability of plant cells.
Lee, O Y; Stadelmann, E J; Weiser, C J
1972-11-01
Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified.
Generative models: Human embryonic stem cells and multiple modeling relations.
Fagan, Melinda Bonnie
2016-04-01
Model organisms are at once scientific models and concrete living things. It is widely assumed by philosophers of science that (1) model organisms function much like other kinds of models, and (2) that insofar as their scientific role is distinctive, it is in virtue of representing a wide range of biological species and providing a basis for generalizations about those targets. This paper uses the case of human embryonic stem cells (hESC) to challenge both assumptions. I first argue that hESC can be considered model organisms, analogous to classic examples such as Escherichia coli and Drosophila melanogaster. I then discuss four contrasts between the epistemic role of hESC in practice, and the assumptions about model organisms noted above. These contrasts motivate an alternative view of model organisms as a network of systems related constructively and developmentally to one another. I conclude by relating this result to other accounts of model organisms in recent philosophy of science. Copyright © 2015 Elsevier Ltd. All rights reserved.
Erickson, Marilyn C; Ma, Li M; Doyle, Michael P
2015-11-01
Shelf life of fish packaged under modified atmosphere (MA) is extended, but within the United States, commercial application of MA with impermeable packaging films is restricted due to concerns that botulinum toxin production would precede spoilage when contaminated fish are held at abusive storage temperatures. Use of semipermeable packaging films has been advocated; however, previous studies are inconclusive in determining the oxygen transmission rate (OTR) of a film that is needed to achieve an acceptable margin of safety (i.e., toxin production occurs only after spoilage). This study was conducted to determine the influence of OTR (target OTRs of 3 to 15,000) on the development of spoilage volatiles and toxin in salmon inoculated with type E Clostridium botulinum and subjected to air, vacuum, or 75:25 CO2:N2 MA and storage temperatures of 4, 8, 12, or 16°C. The most dominant headspace volatile peak that was produced during spoilage of samples at 4, 8 or 12°C was a peak, having a Kovats retention index (KI) of 753, and at which external standards of 2- or 3-methyl 1-butanol also eluted. Under anaerobic conditions, both the aerobic microbial populations and the size of the KI 753 spoilage peak were less in inoculated samples compared with uninoculated samples. C. botulinum-inoculated samples that were stored at 12 or 16°C under conditions favorable for anaerobic growth were also characterized by a KI 688 peak. Using a previously developed model that related the percentage of elderly consumers who would prepare a sample having the KI 753 spoilage peak of a specific size, it was determined that for salmon packaged with 3 or 3,000 OTR films under any atmosphere and stored at 12 or 16°C, 2 to 61% of the consumers could potentially prepare toxin-contaminated samples. Hence, when abusive storage conditions are suspected, the fish should not be consumed.
Ghareh Mahmoodlu, Mojtaba
2014-01-01
In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the da
Tunable permeability of magnetic wires at microwaves
Panina, L.V., E-mail: lpanina@plymouth.ac.uk [National University of Science and Technology, MISiS, Moscow (Russian Federation); Institute for Design Problems in Microelectronics, RAN, Moscow (Russian Federation); Makhnovskiy, D.P. [School of Computing and Mathematics, University of Plymouth (United Kingdom); Morchenko, A.T.; Kostishin, V.G. [National University of Science and Technology, MISiS, Moscow (Russian Federation)
2015-06-01
This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires. - Highlights: • Applications of magnetic microwires for functional composites and distributed sensor networks are proposed. • Diluted composites with magnetic microwires can demonstrate tunable left-handed properties. • Large microwave permeability combined with a specific magnetic structure lead to a large and sensitive microwave magnetoimpedance. • Microwave magnetoimpedance highly sensitive to temperature is demonstrated.
Lee, Bum Han; Lee, Sung Keun
2013-07-01
Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock
Liu, Jinfeng; Fokker, Peter; Spiers, Christopher
2016-04-01
Permeability evolution in coal reservoirs during CO2-Enhanced Coalbed Methane (ECBM) production is strongly influenced by swelling/shrinkage effects related to sorption and desorption of CO2 and CH4, respectively. Numerous permeability models, coupling the swelling response of coal to gas sorption, have been developed to predict in-situ coal seam permeability evolution during (E)CBM. However, experimental studies, aimed at testing such models, have mainly focused on the permeability changes occurring under constant lateral stress conditions, which are inconsistent with the in-situ boundary condition of (near) zero lateral strain. We performed CH4 permeability measurements, using the steady-state method, on a cylindrical sample of high volatile bituminous coal (25mm in diameter), under (near) fixed volume versus fixed stress conditions. The sample possessed a clearly visible cleat system. To isolate the effect of sorption on permeability evolution, helium (non-sorbing gas) was used as a control fluid. The bulk sample permeability to helium, under stress control conditions, changed from 4.07×10-17to 7.5×10-18m2, when the effective stress increased from 19.1 to 35.2MPa. Sorption of CH4 at a constant pressure of 10MPa, under fixed volume boundary conditions, resulted in a confining pressure increase from a poroelastically supported value of 29.3MPa to a near-equilibrium value of 38.6MPa over 171 hours. This is caused by the combined effect of the sorption-induced swelling and the self-compression of the sample. The concentration of CH4 adsorbed by the sample was 0.113 mmol/gcoal. During the adsorption process, the permeability to CH4 also decreased from 2.38×10-17 to 4.91×10-18m2, proving a strong influence of stress-strain-sorption behavior (c.f. Hol et al., 2012) on fracture permeability evolution. The CH4 permeability subsequently measured under stress controlled conditions varied from 1.37×10-17 to 4.33×10-18m2, for same change in confining pressure, i.e. 28
王培涛; 杨天鸿; 于庆磊; 刘洪磊; 夏冬; 张鹏海
2013-01-01
节理岩体几何结构非常复杂，研究其渗流特性对于指导含水岩层稳定性分析具有重要价值。应用离散裂隙网络模型DFN方法，基于VC++6.0软件平台，建立了平面渗流分析方法，分析了节理岩体不同几何分布情况下的渗透率张量特征，通过定义渗流定向性系数对岩体渗流的定向性特征进行了定量分析。结果表明：单组节理岩体渗流具有明显的各向异性特征，渗流定向性随着节理角度变化显著；节理随着节理贯通性增加，节理渗透率呈现对数增加趋势；两组节理情况下，各向异性特征随着节理组间夹角变化；两组节理岩体渗流特征研究中，正交分布下，岩体仍存在各向异性，但渗流定向性系数较低；当节理倾角服从正态分布时，随着节理倾角标准差增大，渗透率增加；两组节理夹角不同时，节理渗透主方向倾角随着夹角增大而相应增大，基本沿两组节理夹角方向的角平分线方向。%Joint systems in rock masses are geometrically complex; and investigation of the hydraulic properties is important for understanding the hydraulic behavior of jointed rock masses and stability analysis of rock engineering. A discrete fracture network (DFN) model was designed using C++language based on VC++6.0 platform to realize a fracture network for seepage analysis. The permeability coefficients, possibility of equivalent permeability tensors of the jointed rock masses were examined by simulating flow through DFN models of varying joint properties. A directionality coefficient was defined to quantitatively assess the principal flow direction in jointed rock masses. The results show that the permeability coefficients are anisotropic according to permeability tensor analysis for rock masses with only one set of joints. The degree of obliquities of joint plane affects obviously the principal direction of permeability. The permeability coefficients
Low Permeability Polyimide Insulation Project
National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...